
Interleaving and Lock-Step Semantics for Analysis and
Verification of GPU Kernels?

Peter Collingbourne1?? Alastair F. Donaldson1 Jeroen Ketema1 Shaz Qadeer2

1 Imperial College London
peter@pcc.me.uk,{afd,jketema}@imperial.ac.uk

2 Microsoft Research
qadeer@microsoft.com

Abstract. Graphics Processing Units (GPUs) from leading vendors employ pred-
icated (or guarded) execution to eliminate branching and increase performance.
Similarly, a recent GPU verification technique uses predication to reduce veri-
fication of GPU kernels (the massively parallel programs that run on GPUs) to
verification of a sequential program.
Prior work on the formal semantics of lock-step predicated execution for kernels
focused on structured programs, where control is organised using if- and while-
statements. We provide lock-step execution semantics for GPU kernels that are
represented by arbitrary reducible control flow graphs. We present a traditional
interleaving semantics and a novel lock-step semantics based on predication, and
show that for terminating kernels either both semantics compute identical results
or both behave erroneously.
The method allows reducing GPU kernel verification to the verification of a
sequential, lock-step program to be applied to GPU kernels with arbitrary reducible
control flow. We have implemented the method in the GPUVerify tool, and present
an evaluation using a set of 163 open source and commercial GPU kernels. Among
these kernels, 42 exhibit unstructured control flow which our novel lock-step
predication technique can handle fully automatically. This generality comes at a
modest price: verification across our benchmark set was on average 2.25 times
slower than using an existing approach that specifically targets structured kernels.

1 Introduction

Graphics Processing Units (GPUs) have recently found application in accelerating
general-purpose computations, e.g. in image retrieval [22] and machine learning [3]. If an
application exhibits significant parallelism it may be possible to extract the computational
core of the application as a kernel and offload this kernel to run across the parallel
hardware of a GPU, sometimes beating CPU performance by orders of magnitude.
Writing kernels for massively parallel GPUs is challenging, requiring coordination of
a large number of threads. Data races and mis-synchronisation at barriers (known as
barrier divergence) can lead to erroneous and non-deterministic program behaviours.
Worse, they can lead to bugs which manifest only on some GPU architectures.
? This work was supported by the EU FP7 STREP project CARP (project number 287767).

?? Peter Collingbourne is currently employed at Google.

Recently, substantial effort has been put into the design of tools for rigorous analysis
of GPU kernels [7,15,8,16,14]. In prior work [7], we designed a verification technique
and tool, GPUVerify, for OpenCL [12] and CUDA [20] kernels. GPUVerify achieves
scalability by reducing verification of a parallel kernel to a sequential program verifi-
cation task. This is achieved by transforming the kernel into a form where all threads
execute in lock-step in a manner that still facilitates detection of data races arising due to
arbitrary thread interleavings.

Semantics and program transformations for lock-step execution have been formally
studied for structured GPU kernels where control flow is described by if and while
constructs [7], but the technique of [7] is limited to the analysis of structured kernels.
Lock-step semantics for GPU kernels where control flow is described by an arbitrary
reducible control flow graph (CFG),3 has not been studied. This is a serious limitation to
the design of GPU kernel analysis techniques: kernels frequently exhibit unstructured
control flow, either directly, e.g. through the use of switch-statements, or indirectly,
through short-circuit evaluation of Boolean expressions. Dealing with CFGs also enables
analysis of GPU kernels after compiler optimisations have been applied, bringing the
analysis closer to the code actually executed by the GPU. It allows for the reuse of exist-
ing compiler infrastructures, such as Clang/LLVM, which use CFGs as their intermediate
representation. Reusing compiler infrastructures hugely simplifies tool development,
removing the burden of writing a robust front-end for C-like languages.

We present a traditional interleaving semantics and a novel lock-step semantics for
GPU kernels described by CFGs. We show that if a GPU kernel is guaranteed to terminate
then the kernel is correct with respect to the interleaving semantics if and only if it is
correct with respect to the lock-step semantics, where correct means that all execution
traces are free from data races, barrier divergence, and assertion failures. Our novel
lock-step semantics enables the strategy of reducing verification of a multithreaded GPU
kernel to verification of a sequential program to be applied to arbitrary GPU kernels, and
we have implemented this method in the GPUVerify tool. We present an experimental
evaluation, applying our new tool to a set of 163 open source and commercial GPU
kernels. In 42 cases these kernels exhibited unstructured control flow either explicitly
(e.g. through switch-statements), or implicitly due to short-circuit evaluation. In the
former case, these kernels had to be manually simplified to be amenable to analysis using
the original version of GPUVerify. In the latter case, it turned out that the semantics of
short-circuit evaluation of logical operators was not handled correctly in GPUVerify. Our
new, more general implementation handles all these kernels accurately and automatically.
Our results show that overall GPUVerify continues to perform well, with verification
across our benchmark set being on average only 2.25 times slower compared to the
original version that was limited to structured kernels [7].

In summary, our main contributions are:

– A novel operational semantics for lock-step execution of GPU kernels with arbitrary
reducible control flow.

3 Henceforth, whenever we refer to a CFG we shall always mean a reducible CFG. For a definition
of reducibility we refer the reader to [1]. We note that irreducibility is uncommon in practice. In
particular, we have never encountered a GPU kernel with an irreducible control flow graph, and
whether irreducible control flow is supported at all is implementation-defined in OpenCL [12].

