
Fast and Precise Symbolic Analysis of
Concurrency Bugs in Device Drivers

Pantazis Deligiannis
Department of Computing,

Imperial College London, UK
p.deligiannis@imperial.ac.uk

Alastair F. Donaldson
Department of Computing,

Imperial College London, UK
alastair.donaldson@imperial.ac.uk

Zvonimir Rakamarić
School of Computing,

University of Utah, USA
zvonimir@cs.utah.edu

Abstract—Concurrency errors, such as data races, make
device drivers notoriously hard to develop and debug without
automated tool support. We present WHOOP, a new automated
approach that statically analyzes drivers for data races. WHOOP
is empowered by symbolic pairwise lockset analysis, a novel
analysis that can soundly detect all potential races in a driver.
Our analysis avoids reasoning about thread interleavings and thus
scales well. Exploiting the race-freedom guarantees provided by
WHOOP, we achieve a sound partial-order reduction that sig-
nificantly accelerates CORRAL, an industrial-strength bug-finder
for concurrent programs. Using the combination of WHOOP and
CORRAL, we analyzed 16 drivers from the Linux 4.0 kernel,
achieving 1.5–20× speedups over standalone CORRAL.

I. INTRODUCTION

Device drivers are complex pieces of system-level software,
operating at the thin boundary between hardware and software
to provide an interface between the operating system and the
devices that are attached to a computer. Drivers are notoriously
hard to develop and debug [1]. This has a negative impact
on hardware product releases, as time-to-market is commonly
dominated by driver development, verification, and validation
schedules [2]. Even after a driver has shipped, it typically has
many undetected errors: Chou et al. [3] gathered data from
7 years of Linux kernel releases and found that the relative
error-rate in driver source code is up to 10 times higher than
in any other part of the kernel, while Swift et al. [4] found
that 85% of the system crashes in Windows XP are due to
faulty drivers. Regarding concurrency bugs, a recent study [5]
established that they account for 19% of the total bugs in
Linux drivers, showcasing their significance. The majority of
these concurrency bugs were data races or deadlocks in various
configuration functions and hot-plugging handlers.

Concurrency bugs are exacerbated by the complex and
hostile environment in which drivers operate [1]. The OS can
invoke drivers from multiple threads, a hardware device can is-
sue interrupt requests that cause running processes to block and
switch execution context, and the user may remove a device
(hot-plugging) while some operation is still running. These
scenarios can cause data races if insufficient synchronization
mechanisms are in place to control concurrent access to shared
resources. Data races are a source of undefined behavior in
C [6, p. 38], and lead to nondeterministically occurring bugs
that can be hard to reproduce, isolate and fix, especially in the
context of complex operating systems. Several techniques have
been successfully used to analyze device drivers [7], [8], [9],
[10], [11], [12], [13], [14], but most focus on generic sequential

program properties and protocol bugs. Linux kernel analyzers,
such as sparse [15], coccinelle [16] and lockdep [17], can find
deadlocks in kernel source code, but are unable to detect races.
Techniques that can detect races in drivers [18], [19], [20],
[21], [14] are usually either overly unsound (i.e. can miss real
bugs) or imprecise (i.e. can report false bugs), and typically
sacrifice precision for scalability. Thus, there is a clear need
for new tools that can detect races efficiently and precisely.

We present WHOOP, an automated approach for static data
race analysis in device drivers. WHOOP is empowered by
symbolic pairwise lockset analysis, which attempts to prove
a driver race-free by: (i) deriving a sound sequential program
that over-approximates the originally concurrent program; (ii)
instrumenting it to record locksets; and (iii) using the locksets
to assert that all accesses to the same shared resource are
consistently protected by a common lock. Reducing analysis
to reasoning over a sequential program avoids the need to
enumerate thread interleavings, and allows reuse of existing
successful sequential verification techniques. We show that we
can exploit the race-freedom guarantees provided by our sym-
bolic analysis to achieve a sound partial-order reduction that
significantly accelerates CORRAL [14], a precise bug-finder
used by Microsoft to analyze drivers and other concurrent
programs. Using WHOOP and CORRAL we analyzed 16 drivers
from the Linux 4.0 kernel. Our combination achieves analysis
speedups in the range of 1.5–10× for most of our benchmarks,
compared with using CORRAL in isolation. For two drivers,
we observed even greater speedups of 12× and 20×. WHOOP
currently supports Linux drivers, but our approach is conceptu-
ally generic and could be applied to analyze drivers for other
operating systems, as well as concurrent systems that use a
similar programming model (e.g. file systems).

To summarize, our contributions are as follows:

• We propose symbolic pairwise lockset analysis, a
sound and scalable technique for automatically ver-
ifying the absence of data races in device drivers.

• We present WHOOP, a tool that leverages our approach
for analyzing data races in device drivers.

• We show that we can achieve a sound partial-order
reduction using our technique to accelerate CORRAL,
an industrial-strength bug-finder.

• We analyze 16 Linux drivers, showing that WHOOP is
efficient at race-checking and accelerating CORRAL.



static loff_t nvram_llseek(struct file *file,
loff_t offset, int origin) {

switch (origin) {
...
case 1: offset += file->f_pos; break; // racy
...

}
if (offset < 0) return -EINVAL;
file->f_pos = offset; // racy
return file->f_pos; // racy

}

Fig. 1. Racy entry point in the generic nvram Linux 4.0 driver.

II. BACKGROUND

Concurrency in Device Drivers Modern operating systems
address the demand for responsiveness and performance in de-
vice drivers by providing multiple sources of concurrency [1]:
an arbitrary number of entry points from the same driver can
be invoked concurrently; a running driver process can block,
causing the driver to switch execution to another process; and
hardware interrupts can be handled concurrently. These forms
of concurrent execution are prone to data races.

Definition 1: A data race occurs when two distinct threads
access a shared memory location, at least one of the accesses
is a write access, at least one of the accesses is non-atomic,
and there is no mechanism in place to prevent these accesses
from being simultaneous.

Fig. 1 shows a racy entry point, nvram_llseek, in the
generic nvram Linux 4.0 device driver. This entry point can be
invoked concurrently from two threads, with the same file
struct as a parameter. This can lead to multiple possible data
races because the threads can access the f_pos field of file
in arbitrary order. Our tool, WHOOP (see §III), was able to find
these races automatically (see §V).

The most common method for avoiding races is by protect-
ing sets of program statements that access a shared resource
with locks, forming critical sections. Fig. 2 shows how to
use locking to eliminate the races in Fig. 1. Careless use
of locks has many well-known pitfalls [22]: coarse-grained
locking can hurt performance as it limits the opportunity for
concurrency, while fine-grained locking can easily lead to
deadlocks. Although the Linux kernel provides sophisticated
lock-free synchronization mechanisms [1, p. 123], such as
atomic read-modify-write operations, in this work we focus
on locks as they are widely used.1

Lockset Analysis Lockset analysis is a lightweight race
detection method proposed in the context of Eraser [23], a
dynamic data race detector. The idea is to track the set of locks
(i.e. lockset) that are consistently used to protect a memory
location during program execution. An empty lockset suggests
that a memory location may be accessed simultaneously by two
or more threads. Consequently, the analysis reports a potential
race on that memory location.

Lockset analysis for a concurrent program starts by creating
a current lockset CLST for each thread T of the program,
and a lockset LS s for each shared variable s used in the
program. Every CLST is initially empty because the threads

1We treat lock-free operations soundly by regarding them as not providing
any protection between threads; this can lead to false alarms.

static loff_t nvram_llseek(struct file *file,
loff_t offset, int origin) {

mutex_lock(&nvram_mutex); // lock
switch (origin) {

...
case 1: offset += file->f_pos; break;
...

}
if (offset < 0) {

mutex_unlock(&nvram_mutex); // unlock
return -EINVAL;

}
file->f_pos = offset;
loff_t res = file->f_pos; // store result
mutex_unlock(&nvram_mutex); // unlock
return res;

}

Fig. 2. Introducing a lock to eliminate the races in the previous example.

do not hold any locks when they start executing. In addition,
every LS s is initialized to the set of all locks manipulated
by the program since initially each access to s is (vacuously)
protected by every lock. The program is executed as usual
(with threads scheduled according to the OS scheduler), except
that instrumentation is added to update locksets as follows.
After each lock and unlock operation by T , CLST is updated
to reflect the locks currently held by T . When T accesses s,
LS s is updated to the intersection of LS s with CLST , which
removes any locks that are not common to the two locksets. If
LS s becomes empty as a result, a warning is issued that the
access to s may be unprotected.

