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Abstract

Data-dependent GPU kernels, whose data or control flow are
dependent on the input of the program, are difficult to ver-
ify because they require reasoning about shared state manip-
ulated by many parallel threads. Existing verification tech-
niques for GPU kernels achieve soundness and scalability
by using a two-thread reduction and making the contents of
the shared state nondeterministic each time threads synchro-
nise at a barrier, to account for all possible thread interac-
tions. This coarse abstraction prohibits verification of data-
dependent kernels. We present barrier invariants, a novel
abstraction technique which allows key properties about the
shared state of a kernel to be preserved across barriers dur-
ing formal reasoning. We have integrated barrier invariants
with the GPU Verify tool, and present a detailed case study
showing how they can be used to verify three prefix sum al-
gorithms, allowing efficient modular verification of a stream
compaction kernel, a key building block for GPU program-
ming. This analysis goes significantly beyond what is possi-
ble using existing verification techniques for GPU kernels.

Categories and Subject Descriptors F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Rea-

soning about Programs
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1. Introduction

Graphics processing units (GPUs) are highly parallel pro-
cessors that are now commonly used in the acceleration of a
wide range of computationally intensive tasks. A GPU con-
sists of a large number of processor elements, each equipped
with a region of private memory, together with an area of
shared memory. GPUs are programmed using kernels: a
GPU kernel is a function parameterised by a thread identi-
fier, to be executed in parallel by many threads such that each
thread executes on a separate processing element. Thread-
local data is stored in private memory, and data shared be-
tween threads is stored in shared memory. In order to com-
municate through shared memory, threads can synchronise
using barrier operations. On reaching a barrier a thread stalls
until all threads have reached the barrier and shared mem-
ory accesses issued by all threads have completed.' The two
most widely used programming models for writing GPU ker-
nels are CUDA [30] and OpenCL [22].

Writing GPU kernels is challenging due to concurrency
bugs, especially data races, where two threads access the
same region of shared memory, at least one of the accesses is
a write, and there is no intervening barrier synchronisation.
As in traditional concurrent software, data races can lead to
nondeterministically occurring bugs that are hard to track
down and fix. Unlike traditional concurrent software, data
races in GPU kernels are rarely benign: they are almost
always a result of programmer errors.

Recently, many techniques for formal analysis of GPU
kernels have been developed. These techniques have primar-
ily focused on data races, using formal verification [2, 12,
25], dynamic symbolic execution [11, 26, 27] and a com-
bination of static and dynamic analysis [24]. The GPU Ver-
ify [2, 12] and PUG [25] tools achieve scalable verification
based on the observation that data race-freedom is a pair-
wise property: a data race always occurs between exactly two
threads. Data race analysis can thus be performed by con-

'In practice, GPU kernels consist of multiple groups of threads. Since
barriers, the focus of our paper, allow synchronisation only between threads
within a group, we restrict our presentation to the single-group case.



sidering the execution of an arbitrary pair of threads, using
abstraction to over-approximate the effects of other threads.
If a kernel is race-free for an arbitrary pair of threads then
it must be race-free for all possible pairs of threads. We re-
fer to this approach as the two-thread reduction. It avoids
the need to use quantifiers to reason about all threads exe-
cuting a kernel, which is advantageous due to the difficulty
of automated reasoning in the presence of quantified formu-
lae [14, 16, 29]. The idea of reducing verification complexity
through pairwise reasoning is well-known and has been em-
ployed for example in model checking of cache coherence
protocols [9, 28, 34].

The soundness and precision of the two-thread reduc-
tion hinges on the method used to over-approximate the
behaviour of additional threads. The simplest approach is
to make no assumptions about the behaviour of additional
threads, assuming that these threads may update the shared
state arbitrarily. In verification terms, this can be achieved
by making the contents of the shared state nondeterministic
(i.e., by havocking the shared state) each time a barrier is
reached. Variations on this adversarial abstraction are em-
ployed by GPU Verify and PUG. The adversarial abstraction
has been shown to be effective in the verification of data-
independent GPU kernels: kernels for which control flow
and memory access patterns do not depend on the data stored
in shared memory. While a large number of GPU kernels fall
into this category, there are important and interesting kernels
that exhibit data-dependence. A key family of such kernels
use prefix sum operations [4, 18] to perform compaction of
data [3]; we describe and study these operations and their use
extensively in the paper. Data-dependent kernels are difficult
to verify because they require reasoning about shared state
manipulated by many parallel threads. The access pattern of
a single thread may depend on the data or control flow of
many other threads, making race checking challenging.

To see why data-dependence hinders verification using
adversarial abstraction, consider the following simple ker-
nel, where A and B are arrays in shared memory, tid denotes
the id of a thread, and f is a side-effect free procedure which
may read from the shared state and ensures that for distinct
threads s and ¢ that £ (s) # £ (¢) (a larger, real-world exam-
ple is presented in Section 2):

Altid] = f(tid); barrier(); BIA[tid]] = tid;

The kernel is data-dependent because array B is written
to at an index which is computed by reading from the shared
state. The kernel is clearly race-free. However, consider ex-
ecution of the kernel fragment with respect to an arbitrary,
distinct pair of threads, s and ¢, using the adversarial ab-
straction. Because s # t, execution of A[tid] =£(tid) by
both threads will not result in a data race on A, and will lead
to a state in which A[s] £ A[t]. However, at the barrier, the
adversarial abstraction dictates that A and B should be non-
deterministically assigned. A possible nondeterministic as-
signment yields A [s] = A[t] = 0, which causes the statement

B[A[tid]] =tid to result in a data race on B at index O.
This simple kernel is not amenable to verification using the
two-thread reduction with adversarial abstraction: the adver-
sarial abstraction is too coarse.

In this paper, we present barrier invariants, a novel ab-
straction technique to allow verification of data-dependent
GPU kernels using the two-thread reduction. The idea is that
each barrier in a kernel can be annotated with a barrier in-
variant, stating a property of the shared state that must hold
each time the barrier is reached. Barrier invariants retain the
scalability of the two-thread reduction, but allow the preci-
sion lost by the adversarial abstraction to be recovered: when
considering the execution of a barrier by an arbitrary pair
of threads, instead of setting the shared state to an arbitrary
value, the shared state is set to an arbitrary value satisfying
the barrier invariant.

A barrier invariant can be added to the above example to
capture the fact that the elements of A are distinct as follows
(where = and y range over thread ids):

Altid] = f(tid);
barrier () invariant (Vx #y :Alx]#Aly]);
BI[A[tid]] = tid;

When considering the execution of an arbitrary pair of
threads s and ¢, the invariant is established on entry to the
barrier by checking that A[s] £ A[t]: because s and t are
arbitrary, this proves that the invariant holds for all pairs
of threads. After the barrier, it is legitimate to assume that
ATz] # Aly] holds for all pairs of distinct threads « and y
and, in particular, for the threads s and ¢ under considera-
tion, and thus the write to B at index A[tid] is verified to
be race-free as required. In fact, after the barrier, it is suf-
ficient to assume the invariant only for the pair (s, t). More
complex kernels usually require the invariant to be assumed
for multiple pairs. However, a small subset of all pairs usu-
ally suffices. This is important for kernels with thousands of
threads where assuming a barrier invariant for all pairs is not
feasible without the use of quantifiers.

In the same way that loop invariants and procedure spec-
ifications are fundamental to modular reasoning about se-
quential programs, we believe that barrier invariants are fun-
damental to thread-modular reasoning about data-dependent
GPU kernels which, until now, has been out-of-scope. Be-
cause GPU kernels are executed by large numbers of threads,
barrier invariants are still necessary to reason about data-
dependent properties even for loop- and call-free kernels.

In summary, the main contributions of our work are:

o A theoretical presentation and proof of soundness for bar-
rier invariants, which allow precise verification of data-
dependent GPU kernels;

e A case study using barrier invariants to prove specifica-
tions for three distinct prefix sum algorithms, and using
these for modular verification of a stream compaction
kernel, a key building block in GPU programming;



// data, out, idx: arrays in shared memory
procedure compact (data, out)
// (i) test each element with predicate p
in parallel for each thread tid
flag[tid] = p(dataltid])
// (ii) compute indices for compaction
idx = prescan(flag)
// (iii) compaction
in parallel for each thread tid
if (flag(tid])
out [idx[tid]] = datal[tid]

da [A[B[C[D[E[F[G[H]
anpnnoono
i« [o] 1 [1]2]3[3[3]4]
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compact
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Figure 1. Stream compaction program and example (image
courtesy M. Harris [18])

® An implementation of barrier invariants in the GPU Ver-
ify tool, making it the first tool capable of verifying data-
dependent GPU kernels, a major step forward from the
capabilities of existing verifiers [2, 24, 25];

e Experimental results showing that GPU Verify is capa-
ble of scalable analysis where existing verification tech-
niques cannot be applied, and where exhaustive symbolic
execution is often infeasible [26, 27].