2

__kernel void
scan(__global int *sum) {
int offset = 1, temp;
while (offset < TS) {
if (tid >= offset)
temp = sum[tid - offset];

barrier();
if (tid >= offset)
sum[tid] = sum[tid] + temp;

barrier();
offset *= 2;

}
}

(a) A correct kernel

__kernel void
scan(__global int *sum) {
int offset = 1, temp;
while (offset <= tid) {
temp = sum[tid - offset];
barrier();
sum[tid] = sum[tid] + temp;
barrier();
offset *= 2;

}
}

(b) A kernel with barrier divergence

Fig. 1: Two OpenCL kernels

– A proof-sketch that this semantics is equivalent to a traditional interleaving semantics
for terminating GPU kernels.

– A verification method for GPU kernels described as CFGs, which uses our lock-step
semantics to reduce verification of a multithreaded kernel to a sequential verification
task, implemented in the GPUVerify tool.

– An experimental evaluation of this implementation with respect to a large collection
of benchmarks.

After presenting a small example to provide some background on GPU kernels and
illustrate the problems of data races and barrier divergence (Sect. 2), we present the
interleaving semantics (Sect. 3), our novel lock-step semantics (Sect. 4) and a proof-
sketch showing that the semantics are equivalent for terminating kernels (Sect. 5). We
then discuss the implementation in GPUVerify, and present our experimental results
(Sect. 6). We end with related work and conclusions (Sect. 7).

2 A Background Example

We use an example to illustrate the key concepts from GPU programming and provide an
informal description as to how predicated lock-step execution works for structured pro-
grams. We return to this example when presenting interleaving and lock-step semantics
for kernels described as CFGs in Sects. 3 and 4.

Threads, Barriers, and Shared Memory. Figure 1a shows an OpenCL kernel4 to be
executed by TS threads, where TS is a power of two. The kernel computes a scan
operation on the sum array so that at the end of the kernel we have, for all 0 ≤ i < TS ,
sum[i] = Σi

j=0 old(sum)[i], where old(sum) refers to the sum array at the start of
the kernel. All threads execute this kernel function in parallel, and threads may follow
different control paths or access distinct data by querying their unique thread id, tid.

4 For ease of presentation we use a slightly simplified version of OpenCL syntax, and we assume
that all threads reside in the same work group and that this work group is one dimensional. Our
implementation, described in Sect. 6, supports OpenCL in full.

3

Communication is possible via shared memory; the sum array is marked as residing
in global shared memory via the global qualifier. Threads synchronise using a
barrier-statement, a collective operation that requires all threads to reach the same
syntactic barrier before any thread proceeds past the barrier.

Data Races and Barrier Divergence. Two common defects from which GPU kernels
suffer are data races and barrier divergence. Accesses to sum inside the loop are guarded
so that on loop iteration i only threads with id at least 2i−1 access the sum array. If
either of the barriers in the example were omitted the kernel would be prone to a data
race arising due to thread t1 reading from sum[t1 − offset], while thread t2 writes to
sum[t2], where t2 = t1 − offset. The kernel of Fig. 1b, adapted from the Scalable
Heterogeneous Computing (SHOC) benchmark suite,5 aims to optimise the original
example by reducing branches inside the loop: threads are restricted to only execute
the loop body if their id is sufficiently large. This optimisation is erroneous; given a
barrier inside a loop, the OpenCL standard requires that either all threads or zero threads
reach the barrier during a given loop iteration, otherwise barrier divergence occurs
and behaviour is undefined. In Fig. 1b, thread 0 will not enter the loop at all and thus
will never reach the first barrier, while all other threads will enter the loop and reach
the barrier. Unfortunately, on mainstream GPU architectures from AMD and NVIDIA
the kernel of Fig. 1b behaves identically to the kernel of Fig. 1a, meaning that this
barrier divergence bug was not detected during testing. This is problematic because the
erroneous kernel code is not portable across architectures which support OpenCL.

Lock-Step Predicated Execution. We informally describe lock-step execution for struc-
tured programs as used by GPUVerify [7] and which we here generalise to CFGs.

To achieve lock-step execution, GPUVerify transforms kernels into predicated

__kernel void
scan(__global int *sum) {
bool p, q;
int offset = 1, temp;
p = (offset < TS);
while (∃ t :: t.p) {
q = (p && tid >= offset);
q ⇒ temp = sum[tid - offset];
p ⇒ barrier();
q ⇒ sum[tid] = sum[tid] + temp;
p ⇒ barrier();
p ⇒ offset *= 2;
p ⇒ p = (offset < TS);

}
}

Fig. 2: Lock-step predicated execu-
tion for structured kernel of Fig. 1a

form [2]. The example of Fig. 2 illustrates the
effect of applying predication to the example of
Fig. 1a. A statement of the form e ⇒ stmt is
a predicated statement which is a no-op if e is
false, and has the same effect as stmt if e is
true. Observe that the if -statements in the body
of the loop have been predicated: the condition
(which is the same for both statements) is eval-
uated into a Boolean variable q, the conditional
statement is removed and the statements previ-
ously inside the conditional are predicated by the
associated Boolean variable. Lock-step execution
of the while-loop is achieved by evaluating the
loop condition into a Boolean variable p, predi-
cating all statements in the loop body by p, and recomputing p at the end of the loop
body. The loop condition is replaced by a guard which evaluates to false if and only if
the predicate variable p is false for every thread. Thus all threads continue to execute the
loop until every thread is ready to leave the loop; when the loop condition becomes false
for a given thread the thread simply performs no-ops during subsequent loop iterations.