Fig. 3 shows an example of applying lockset analysis to
a concurrent program consisting of two threads T1 and T2,
both accessing a global variable A. Initially, LSA, which is
the lockset for A, contains all possible locks in the program:
M and N . During execution of T1, the thread writes A without
holding N , and thus N is removed from LSA. Next, during
execution of T2, the thread writes A without holding M , and
thus LSA becomes empty. As a result, a warning is reported
because the two threads do not consistently protect A.

In contrast to more sophisticated race analyses that en-
code a happens-before relation between threads [24] (e.g.
using vector clocks), lockset analysis is easy to implement,
lightweight, and thus has the potential to scale well. The
technique, though, can report false alarms since a violation of
the locking discipline does not always correspond to a real data
race [23], [25], [26], [27], [28]. Furthermore, the code coverage
in dynamic lockset analyzers, such as Eraser, is limited by the
execution paths that are explored under a given scheduler.

To counter the above limitations, techniques such as Lock-
smith [20] and RELAY [21] have explored the idea of applying
lockset analysis statically, using dataflow analysis. In this
paper, we present a novel symbolic lockset analysis method
that involves generating verification conditions, which are then
discharged to a theorem prover.

III. THE WHOOP APPROACH

We now present symbolic pairwise lockset analysis, a novel
method for data race analysis in device drivers. In §III-A we
describe how the approach works in a semi-formal manner,
with respect to a simple concurrent programming model. In
§III-B we explain how we have implemented our analysis in a



T1

CLST2 LSA

warning: access 
to A may not 
be protected

T2

{ }
CLST1

{ }
Program

{ M, N }

lock (M);
lock (N);
write (A);
unlock (N);
write (A);

unlock (M);

{ M, N }
{ M, N }
{ M, N }
{ M, N }

{ M }
{ M }

{ M }
{ M, N }
{ M, N }

{ M }
{ M }
{ }

lock (M);
write (A);

unlock (M);
write (A);

{ M }
{ M }
{ }
{ }

{ M }
{ M }
{ M }
{ }

Initial

compute lockset 
intersection at 
access points

Fig. 3. Applying lockset analysis on a concurrent program.

practical tool, WHOOP, that can be applied directly to driver
source code.

A. Symbolic Pairwise Lockset Analysis

Our approach considers, for a given driver, every pair of
entry points that can potentially execute concurrently. For each
such pair, we use symbolic verification to check whether it is
possible for the pair to race on a shared memory location.
We soundly model the effects of additional threads by treating
the driver shared state abstractly: when an entry point reads
from the shared state, a nondeterministic value is returned.
Restricting to pairs of entry points, rather than analyzing all
entry points simultaneously, exploits the fact that data races
occur between pairs of threads and limits the complexity of
the generated verification conditions.2 The trade-off is that a
quadratic number of entry point pairs must be checked. In
§III-B we discuss optimizations based on device driver domain
knowledge to reduce the number of pairs to some extent.

Symbolic verification of a pair of entry points works by (i)
instrumenting each entry point with additional state to record
locksets, and (ii) attempting to verify a sequential program that
executes the instrumented entry points in sequence. A post-
condition for the sequential program asserts, for every shared
location, that the locksets for each entry point with respect
to this location have a non-empty intersection. Verification of
the resulting sequential program can be undertaken using any
sound method; in practice we employ the Boogie verification
engine [29], which requires procedure specifications and loop
invariants to be generated, after which verification conditions
(VCs) [30] are generated and discharged to an automated
theorem prover.

We now detail the approach in a semi-formal manner, in
the context of a simple concurrent programming model.

Concurrent Programming Model We consider a concurrent
programming model where an unbounded number of threads
execute a set of pre-defined thread templates. At any given
point of execution a certain number of threads are active,
each thread executing a particular template. In the context of

2In principle, our approach could be applied at a coarser level of granularity,
such as by considering all entry points one after the other, taking into account
that an entry point can race with itself. However, using pairwise analysis has
the additional advantage that it enables us to easily run the analysis for each
pair in parallel (for performance), although we leave this for future work.

Statement Notes
x = e; private assignment, where x ∈ VT and e is an expression

over VT

x = f(e); procedure call, where x ∈ VT , e is a sequence of expres-
sions over VT , f is the name of a procedure in procsT

s = e; shared write, where s ∈ Vs and e is an expression over VT

x = s; shared read, where x ∈ VT and s ∈ Vs

lock(m); mutex lock, where m ∈M

unlock(m); mutex unlock, where m ∈M

Fig. 4. The allowed statements in our simple programming model.

device drivers, a thread template corresponds to a driver entry
point. Multiple instances of the same thread template may
execute concurrently, just as multiple invocations of a single
driver entry point may be concurrent. Further threads may
start executing at any point during execution; in the context of
device drivers this corresponds to the OS invoking additional
driver entry points.3 For ease of presentation only, our model
does not feature aggregate data types, pointers, or dynamic
memory allocation. These are handled by our implementation,
and in §III-B we discuss interesting practical issues arising
from the handling of a full-blown language.

A concurrent program is described by a finite set of shared
variables Vs, a finite set of mutexes M , and a finite set of
thread templates. A thread template T consists of a finite set
of procedures procsT and a finite set of private variables VT .
A designated procedure mainT ∈ procsT denotes the starting
point for execution of T by a thread. Each procedure of procsT
is represented by a control flow graph of basic blocks, where
each block contains a sequence of statements. A basic block
either has a single successor or a pair of successors. In the latter
case, an exit condition over thread-private variables determines
the successor to which control should flow on block exit.

The allowed statements are shown in Fig. 4, and include
designated statements for reading from and writing to shared
variables. In particular, shared variables may not appear in ar-
bitrary expressions. This restriction simplifies our presentation
of lockset instrumentation below and is trivial to enforce by
pre-processing. We do not specify the form of expressions, nor
the types of variables, assuming a standard set of data types
and operations.

Semantics Let I be an infinite set from which dynamic thread
ids will be drawn. The state of a running concurrent program
consists of: a valuation of the shared variables Vs; a mapping
that associates each mutex in M with an id from I, recording
which thread currently holds the mutex, or with a special value
⊥ /∈ I to indicate that the mutex is not held by any thread;
and a list of thread states. Each thread state has an associated
thread template T , the type of the thread (and multiple threads
may have the same associated template), and consists of an id
(drawn from I), an index indicating the next statement of T
to be executed by the thread, and a valuation of the thread
private variables VT . If multiple threads are instances of the
same template T , then each thread carries a separate valuation
of the private variables for this template.

3We do not consider the case where one thread spawns another thread,
which does not typically occur in the context of drivers; rather we aim to
capture the scenario where additional threads are launched by the environment.



Original Statement Instrumented Statement
s = e; Wi = Wi ∪ {s};

LSs,i = LSs,i ∩ CLS i;

x = s; Ri = Ri ∪ {s};
LSs,i = LSs,i ∩ CLS i;
havoc(xi);

lock(m); CLS i = CLS i ∪ {m};

unlock(m); CLS i = CLS i \ {m};

Fig. 5. Instrumenting statements for lockset analysis.

Initially, the valuation of shared variables is arbitrary, no
mutexes are held (i.e. each mutex maps to ⊥), and the list
of thread states is empty. At any point of execution, a new
thread state may be added to the list of thread states. This
involves selecting a thread template T and an id i ∈ I that
has not been previously used during program execution, setting
the point of execution for the new thread state to be the first
statement of mainT , and choosing an arbitrary valuation for
the private variables VT . We consider a standard interleaving
model of concurrency: at any execution point, a thread may
execute its current statement, unless that statement has the
form lock(m) and mutex m is held by some thread. Executing
a statement updates the thread-private and shared state in a
standard manner. For example, if a thread following template T
executes s = e, where s ∈ Vs and e is an expression over VT ,
the shared variable valuation is updated so that s has the value
determined by evaluating e in the context of the thread’s private
variable valuation. Because our interest is in data race analysis
for race-free programming, we are not concerned with relaxed
memory behavior: race-free programs exhibit only sequentially
consistent behaviors.