2. Motivating Example: Stream Compaction

Figure 1 presents pseudo-code for a stream compaction al-
gorithm: a parallel program that filters an input array with
respect to a predicate p. This parallel primitive is commonly
used for removing redundant or dead elements from a data
set and has many applications in GPU programming, includ-
ing in parallel breadth first tree traversal, ray tracing and col-
lision detection [3]. For an input array data, each thread ¢
tests its respective element data[¢] against p and writes 1
to the temporary array flag if the element satisfies p and
0 otherwise. In the compact stage, each thread ¢, for which
p(datalt]) holds, must write to an index of output array
out such that all elements to be kept are written contigu-
ously. This index is the sum of the values in f1lag at indices
0<i<t.

The index can be computed using an exclusive prefix sum
operator, also known as a prescan [4, 18]. Given an array
[x1,22,...,2,] and an associative operator @ with identity
e, the prescan operator computes the sums of all prefixes:
[e,xl,xl Dxo,..., 1 Dr2D -+ D xn_l]. For example,
taking @ and e to be 4 and 0, respectively, the prescan of
the array 3,1,7,0,4,1,6,3] is [0,3,4,11,11, 15, 16, 22].

A kernel implementing stream compaction is data-depen-
dent because the access pattern of a thread is determined
by the values of the input array: not just the element that
‘belongs’ to a thread, but also the flag result of all pre-
ceding threads. Determining data race-freedom depends on
the correctness of the prescan and, in particular, the con-
straints the operation imposes on the shared array idx: if
flagl[s] =flag[t] =1 for distinct threads s and ¢ (so that
both s and ¢ will write to the output array), then race-freedom
requires that idx [s] # idx [¢].

Figure 2 presents an OpenCL kernel for stream compac-
tion, to be executed by a group of n threads. The ¢ an-
notations that follow barrier () statements are barrier in-
variants that we will use to prove the prescan specifica-
tion in Section 4. The id of a thread is denoted tid, and
data, out, flag and idx are arrays declared in GPU shared
memory. The prescan operation is performed inline, im-
plemented as an algorithm due to Blelloch [4]. Surveying
several GPU code repositories (the AMD APP SDK?, the
NVIDIA CUDA SDK? and the SHOC,* Rodinia [7] and Par-
boil [33] benchmarks) we found this prescan implementation
used frequently.

Although the algorithm works in-place over the idx ar-
ray, it is helpful to see that the correctness comes from view-
ing the array as a tree. If the length n of idx is a power
of two, the array can be viewed as a balanced binary tree
of depth lgn. The example on the right of Figure 2, due to
Blelloch [4], shows the state of idx as the algorithm pro-
ceeds: colouring the elements that are updated at each iter-
ation shows the tree traversed by the algorithm. Each itera-
tion of the upsweep and downsweep can be identified by the
value of offset, which gives the ‘distance’ between ver-
tices at that depth of the tree, and d, which denotes the num-
ber of active threads. The parallelism of the algorithm is due
to the vertices at the same depth being updatable simultane-
ously. The figure shows the assigned thread (TO, T1, T2, T3)
per sub-operation of the upsweep and downsweep. Note that
the thread-to-element assignment changes at different depths
of the tree.

a. The upsweep is a reduction working from the leaves of
the tree up to the root. Pairs of vertices (idx[left],
idx [right]) are summed until the root contains the full
reduction and other elements form partial sums.

b. The downsweep combines the upsweep partial sums to
give the prescan result. Initially, the identity O is inserted
into the root, marked ‘clear’ in step (4) of Figure 2. The
downsweep then traverses down the tree. At each level
of the tree, an active vertex: (i) copies its value to its
left child idx [1eft] (the dotted arrow), and (ii) sums its
value with the old value of its left child temp (this value
is a partial sum generated by the upsweep), storing the
value in its right child idx [right] (the black arrows).

The prescan ensures that idx[z] = Zf;ol flag[i] for
all x. The stream compaction kernel additionally guaran-
tees that the input is non-negative: flag[z] > 0 for all z.
Together these imply that the output satisfies a monotonic
property: for all z < y we have idx[z] + flag[z] < idx[y].
Hence, for all © # y, if flag[z] > 0 A flagfy] > 0 then
idx[z] # idx[y], which suffices to prove race-freedom.

2http://developer.amd.com/tools/heterogeneous-computing/
amd-accelerated-parallel-processing-app-sdk/

3https://developer.nvidia.com/gpu-computing-sdk
‘https://github.com/spaffy/shoc/wiki



// data, out, flag, idx: arrays in shared memory

0580 CLL [ ]3]

offset = 8

o
unsigned offset, d, left, right, temp; @d=1 l 3 |4 I 7 I” I " I s I . IMI
// code continues here offset = 4
// (i) test each element with predicate p // (ii)(b) downsweep 0 !
flag[tid] = p(data[tid]); if (tid == 0) idx[n—1] = 0; me2 [Ta]7 [+ [s]¢[°]
// (ii) compute indices for compaction o " - s
barrier(); /i fox (4= 1: d < ndwm ) o LD L]
if (tid < n/2) { offset /= 2; offset = |
idx[2xtid] = flag[2xtid]; barrier(); // @as cementx 0 | 2 3 4 5 6 7
idx[2%tid + 1] = flag[2xtid + 17; if (tid < d) {
} left = offset * (2 % tid + 1) — 1; (2) upsweep
right = offset * (2 * tid + 2) — 1;
// (ii)(a) upsweep t?emp = ldx[lgft]; . (4) clear l 3 I A I 7 I” I A I S I . I 7 l
offset = 1; idx[left] idx[right];
for (d = n/2; d > 0; d /= 2) { idx[right] += temp; *TO
barrier (); // pus } (5>i«:se'[=4 3|47 of4a]s]|e|n
if (tid < d) { } " "
léft = offset *x (2 * ti(.j + 1) — 1; barrier (); // Yspec ©d=2 l3|°|7l‘l“|”l5l'6l
right = offset * (2 * tid + 2) — 1; offset =2
idx[right] += idx[left]; // (iii) compaction 0 ! 2 3
if (flag[tid]) out[idx[tid]] = data[tid]; mass [o|3|4|u|u||s||s|zz]

offset x= 2;

}

elementx 0 | 2 3 4 5 6 7

(b) downsweep

Figure 2. Stream compaction as an OpenCL kernel using n threads with the prescan inline

Blelloch [4] proves that his algorithm satisfies the pre-
scan specification using induction on the pre-order traversal
of the tree. Our aim is to prove race-freedom of kernels such
as stream compaction which use the prescan algorithm by
direct source code analysis. We are not aware of any veri-
fication technology that allows direct verification of source
code for massively parallel kernels using induction, thus we
cannot encode Blelloch’s proof of correctness directly.

In Sections 4 and 5 we show that the prescan specification
necessary to prove race-freedom of kernels that use this
algorithm can be established using barrier invariants; we
also study the application of barrier invariants to two further
prefix sum algorithms.

3. Barrier Invariants

We now present our main novel contribution: barrier invari-
ants, which allow precise reasoning about GPU kernels us-
ing the two-thread reduction. We first present a simple ker-
nel programming language with barrier invariants and a con-
crete semantics (Section 3.1). We then present an abstract
semantics that employs the two-thread reduction, and prove
a soundness result: if a kernel can be proved data race-free
with respect to the abstract semantics, then the kernel is race-
free with respect to the concrete semantics (Section 3.2).
Finally, we discuss practical issues associated with imple-
menting barrier invariants efficiently in the GPU Verify tool
(Section 3.3).

Our presentation of barrier invariants could be gener-
alised to an n-thread reduction for any n > 2. This gen-
eralisation is conceptually straightforward but notationally
cumbersome. In practice we have not found examples where
it is necessary to consider more than two threads simultane-
ously to prove data race-freedom of a kernel, thus for clarity
we make our presentation specific to the two-thread case.

kernel = threads: number;
main: stmt;
stmt basic_stmt | stmt; stmt | barrieriepr
basic_stmt name := expr | name := sh[expr] | sh[expr] := expr
expr constant literal | name | expr op expr
name := thread identifier ¢id | any valid C name
iexpr := constant literal | sh[iexpr] | name | fiame | iexpr op iexpr

Figure 3. Syntax for our kernel programming language

3.1 Concrete operational semantics for GPU kernels

In prior work we formally presented a GPU kernel program-
ming language [2]. In order to present barrier invariants in a
self-contained manner, yet with minimal repetition of prior
work, we consider a simple language for straight-line GPU
kernels exhibiting no control-flow or procedure calls, ac-
cording to the syntax of Figure 3. For detailed handling of
additional language constructs, which is orthogonal to the
issues associated with barrier invariants, see [2]; our im-
plementation of barrier invariants in GPU Verify handles the
OpenCL and CUDA languages in full.?

A kernel declares the number of threads that will execute
(threads: number) and a (possibly compound) statement
which is the body of the kernel. The set name denotes lo-
cal variables of a kernel and includes the special read-only
variable tid, the unique thread identifier of each thread. Ker-
nel statements allow assignment to local variables, access to
shared memory (sh), and barrier synchronisation.

Each barrier statement is annotated with an invariant
¢ € iexpr; the meaning of which is formalised below. A
barrier invariant ¢ is implicitly quantified over all pairs of

STt is interesting to note that while verification condition generation for
straight-line programs is straightforward (e.g., using weakest preconditions)
and does not require invariant abstractions, the same is not true of straight-
line GPU kernels. This is because multiple threads are in flight concurrently,
updating shared memory; barrier invariants are required to reflect these
updates when threads synchronise at barriers.