5 https://github.com/spaffy/shoc/wiki

4

In predicated form, the kernel does not exhibit any thread interleavings, and thus
can be regarded as a sequential, vector program. GPUVerify exploits this fact to reduce
GPU kernel verification to a sequential program verification task. The full technique,
described in [7], involves considering lock-step execution of an arbitrary pair of threads,
rather than all threads, and employs instrumentation variables to efficiently check for
data races that could manifest due to arbitrary thread interleavings.

Predication is easy to perform at the level of structured programs built using if - and
while-statements. However, as discussed in the introduction, GPU kernels in general
may exhibit unstructured control flow. In Sect. 4 we present a program transformation
for predicated execution of GPU kernels that are described as CFGs.

3 Interleaving Semantics for GPU Kernels

We introduce a simple language for describing GPU kernels as CFGs, and present an
interleaving semantics for this language. We do not include procedures in our presentation
due to space reasons, however our results do extend to a procedural setting and procedures
are supported by the implementation described in Sect. 6.

3.1 Syntax
The syntax for our language is identical to the core of the Boogie programming lan-
guage [5], except that it includes an additional barrier statement:

Program ::= Block+

Block ::= BlockId : Stmts gotoBlockId+ ;

Stmts ::= ε | Stmt ; Stmts

Stmt ::= Var := Expr | havocVar | assumeExpr | assertExpr | skip | barrier

Here, ε is an empty sequence of statements. The form of expressions is mostly irrelevant.
We do assume presence of (a) equality testing (=), (b) the standard Boolean operators,
and (c) a ternary operator Expr1 ? Expr2 : Expr3, which — like the operator from C —
evaluates Expr2 in case Expr1 is true and evaluates Expr3 in case Expr1 is false .

To summarise in words, a kernel consists of a number of basic blocks, with each
block consisting of a number of statements followed by a goto that non-deterministically
chooses which block to execute next based on the provided BlockIds; non-deterministic
choice in combination with assumes is used to model branches.

Because gotos only appear at the end of blocks there is a one-to-one correspondence
between kernels and CFGs. We assume that all kernels have reducible CFGs, which
means that cycles in a CFG are guaranteed to form natural loops. A natural loop has
a unique header node, the single entry point to the loop, and one or more back edges
going from a loop node to the header [1].

We assume that each kernel has at least a block labelled Start . This is the block from
which execution of each thread commences. Moreover, no block is labelled End ; instead
the occurrence of End in a goto signifies that the program may terminate at this point.

Figure 3 shows the kernel of Fig. 1a encoded in our simple programming language.
The example uses an array; we could easily include arrays in our formalisation of GPU
kernel semantics but, for brevity, we do not.

5

Start : offset := 1 ; I2 : assume tid ≥ offset ;
gotoW,Wend ; sum[tid] := sum[tid] + temp ;

W : assume offset < TS ; gotoB2 ;
goto I1, I

′
1 ; I ′2 : assume tid < offset ;

I1 : assume tid ≥ offset ; gotoB2 ;
temp := sum[tid + offset] ; B2 : barrier ;

Start

W

I1 I1 ′

B1

Wlast

Wend

I2 I2 ′

B2

gotoB1 ; gotoWlast ;
I ′1 : assume tid < offset ; Wlast : offset := 2 · offset ;

gotoB1 ; gotoW,Wend ;
B1 : barrier ; Wend : assume offset ≥ TS ;

goto I2, I
′
2 ; gotoEnd ;

Fig. 3: The kernel of Fig. 1a encoded in our kernel language and its CFG

3.2 Operational Semantics

We now define a small-step operational semantics for our kernel programming language,
which is based on interleaving the steps taken by individual threads.

Individual Threads. The behaviour of individual threads and non-barrier statements
executed by these threads is presented in Figs. 4a and 4b.

The operational semantics of a thread t is defined in terms of triples 〈σ, σt, bt〉, where
σ is the GPU shared store, σt is the private store for thread t and bt is the statement or
sequence of statements the thread will execute, or more formally will reduce, next. Each
store is a mapping from variables to the values in some domain D. We assume that no
variable is mapped to a value in both σ and σt.

In Fig. 4a, (σ, σt)[v 7→ val] denotes a pair of stores equal to (σ, σt) except that v
(which we assume occurs in either σ or σt) has been updated and is equal to val . In
the same figure, (σ, σt)(e) denotes the evaluation of the expression e given (σ, σt). The
labels on the arrows allow us to observe (a) changes to stores and (b) the state of stores
upon. A label is omitted when the stores do not change, e.g. in the SKIP-rule.

The symbols
√

, E , and ⊥ indicate, resp., termination, error, and infeasible. These
are termination statuses and signify that a thread (or later kernel) has terminated with that
particular status. Below, termination always means termination with status termination;
termination with status error or infeasible is indicated explicitly.