A thread terminates if it reaches the end of mainT , in
which case its state is removed from the list of thread states.
Since our interest is in analysis of device drivers, which are
reactive programs, we do not consider the notion of global
program termination.

Lockset Instrumentation For templates T and U , which can
be equal, we want to check whether it is possible for a thread
executing T to race with a thread executing U , in the presence
of arbitrarily many further concurrently executing threads.
To this end, we first instrument a template T for lockset
analysis (see §II). Given an arbitrary symbol i, we define the
instrumentation of T with respect to i, denoted Ti. There are
two aspects to this instrumentation phase: renaming and lockset
instrumentation. Renaming is straightforward: each occurrence
of a private variable x ∈ VT used in T is replaced with a
renamed variable xi in Ti, and every procedure f ∈ procsT
is renamed (both at its declaration site and at all call sites) to
fi in Ti. The purpose of renaming is to ensure that when we
analyze a pair of templates, T and U , both templates execute
distinct procedures and operate on distinct private data. This
is vital in the case where T and U are the same.

Lockset instrumentation introduces: sets Ri ⊆ P(Vs) and
Wi ⊆ P(Vs) to track the shared variables that have been read
from and written to, respectively, by the thread executing T ; a
current lockset CLS i ⊆ P(M) to record the mutexes currently
held by the thread; and, for each shared variable s ∈ Vs, a
lockset LS s,i to record the mutexes that are consistently held
when the thread accesses s. The statements of each procedure

CLS i = ∅; Ri = ∅; Wi = ∅;
CLS j = ∅; Rj = ∅; Wj = ∅;
for s ∈ Vs do LSs,i = M ; LSs,j = M ;

mainTi
();

mainUj
();

assert ∀s ∈ Vs .
s ∈Wi ∩ (Rj ∪Wj) ∨ s ∈Wj ∩ (Ri ∪Wi) =⇒

LSs,i ∩ LSs,j 6= ∅;

Fig. 6. The sequential program to be analyzed to prove race-freedom for a
pair of thread templates.

in Ti that access shared variables and mutexes are instrumented
to manipulate these sets, as shown in Fig. 5. For a shared
variable assignment s = e, we record in Wi that s has been
written to, and update LS s,i to eliminate any mutexes that
are not currently held (those mutexes that are not in CLS i).
A shared variable read x = s is instrumented analogously,
with an additional havoc command which we discuss below.
Instrumentation of mutex manipulation commands, lock(m)
and unlock(m), involves updating CLS i to add and remove
mutex m, respectively.

Shared State Abstraction Recall that while our aim is to
perform race analysis for pairs of threads, we must be sure to
account for possible side-effects due to other threads that are
running concurrently. The instrumentation of Fig. 5 achieves
this via nondeterminism: when reading from a shared variable
s, a nondeterministic value is returned. This is reflected by
the use of a havoc command, which sets its argument to an
arbitrary value. Because all shared state accesses are abstracted
in this fashion, it is possible to completely dispense with the
shared variables after the lockset instrumentation has been
performed. As a result, when instrumenting a shared variable
write, the effect of the write is not explicitly modeled.

Sequentialization Fig. 6 shows the sequential program that
we analyze to prove race-freedom for a pair of thread templates
T and U . Assuming that T and U have been instrumented
using distinct symbols i and j, yielding Ti and Uj , the
sequential program operates as follows. First, the read, write,
and current locksets for Ti and Uj are initialized to be empty,
and for each shared variable s, the locksets LS s,i and LS s,j are
initialized to the full set of mutexes M . The main procedures
of the instrumented thread templates, mainTi

and mainUj
,

are then executed in turn (the order does not matter due to
renaming). Finally, an assertion checks for consistent use of
mutexes: if s is written during execution of Ti and accessed
during execution of Uj , or vice-versa, then the locksets LS s,i

and LS s,j must contain at least one common mutex.

Soundness We sketch an argument that if the program of
Fig. 6 is correct (i.e. the assertion, described above, holds
invariantly at the end of the program), then it is impossible
for a thread executing template T to race with a thread
executing template U , under the assumption that the threads
are guaranteed to terminate. Let us assume that the program of
Fig. 6 is correct, and suppose (by way of contradiction) that a
thread executing T can in fact race with a thread executing U ,
on some shared variable s. By our hypothesis that the program
is correct, and that the threads terminate, the assertion checked
at the end of the program guarantees that at least one mutex,
say m, belongs to both LS s,i and LS s,j . By the definition
of a lockset (and according to the manner in which shared



Boogie IVL
code, instrumented

with yields

Data Race
Reports

No Errors
(Under Given Bounds)

WHOOP

Error Traces
Z3

Chauffeur

SMACK

Linux driver 
source code in C

Boogie 
IVL codellvm-IR

Linux
Environmental

Model
Instrumentation

Sequentialization

Invariant Generation

Boogie
Verification 

Engine

CORRAL

A. Translation Phase B. Symbolic Lockset Analysis Phase C. Bug-Finding Phase

Clang / 
LLVM

entry point 
information

Fig. 7. The WHOOP architecture, empowered by state-of-the-art compilation (Clang/LLVM and SMACK) and verification (Boogie and CORRAL) tools.

accesses are instrumented in Fig. 5), this means that m is held
during every access to s by both Ti and Uj . As a result, m
must be unlocked and locked between the two accesses, which
contradicts that the pair of accesses is racing.

In the presence of non-termination the assertion at the
end of Fig. 6 may not be reached. The termination analysis
problem for device drivers has been widely studied (see e.g.
[11]), and in the remainder of the paper we do not consider
termination issues, assuming that the drivers we analyze in our
experimental evaluation (see §V) are terminating.

B. Implementation in WHOOP

The simple concurrent programming model of §III-A is
deliberately idealistic to make it easy to describe our symbolic
verification technique. In practice, Linux drivers are written in
C, our technique does not know up-front which are the driver
entry points, drivers do not work with a cleanly specified set
of named locks, and rather than having a given set of named
shared variables, we have arbitrary memory accesses via
pointers. We now explain how we have taken the conceptual
ideas from §III-A and used them to build WHOOP, a practical,
automated tool for detecting data races in drivers.

Architecture Fig. 7 depicts the WHOOP toolchain. The input
to WHOOP is a Linux driver written in C, together with an
environmental model4 that is required to “close” the driver
so that it can be analyzed for races. Initially, WHOOP uses
three LLVM-based tools [31], [32], Chauffeur, Clang [33], and
SMACK [34], [35], to translate the driver and its environ-
mental model into an abstract program written in the Boogie
intermediate verification language (IVL) [36]. Boogie is a
simple imperative language with well-defined semantics that
is used as the input to a number of cutting-edge verifiers (e.g.
the Boogie verifier and CORRAL). Next, WHOOP instruments
and sequentializes the program to perform symbolic pairwise
lockset analysis (see Fig. 7–B and §III-A) using the Boogie
verification engine. After the verification phase ends, WHOOP
can exploit any inferred race-freedom guarantees to accelerate
precise race-checking with CORRAL (see Fig. 7–C and §IV).

We engineered the Chauffeur5 and WHOOP6 components
of our toolchain (denoted with grey boxes in Fig. 7). For

4This consists of stub header files modeling relevant Linux kernel APIs.
5https://github.com/mc-imperial/chauffeur
6https://github.com/pdeligia/whoop

const struct file_operations nvram_fops = {
.llseek = nvram_llseek,
.read = read_nvram,
.write = write_nvram,
.unlocked_ioctl = nvram_unlocked_ioctl

};

Fig. 8. Entry point definitions in the generic nvram driver.

the remaining components, we were able to reuse industrial-
strength tools that are robust and battle-proven via their use in
many complex software projects.

Extracting Entry Point Information Chauffeur is a Clang-
based tool that traverses the abstract syntax tree (AST) of the
original driver and extracts all entry point identifier names,
together with the identifier names of their corresponding kernel
functions. Linux drivers define entry points in a standard way
(see Fig. 8 for an example of how the generic nvram driver
defines the entry points for file_operations); Chauffeur
identifies these definitions in the AST and outputs the relevant
information in an XML file, which is parsed by WHOOP to be
used during the instrumentation.