((sh,1, R, W), v :=€) = (sh,l[v — €'], R, W) (T-ASSIGN)

((sh,l, R, W), v := shle]) —
(Sh,l[’u — Sh(el)},RU {81}7 W) (T-RD)
((sh,l, R,W), shle1] := e2) —

(sh[ell — 612}7 ILRWU {ell}) (T-WR)

Figure 4. Rules for thread execution of basic statements

distinct threads, where a local variable v appears directly or
as v if it refers, respectively, to the v of the first or second
thread in a pair. For example, if = is a local variable, the
barrier invariant sh[z + tid] = sh[T + tid] can be read as
YV s#t : shlxs + s] = shlxy + t], where ; and x; refer
to the local variable x of threads s and ¢, respectively, and
where tid is replaced by s and tid by t.

We do not allow quantifiers to appear explicitly in barrier
invariant expressions. In principle we could drop this restric-
tion, but as discussed in the introduction a key advantage of
the two-thread reduction is that it avoids the need to reason
about quantifiers.

Concrete semantics Let P be a kernel executed by n
threads, and let Word refer to the set of all memory words,
which we assume provides a representation for Boolean and
bit-vector data. A thread state for P is a tuple

(sh,l, R,W) € ThreadStates

where: sh : N — Word is the shared memory of the kernel;
I : name — Word is the storage for the local variables of
the thread; R,W C N are read and write sets recording
the shared addresses the thread has accessed since the last
barrier. The read and write sets are used in the operational
semantics to perform race checking.

A kernel state 3. for P is a tuple

(Sha (l0>R0a WO)7 D) (ln—laRn—la Wn—l))

such that l;(tid) = t for all 0 < ¢t < n, and where sh is
the shared memory of the kernel and (sh, l;, Ry, W;) is the
thread state associated with thread ¢ for all 0 < t < n.

We refer to the shared memory of kernel state 3 as 3.sh
and use X(¢) to denote the thread state (sh,l;, Ry, W;) of
thread ¢; we also write X(¢).l, X(¢).R, and X(t).W to refer
to the thread-specific components of this thread state. A
state 3 is said to be a valid initial state of P if 3(t).R =
()W =0forall0 <t <n.

The rules of Figure 4 define the evolution of thread states
whilst executing a basic statement. Evaluation of a local
expression e given a local store [ is denoted e'. The rules
define local variable and shared state updates in a standard
manner; in addition, T-RD and T-WR record in R and W,
respectively, the shared locations that are read and written.

VO0<t<n: (X(t),basicstmt) = oy
race(co,...,0n—1)

(X, basic_stmt; ss) —k error

(K-RACE)

VO0<t<n:(X(t),basicstmt) — oy

—race(0o,...,0n-1)
sh’ = merge(0o,...,0n—1)
VOo<t<n:X(t)=(sh',0ul,0¢.R, 00 W)
- 7 (K-STEP)
(X, basic_stmt; s5) = (X, s5)
F0<s#t<n: [l
= S?A n: lely (K-BAR-ERR)
(X, barrier,; ss) — error
VO<s#t<n: o]y
VO<t<n:Y(t)=(3.sh,%(t).,0,0)
(K-BAR-INV)

¥, barrier,; ss) =5 (X', ss
( ’ P

Figure 5. Rules for lock-step execution of a kernel

Figure 5 defines the operational semantics of kernels,
where error is a designated error state. If execution is guar-
anteed to abort when a data race occurs then for verification
purposes it suffices to consider a single arbitrary schedule of
thread execution between a pair of barriers [2, 11, 25, 26].
In Figure 5 threads execute in lock-step: all threads exe-
cute the first statement of the kernel, then all threads execute
the second statement, etc. In rules K-RACE and K-STEP,
09, - ..,01—1 are the thread states reached by each thread on
executing the given basic statement according to the rules of
Figure 4. The race predicate is used to check whether exe-
cution of this basic statement would cause a data race, indi-
cated by a conflict between the read/write sets of the threads:

. ?UTL—l) £

J0<s#t<n: (0. RUc,. W)Nao.W #£0.

race(oo, . .

If a race occurs, rule K-RACE causes execution to go to
error. Otherwise, rule K-STEP allows the kernel to transi-
tion to a new kernel state where the local store and read/write
sets for thread ¢ are taken from thread state o;, and where the
shared state is derived by merging the shared state associated
with each thread state o, according to the write sets:
merge(0o, ..., 0n_1)(2) 2 04.5h(2)

where t is such that z € ¢;.W and ¢t = 0 otherwise. Observe
that there is at most one ¢ with z € ¢;.WW if there was no
data race.

On reaching a barrier, K-BAR-ERR and K-BAR-INV
check if the associated barrier invariant holds for all dis-
tinct pairs of threads. The valuation of barrier invariant ¢
with respect to state 3. and threads s and ¢ is denoted [¢]3",
and defined as:



[constant literal]3; = constant literal
[shliexpr]]3" = X.sh([iexpr]3’)
[name]%* = (s).I(name)
[rame]s’ = (t).I(name)

[iexpry op iexpra][ 32" = [iexpr, J5:" op fiexpra]3:’

Note that a variable v occurring as v, respectively v, is
evaluated in the context of thread s, respectively ¢. Rule
K-BAR-ERR causes execution to go to error if the invariant
does not hold for some pair of threads. Otherwise, rule
K-BAR-INV resets the read/write sets for all threads and
allows execution to proceed beyond the barrier.

3.2 Two-thread reduction with barrier invariants

We now define an abstract semantics for a kernel P with
respect to a pair of distinct threads (s, t). Using A**(P) to
denote P interpreted with respect to this abstract semantics,
we show the following:

Theorem 3.1 (Soundness). Let P be a kernel executed by
n threads. If for every pair 0 < s # t < n, no execution
of A%'(P) from a valid initial state leads to error, then no
execution of P from a valid initial state leads to error.

Hence, it suffices to prove data race-freedom, and validity of
barrier invariants, with respect to the abstract semantics.

Before describing the abstract semantics formally and
proving Theorem 3.1, we describe the abstract semantics
in an intuitive manner. The semantics models a pair of dis-
tinct threads (s,t) executing the kernel. When executing a
sequence of statements between two barriers, it is as if s and
t are the only threads executing the kernel. They perform lo-
cal updates and access the shared state, recording all shared
locations that are accessed in their read/write sets. The read-
/write sets are used to detect data races between s and ¢: if a
data race occurs, execution aborts.

On reaching a barrier, a check is made to determine
whether the invariant ¢ associated with the barrier holds
for the pair (s, t). This check must take into account possi-
ble updates to the shared state made by additional threads
executing the kernel. We handle this by considering whether
a shared memory location v was accessed by s or ¢ since the
last barrier. There are two key cases:

¢ v was accessed by at least one of s, ¢: We say that v is a
known location. In this case it is sound to assume that v
has not been modified by any thread r ¢ {s,t¢}. This
is because our analysis considers all possible pairs of
threads: if r can write to v then because some x € {s,t}
accesses v a data race will be detected for the pair (z,7)
and the kernel will not be deemed correct.

e v was not accessed by s or ¢: We say that v is an
unknown location. In this case we must consider that v
could have been modified by some thread r ¢ {s,t}.

A safe approximation is to assume that v contains an
arbitrary value when evaluating the barrier invariant.

If there exists an assignment to unknown locations yield-
ing a state in which ¢ does not hold for (s,t), execution
aborts: there may be a concrete execution that would lead to
this state. Thus with the two-thread reduction, user-provided
barrier invariants are not taken on trust — they are checked.

If ¢ can be shown to hold for the pair (s, t) for all assign-
ments to unknown locations then, because (s, t) is arbitrary,
it is sound to assume ¢ holds for all pairs of distinct threads.
Abstract execution for the pair (s, t) continues after the bar-
rier by transitioning to an abstract state in which:

e the local stores for (s, t) and the values of known loca-
tions are preserved;

o the read and write sets for (s, t) are cleared,;

® o is assumed to hold for all pairs of distinct threads.

Armed with this intuition, we now formally present the
abstract semantics.

Abstract semantics A thread state is defined as in Sec-
tion 3.1. An abstract kernel state T for P with respect to
threads s and ¢ is a tuple (sh, (s, Rs, Ws), (I, Ry, Wt)). An
abstract kernel state is similar to a (concrete) kernel state,
except that only the states of threads s and ¢ are represented.
We use T'(s) and T'(¢) to denote the thread states of s and ¢.
We write known®*(T) for the set of shared locations collec-
tively accessed by s and ¢ since the last barrier:

known®*(T) £ T(s).RUT(s).W UT(t).RUT(t).W .

The key aspects of abstract kernel execution are defined
by the rules of Figure 6; we omit abstract versions of rules
K-RACE and K-STEP of Figure 5 which are defined in the
obvious way by restricting these rules to two threads.