The ASSIGN- and SKIP-rules of Fig. 4a are standard. The HAVOC-rule updates the
value of a variable v with an arbitrary value from the domain D of v. The ASSERTT
and ASSUMET-rules are no-ops if the assumption or assertion (σ, σt)(e) holds. If the
assumption or assertion does not holds, ASSERTF and ASSUMEF yield, resp., E and ⊥.

In Fig. 4b, s denotes a statement and b denotes the body of a block, i.e. a sequence of
statements followed by a goto. The SEQB- and SEQE,I-rules define reduction of s ; b in
terms of reduction of s. The GOTO- and BLOCK-rules specify how reduction continues
once the end of a block is reached. The END-rule specifies termination of a thread.

Interleaving. We give interleaving semantics for a kernel P with respect to a given thread
count TS in Fig. 4c. This is defined in terms of tuples 〈σ, 〈σ1, b1〉, . . . , 〈σTS , bTS 〉〉,

6

val = (σ, σt)(e)

P ` 〈σ, σt, v := e〉
(σ,σt)→ (σ, σt)[v 7→ val]

ASSIGN

val ∈ D

P ` 〈σ, σt,havoc v〉
(σ,σt)→ (σ, σt)[v 7→ val]

HAVOC

a ∈ {assert, assume} (σ, σt)(e)

P ` 〈σ, σt, a e〉 → (σ, σt)

ASSERTT

ASSUMET

¬(σ, σt)(e)

P ` 〈σ, σt, assume e〉
(σ,σt)→ ⊥

ASSUMEF

¬(σ, σt)(e)

P ` 〈σ, σt, assert e〉
(σ,σt)→ E

ASSERTF
P ` 〈σ, σt, skip〉 → (σ, σt)

SKIP

(a) Statement rules

P ` 〈σ, σt, s〉
(σ,σt)→ (τ, τt)

P ` 〈σ, σt, s ; b〉
(σ,σt)→ 〈τ, τt, b〉

SEQB
P ` 〈σ, σt, s〉

(σ,σt)→ e e ∈ {E,⊥}

P ` 〈σ, σt, s ; b〉
(σ,σt)→ e

SEQE,I

1 ≤ i ≤ n
P ` 〈σ, σt, gotoB1, . . . , Bn ;〉 → 〈σ, σt, Bi〉

GOTO
(B : b) ∈ P

P ` 〈σ, σt, B〉 → 〈σ, σt, b〉
BLOCK

P ` 〈σ, σt,End〉
σ,σt→
√ END

(b) Thread rules

T~σ|t = 〈σt, bt〉 P ` 〈σ, σt, bt〉
(σ,σt)→ 〈τ, τt, ct〉

P ` 〈σ, T~σ〉
(σ,~σ)→ 〈τ, T~σ [〈τt, ct〉]t〉

THREADB

T~σ|t = 〈σt, bt〉 P ` 〈σ, σt, bt〉
(σ,σt)→

√

P ` 〈σ, T~σ〉
(σ,~σ)→ 〈σ, T~σ [〈σt,

√
〉]t〉

THREADT

T~σ|t = 〈σt, bt〉 P ` 〈σ, σt, bt〉
(σ,σt)→ s s ∈ {E,⊥}

P ` 〈σ, T~σ〉
(σ,~σ)→ s

THREADE,I

∀ 1 ≤ t ≤ TS : T~σ|t = 〈σt,
√
〉

P ` 〈σ, T~σ〉
(σ,~σ)→

√ TERMINATION

(c) Interleaving rules

T~σ|t = 〈βt, σt,barrier et ; bt〉 ∧ ¬(σ, σt)(et)
P ` 〈σ, T~σ〉 → 〈σ, T~σ [〈βt, σt, bt〉]t〉

BARRIERSKIP

∀ t : T~σ|t = 〈β, σt,barrier et ; bt〉 ∧ (σ, σt)(et)

P ` 〈σ, T~σ〉 → 〈σ, 〈β, σ1, b1〉, . . . , 〈β, σTS , bTS 〉〉
BARRIERS

∀ t : T~σ|t = 〈βt, σt,barrier et ; bt〉 ∧ (σ, σt)(et) ∃ t1, t2 : T~σ|t1·bv 6= T~σ|t2·bv

P ` 〈σ, T~σ〉
(σ,~σ)→ E

BARRIERF

(d) Barrier synchronisation rules

Fig. 4: Interleaving operational semantics

7

where σ is the shared store, σt is the private store of thread t, and bt is the program
fragment thread t will reduce next. The private store of a thread is not accessible by
any other thread. In the figure, T~σ is shorthand for (〈σ1, b1〉, . . . , 〈σTS , bTS 〉), where
~σ = (σ1, . . . , σTS). Moreover, T~σ|t denotes 〈σt, bt〉 and T~σ[〈σ′, b〉]t denotes T~σ with
the tth element replaced by 〈σ′, b〉.

The THREADB-rule defines how a single step is performed by a single thread, cf. the
rules in Fig. 4b. The THREADT-rule defines termination of a single thread, where the
thread enters the termination state

√
from which no further reduction is possible. The

THREADE,I-rule specifies that a kernel should terminate with status error or infeasible
in case one of the threads terminates as such. The TERMINATION-rule specifies that a
kernel terminates when all threads have terminated.

The THREAD rules are non-deterministic and define an interleaving semantics, as a
step might be possible in multiple threads. A thread cannot access the private store of
any other thread, while the shared store is accessible by all threads.