Translation for Verification Next, the driver is compiled
by Clang to LLVM-IR, a low-level assembly-like language
in single static assignment (SSA) form. Function calls (e.g.
for locking and unlocking) are preserved in this translation
and, hence, we do not need to keep track of them separately.
SMACK then translates the driver from LLVM-IR to Boogie
IVL, which is the input language of WHOOP. An important
feature of SMACK is that it leverages the pointer-alias analyses
of LLVM to efficiently model the heap manipulation operations
of C programs in Boogie IVL. Thus, WHOOP does not need
to directly deal with pointers and alias analysis.

To achieve scalability, SMACK uses a split memory model
that exploits an alias analysis to soundly partition memory
locations into non-overlapping equivalence classes that do not
alias. This has been shown to lead to more tractable verification
compared with a monolithic model where the heap is consid-
ered to be an array of bytes [37]. The split memory model
is based on memory regions, which are maps of integers that
model the heap. A benefit of using this model is that distinct
memory regions denote disjoint sections of the heap. We
leverage this knowledge inside WHOOP to guide and optimize
our lockset instrumentation and analysis, and to create a fine-
grained context-switch instrumentation as discussed in §IV.

https://github.com/mc-imperial/chauffeur
https://github.com/pdeligia/whoop


Identifying Locks When the instrumentation phase begins,
WHOOP performs an inter-procedural static analysis (at Boogie
IVL level) to identify all available locks and rewrite each one
(both at declaration and at all access sites) to a unique Boogie
constant. Representing all locks statically, instead of using their
original SMACK pointer-based representation, makes it easier
for WHOOP to perform lockset instrumentation and lockset-
based invariant generation. Currently, WHOOP supports Linux
kernel mutex and spinlock operations; it is easy to enhance it
with knowledge of other locking primitives. If WHOOP cannot
reliably infer a unique lock instance (e.g. because it is stored
in an unbounded data structure of locks such as an array or
a list), it will exit with a warning. However, we have never
encountered this in practice since a small, fixed number of
locks is advocated by Linux experts as good practice when
developing drivers [1, p. 123].

Watchdog Race-Checking Instrumentation Data race detec-
tion is performed by introducing sets containing the locks that
are consistently held when accessing each shared variable and
sets containing all shared variables that are read and written
(see §III-A and the instrumentation of Fig. 5). These sets can
be modeled directly in Boogie as characteristic functions, using
maps. However, this requires the use of quantifiers to express
properties related to set contents. For instance, to express that a
set X of elements of type A is empty, where X is represented
as a map from A to Bool, we would require the quantified
expression ∀a : A . ¬X[a]. It is well known that automated
theorem proving in the presence of quantified constraints is
challenging, and that theorem provers such as Z3 [38] are often
much more effective when quantifiers are avoided.

To avoid quantifiers and the associated theorem proving
burden, we use instead a watchdog race-checking instrumen-
tation, adapted from previous work [39]. Suppose we are
analyzing entry points T and U , and that after translation
into Boogie IVL these entry points share a common memory
region MR. When analyzing T and U for races, we introduce
an unconstrained symbolic constant watchedMR, representing
some unspecified index into MR; we call this the watched
offset for MR. We then attempt to prove that it is impossible
for T and U to race on MR at index watchedMR. If we can
succeed in proving this, we know that T and U must be race-
free for the whole MR, since the watched offset was arbitrary.
This technique of choosing an arbitrary index to analyze for
each map manipulated by an entry point pair can be seen
as a form of quantifier elimination: rather than asking the
underlying theorem prover to reason for all indices of MR, in a
quantified manner, we eliminate the quantifier in our encoding,
and instead ask the theorem prover to reason about a single,
but arbitrary, index of MR.

Generating Loop and Procedure Summaries Early in the
development of WHOOP, we experimented with analyzing
recursion-free drivers using full inlining. We found that this
did not scale to large drivers, and that some drivers do exhibit
recursion, e.g. the r8169 ethernet driver (see §V).

To make our analysis scale while maintaining precision,
and to support recursion, we use the Houdini algorithm [40]
to automatically compute summaries (pre- and post-conditions
and loop invariants). Given a pool of candidate pre-conditions,
post-conditions, and loop invariants, Houdini repeatedly at-
tempts to verify each procedure. Initially, the entire candidate

pool is considered. If verification fails due to an incorrect
candidate, this candidate is discarded. The process repeats until
a fixpoint is reached. The (possibly empty) set of remaining
candidates has been proven to hold, and can be used to
summarize calls and loops during further program analysis.

Houdini does not generate the initial pool of candidates:
WHOOP generates them using a set of heuristics, and passes
them to Houdini as a starting point. This is done based on
syntactic patterns extracted from an inter-procedural pass over
the code for an entry point. We give two examples; for clarity
we use notation from the simple concurrent programming
model of §III-A. If we observe syntactically that procedure
f of entry point T may write to, but does not read from,
shared variable s, then when instrumenting T with symbol
i, we guess s ∈ Wi and s /∈ Ri as post-conditions for fi.
These guesses may be incorrect, for instance if the potential
write to s turns out to be in dead code, or if a read from s
has already been issued on entry to fi. Similarly, if syntactic
analysis indicates that f may unlock mutex m, we guess
m /∈ CLS i as a post-condition for fi; this guess may be
incorrect, for instance if the unlock operation is not reachable
or if a subsequent lock operation acquires the mutex again.
We stress that guessing incorrect candidate invariants does not
compromise the soundness of verification: WHOOP is free to
speculate candidates that are later deemed to be incorrect, and
thus discarded by Houdini. The balance we try to strike is to
have WHOOP generate sufficient candidates to enable precise
lockset analysis, without generating so many candidates that
the speed of the Houdini algorithm is prohibitively slow.

Verification and Error Reporting For each entry point pair,
the instrumented sequential program, equipped with procedure
and loop summaries, is given to the Boogie verification engine.
For each procedure in the program, Boogie generates a VC
and discharges it to the Z3 theorem prover. In particular, the
verification for the root-level procedure, implementing the se-
quential program sketched in Fig. 6, encodes the race-freedom
check for the entry point pair. Successful verification implies
that the pair is race-free, while an error (i.e. counterexample)
denotes a potential data race and is reported to the user. To
improve usability, WHOOP has a built-in error reporter that
matches counterexamples to source code. The following is a
race that WHOOP found and reported for the example of Fig. 1:
generic_nvram.c: error: potential read-write race:
read by entry point nvram_llseek, generic_nvram.c:54:2
return file->f_pos;

write by entry point nvram_llseek, generic_nvram.c:53:2
file->f_pos = offset;

Optimizations We have implemented various optimizations
to increase the precision and performance of WHOOP. We
comment on the two most effective ones.

First, we enriched WHOOP with information regarding
kernel-imposed serialization to increase precision. The Linux
kernel can serialize calls to entry points, thus forcing them to
run in sequence instead of an interleaved manner. For example,
a large number of networking entry points are mutually serial-
ized with RTNL, a network-specific kernel lock. We discovered
this when WHOOP reported many races between a number of
networking entry points of the r8169 driver (see §V); when
we investigated the source of these races, we found out that
these entry points could not race in reality because of RTNL.



WHOOP exploits this knowledge and does not create pairs for
entry points that are mutually serialized by the kernel. This is
an ongoing manual effort: the more drivers we study, the more
such properties we discover to make WHOOP more precise.

Second, we soundly reduce the number of memory regions
that are analyzed for races. If memory region MR is accessed
by only one entry point in a pair then, trivially, the pair cannot
race on MR. We thus disable lockset analysis for MR. This
can reduce the complexity of VCs that need to be solved by
the theorem prover, speeding up the verification process.

Practical Assumptions Related to Soundness WHOOP is
“soundy”7 [41]: it aims in principle to perform a sound analysis
that can prove absence of races, but suffers from some known
sources of unsoundness, which we now comment on.

We assume that the formal parameters of an entry point do
not alias, and thus cannot race. This is a potentially unsound
feature that can be turned off using a command line option.
Without this assumption we have observed WHOOP reporting
false alarms, and in our experience so far we have not missed
any races by assuming non-overlapping parameters. We also
rely on the soundness of our best-effort environmental model,
and on exploiting domain-specific knowledge related to entry
point serialization by the Linux kernel.