On reaching a barrier, A-BAR-ERR and A-BAR-INV
check whether the barrier invariant ¢ holds in all concrete
states that agree with the current abstract state on the local
stores of s and ¢ and on the values of known shared locations.
Formally, we define a concretisation operator v*:! yielding
the set of such concrete states given an abstract state 7'

v5*(T) £ { a concrete kernel state
| S(s).d = T(s).d A S(8).L = T(t).d
A /\'UEknownsvt(T) (ESh(’U) = TSh(U))}

Note that the state of the read/write sets of s and ¢ are not
preserved by *'*; our semantics does not require this.

Rule A-BAR-ERR aborts if there exists a concrete state
¥ € 4*!(T) such that the barrier invariant does not hold
in 3 for the pair (s, t). If the barrier invariant holds for (s, t)
in every state of v*!(T') then execution proceeds past the
barrier by rule A-BAR-INV. A concrete state &2/ € v*¢(T) is
chosen such that the barrier invariant ¢ holds in X’ for every



BeytT)  —lel’
(T, barrier,; ss) — error

(A-BAR-ERR)

VS ey hT) : ol
Vo<z#y<n:[ola!
(T, barriery; ss) =k (T

¥ e ~SH(T)
T/ — as,t(zl)

. (A-BAR-INV)
, 88)

Figure 6. Barrier rules for two-threaded execution

pair of distinct threads (z, y). The abstract state 7’ resulting
from barrier synchronisation is obtained by projecting 3’
with respect to threads s and ¢ while emptying the read/read
sets of s and ¢ and discarding the local stores and read/write
sets of all other threads. Formally this is described using an
abstraction operator a®':

a* (D) 2 (Dush, (S(s).,0,0), (2(2).1,0,0)) .

We explain in Section 3.3 how the universal quantifiers
used by rule A-BAR-INV are eliminated in practice.

Theorem 3.1 now follows by contradiction assuming that
P has a race or violates a barrier invariant while A*!(P)
does not. The argument hinges on the fact that any step of P
not ending in error can be mimicked by A%*(P), due to the
lack of data races and barrier invariant violations up to the
step. We present a formal proof in Appendix A.

3.3 Integrating barrier invariants with GPU Verify

We have implemented support for barrier invariants in GPU-
Verify [2], our verification tool for OpenCL and CUDA ker-
nels which is built on top of the Boogie verifier [1] and Z3
SMT solver [15]. GPU Verify transforms a kernel annotated
with barrier invariants into a sequential program that models
the execution of two threads using the abstract semantics of
Section 3.2. Our implementation fully supports loops, condi-
tionals and procedures using lock-step predicated execution
as described in [2, 12]. We describe what we believe are the
most interesting aspects associated with integrating barrier
invariants with GPU Verify.

Quantifier elimination Rule A-BAR-INV of Figure 6 uses
quantifiers to (a) consider all concretisations of the current
abstract state when checking the barrier invariant, and (b)
select a successor state in which the barrier invariant holds
for all pairs of distinct threads. To avoid the need to reason
directly about quantifiers we now explain how quantifiers are
eliminated in practice.

Elimination of the quantifier for concretisation Because
barrier invariant expressions are quantifier-free, a barrier in-
variant ¢ refers to a finite, typically small, number of shared
memory locations. Let d be the largest number of syntac-
tically distinct shared memory accesses appearing in any
single barrier invariant in a given kernel. We introduce d

auxiliary variables, w1, ..., uq, which track at most d un-
known shared memory addresses. At the start of execution,
and after each barrier, these variables are set nondetermin-
istically to reflect the fact that neither thread has accessed
any shared memory location since the last barrier. After each
shared memory access to a location computed from expres-
sion e, a statement assume(/\,,-,u; # e) is inserted to
reflect the fact that this location is now in the known set.
For a barrier invariant ¢, let eq, ..., ey be the syntactically
distinct sub-expressions of ¢ that refer to the shared state,
where f < d. For ease of explanation, assume that there is
no nesting between these sub-expressions. Let ¢’ be identi-
cal to ¢ except that each occurrence of e; is replaced with
ite(e; = wy,*,¢€;), where ite is the if-then-else operator
— this evaluates to e; unless e; is equal to the ¢th unknown
location, in which case evaluation is nondeterministic. The
formula ¢’ is then checked for the pair of threads under con-
sideration. This transformation ensures that verification only
succeeds if the truth of a barrier invariant is independent of
unknown shared locations, which is what rules A-BAR-ERR
and A-BAR-INV of Figure 6 require. We handle nested sub-
expressions via a straightforward extension of this method.

As noted above, this approach relies on barrier invariants
being quantifier-free. If a barrier with invariant ¢ follows
a loop and the loop iterates a large or statically unbounded
number of times then, without using quantifiers, it may not
be practical or possible, respectively, for ¢ to refer to the
set of all shared locations accessed during loop execution.
We have not thus far found a practical example where this
limitation is problematic.

Elimination of the quantifier for successor state selection
Rule A-BAR-INV allows execution to continue after a bar-
rier by choosing a successor state in which the barrier invari-
ant is assumed to hold for all pairs of distinct threads. Clearly
it is sound to weaken this assumption to the case where the
invariant holds only for a selected subset of thread pairs that
are relevant to the statements following the barrier. However,
if too small a subset is chosen, the assumption following the
barrier may not be strong enough to prove data race-freedom
of statements following the barrier, or to establish successive
barrier invariants.

In practice we have found that it is possible to derive a
small subset of pairs sufficient for verification to succeed,
avoiding the need for quantifiers. GPU Verify requires a set
of instantiation expressions to be provided with each barrier
invariant; eliminating the need for quantification. For exam-
ple, to state that a barrier invariant should be assumed only
for the pair of threads under consideration and the pair con-
sisting of their immediate right neighbours (if they exist),
we would specify the set {(tid, tid), (tid + 1, tid + 1)}. In
Section 4.1 we illustrate a set of instantiation expressions for
one of the Blelloch prescan invariants.

Modular and staged verification GPU Verify supports rea-
soning about kernels with loops and procedure calls through



loop invariants and procedure contracts; we have imple-
mented front-end support for this using the CLANG/LLVM
compiler framework. For data-dependent kernels, it may be
necessary for barrier invariant-style expressions of the form
iexpr to occur in loop invariants, referring to the shared state
and variables of the form v. In this case, the loop invariant
is established by checking that such an expression holds for
the pair of threads (s, t) under consideration. However, be-
cause threads do not necessarily synchronise at the head of
a loop, during loop abstraction such a loop invariant may
only be instantiated for the pair (s, t), and not for additional
pairs of threads. A similar argument applies when assuming
that a post-condition of a procedure holds when replacing a
procedure with its specification.

GPUVerity also supports staged verification: if race-
freedom of a procedure can be established using a simple set
of barrier invariants then it is sound to prove a post-condition
of the procedure using a richer set of barrier invariants un-
der the assumption of race-freedom. Thus the richer barrier
invariants and the post-condition can be checked without the
burden of simultaneously performing data race analysis.

In Section 5 we discuss how modular and staged analysis
are used in verifying race-freedom for the stream compac-
tion kernel of Section 2.

4. Barrier Invariants for Stream Compaction

We are now equipped to tackle the data-dependent stream
compaction kernel of Figure 2. After establishing some no-
tation, we explain how barrier invariants are derived for the
Blelloch prescan which is at the core of the stream com-
paction kernel (Section 4.1). The required barrier invariants
are intricate, capturing the key properties of Blelloch’s al-
gorithm. We do not envisage automatic inference of such in-
variants, and argue that manual specification of invariants for
key library functions such as prefix sums is worthwhile due
to their widespread use. Our verification technique automati-
cally checks barrier invariants, thus these complex assertions
are not taken on trust by the tool (this is in contrast to related
work on thread contracts [21], see Section 6).

We briefly discuss two further widely used prefix sum al-
gorithms for which we have derived barrier invariants (Sec-
tion 4.2), and provide some insights from our experience de-
riving barrier invariants for these examples.

Preliminaries For presentation purposes we separate the
idx array used by both the upsweep and downsweep phases
into two arrays: a sum array used in the tree reduction of the
upsweep and a prescan array used by the downsweep that
will contain the expected output of the prescan. In our exper-
iments (Section 5), verification is performed on unmodified
source code, which does not make use of this simplification
and instead introduces sum as a ghost variable (an auxiliary
variable used only for verification): the upsweep and down-
sweep work over the same array and we take a snapshot of
the array in-between the two loops and store it in sum.

The specification we will prove is that the output is
monotonic: for all threads s < ¢, prescan[s] + flag[s] <
prescanlt]. For unsigned (i.e., non-negative) inputs we can
use barrier invariants to prove this specification under the
assumption that addition of unsigned integers does not over-
flow. Without this assumption the specification does not
hold: for sufficiently large inputs, the additions performed
during the prescan will overflow, leading to unexpected re-
sults in the idx array, and thus erroneous accesses to the
out array. In applications, stream compaction is used un-
der the implicit assumption that the inputs will not lead to
overflow, thus our assumption is pragmatic. In Section 5 we
discuss how this assumption is realised in practice for our
experimental evaluation.