Given stores σ, σ1, . . . , σTS , we define a reduction of a kernel P with threads
1 ≤ t ≤ TS as sequence of applications of the operational rules where each threads
starts reduction from Start and where the initial shared store is σ and the initial private
store of thread t is σt. A reduction is maximal if it is either infinite or if termination with
status termination, error, or infeasible has occurred.

Our interleaving semantics effectively has a sequentially consistent memory model,
which is not the case for GPUs in practice. However, because our viewpoint is that GPU
kernels that exhibit data races should be regarded as erroneous, this is of no consequence.

Barrier Synchronisation. When we define lock-step predicated execution of barriers
in Sect. 4 we will need to model execution of a barrier by a thread in a disabled state.
In preparation for this, let us say that barrier statement has the form barrier e, with
e a Boolean expression. In Sect. 4, e will evaluate to true if and only if the barrier is
executed in an enabled state. The notion of thread-enabledness is not relevant to our
interleaving semantics: we can view a thread as always being enabled. Thus we regard
the barrier syntax of our kernel programming language as short for barrier true .

Figure 4d defines rules for (mis-)synchronisation between threads at barriers. Our
aim here is to formalise the conditions for correct barrier synchronisation in OpenCL,
which are stated informally in the OpenCL specification as follows [12]:

B1 If barrier is inside a conditional statement, then all [threads] must enter the condi-
tional if any [thread] enters the conditional statement and executes the barrier.

B2 If barrier is inside a loop, all [threads] must execute the barrier for each iteration
of the loop before any are allowed to continue execution beyond the barrier.

The rules of Fig. 4d capture these conditions using a number of special barrier
variables that we assume are implicit in definition of each kernel:

– For every loop L in the kernel, every thread has a private loop counter variable vL.
The variable vL of each thread t is initialised to zero, incremented each time the
header node for L is reduced by t, and reset to zero on exit from L.

– Every thread has a private variable vbarrier. We assume that each barrier appearing
in the kernel has a unique id. The variable vbarrier of each thread t is initialised to a

8

special value (−) different from every barrier id. When t reaches a barrier, vbarrier
is set to the id of that barrier, and it is reset to (−) after reduction of the barrier.

The variable vbarrier codifies that each thread is synchronising on the same barrier,
capturing condition B1 above. The loop counters codify that each thread must have
executed the same number of loop iterations upon synchronisation, capturing B2.

In Fig. 4d, we write (βt, σt), in case we want to make explicit the barrier variables
βt of each thread t. We write T~σ|t·bv = βt where T~σ|t = 〈βt, σt, bt〉.

The BARRIERSKIP-rule specifies that barrier e is a no-op if e is false . Although this
can never occur for kernels written directly in our kernel programming language, our
equivalence proof in Sect. 5 requires this detail to be accounted for.

The BARRIERS-rule specifies that reduction continues beyond a barrier if all threads
are at a barrier and the barrier variables agree across threads. The BARRIERF-rule
specifies that a kernel should terminate with error in case the threads have reached
barriers with disagreeing barrier variables, i.e. when barrier divergence has occurred.

Data Races. We say that a thread t is responsible for a step in a reduction if a THREAD
rule (see Fig. 4c) was employed in the step and the premise of the rule was instantiated
with t. Moreover, we say that a thread t accesses a variable v in a step if t is responsible
for the step and if in the step either (a) the value of v is used to evaluate an expression or
(b) v is updated. The definition is now as follows:

Definition 3.1. If P is a kernel, then P has data race if there is a maximal reduction ρ of
P not ending in the infeasible status⊥ and a shared variable v such that v is accessed by
distinct threads t and t′ during ρ, where at least one of the threads updates the variable
and where no application of BARRIERS occurs between accesses.

Terminating and Race Free Kernels. We say that a kernel P is terminating with respect
to the interleaving semantics if all maximal reductions of P are finite and do not end
with status error. We say that P is race free with respect to the interleaving semantics if
P has no data races according to Definition 3.1.

4 Lock-Step Semantics for GPU Kernels

We define lock-step execution semantics for GPU kernels represented as arbitrary CFGs
in two stages. First, in Sect. 4.1, we present a program transformation which turns the
sequential program executed by a single thread into a predicated form where control flow
is flattened: all branches, except for loop back edges, are eliminated. Then, in Sect. 4.2,
we use this transformation to express lock-step execution of all threads in a kernel as
a sequential program in vector form. Each statement of this sequential program will
perform the work of all threads in a single step.

To avoid many corner cases we assume that kernels always synchronise on a barrier
immediately preceding termination. Moreover, if a block B ends with gotoB1, . . . , Bn
then at most one of B1, . . . , Bn is a loop head. A kernel can be trivially preprocessed to
satisfy these restrictions.

Sort Order. Predication of CFGs involves flattening control flow, rewriting branches by
predicating blocks and executing these blocks in a linear order. For CFGs without loops

9

any topological sort gives a suitable order: it ensures that if blockB is a predecessor of C
in the original CFG then B will appear before C in the predicated CFG. In the presence
of loops the order must ensure that once execution of the blocks in a loop commences
this loop will be executed completely before any node outside the loop is executed.

Formally, we require a total order ≤ on blocks satisfying the following conditions:

– For all blocks B and C, if there is a path from B to C in the CFG, then B ≤ C
unless a back edge occurs on the path.