In addition to inheriting soundness issues arising from cur-
rently unknown bugs in WHOOP and in the external tools that
WHOOP relies on, we acknowledge that: (i) the 1.5.0 release
of SMACK we used is subject to sources of unsoundness,
e.g. it models integers as an infinite set (rather than as a
finite set of bit-vectors), and its memory model can potentially
be unsound in (typically rare) situations where programs
use unaligned byte-level memory accesses;8 and (ii) that the
combination of Clang and SMACK commits our approach
to specific choices related to undefined and implementation-
defined aspects of the C language when translating to Boogie.
However, WHOOP makes no fundamental assumptions related
to these translation decisions, meaning that a more accurate
C-to-Boogie translation would automatically lead to a more
accurate analysis with WHOOP.

Limitations As a lockset analyzer, WHOOP can be imprecise
because a violation of the locking discipline does not always
correspond to a real race (e.g. when lock-free synchronization
is used). WHOOP also uses over-approximation, which can be
another source of imprecision. Furthermore, the tool does not
check for dynamically created locks or for locks provided by
external libraries, although the latter could be addressed by
providing a mechanism for users to declare custom locks. We
also do not currently treat interrupt handlers in a special way;
we just assume that they can execute concurrently with any en-
try point. One way to address this is to model interrupt-specific
kernel functions (e.g. for enabling/disabling interrupts).

Another limitation of WHOOP is that it is unable to verify
drivers designed to be accessed by only a single process at a
time. This single-open device [1, p. 173] mode can be enforced
by atomically testing (at the beginning of an entry point) a
global flag that indicates device availability: if the flag is set,

7http://soundiness.org/
8Note that currently bit-vectors and unaligned byte-level memory accesses

are soundly and precisely handled by SMACK (as of release 1.5.1).

then the checking entry point executes, else it blocks. Because
WHOOP over-approximates read accesses to shared variables,
and thus this flag, it can falsely report a pair as racy. However,
experts [1, p. 173] advise against serializing drivers in this
way, as it “inhibits user ingenuity” (e.g. a user might expect
that a driver can be accessed concurrently for performance).

Statically analyzing drivers requires “closing” the environ-
ment by abstracting away the low-level implementation details.
To this end, we developed a simple model for the Linux kernel
that consists of (nondeterministic) stub functions. A limitation
of our model is that it can be inaccurate, leading to semantic
mismatches that can in turn lead to false positives and/or false
negatives. However, we currently only focus on finding data
races, and thus can get away with over-approximating large
parts of the Linux kernel, without losing too much precision.
Making our model more precise is an ongoing manual effort
that requires Linux kernel expertise. We argue that further work
on the model is orthogonal to the contributions of this paper.
Also, even if our symbolic analysis results in false positives,
WHOOP can still use the results to significantly speedup a more
precise bug-finder, as seen in §IV and §V.

IV. ACCELERATING PRECISE RACE-CHECKING

WHOOP is a sound but imprecise static race analyzer. For
developers who deem false alarms as unacceptable, we con-
sider a method for leveraging the full or partial race-freedom
guarantees provided by WHOOP to accelerate CORRAL [14],
a precise bug-finder used by Microsoft to analyze Windows
drivers [42]. Because CORRAL operates on Boogie programs,
it was easy to integrate it into our toolchain (see Fig. 7–C).
Our technique, though, is general and capable in principle
of accelerating any concurrency bug-finder that operates by
interleaving threads at shared memory operations.

CORRAL is a symbolic bounded verifier for Boogie IVL
that uses the Z3 SMT solver to statically reason about program
behaviors. It checks for violations of provided assertions, and
reports a precise counterexample if an assertion violation is
found. CORRAL performs bounded exploration of a concurrent
program in two steps. First, given a bound on the number
of allowed context-switches, the concurrent program is appro-
priately sequentialized, and the generated sequential version
preserves reachable states of the original concurrent program
up to the context bound [43], [44], [45]. Then, CORRAL
attempts to prove bounded (in terms of the number of loop
iterations and recursion depth) sequential reachability of a
bug in a goal-directed, lazy fashion to postpone state space
explosion when analyzing a large program. It uses two key
techniques to achieve this: (i) variable abstraction, where it
attempts to identify a minimal set of shared variables that have
to be precisely tracked in order to discharge all assertions; and
(ii) stratified inlining, where it attempts to inline procedures
on-demand as they are required for proving program assertions.

Race-Checking Instrumentation To detect data races with
CORRAL, WHOOP outputs a Boogie program instrumented
with a simple, but effective encoding of race checks [46].
Whenever there is a write access to a shared variable s,
WHOOP instruments the program as follows:
s = e; // original write
yield; // allow for a context-switch
assert s == e; // check written value

http://soundiness.org/


Likewise, whenever there is a read access to s, WHOOP
instruments the program as follows:

x = s; // original read
yield; // allow for a context-switch
assert x == s; // check read value

A yield statement denotes a nondeterministic context-switch,
and is used by CORRAL to guide the sequentialization.

CORRAL is inherently unsound (i.e. can miss real races),
because it performs bounded verification. However, CORRAL
is precise and, assuming a precise environmental model, it will
only report true races. WHOOP takes advantage of this preci-
sion to report only feasible races. Note that our instrumentation
conveniently tolerates some benign races: it does not report a
read-write race if the write access updates the shared memory
location with the same value that already existed; it also does
not report a write-write race if the two write accesses update
the shared memory location with the same value (which can
be different from the pre-existing value).

In this work, we use CORRAL to analyze individual pairs of
entry points. We do not use any abstraction to model additional
threads, as we want CORRAL to report only true races. Because
we only analyze pairs, though, CORRAL will miss races that
require more than two threads to manifest. We could extend
our setup so that more than two threads are considered by
CORRAL, but because the number of threads that an OS kernel
might launch is unknown in general, we are inevitably limited
by some fixed maximum thread count.

Sound Partial-Order Reduction By default, and assuming
no race-freedom guarantees, WHOOP instruments a yield
after each shared memory access of each entry point, and
after every lock and unlock operation.9 WHOOP then sends
this instrumented program to CORRAL, which leverages se-
quentialization to explore all possible thread interleavings up
to a pre-defined bound. Our approach to accelerating CORRAL
is simple and yet effective: if, thanks to WHOOP’s analysis,
we know that a given statement that accesses shared memory
cannot be involved in a data race, then we do not instrument
a yield after this statement, and we also omit the assert
that would check for a race. This is a form of partial order
reduction [47], and reduces the number of context-switches
that CORRAL must consider in a sound manner: there is no
impact on the bugs that will be detected. This is because each
access for which a yield is suppressed is guaranteed to be
protected by some lock (a consequence of lockset analysis).
If the access is a write, its effects are not visible by the other
entry point in the pair until the lock is released. If the access is
a read, the value of the shared location cannot change until the
lock is released. The fact that a yield is placed after each
unlock operation suffices to take account of communication
between entry points via the shared memory location.

We have implemented two different yield instrumenta-
tions in WHOOP: Yield-EPP and Yield-MR. The first instru-
ments yield statements in a binary fashion: if WHOOP proves
an entry point pair (EPP) as race-free, then it will instrument
a yield only after each lock and unlock statement of the

9We acknowledge that in the presence of data races and relaxed memory,
even considering all interleavings of shared memory accesses may be insuffi-
cient to find all bugs.

pair; else if WHOOP finds that a pair might race, then it will
instrument a yield after all visible operations of the pair.
Yield-MR is a finer-grained instrumentation: it instruments a
yield only after each access to a memory region (MR) that
might race in the pair (regardless if the pair has not been fully
proven as race-free), and after each lock and unlock statement.
In our experiments (see §V), Yield-MR is significantly faster
than Yield-EPP.

Our partial-order reduction is able in principle to accelerate
CORRAL for arbitrary bug-finding in concurrent programs.
Although we did preliminary explorations in this direction,
identifying useful safety properties to check was challenging
since drivers typically contain no assertions. Thus, in this paper
we use CORRAL solely to find data races.