As discussed in Section 2, although the prescan algorithm
works in-place over the same idx array, we can view the
upsweep and downsweep as working over a logical tree
where we can identify each iteration of the upsweep and
downsweep by the value of the of fset variable, which gives
the ‘distance’ between vertices at that depth of the tree. In
Figure 7(c) we show that a vertex of the tree can be specified
as an (element, offset)-coordinate (z, ) using the predicate
isvertex(z,0) = (x+1) mod 6 = 0. For example, (5,2) is a
vertex as element = 5 is updated when offset § = 2, while
(5,4) is not a vertex. We will use the indexing functions
ai(tid,0) = 0(2-tid+1)—1and bi(tid, 0) £ 0(2-tid+2)—1,
which give the indices of the left and right child vertices
for a thread tid at offset 6. For example, ai(1,2) = 5 and
bi(1,2) = 7 (see Figures 2(a) and (b)).

We note that the thread-private variables d and offset
are used in both the upsweep and downsweep loops and ad-
ditionally are ‘uniform’ between threads: all threads agree
on the value of these variables at each barrier. This prop-
erty is easily encoded using the barrier invariant d = d A
offset = offset and is important because the barrier in-
variants that follow use the offset variable as a measure of
progress of the upsweep and downsweep. GPU Verify infers
such uniform invariants automatically using static analysis.
The variable offset is always a power of two and ranges
from 1 to n in the upsweep loop and back from n to 1 in the
downsweep loop.

4.1 Barrier invariants for the Blelloch prescan

We use barrier invariants to establish equalities between the
shared arrays flag, sum and prescan: the ¢, invariant, in
the upsweep loop, gives equalities between elements of sum
and flag, while the pq4s invariant, in the downsweep loop,
gives equalities between elements of prescan and sum. The
tables in Figures 7(a) and (b) give the set of equalities given
by the barrier invariants for n = 8 at the end of their re-
spective loops. The monotonic specification, expressed as
the invariant (g for the final barrier, is then a combination
of the relevant earlier equalities. We discuss each barrier
invariant in turn.



offset 1 ; 2 ; 4 ; 8
sum[0] = flag[0] 1 \ \
sum[l] = flag[l] ' + sum[0] ' !
sun[2] = flag[2] | 1 1
sum[3] = flag[3] | + sum[2] | + sum[1] |
sum[4] = flag[4] : : :
sum[5] = flag[5] | + sum[4] |
o - 156l w

+sum[6] ' + sum[5] ' + sum[3]

(a) Upsweep equalities given by ¢ys

prescan[0] = e prescan[4] = sum[3]
prescan([l] = sum[0] prescan[5] = sum[3] + sum[4]
prescan[2] = sum[]] prescan[6] = sum[3] 4 sum[5]
prescan([3] = sum[l] + sum[2] prescan[7] = sum|

(b) Downsweep equalities given by ¢gs

3] + sum[5] + sum[6]

offset B

e

0 | | | I,2| 3 |3,4 | 35 |3,5,6|

elementx 0 | 2 3 4 5 6 7
binary encoding 000 001 010 OIl 100 101 110 Il

(c) Tree structure of the algorithm. Right child vertices are shaded.
Each vertex (z,0) is labelled with the summations formed as
the downsweep proceeds, where a, b, . .. denotes prescan[z| =
sum[a] + sum[b] + - - - and e denotes the identity.

Figure 7. Upsweep and downsweep equalities for n = 8 and the tree structure of the algorithm

Load invariant The stream compaction kernel is defined
over n threads, however, only n/2 threads are required for
the prescan. After a parallel test of each element using n
threads, we synchronise with a barrier so n/2 threads can
continue with the prescan. The state that we need to carry
through this barrier is

Pload = sum[tid] = £lag|tid] .

Upsweep invariant The upsweep is a reduction working
from the leaves of a tree up to its root. At each iteration of the
upsweep, each parent vertex is given the sum of its left and
right child vertices. The upsweep proceeds until the root of
the tree contains the full reduction and other elements form
partial sums: each vertex of the tree will contain the sum of
the leaf vertices below it in the tree.

In Figure 7(c) we show the tree structure for the concrete
case where n = 8 and we shade right child vertices (for the
moment, ignore the labels of each vertex, which will be used
in the downsweep). The upsweep loop has the loop invariant:

(d=4ANoffset =1)V (d=2Aoffset =2)
V(d=1Aoffset =4)V (d=0Aoffset =8)

where each conjunct characterises a loop iteration (and the
last conjunct corresponds to the final time the loop head is
evaluated and the loop exits). By considering the state of the
array sum at the start of each iteration we can construct a
barrier invariant ¢4 for the barrier inside the loop body. The
columns of Figure 7(a) summarise the per-element equalities
formed by the upsweep as the offset changes.

Informally, the summations of an element x at offset 6
can be found by traversing the tree from the vertex (x, 0) to
the leaf vertex (z, 1) of the element: if a right child vertex
(z,0") is encountered the term sum[z — €’] is added to the
summation. Furthermore, an index z — 6’ is a summation
term iff isvertex(x, 260”) holds. This gives us the following

per-element invariant upsweep, which captures the state of
any vertex (x, 0) of the tree.

upsweep(z, ) £ sum[r] = flag[z]

+ 2
0'c{27]0<j<lg 0}
isvertex(x,20")

sum[z — '] .

Using this per-element invariant, we define the barrier
invariant ¢, by considering the elements of sum known
to a thread t¢id in each iteration of the upsweep loop with
offset 6. At loop entry, when offset = 1, each thread
tid < n/2 knows about exactly two elements: ai(tid, 1)
and bi(tid, 1). In subsequent loop iterations we have an un-
even distribution of elements over threads as more threads
become disabled while the upsweep proceeds. For each pre-
vious offset value 0'(< 6), each thread tid < n/0" will
continue to know about its left child at that depth of the
tree, i.e., ai(tid, 0’ /2), because this vertex will have no fur-
ther summation terms. For the current offset value 0, each
thread tid < n/0, i.e., each thread active in the iteration
of the upsweep just completed, will know about its left and
right vertices: ai(tid, 8/2) and bi(tid, 0/2).

Thus ¢y is defined as

tid < n/2 = (upsweep(ai(tid,1),1)
A upsweep(bi(tid, 1),1))

in the case § = 1, and as

/\ (tid < n/0" = upsweep(ai(tid,0'/2),0))
0’ e{2i]1<i<lg 0}
A (tid < n/0 = upsweep(bi(tid,0/2),0))

otherwise.



Downsweep invariant The downsweep combines the par-
tial sums formed in the upsweep to give the expected pre-
scan result. For presentation purposes we show the down-
sweep operating over an array prescan different from the
array sum used in the upsweep, where initialisation is such
that prescan|z] = sum|x] for all elements z.

The downsweep traverses the tree from the root to the
leaves after clearing the root with the identity element e. At
each iteration of the downsweep, each vertex (i) copies its
value to its left child and (ii) sums its value with the old value
of the left child into the right child. This means that a vertex
is only summed into when it is a right child; otherwise, it
receives the value of its parent vertex.

In Figure 7(c) we consider the concrete case where n = 8.
We shade right child vertices and label each vertex with the
summation terms of each vertex after the downsweep has
processed that level of the tree. For example, the root (7, 8)
is labelled with e to denote that it is equal to the identity (i.e.,
prescan[7] = e), when offset = 8.

At the next downsweep iteration, when of fset = 4, only
(7,8) is a vertex. The vertex copies its value e into its left
child (3,4) and sums this value with the previous value of
its left child, i.e., sum[7] + sum[3] = e + sum[3] = sum([3],
storing the result in its right child (7,4). In the figure, we
write this summation by labelling the vertex (7, 4) with ‘3.

In the next iteration, when offset = 2, vertex (7,4)
copies its value sum[3] into its left child (5,2) and sums
this value with the previous value of its left child, i.e.,
prescan[7] + sum[5] = sum[3] + sum[5] into its right child
(7,2). Hence, in the figure, the left (5,2) and right (7,2)
child vertices are respectively labelled ‘3’ and ‘3,5. The
remaining vertices are similarly computed.

Now consider the leaf vertices of the tree, which are the
final output of the prescan. We note that the number of terms
in the summation for an element x is the number of right
child vertices in the path from the root vertex to the leaf
vertex. For example, element 5 has two right child vertices
on the path from the root vertex (7, 8) to its leaf vertex.

Informally, the summations of an element x at offset 6
can be found by traversing the tree from the vertex (x, 6) to
the root and gathering terms: if a right child vertex (z’, ')
is encountered then add the term sum[2’ — 6’] to the summa-
tion. This observation leads to the following invariant, which
defines the elements of prescan in terms of the offset 6:

downsweep(z, §) = prescan|z]
B {ZG/GB(%Q) sum[y(z,0')] if isvertex(z, 20)
sum|[x] otherwise
where
B(z,0) £ {2° |1g0 <i <lgn A bit(z,i) = 1}

and ‘
y(z,0") 2z -0+ > 27

0<j<lg 0’ bit(z,j)=0

We exploit the fact that the binary encoding of x may be
interpreted as the path from the root to the element leaf
vertex: using 0 to mean left and 1 to mean right as we read
from the most-to-least significant bit (see also Figure 7(c)).