– For all loops L, if B ≤ D and B,D ∈ L, then C ∈ L for all B ≤ C ≤ D.

A total order satisfying the above conditions always exists and can be computed as
follows. Consider any innermost loop of the kernel and perform a topological sort of
the blocks in the loop body (disregarding back edges). Replace the loop body by an
abstract block. Repeat until no loops remain and perform a topological sort of resulting
CFG. The sort order is now the order obtained by the final topological sort where we
recursively replace each abstract node by the nodes it represents, i.e., if B ≤ L ≤ D
with L an abstract node, then for any C ≤ C ′ in the loop body represented by L we
define B ≤ C ≤ C ′ ≤ D. End can always be sorted last, as no goto occurs in it.

Considering the kernel of Fig. 3, we have that L = {W, I1, I ′1, B1, I2, I
′
2, B2,Wlast}

is a loop and that Start ≤ W ≤ I1 ≤ I ′1 ≤ B1 ≤ I2 ≤ I ′2 ≤ B2 ≤ Wlast ≤ Wend

satisfies our requirements; reversing I1 and I ′1 or I2 and I ′2 is possible.
In what follows we assume that a total order satisfying the above conditions has been

chosen, and refer to this as the sort order. For a block B we use next(B) to denote the
block that follows B in the sort order. If B is the final block in the sort order we define
next(B) to be End , the block id denoting thread termination.

4.1 Predication of a Single Thread

We now describe how predication of the body of a kernel thread is performed.

Predication of Statements. To predicate statements, we introduce a fresh private variable
vactive for each thread, to which we assign BlockIds; the assigned BlockId indicates

Original form Predicated form
v := e ; v := (vactive = B) ? e : v ;
havoc v ; havoc vhavoc ;

v := (vactive = B) ? vhavoc : v ;
assert e ; assert (vactive = B)⇒ e ;
assume e ; assume (vactive = B)⇒ e ;
skip ; skip ;
barrier ; barrier (vactive = B) ;

Table 1: Predication of statements

the block that needs to be executed.
If the value of vactive is not equal to
the block that is currently being ex-
ecuted, all statements in the block
will effectively be no-ops. In the
case of barrier this follows by the
BARRIERSKIP-rule.

Assuming the BlockId of the
current block is B, predication of
statements is defined in Table 1.
In the case of havoc, the variable
vhavoc is fresh and private.

Predication of Blocks. Denoting by π(s) the predication of a single statement s, and
applying π to sequences of statements in a pointwise fashion. Predication of blocks
is now defined by default using the top row of Table 2, where vnext is a fresh, private

10

Original form Predicated form
B : ss B : π(ss)

gotoB1, . . . , Bn ; vnext :∈ {B1, . . . , Bn} ;
(B is not the last node of a loop vactive := (vactive = B) ? vnext : vactive ;
according to the sort order) gotonext(B) ;

B : ss B : π(ss)
gotoB1, . . . , Bn ; vnext :∈ {B1, . . . , Bn} ;

vactive := (vactive = B) ? vnext : vactive ;
(B is the last node of a loop ac- gotoBback, Bexit ;
cording to the sort order) Bback : assume vactive = Bhead ;

gotoBhead ;
Bexit : assume vactive 6= Bhead ;

gotonext(B) ;

Table 2: Predication blocks

variable, and :∈ is shorthand for havoc vnext ;assume
∨n
i=1(vnext = Bi). Effectively,

vactive is set to the value of the block that should be reduced next, while actual reduction

Start : vactive := Start ;
offset := (vactive = Start) ? 1 : offset ;
vnext :∈ {W,Wexit} ;
vactive := (vactive = Start) ? vnext : vactive ;
gotoW ;
...

B2 : barrier (vactive = B2) ;
vnext :∈ {Wlast} ;
vactive := (vactive = B2) ? vnext : vactive ;
gotoWlast ;

Wlast : offset :=
(vactive =Wend) ? (2 · offset) : offset ;

vnext :∈ {W,Wexit} ;
vactive := (vactive =Wlast) ? vnext : vactive ;
gotoWback,Wexit ;

Wback : assume vactive = F ;
gotoF ;

Wexit : assume vactive 6=W ;
gotoWend ;

Wend : assume (vactive =Wend)⇒ (offset ≥ TS) ;
gotoEnd ;

Fig. 5: Predication of the kernel of Fig. 3

will continue according to the
sort order with block next(B).

This method of predicating
blocks does not deal correctly
with loops: no block can be exe-
cuted more than once as no back-
edges are introduced. To take
care of this, we predicate block
B in a special manner if B be-
longs to a loop L and B occurs
last in the sort order among all
the blocks of L. Assume Bhead

is the head of L. The block B
is predicated as in the bottom
row of Table 2, where Bback

and Bexit are fresh (see also
Fig. 5). Our definition of a sort
order guarantees that Bhead is
always sorted first among the
blocks of L. By the introduc-
tion of Bback, reduction jumps
back to Bhead if L needs to be
reduced again, otherwise reduc-
tion will continue beyond L by definition of Bexit.