V. EVALUATION

We performed experiments to validate the usefulness of the
WHOOP approach (§III) and its combination with CORRAL
(§IV). We first present race-checking results from running
WHOOP and CORRAL on 16 drivers taken from the Linux 4.0
kernel.10 We then evaluate the runtime performance and scal-
ability of CORRAL using different yield instrumentations and
context-switch bounds. Our results demonstrate that WHOOP
can efficiently accelerate race-checking with CORRAL.

Experimental Setup We performed all experiments on a
3.40GHz Intel Core i7-2600 CPU with 16GB RAM run-
ning Ubuntu Linux 12.04.5 LTS, LLVM 3.5, SMACK 1.5.0,
Z3 4.3.2, Boogie rev. 4192 and CORRAL rev. 534. We also
used Mono 4.1.0 to run Boogie and CORRAL. We configured
CORRAL with a time budget of 10 hours (T.O. denotes
timeout), a context-switch bound (csb) of 2, 5, and 9, and
the default recursion depth bound of 1.

Benchmarks We evaluate our methodology against 16 drivers
from the Linux 4.0 kernel. We chose non-trivial drivers of
several types: block, char, ethernet, near field communication
(nfc), universal serial bus (usb), and watchdog. For all these
drivers, we had to understand their environment and manually
model it; this required approximately two months of work.

Race-Checking Table I presents statistics for our benchmarks:
lines of code (LoC); number of possible entry point pairs
(#Pairs); number of SMACK memory regions (#MRs); number
of racy pairs (#Racy Pairs) and number of racy memory regions
(#Racy MRs) reported by WHOOP; and number of data races
discovered by CORRAL using a csb of 2 (#Races Found).11

Using a higher csb than 2 did not uncover any further races;
this might mean that all races in our benchmarks can manifest
with a csb of 2, or that CORRAL hit its default recursion depth
bound of 1 before discovering a deeper bug. Although we
experimented with higher recursion depth bounds, we were
unable to discover any races that could not be exposed with
the default recursion depth bound.

We can see in Table I that WHOOP reports more races
than CORRAL does. This is because WHOOP employs an over-
approximating shared state abstraction to conservatively model

10https://www.kernel.org
11The number of racy memory regions can be less than the number of races

found by CORRAL: WHOOP might find that a memory region is racy, but the
same memory region might race in several program statements.

https://www.kernel.org


TABLE I. PROGRAM STATISTICS AND RACE-CHECKING RESULTS
FROM APPLYING WHOOP AND CORRAL ON OUR BENCHMARKS.

WHOOP CORRAL

#Racy #Racy #Races
Benchmarks LoC #Pairs #MRs Pairs MRs Found

generic nvram 283 14 39 7 2 4
pc8736x gpio 354 27 55 13 6 5
machzwd 457 10 49 6 3 1
ssu100 568 7 27 7 7 7
intel scu wd 632 10 45 5 1 2
ds1286 635 15 49 5 3 7
dtlk 750 21 53 10 6 7
fs3270 883 15 54 9 1 7
gdrom 890 94 41 21 2 7
swim 996 28 80 15 7 8
intel nfcsim 1272 10 24 10 2 7
ps3vram 1499 4 32 1 1 7
sonypi 1729 30 62 19 4 2
sx8 1751 2 47 2 1 1
8139too 2694 46 37 40 4 7
r8169 7205 192 50 88 1 7

the effects of additional threads when analyzing an entry point
pair, and because lockset analysis is inherently imprecise; both
factors can lead to false positives. On the other hand, CORRAL
is precise, but can miss races because only a limited number of
context-switches are considered. Another issue with CORRAL
is loop coverage due to unsound loop unrolling. To tackle
this, we enable the built-in loop over-approximation described
in previous work [42]. This can potentially lead CORRAL
to report false bugs, but we have not seen this in practice.
Furthermore, when we apply CORRAL to a pair of entry points,
we just check the specific pair and do not account for the
effects of other threads (see §IV); this can also cause CORRAL
to miss some races. Note that standalone CORRAL did not
discover any races that WHOOP did not already report. This
is expected, as WHOOP aims for soundness, and increases our
confidence in the implementation of WHOOP.

Most of the races that WHOOP and CORRAL discovered
fall into two categories. The first is about accessing a global
counter (or flag) from concurrent entry points, without holding
a lock. This might be for performance, and indeed a lot of the
races we found might be benign. Even benign races, though,
lead to undefined behavior according to the C standard. The
second is about an entry point modifying a field of a struct
(either global or passed as a parameter) without holding a lock.
This can lead to a race if another entry point simultaneously
accesses the same field of the same struct.

As an example of the second category, we found the
following race in the generic nvram driver (see Fig. 1): the
llseek entry point accesses the file offset file->f_pos
without holding a lock (file is passed as a parameter to
llseek). This causes a race if the kernel invokes llseek
from another thread, while passing the same file object as
a parameter. We observed that another char driver, using the
same APIs, does use a lock to protect the offset access in its
respective llseek entry point, leading us to suspect that the
race we found in generic nvram is not benign.

Accelerating CORRAL Table II presents runtime results from
using WHOOP, standalone CORRAL, and WHOOP + CORRAL

10 100 1000 10000 TO
Analysis time (in seconds) using Whoop+Corral (Yield-MR)

10

100

1000

10000

TO

A
n
a
ly

si
s 

ti
m

e
 (

in
 s

e
co

n
d
s)

 u
si

n
g
 C

o
rr

a
l 
(Y

ie
ld

-A
LL

)

2x speedup

10x speedup

Fig. 9. Scatter plot showing the runtime speedups that CORRAL achieves
using WHOOP with the Yield-MR instrumentation. The symbols +, ◦, and ×
represent a context-switch bound of 2, 5, and 9, respectively.

to analyze our benchmarks, while Fig. 9 plots the runtime
speedups that CORRAL achieves using WHOOP with the Yield-
MR instrumentation. Standalone CORRAL uses Yield-ALL,
which instruments context-switches (i.e. yield statements)
after all visible operations, while WHOOP + CORRAL uses
Yield-EPP and Yield-MR, which instrument context-switches
in a more fine-grained fashion (see §IV). The table also shows
the number of context-switches per instrumentation (#Y). All
reported times are in seconds and averaged over three runs.

WHOOP uses over-approximation to scale and, as expected,
executes significantly faster than CORRAL in all our bench-
marks. For example, CORRAL times out in all configurations
(with and without WHOOP) when trying to analyze the r8169
ethernet driver, while WHOOP manages to analyze the same
driver in 144.5 seconds. We believe that the reason behind this
is that the r8169 driver has deeply-nested recursion in some
of its entry points, which puts burden on CORRAL’s stratified
inlining. This is not an issue for WHOOP, which uses procedure
summarization. This shows that WHOOP has value as a stand-
alone analyzer.

Using the race-freedom guarantees from WHOOP, we
managed to significantly accelerate CORRAL in most of our
benchmarks; the best results were achieved using Yield-MR.
Fig. 9 shows that most speedups using Yield-MR are between
1.5× and 10×; in ssu100 and pc8736x gpio with a csb of 9 we
achieved a speedup of 12× and 20×, respectively. We noticed
that a higher csb typically results in greater speedups when
exploiting WHOOP. This is expected as complexity grows
exponentially with csb, and hence WHOOP’s reduction helps
more at a higher csb. However, there are cases where WHOOP
might slow down CORRAL. We noticed this in the sx8 driver:
WHOOP verified 46 out of 47 memory regions, but did not fully
verify any of the pairs; CORRAL, on the other hand, analyzed
the only two pairs of the driver in just 21.4 seconds (csb of 9).



TABLE II. COMPARISON WITH DIFFERENT YIELD INSTRUMENTATION GRANULARITIES AND CONTEXT-SWITCH BOUNDS.