Finally, we define the invariant @4 by considering the
elements of prescan accessed by the thread tid in each
iteration of the downsweep loop with offset §:

as 2 No<i<ign (tid < n/27F1 NG > [2¢/2]
= downsweep(ai(tid, 2"),))

A No<icign (tid <n/27F1 A G |27/2]
= downsweep(bi(tid, 2%),6))

where < is defined as > if 2¢ = n /2, and as = otherwise.

Specification invariant The result of the prescan is ex-
pressed in the final barrier invariant:

Ospec = tid < tid = (prescan[tid] + flag]tid]

< prescan|[tid])

This is a simple consequence of the equalities formed by @y
and g, i.e. at @ = n for s and 6 = 0 for @g,. For example,
consider the case tid = 1 and tid = 5. Then we must show
prescan(l] 4+ flag[l] < prescan[5]. By the downsweep
equalities, given in Figure 7(b), we can rewrite this equation
as: sum[0] + flag[l] < sum[3] + sum[4]. Then, by the
upsweep equalities, given in Figure 7(a), and cancellations,
this becomes 0 < sum[2] + flag[3] 4+ sum[4], which holds
given unsigned (and thus non-negative) inputs.

Instantiation expressions As discussed in Section 3.3,
GPU Verity requires a set of instantiation expressions to
be specified for each barrier invariant. As an example, we
briefly discuss instantiation expressions for the upsweep bar-
rier invariant, ;.

In the upsweep of Figure 2, we see at each iteration that
a thread tid uses the results produced by threads 2 - tid and
2-tid+1 from the previous iteration. For example, thread 1 at
offset 2 uses the sums formed by 2 and 3 when the upsweep
was at offset 1. Therefore, it suffices to instantiate s for
threads 2 - tid and 2 - tid + 1 after the upsweep barrier;
instantiating the invariant for further threads does not add
any information that is useful for verification.

4.2 Other prefix sum algorithms

We have derived barrier invariants for two further prefix sum
algorithms which, through our survey of the CUDA and
AMD SDKs and SHOC, Rodinia and Parboil benchmarks
(see Section 2), we found to be widely used in GPU kernel
programming: Brent-Kung [5] and Kogge-Stone [23]. We
briefly outline the process of barrier invariant discovery for
these algorithms which can also be used to perform stream
compaction. The source code for these examples, annotated
with barrier invariants, is available online.°

Shttp://multicore.doc.ic.ac.uk/tools/GPUVerify/00PSLA13
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Figure 8. Circuit for Kogge-Stone prefix sum

Brent-Kung The Brent-Kung algorithm performs an inclu-
sive prefix sum (also known as a scan) meaning that the
output is the sum of all inclusive-prefixes: i.e., idx[z] =
>-7_ o £lag]i] for all z. Like the Blelloch prescan, the Brent-
Kung scan consists of upsweep and downsweep loops. The
barrier invariants for this algorithm follow a similar pattern
to those for Blelloch: we establish equalities for the upsweep
and downsweep loop that can be combined into the mono-
tonic specification. The Brent-Kung upsweep matches the
Blelloch upsweep so we reuse the same upsweep barrier in-
variant. The downsweep then collects partial sums to form
the final result. Unlike the Blelloch downsweep, which op-
erates over a logical tree, the Brent-Kung downsweep works
over a logical forest, which requires significantly different
barrier invariants.

Kogge-Stone Figure § describes the Kogge-Stone inclu-
sive prefix sum as a circuit diagram for n = 8 elements.
There is a wire for each input and data flows top-down
through the diagram. Each node e performs the binary as-
sociative operator on its two inputs and produces an out-
put that passes downward and also optionally across the
circuit (through a diagonal wire). The algorithm works by
summing array elements from successively larger power-of-
two offsets. In this algorithm we observe that the circuit
always adds adjacent summation intervals. Initially, at off-
set 1, we have for each element x that idx[z] = flag[z] =
S, flagli]. After the first iteration, at offset 2, each ele-
ment z > 1 has idx[z] = Y., flagli]. After the sec-
ond iteration, at offset 4, each element > 2 has idx[z] =
> i . 5 flagli]. For example, element 3 will have summed
idx[3] = 37, flag[i] and idx[1] = 3°,_, f1ag]i] to be-
come Z?:o flag[i]. In general, we see that each add has the
form 37 _, £lagli] + 327, flagli] = Y;_, flagli).
The GPU kernel implementation of Kogge-Stone assigns
one thread to each array element. Due to the tightly cou-
pled nature of threads, we found it difficult to design a com-
pact barrier invariant to summarise the state of the idx ar-
ray, contrary to what we were able to do for the Blelloch and
Brent-Kung prefix sums. However, using the above obser-
vation regarding the summations taking place, we were able
to apply abstract interpretation [13] to the source code us-
ing a domain of summation intervals, so that each element
idx[z] is represented by an abstract element (a, b) denoting

Z?:a flag[i]. Addition of adjacent intervals is defined as
(a,b)® (b+1,c¢) = (a,c). This enables us to prove the scan
specification for this algorithm for any associative operator
using simple barrier invariants.

4.3 Experience

The barrier invariants we have derived for the Blelloch,
Brent-Kung and Kogge-Stone prefix sum algorithms are in-
tricate. Their derivation was non-trivial and in the process
we made numerous errors and encountered numerous omis-
sions. To identify such problems we relied heavily on the
fact that our method does not take user-supplied barrier in-
variants on trust, but checks that they do indeed hold.

The process of barrier invariant derivation required (a) a
thorough understanding of how these algorithms operate and
why they are functionally correct, and (b) a strong intuition
for writing inductive invariants, gained through significant
prior experience using verification tools such as Boogie [1].
Due to (b), we speculate that writing barrier invariants for
complex algorithms is likely to be beyond the scope of gen-
eral GPU software developers who do not have a background
in verification. Nevertheless, we believe there is significant
value in applying barrier invariants to the verification of im-
portant library functions such as prefix sums, due to the wide
use of such functions and the fact that the verification effort
need only be undertaken once. The specification for the li-
brary function may be useful in automatic verification of a
client application, as we demonstrate for the stream compac-
tion example in our experimental evaluation (Section 5).

There was some degree of re-use between barrier invari-
ants in our examples. The upsweep phases of Blelloch and
Brent-Kung are identical, allowing identical barrier invari-
ants, and the process of deriving the Blelloch downsweep in-
variant yielded insights which made derivation of the Brent-
Kung downsweep invariant relatively straightforward. The
Kogge-Stone algorithm, on the other hand, required a dif-
ferent approach, as discussed in Section 4.2. Having identi-
fied a barrier invariant, we found that the necessary instantia-
tion expressions (as briefly discussed at the end of Section 4)
were straightforward to identify.

5. Experimental results

We now present verification results for analysing the stream
compaction kernel and the Blelloch, Brent-Kung and Kogge-
Stone prefix sum algorithms discussed in Sections 2 and 4.
We evaluate the effectiveness of GPU Verify in (a) perform-
ing modular verification of the stream compaction kernel us-
ing a specification for the prefix sum phase, and (b) the scal-
ability of verifying the prefix sums using barrier invariants.
We compare GPUVerify with two other GPU kernel
analysis tools, GKLEE [26] and GKLEE,, [27], which are
based on the KLEE dynamic symbolic execution engine [6].
GKLEE searches for bugs in GPU kernels through exhaus-
tive path analysis using an explicit representation of threads.



GKLEE,, tries to improve on the performance of GKLEE
by reasoning about representative pairs of threads, introduc-
ing fresh pairs to the analysis only when necessary. While
the tools are not designed for verification, they can perform
brute-force verification via exhaustive path exploration.

We also attempted to provide a performance compari-
son with KLEE-CL [11], another KLEE-based tool, but
were unable to do so due to bugs in KLEE-CL, which
we have reported to the developers. Because GKLEE and
KLEE-CL share many similarities, we expect that a com-
parison with KLEE-CL after bug-fixing will yield similar
results. We do not compare with existing verification tools,
PUG [25], the tool of Leung et al. [24], and GPU Verify
prior to this work [2], as they do not support reasoning about
data-dependent kernels.

All experiments were performed on a compute cluster
using nodes with Intel Xeon EP-2620 cores at 2GHz with
16GB RAM running RedHat Linux 6.3, rev. 2784 of Boogie,
and Z3 v4.3.1. We used a timeout of 3 hours for each experi-
ment. Times reported are averages over ten runs. GPU Verify
and our benchmarks are available online to make our results
reproducible.

Verification strategy We apply GPU Verify using a mod-
ular and staged verification strategy, as discussed in Sec-
tion 3.3, exploiting the fact that the prefix sum phase of
stream compaction is outlined into a procedure. Race-free-
dom for the stream compaction is verified by summaris-
ing the prefix sum procedure by its monotonic specification.
We consider three implementations of prefix sum, using the
Blelloch, Brent-Kung and Kogge-Stone algorithms (see Sec-
tion 4). In each case, we verify race-freedom of the prefix
sum using trivial barrier invariants. This is because the pre-
fix sums themselves are data-independent: data-dependence
arises when the result of a prefix sum is used for array in-
dexing during stream compaction. Having established race-
freedom for the prefix sum, we use the barrier invariants de-
scribed in Section 4 to prove the monotonic specification,
with race checking disabled.