Predication of Kernels. Predicating a complete kernel P now consists of three steps:
(1) Compute a sort order on blocks as detailed above; (2) Predicate every block with

11

val = (σ, σt)(e)

P ` 〈(σ, σt),v := e〉
(σ,σt)→ (σ, σt)[v 7→ val]

ASSIGNS

val ∈ D

P ` 〈(σ, σt),havocv〉
(σ,σt)→ (σ, σt)[v 7→ val]

HAVOCS

∃i : σ(ei) ∧ val = (σ, σt)(e
′
i)

P ` 〈σ, v := ψ(〈ei, e′i〉
n
i=1)〉

(σ,σt)→ σ[v 7→ val]

ψT

∀ i : ¬(σ, σt)(ei)
P ` 〈(σ, σt), v := ψ(〈ei, e′i〉

n
i=1)〉 → (σ, σt)

ψF

Fig. 6: Operational semantics vector and synchronisation statements

respect to the sort order, according to the rules of Table 2; (3) Insert the assignment
vactive := Start at the beginning of π(Start). The introduction of vactive := Start
ensures that the statements from π(Start) are always reduced first (see also Fig. 5).

4.2 Lock-Step Execution of All Threads

We now use the predication scheme of Sect. 4.1 for a single thread to define lock-step
execution semantics for a kernel as a whole. We achieve this by encoding the kernel as a
sequential program, each statement of which is a vector statement that performs the work
of all threads simultaneously. To enable this, we first extend our programming language
with these vector statements, as well as a statement related to barrier synchronisation.

Vector and Synchronisation Statements. We extend our language as follows:

Stmt ::= · · · | Var∗ := Expr∗ | havocVar∗ | Var := ψ((Expr × Expr)∗) | syncExpr

The new vector assignment statement simultaneously assigns values to multiple variables,
where we assume that the variables assigned to are all distinct and where the number
of expressions is equal to the number of variables. Similarly, the new vector havoc-
statement havocs multiple variables at once; again the variables are assumed to be distinct.
The ψ-assignment will be used to model simultaneous writes to a shared variable by all
threads. It takes a sequence (e1, e

′
1), . . . , (en, e

′
n) with each ei Boolean and non-deter-

ministically assigns a value from {σ(e′i) | 1 ≤ i ≤ n ∧ σ(ei)} to the variable v (if the
set is empty, v is left unchanged).

The sync-statement, behaves exactly as an assert; we introduce an additional
keyword for assertions to be able to differentiate between assertions in our lock-step
programs that originate, resp., from barriers and assertions.

The semantics for the new statements is presented in Fig. 6, where 〈ei, e′i〉ni=1 denotes
(e1, e

′
1), . . . , (en, e

′
n). Since sync behaves like assert, it is omitted from the figure.

Lock-Step Execution. To encode a kernel P as a single-threaded program φ(P) which
effectively executes all threads in lock-step, we assume for each private variable v

12

Predicated form Lock-step form

vactive := Start ; 〈vactivet〉TS
t=1 := 〈Start〉TS

t=1

v := (vactive = B) ? e : v ; v private 〈vt〉TS
t=1 := 〈(vactive,t = B) ? φt(e) : vt〉TS

t=1 ;
v shared v := ψ(〈vactive,t = B,φt(e)〉TS

t=1) ;

havoc vhavoc ; v private
havoc 〈vhavoc,t〉TS

t=1 ;
v := (vactive = B) ? vhavoc : v ; 〈vt〉TS

t=1 := 〈(vactive,t = B) ? vhavoc,t : vt〉TS
t=1 ;

v shared
havoc 〈vhavoc,t〉TS

t=1 ;
v := ψ(〈vactive,t = B, vhavoc,t〉TS

t=1) ;

assert (vactive = B)⇒ e ; assert
∧TS

t=1((vactive,t = B)⇒ φt(e))

assume (vactive = B)⇒ e ; assume
∧TS

t=1((vactive,t = B)⇒ φt(e))

skip ; skip ;

barrier (vactive = B) ; sync
(∨TS

t=1(vactive,t = B)
)
⇒
(∧TS

t=1(vactive,t = B)
)
;

(a) Statements

Predicated form Lock-step form
B : ss B : φ(ss)

vnext :∈ {B1, . . . , Bn} ; 〈vnext,t〉TS
t=1 :∈ 〈{B1, . . . , Bn}〉TS

t=1 ;
vactive := 〈vactive,t〉TS

t=1 :=
(vactive = B) ? vnext : vactive ; 〈(vactive,t = B) ? vnext,t : vactive,t〉TS

t=1 ;
gotonext(B) ; gotonext(B) ;

B : ss B : φ(ss)
vnext :∈ {B1, . . . , Bn} ; 〈vnext,t〉TS

t=1 :∈ 〈{B1, . . . , Bn}〉TS
t=1 ;

vactive := 〈vactive,t〉TS
t=1 :=

(vactive = B) ? vnext : vactive ; 〈(vactive,t = B) ? vnext,t : vactive,t〉TS
t=1 ;

gotoBback, Bexit ; gotoBback, Bexit ;

Bback : assume vactive = Bhead ; Bback : assume
∨TS

t=1(vactive,t = Bhead) ;
gotoBhead ; gotoBhead ;

Bexit : assume vactive 6= Bhead ; Bexit : assume
∧TS

t=1(vactive,t 6= Bhead) ;
gotonext(B) ; gotonext(B) ;

(b) Blocks

Table 3: Lock-step construction

from P that there exists a variable vt in φ(P) for every 1 ≤ t ≤ TS . For each shared
variable v from P we assume there exists an identical variable in φ(P). Construction of
a lock-step program for P starts from π(P) — the predicated version of P .