WHOOP CORRAL WHOOP + CORRAL

Time Yield-ALL — Time (sec) Yield-EPP — Time (sec) Yield-MR — Time (sec)

Benchmarks (sec) #Y csb = 2 csb = 5 csb = 9 #Y csb = 2 csb = 5 csb = 9 #Y csb = 2 csb = 5 csb = 9

generic nvram 2.3 92 32.0 67.7 197.5 47 17.7 24.2 132.1 29 13.5 16.9 49.3
pc8736x gpio 4.1 691 169.3 595.1 27337.6 500 79.4 432.4 22514.1 167 41.3 79.4 1358.9
machzwd 2.8 104 38.1 45.6 78.4 51 26.1 31.2 55.2 22 15.7 17.3 23.9
ssu100 2.9 82 11.1 13.8 37.3 7 3.1 3.1 3.2 7 3.1 3.1 3.1
intel scu wd 2.4 314 22.8 130.3 1571.7 217 14.7 70.0 748.0 196 13.5 66.1 689.3
ds1286 4.1 513 35.0 40.2 51.8 245 22.3 25.7 33.0 129 14.5 16.1 19.3
dtlk 5.4 801 182.6 263.7 793.0 664 91.2 150.7 633.2 286 41.6 52.9 104.6
fs3270 3.2 321 81.5 419.4 T.O. 239 62.6 405.7 33468.4 211 40.7 295.3 8883.0
gdrom 9.5 2058 388.0 390.8 392.1 1143 104.0 105.5 107.1 812 99.2 102.4 107.6
swim 5.8 1270 271.0 2746.6 T.O. 996 164.9 2309.8 T.O. 805 95.5 1847.9 T.O.
intel nfcsim 3.6 732 39.8 85.0 1539.9 732 44.4 89.6 1543.4 601 21.0 32.0 278.0
ps3vram 4.5 189 99.6 2376.8 T.O. 176 96.2 2249.0 T.O. 156 55.8 1698.6 T.O.
sonypi 10.6 1745 1966.5 T.O. T.O. 1566 1924.4 T.O. T.O. 1024 906.0 T.O. T.O.
sx8 2.8 227 12.9 15.2 21.4 227 16.1 18.5 24.5 217 15.9 18.5 24.3
8139too 18.9 7151 548.2 14469.0 T.O. 6266 474.7 12677.3 T.O. 4964 359.8 5664.5 T.O.
r8169 144.5 16035 T.O. T.O. T.O. 11723 T.O. T.O. T.O. 10535 T.O. T.O. T.O.

We believe that in this case the overhead of running WHOOP
outweighed the benefits of using Yield-EPP or Yield-MR.

Other Tools We tried to compare WHOOP with other similar
approaches (see §VI). However, we found this to be hard in
practice: we downloaded Locksmith [20], but could not get it
to work with the 4.0 Linux drivers (the tool was last updated
in 2007); we also could not find source code or binaries of
other tools [48], [49], [50].

VI. RELATED WORK

Static race analysis is a promising alternative to dynamic
techniques, which restrict analysis to the schedule chosen
by a (possibly controlled) scheduler, providing limited cover-
age [51]. Warlock [52] and LockLint [53] are notable static
race analyzers. In comparison to WHOOP, these tools rely
heavily on user annotations. Most related to our lockset
analysis are the static lockset analyzers RELAY [21] and
Locksmith [20]. Both tools, though, have several limitations.
RELAY found 5022 warnings when analyzing the Linux
kernel, with only 25 of them being true data races. To tackle
this issue, RELAY employs unsound post-analysis filters and,
hence, can also filter out real bugs. Locksmith was successfully
applied in several small Pthreads applications and 7 medium-
sized Linux device drivers, but the authors reported that the
tool was unable to run on several large programs, hinting at its
limited scalability. WHOOP aims to achieve scalability and pre-
cision: the first via novel symbolic pairwise lockset analysis,
and the second by accelerating CORRAL, an industrial-strength
precise bug-finder.

Choi et al. [54] combine static analysis and runtime access
caching to speed up dynamic race detection. Kahlon et al. [48]
use a divide-and-conquer algorithm that partitions all pointers
of a program that do not alias in disjoint sets to achieve
scalability; more recently, they used abstract interpretation to
achieve a sound partial-order reduction on the set of thread
interleavings and statically reduce the number of false race
warnings [49]. Das et al. [50] employ inter-procedural alias
analysis and verifiable user annotations to split programs into

disjoint sections, based on non-communicating accesses of
shared data, and eliminate redundant checks during dynamic
race detection. WHOOP uses symbolic lockset analysis, which
involves generating verification conditions and discharging
them to a theorem prover, and then employs CORRAL to filter
out false races.

Our pairwise approach to analyzing driver entry points, em-
ploying abstraction to model additional threads, was inspired
by the two thread reduction used by the GPUVerify tool in the
analysis of data-parallel OpenCL and CUDA kernels [55], [39].
The idea of pairwise analysis of components in a concurrent
system has been broadly applied, notably in model checking
of cache coherence protocols [56].

VII. CONCLUSIONS

In this paper we presented WHOOP, a new automated
approach for detecting all possible data races in device drivers.
Compared to traditional data race detection techniques that are
based on happens-before and typically attempt to explore as
many thread interleavings as possible (and thus face code cov-
erage and scalability issues), WHOOP uses over-approximation
and symbolic pairwise lockset analysis, which scales well.
Exploiting the race-freedom guarantees provided by WHOOP,
we showed that we can achieve a sound partial-order reduction
that can significantly accelerate CORRAL, a state-of-the-art
concurrency bug-finder.

ACKNOWLEDGMENTS

We thank Akash Lal for his input and for helping us
with CORRAL issues, and Montgomery Carter for modeling
Linux locks. Thanks to Jeroen Ketema, Tyler Sorensen, Anton
Burtsev, and Charlie Jacobsen for discussions and feedback in
various stages of this work. This work is part of the project
“Automatic Synthesis of High-Assurance Device Drivers” and
was generously funded by a gift from Intel Corporation; it was
also supported in part by NSF CCF 1346756. A sketch of the
WHOOP approach was presented at the 2014 Imperial College
Computing Student Workshop [57].



REFERENCES

[1] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux device drivers
(Third Edition). O’Reilly, 2005.

[2] R. Yavatkar, “Era of SoCs,” Presentation at the Intel Workshop on
Device Driver Reliability, Modelling and Synthesis, 2012.

[3] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical
study of operating systems errors,” in Proceedings of the 18th ACM
Symposium on Operating Systems Principles, 2001, pp. 73–88.

[4] M. M. Swift, B. N. Bershad, and H. M. Levy, “Improving the reliability
of commodity operating systems,” in Proceedings of the 19th ACM
Symposium on Operating Systems Principles, 2003, pp. 207–222.

[5] L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser, “Dingo: Taming device
drivers,” in Proceedings of the 2009 EuroSys Conference, 2009, pp.
275–288.

[6] ISO/IEC, “Programming languages - C,” International Standard, 2011.

[7] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey,
B. Ondrusek, S. K. Rajamani, and A. Ustuner, “Thorough static analysis
of device drivers,” in Proceedings of the 2006 EuroSys Conference,
2006, pp. 73–85.

[8] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav, “Predicate ab-
straction of ANSI-C programs using SAT,” Formal Methods in System
Design, vol. 25, no. 2-3, pp. 105–127, 2004.

[9] D. Engler, B. Chelf, A. Chou, and S. Hallem, “Checking system
rules using system-specific, programmer-written compiler extensions,”
in Proceedings of the 4th USENIX Symposium on Operating System
Design and Implementation, 2000.

[10] T. A. Henzinger, G. C. Necula, R. Jhala, G. Sutre, R. Majumdar, and
W. Weimer, “Temporal-safety proofs for systems code,” in Proceedings
of the 14th International Conference on Computer Aided Verification,
2002, pp. 526–538.

[11] B. Cook, A. Podelski, and A. Rybalchenko, “Termination proofs for
systems code,” in Proceedings of the ACM SIGPLAN 2006 Conference
on Programming Language Design and Implementation, 2006, pp. 415–
426.

[12] V. Kuznetsov, V. Chipounov, and G. Candea, “Testing closed-source
binary device drivers with DDT,” in Proceedings of the 2010 USENIX
Annual Technical Conference, 2010.

[13] M. J. Renzelmann, A. Kadav, and M. M. Swift, “SymDrive: Testing
drivers without devices,” in Proceedings of the 10th USENIX Sympo-
sium on Operating Systems Design and Implementation, 2012.

[14] A. Lal, S. Qadeer, and S. K. Lahiri, “A solver for reachability modulo
theories,” in Proceedings of the 24th International Conference on
Computer Aided Verification, 2012, pp. 427–443.