The experimental results we present for GPU Verify all
use this staged approach; we found that staging these ver-
ification phases always accelerated verification, yielding
speedups of up to 4x. GKLEE and GKLEE,, are based on
exhaustive path exploration, thus do not support modular
and staged analysis.

Verifying stream compaction using the prefix sum speci-
fication We considered verifying race-freedom for stream
compaction, assuming the prefix sum specification, for all
power-of-two thread counts from 2 to 23!, GPU Verify sup-
ports specification-based reasoning directly. Using GKLEE
and GKLEE,, a procedure can be summarised through the
use of assume commands, one per thread.

Figure 9 shows for each thread count up to 2%° the time
in seconds taken for analysis with GPU Verify, GKLEE and
GKLEE,,. For each thread count and tool we show the time

taken for analysis, in seconds, averaged over 10 runs. Be-
low the time we show the variation observed between runs.
Timeouts are indicated by ‘TO’.

In all cases analysis with GPU Verify succeeded in /ess
than two seconds, illustrating the power of modular analysis
using the two-thread reduction; we obtained similar results
for thread counts up to 23'. GKLEE is capable of analysis
of up to 8 threads within our resource limits, and GKLEE,,
scales further to 256 threads. Because GKLEE and GKLEE,,
use an explicit thread representation it is unsurprising that
analysis does not scale to larger thread counts. We emphasise
that GKLEE and GKLEE,, were not designed for this sort
of analysis; nevertheless, they provide the only source for
comparison. For large thread counts, significant variation in
analysis time is observed using GKLEE,,. We attribute this
to various sources of nondeterminism arising from the KLEE
execution environment [6].

Verifying prefix sum specifications For stream compac-
tion we are interested in performing a prefix sum using the +
operator with identity 0. Because, as discussed in Section 4,
the specification does not hold in the case where addition
overflows, we have added to GPU Verify support for a non-
overflowing bit-vector addition operator, which performs ad-
dition of an n-bit bit-vector using n + 1 bits, and then injects
an assume statement to restrict analysis to the case where
addition did not overflow, indicated by the top bit of the re-
sult. It was not possible to add similar support directly to
GKLEE, thus for our experiments with GKLEE we model
bit-vector addition as saturating.

The monotonic specification also holds with equivalent
barrier invariants when the operator is changed to max or |
(bitwise-or). It is instructive to see how the verification cost
varies according to the operator used.

We found that GKLEE,, could not be used to verify the
monotonic specification for these kernels: analysis led to
false positive reports of the monotonic post-condition fail-
ing. This is because, as mentioned briefly in [27], the thread
reduction employed by GKLEE,, relies on a form of shared
state abstraction similar to the adversarial abstraction dis-
cussed in Section 1. GKLEE on the other hand does not at-
tempt to perform thread reduction and so does not use any
shared state abstraction, hence we are able to meaningfully
compare GPU Verify with GKLEE.

The graphs of Figure 10 show times for verifying (a) the
Blelloch prescan algorithm and (b) the Brent-Kung scan al-
gorithm for increasing thread counts using GPU Verify (in-
dicated by circles) and GKLEE (indicated by crosses). We
consider each of the operators + (ADD), max (MAX) and
| (OR), and consider 8-, 16- and 32-bit integer representa-
tions: bvX indicates that integers are represented using X-bit
bit-vectors.

For GPU Verify, each data-point is the total time to verify
the algorithm using our staged verification strategy: i.e., the
time to verify the algorithm is race-free (using trivial bar-
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Figure 9. Experimental results for modular analysis of the stream compaction kernel using GPU Verify, GKLEE and GKLEE,,.
Analysis times, in seconds, are averages over 10 runs, and the variation (95% confidence interval) between runs is also shown.
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Figure 10. Verification results for (a) Blelloch and (b) Brent-Kung prefix sums using concrete operators of differing bit-widths

rier invariants) plus the time to verify the monotonic spec-
ification (with race checking disabled). For GKLEE, each
data-point is the time taken for exhaustive path analysis. For
each tool, absence of a data point indicates that a timeout oc-
curred, or that the memory limit of our platform was reached.

The results show that for both Blelloch and Brent-Kung
with the + and max, the two-thread reduction afforded by
barrier invariants allows GPU Verify to scale to larger thread
counts than with GKLEE, overcoming the overhead associ-
ated with barrier invariants observed for small thread counts.
The scalability of GPU Verify is particularly noticeable when
integers are represented using 8-bits. For larger bit-widths
the scalability of both tools degrades.

For the | operator, which leads to simpler bit-vector rea-
soning, both GPU Verify and GKLEE perform significantly
better than with + or max for both the Blelloch and Brent-
Kung algorithms. GKLEE performs extremely well for small

thread counts, outperforming GPUVerify by two orders of
magnitude. As the thread count increases, this performance
gap closes to one order of magnitude or less, and the scal-
ability of GPU Verify appears to be almost linear (note that
although the y-axis is plotted to a log scale, the number of
threads on the x-axis also grows exponentially). Neverthe-
less, in four cases GKLEE is able to verify one larger thread
configuration than GPU Verify, before both tools exhaust re-
source limits. Looking at the log files created by GKLEE, we
found that analysis for the | operator required consideration
of just a single execution path regardless of the thread count,
while analysis using + and max required exploring a num-
ber of paths exponentially proportional to the thread count.
This is because the application of saturating addition, or the
max function, leads to a branch in the LLVM intermediate
representation on which GKLEE operates. In each case the
branch is data-dependent on the operands of the function,
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so each time this function is applied GKLEE must fork ex-
ecution to consider all successive execution states that can
be reached via both branch outcomes. The | function does
not lead to a branch, so this exponential path explosion is
avoided. This is not an issue for GPU Verify, which does not
perform a per-path analysis.

As explained in Section 4.2, we applied source-level ab-
stract interpretation to the Kogge-Stone prefix sum algo-
rithm. This leads to a description that is independent of the
specific associative operator that is used. Figure 11 plots ver-
ification times using GPUVerify and GKLEE for abstract
Kogge-Stone for varying thread counts, where integers are
represented using 32-bit bit-vectors. Data points for GPU-
Verify and GKLEE are represented using circles and crosses,
respectively.

The graph shows that verification with GPU Verify scales
extremely well: we were able to verify the example for all
power-of-two thread counts up to 23! (thread counts up to
220 are shown in the figure), and that analysis appears to
be insensitive to the number of threads. Using GKLEE,
analysis was possible for up to 64 threads within our 3
hour timeout. This demonstrates that scalability that can
be achieved by combining the two-thread abstraction with
additional abstract reasoning.

Scaling verification for Blelloch and Brent-Kung using an
abstract operator Inspired by the excellent scalability re-
sults for the abstract Kogge-Stone algorithm (Figure 11), we
considered the use of abstraction to overcome the scalabil-
ity limitations associated with bit-vector reasoning for the
Blelloch and Brent-Kung algorithms.

For non-negative integers x, y and z and an operator ¢ €
{+, maz, | } with identity 0, the barrier invariants for Blel-
loch and Brent-Kung, and the monotonic specification, rely
on the following properties: z @ (y ® z) = (r ® y) D z (as-
sociativity), x @ e = e ® x = « (identity), and maz(z,y) <
x @ y (upperbound). Motivated by this, we extended GPU-
Verify with an abstract binary operator & over bit-vectors,
which maps to a Boogie uninterpreted function together with
a set of axioms encoding the associativity, identity and up-
perbound properties. Our hypothesis was that by abstracting

from the complexity of bit-vector addition we could prove
the prescan specification with 32-bit bit vectors for larger
thread counts.

Unfortunately, specifying these axioms involved the use
of quantifiers, and we found that the quantified associativity
axiom led to problems with the quantifier instantiation ap-
proach of Z3, which uses E-matching [14]. If a formula has
a large expression that involves &, the associativity axiom
can be instantiated for any sub-tree of the form ¢1 @ (t2 Dt3)
or t; @ (t2 @ t3), and instantiation leads to duplication of
each of the sub-trees 1, t5 and ¢3 in the formula. Thus direct
use of quantifiers in describing properties of & led to rapid
memory exhaustion.

We used triggers [14] to carefully design a set of quan-
tified axioms for & which allow the barrier invariants for
the upsweep and downsweep phases of the prefix sum al-
gorithms to be checked. We have not managed to craft trig-
gers suitable for proving the final monotonic specification;
we plan to investigate this further in future work.

Figure 12 shows verification times for checking the bar-
rier invariants @joad, @us and @gs (see Section 4) but not the
final specification (g, for {8,16, 32}-bit bit vectors, with
respect to concrete operators +, max, |, and using the ab-
stract operator . The results show that the abstract opera-
tor scales significantly better than + and max, allowing the
(pre)scans to be verified for 32-bit bit vectors for up to 64
threads, compared with 8 threads using +. Furthermore, be-
cause all assumptions made regarding & hold for the con-
crete operators, verification of the (pre)scans using & alone
establishes that these barrier invariants hold for all three op-
erators simultaneously.

We could not apply GKLEE using the abstract operator
since the tool does not support the use of uninterpreted
functions and quantifiers.

6. Related Work

Formal analysis of GPU kernels We have discussed re-
lated work on formal analysis for GPU kernels [2, 11, 12,
24-27] in the introduction and through experimental com-
parison in Section 5. Among this work, the closest to GPU-
Verify is PUG [25]. It would be possible in principle to inte-
grate barrier invariants with the PUG verification method in
a similar manner to the approach taken here.

A recent method for functional verification of GPU ker-
nels uses permission-based separation logic [19]. Here, a
kernel must be annotated (currently manually) with an as-
signment of read or write permissions to memory locations
on a per-thread basis. Race-freedom is proven by showing
that write permissions are exclusive. To reason about com-
munication at barriers, a barrier specification is required to
state how permissions are exchanged between threads at a
barrier. Barrier specifications differ from barrier invariants
in that they talk only about permissions, not about the data
on which the kernel operates. The approach of [19] does not
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Figure 12. Verifying upsweep and downsweep Blelloch/Brent-Kung using concrete and abstract () operators

employ any thread-reduction abstraction; instead, quantifiers
are used to reason about all threads. This method has not yet
been automated, so a systematic comparison with GPU Ver-
ify for realistic examples is not yet possible.

Protocol verification A reduction to two processes, similar
to the two-thread reduction employed in GPU kernel verifi-
cation, is at the heart of a method for verifying cache co-
herence protocols known as CMP [9], which was inspired
by the foundational work of McMillan [28]. With CMP,
verification of a protocol for an arbitrary number of pro-
cesses is performed by model checking a system where a
small number of processes are explicitly represented and a
highly nondeterministic ‘other’ process over-approximates
the possible behaviours of the remaining processes. The un-
constrained nature of the ‘other’ process can lead to spu-
rious counterexamples, which must be eliminated either by
introducing additional explicit processes, or by adding non-
interference lemmas so that the actions of the ‘other’ process
more precisely reflect the possible actions of processes in
the concrete system. The CMP method has been extended
and generalised with message flows and message flow in-
variants [34], which aid in the automatic derivation of non-
interference lemmas by capturing large classes of permissi-
ble interactions between processes.

Our approach uses the same high-level proof idea as the
CMP method: we consider a small number of threads (two),
and our default adversarial abstraction models the possible
actions of all other threads, analogously to the ‘other’ pro-
cess. The purpose of barrier invariants is to refine the ad-
versarial abstraction so that the possible behaviours of ad-
ditional threads are represented more precisely, thus barrier
invariants can be seen as analogues to non-interference lem-
mas. However, the techniques aim to solve different prob-

lems: non-interference lemmas in the CMP method describe
interaction sequences between processes in a message-based
protocol, while barrier invariants for GPU kernel verification
capture properties of the shared state in shared memory par-
allel programs, and thus there are many technical differences
in the manner by which the high-level proof technique is ap-
plied in practice.

Other techniques for verification of data-parallel programs
A technique for proving race-freedom of data parallel pro-
grams using thread contracts is presented in [21]. With this
approach the user specifies a coordination strategy: a log-
ical annotation describing how threads will access shared
memory when executing a parallel region of code. An SMT
solver is used to show that adherence to the coordination
strategy guarantees race-freedom. However, the work does
not address the problem of proving that a parallel program
obeys its coordination strategy; if an erroneous coordina-
tion strategy is specified then the associated race-freedom
proof cannot be trusted. The authors show how assertions
can be generated to check coordination strategies at runtime,
which is useful but provides no guarantees. Barrier invari-
ants can be viewed as a kind of coordination strategy tai-
lored towards analysis of GPU kernels. A key difference be-
tween our contribution and that of [21] is that our verifica-
tion method checks the validity of barrier invariants as well
as using them to prove race-freedom: if erroneous barrier in-
variants are provided then the verification attempt will fail.
Collective loop invariants are proposed in [32] to allow
verification of data parallel programs using symbolic execu-
tion, with applications to MPI. In the context of MPI, a col-
lective loop invariant is an assertion specified with respect
to a set of processes Z and a set of loop heads £, and is re-
quired to hold in any state where every process p € Z is



at a loop head in L. This facilitates reasoning about parallel
programs where threads do not necessarily synchronise at
loop heads. Like barrier invariants, collective loop invariants
establish properties over sets of processes/threads, but oth-
erwise the techniques are orthogonal: a barrier invariant is
designed to capture shared state properties when all threads
in a GPU kernel synchronise at the same barrier; collective
loop invariants aim to capture the system state in MPI pro-
grams where processes do not frequently synchronise. We
believe there is scope for process-modular reasoning about
MPI programs using barrier invariants, complementing the
strengths of collective loop invariants.

Thread modular reasoning There has been much work
on thread-modular reasoning for general-purpose concur-
rent programs, notably the Owicki-Gries [31] and rely-
guarantee [20] techniques.

The two-thread reduction can be viewed as a form of
thread-modular reasoning: for a GPU kernel executed by n
threads, each thread is (implicitly) verified with respect to
n — 1 environment abstractions. In each such environment
abstraction, a single additional thread is represented for pur-
poses of data race analysis, and the actions of further threads
are considered by modelling the shared state abstractly. Bar-
rier invariants refine this environment model by providing a
more precise representation of the shared state.

The two-thread reduction with barrier invariants exploits
the structure of data-parallel programs where barriers are
the only means of synchronisation. This leads to more com-
pact specifications than are possible using traditional thread-
modular techniques which must take account of arbitrary
thread synchronisation.

Staged verification In Section 3.3 we discussed the use of
staged verification in GPUVerify. Forms of staged analysis
are often used in program verification, usually for collabora-
tion between techniques. For example, it is common to de-
rive simple program invariants using a sound abstract inter-
preter, and then to assume these invariants when applying a
more heavy-weight verification method (see, e.g., [17]). The
use of assumptions in collaborative verification and testing
has been the subject of recent work [10].

7. Conclusions and Future Work

We have presented barrier invariants, a method for facilitat-
ing race analysis of data-dependent GPU kernels using the
two-thread reduction. We have demonstrated the application
of barrier invariants through a detailed case-study of stream
compaction, and shown that our implementation facilitates
practical verification of this important kernel for relatively
large thread counts.

In future work we plan to apply barrier invariants more
widely, verifying other data-dependent kernels such as radix
sort, collision detection, eigenvalue computation and graph
colouring. Based on this experience we will investigate tech-

niques for automatically inferring auxiliary barrier invari-
ants, so that users can focus on the key invariants that are
specific to the algorithm in hand. We also plan to investi-
gate the application of barrier invariants to other data par-
allel programming models that employ barrier synchronisa-
tion, including OpenMP and MPI, and to consider verifica-
tion of kernels that use atomic operations to avoid barrier
synchronisation (building on existing results in this area us-
ing GKLEE [8]).

Our experiments show that employing abstraction to
avoid reasoning directly about arithmetic is promising, but
our results are incomplete due to the challenges associated
with quantifier instantiation. We believe that progress on
this problem could have wide application in software verifi-
cation.
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A. Proof of Theorem 3.1
Define the projection 75:*(3) as

(X.sh, 75(%), (X))
where 7%(%) £ (2(z).l, 8(x).R, (x).W). We have:

Proof (Theorem 3.1). The proof is by contradiction. Thus,
suppose no execution of A%¢(P) for any pair of threads s
and ¢ leads error, but that P either has a race or violates
a barrier invariant. Hence, there is an execution of P from
an initial state to a state where either (a) K-RACE or (b)
K-BAR-ERR applies. In both cases, observe that this is due
to two threads, say s and ¢.

Suppose p = ¥1,X9,...,%, is the sequence of kernel
states successively assumed by P during the erroneous exe-
cution with exception of the final K-RACE or K-BAR-ERR
step. We will show by induction that

(p) = 7 (S1), 7 (Da), .., 7 (Tn)

is a sequence of successive kernel states of an execution of
A*'(P) whose execution steps are exactly the execution
steps of the problematic execution with each K-BAR-INV
step replaced by A-BAR-INV; from this, it follows that
either a K-RACE or A-BAR-ERR step is possible from
w%¢(3,), contradicting that no execution of A%*(P) leads
to error.

The base case of the induction is trivial. For the succes-
sor case, consider K-STEP and K-BAR-INV in turn. For
each K-STEP step from X; to X;11 a K-STEP step is pos-
sible from 7%¢(3;) to 7%!(3;41), as no data races occur
in p and, hence, the part of the state 3; employed by s
and t is completely captured by 7**(%;). Similarly, for
each K-BAR-INV step from X; to ;4 it follows that an
A-BAR-INV step is possible from 7% (%;) to 7% (X;41):
No execution of A*'(P) ends in error and, hence, for
all X € ~**(T) it must hold that []%’. Moreover, as
¥, € 45t (nst(X;)) by definition of %! and 7?1, it fol-
lows by occurrence of K-BAR-INV in p that 7%¢(2;,1) can
be used as T” (observe here that X, 1 is equal to X; with the
read/write sets of all threads cleared). O