[15] J. Corbet, “Finding kernel problems automatically,” https://lwn.net/
Articles/87538/, 2004.

[16] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller, “Documenting
and automating collateral evolutions in Linux device drivers,” in Pro-
ceedings of the 2008 EuroSys Conference, 2008, pp. 247–260.

[17] J. Corbet, “The kernel lock validator,” https://lwn.net/Articles/185666/,
2006.

[18] D. R. Engler and K. Ashcraft, “RacerX: effective, static detection of race
conditions and deadlocks,” in Proceedings of the 19th ACM Symposium
on Operating Systems Principles, 2003, pp. 237–252.

[19] S. Qadeer and D. Wu, “KISS: Keep it simple and sequential,” in
Proceedings of the 2004 ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2004, pp. 14–24.

[20] P. Pratikakis, J. S. Foster, and M. Hicks, “LOCKSMITH: Context-
sensitive correlation analysis for race detection,” in Proceedings of the
2006 ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2006, pp. 320–331.

[21] J. W. Voung, R. Jhala, and S. Lerner, “RELAY: Static race detection on
millions of lines of code,” in Proceedings of the the 6th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, 2007, pp.
205–214.

[22] H. Sutter and J. Larus, “Software and the concurrency revolution,”
Queue, vol. 3, no. 7, pp. 54–62, 2005.

[23] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A dynamic data race detector for multithreaded programs,”
ACM Transactions on Computer Systems, vol. 15, no. 4, pp. 391–411,
1997.

[24] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565,
1978.

[25] E. Pozniansky and A. Schuster, “Efficient on-the-fly data race detection
in multithreaded C++ programs,” in Proceedings of the 9th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
2003, pp. 179–190.

[26] R. O’Callahan and J.-D. Choi, “Hybrid dynamic data race detection,” in
Proceedings of the 9th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2003, pp. 167–178.

[27] T. Elmas, S. Qadeer, and S. Tasiran, “Goldilocks: A race and
transaction-aware Java runtime,” in Proceedings of the 2007 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, 2007, pp. 245–255.

[28] C. Flanagan and S. N. Freund, “FastTrack: Efficient and precise
dynamic race detection,” in Proceedings of the 2009 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2009, pp. 121–133.

[29] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino,
“Boogie: A modular reusable verifier for object-oriented programs,” in
Proceedings of the 4th International Symposium on Formal methods for
Components and Objects, 2006, pp. 364–387.

[30] M. Barnett and K. R. M. Leino, “Weakest-precondition of unstructured
programs,” in Proceedings of the 2005 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis For Software Tools and Engineering,
2005, pp. 82–87.

[31] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the 2nd IEEE /
ACM International Symposium on Code Generation and Optimization,
2004, pp. 75–86.

[32] “The LLVM compiler infrastructure,” http://llvm.org.
[33] “Clang: A C language family frontend for LLVM,” http://clang.llvm.org.
[34] Z. Rakamarić and M. Emmi, “SMACK: Decoupling source language

details from verifier implementations,” in Proceedings of the 26th
International Conference on Computer Aided Verification, 2014, pp.
106–113.

[35] “SMACK: A bounded software verifier for C programs,” https://github.
com/smackers/smack.

[36] R. DeLine and K. R. M. Leino, “BoogiePL: A typed procedural
language for checking object-oriented programs,” Microsoft Research,
Tech. Rep., 2005.

[37] Z. Rakamarić and A. J. Hu, “A scalable memory model for low-
level code,” in Proceedings of the 10th International Conference on
Verification, Model Checking, and Abstract Interpretation, 2009, pp.
290–304.

[38] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Pro-
ceedings of the 14th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, 2008, pp. 337–340.

[39] E. Bardsley, A. Betts, N. Chong, P. Collingbourne, P. Deligiannis,
A. F. Donaldson, J. Ketema, D. Liew, and S. Qadeer, “Engineering
a static verification tool for GPU kernels,” in Proceedings of the 26th
International Conference on Computer Aided Verification, 2014, pp.
226–242.

[40] C. Flanagan and K. R. M. Leino, “Houdini, an annotation assistant for
ESC/Java,” in Proceedings of the International Symposium of Formal
Methods for Increasing Software Productivity, 2001, pp. 500–517.

[41] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral,
B. E. Chang, S. Z. Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis,
“In defense of soundiness: a manifesto,” Communications of the ACM,
vol. 58, no. 2, pp. 44–46, 2015.

[42] A. Lal and S. Qadeer, “Powering the Static Driver Verifier using Corral,”
in Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2014, pp. 202–212.

[43] M. Emmi, S. Qadeer, and Z. Rakamarić, “Delay-bounded scheduling,”
in Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2011, pp. 411–422.

https://lwn.net/Articles/87538/
https://lwn.net/Articles/87538/
https://lwn.net/Articles/185666/
http://llvm.org
http://clang.llvm.org
https://github.com/smackers/smack
https://github.com/smackers/smack


[44] S. K. Lahiri, S. Qadeer, and Z. Rakamarić, “Static and precise de-
tection of concurrency errors in systems code using SMT solvers,” in
Proceedings of the 21st International Conference on Computer Aided
Verification, 2009, pp. 509–524.

[45] A. Lal and T. W. Reps, “Reducing concurrent analysis under a context
bound to sequential analysis,” in Proceedings of the 20th International
Conference on Computer Aided Verification, 2008, pp. 37–51.

[46] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk, “Effective
data-race detection for the kernel,” in Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation, 2010,
pp. 1–16.

[47] P. Godefroid, Partial-Order Methods for the Verification of Concurrent
Systems - An Approach to the State-Explosion Problem, ser. Lecture
Notes in Computer Science. Springer, 1996, vol. 1032.

[48] V. Kahlon, Y. Yang, S. Sankaranarayanan, and A. Gupta, “Fast and accu-
rate static data-race detection for concurrent programs,” in Proceedings
of the 19th International Conference on Computer Aided Verification,
2007, pp. 226–239.

[49] V. Kahlon, S. Sankaranarayanan, and A. Gupta, “Semantic reduction of
thread interleavings in concurrent programs,” in Proceedings of the 15th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, 2009, pp. 124–138.

[50] M. Das, G. Southern, and J. Renau, “Section based program analysis to
reduce overhead of detecting unsynchronized thread communication,”
in Proceedings of the 20th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, 2015, pp. 283–284.

[51] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu, “Finding and reproducing heisenbugs in concurrent pro-
grams,” in Proceedings of the 8th USENIX Symposium on Operating
Systems Design and Implementation, 2008, pp. 267–280.

[52] N. Sterling, “WARLOCK — A static data race analysis tool,” in
Proceedings of the Usenix Winter 1993 Technical Conference, 1993,
pp. 97–106.

[53] Oracle Corporation, “Analyzing program performance with Sun Work-
Shop, Chapter 5: Lock analysis tool,” http://docs.oracle.com/cd/
E19059-01/wrkshp50/805-4947/6j4m8jrnd/index.html, 2010.

[54] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Srid-
haran, “Efficient and precise datarace detection for multithreaded object-
oriented programs,” in Proceedings of the 2002 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, 2002,
pp. 258–269.

[55] A. Betts, N. Chong, A. F. Donaldson, J. Ketema, S. Qadeer,
P. Thomson, and J. Wickerson, “The design and implementation of
a verification technique for GPU kernels,” ACM Trans. Program.
Lang. Syst., vol. 37, no. 3, p. 10, 2015. [Online]. Available:
http://doi.acm.org/10.1145/2743017

[56] K. L. McMillan, “Verification of infinite state systems by compositional
model checking,” in Proceedings of the 10th IFIP WG 10.5 Advanced
Research Working Conference on Correct Hardware Design and Veri-
fication Methods, 1999, pp. 219–237.

[57] P. Deligiannis and A. F. Donaldson, “Automatic verification of data
race freedom in device drivers,” in Imperial College Computing Student
Workshop, 2014, pp. 36–39.

http://docs.oracle.com/cd/E19059-01/wrkshp50/805-4947/6j4m8jrnd/index.html
http://docs.oracle.com/cd/E19059-01/wrkshp50/805-4947/6j4m8jrnd/index.html
http://doi.acm.org/10.1145/2743017