Statements. The construction for the predicated statements from Table 1 is presented in
Table 3a. The construction involves making a copy of each statement for each thread.
In the table, φt denotes a map over expressions which replaces each private variable v
by vt. Note that for every thread t, there exists a variable vactive,t, as variables freshly
introduced by the predication scheme of Sect. 4.1 are private. Hence, we always know
for each thread which block should be reduced next. We discuss the statements in turn.

Initially, each vactive,t is assigned to Start . For every other assignment, we distin-
guish between assignments to private and shared variables. For a private variable v, the
assignment is replaced by a vector assignment to the variables vt, where φt is applied to e

13

B2 : sync
(∨TS

t=1(vactive,t = B)
)
⇒
(∧TS

t=1(vactive,t = B)
)
;

〈vnext,t〉TS
t=1 :∈ 〈{Wlast}〉TS

t=1 ;
〈vactive,t〉TS

t=1 := 〈(vactive,t = B2) ? vnext,t : vactive,t〉TS
t=1 ;

gotoWlast ;
Wlast : 〈offsett〉TS

t=1 := 〈(vactive,t = Fend) ? (2 · offsett) : offsett〉TS
t=1 ;

〈vnext,t〉TS
t=1 :∈ 〈{F, Fexit}〉TS

t=1 ;
〈vactive,t〉TS

t=1 := 〈(vactive,t =Wend) ? vnext,t : vactive,t〉TS
t=1 ;

gotoWback,Wexit ;

Wback : assume
∨TS

t=1(vactive,t =W) ;
gotoW ;

Wexit : assume
∧TS

t=1(vactive,t 6=W ;
gotoWend ;

Fig. 7: Part of the lock-step program for the kernel of Fig. 3

as appropriate. For a shared variable v, it is not obvious which value needs to be assigned
to v, as there might be multiple threads t with vactive,t = B; we non-deterministically
pick the value from one of the threads with vactive,t = B, employing a ψ-assignment.

In the case of a havoc followed by an assignment, there is again a case distinction
between private and shared variables. For a private variable, the havoc and assignment
are simply replaced by corresponding vector statements. For a shared variable, a vector
havoc is used to produce an arbitrary value for each thread, and then the value associated
with one of the threads t with vactive,t = B non-deterministically assigned employing ψ.

In the case of assert and assume, we test whether (vactive,t = B)⇒ φt(e) for
each thread 1 ≤ t ≤ TS . The skip-statement remains a no-op.

Lock-step execution of a barrier statement with condition vactive = B translates
to an assertion checking that if vactive,t = B holds for some thread t then it must hold
for all threads. We shall sketch in Sect. 5 that checking for barrier divergence in this
manner is equivalent to checking for barrier divergence using the interleaving semantics
of Sect. 3. However, contrary to the interleaving case, there is no need to consider barrier
variables in the lock-step case.

Blocks. The lock-step construction for blocks is presented in Table 3b, where φ(ss)
denotes the lock-step form for a sequence of statements.

If a block is not sorted last among the blocks of a loop (see the top row of Table 3b),
we simply vectorise the updating vactive, where :∈ is extended in the obvious way to
non-deterministically assign values from multiple sets to multiple variables.

If a block is sorted last among blocks in a loops L then the successors of the block in
the predicated program are Bback, which leads to the loop head, and Bexit, which leads
to a node outside the loop. Our goal is to enforce the rule that no thread should leave
the loop until all threads are ready to leave the loop, discussed informally in Sect. 2
and illustrated for structured programs by the guard of the while loop in Fig. 2. To
achieve this, the bottom row of Table 3b uses an assume statement in Bback requiring
that vactive = Bhead for some thread, and an assume statement in Bexit requiring
vactive 6= Bhead for all threads (see also Fig. 7 for a concrete example).

14

Lock-Step Semantics and Data Races. Having completed our definition of the lock-step
construction φ(P) for a kernel P , we now say that the lock-step semantics for P is the
interleaving semantics for φ(P), with respect to a single thread (i.e. with TS = 1). Our
use of sync statements, which behave like assertions, captures the notion of barrier
divergence. However, we need to define how data races can be detected by examining
lock-step execution traces.

We say that thread t is enabled during a reduction step if the statement being reduced
occurs in block B and vactive,t = B holds at the point of reduction.

Let v be variable. We say that thread t reads from v during a reduction step if
t is enabled during the reduction step and the reduction step involves evaluating an
expression containing v. We say that t writes to v during a reduction step if t is enabled
during the reduction step and the statement being reduced is an assignment to v. Note
that in the case of a write, if multiple threads are enabled then v will be updated non-
deterministically using one of the values supplied by the enabled threads. Nevertheless,
we regard all enabled threads as having written to v.

A data race in a lock-step program is defined as follows:

Definition 4.1. Let φ(P) be the lock-step form of a kernel P . Then φ(P) has a data race
if there is a maximal reduction ρ, distinct threads t and t′, and a shared variable v such
that: ρ does not end in infeasible; t writes to v during ρ; t′ either writes to or reads from
v during ρ; no SYNC occurs between the accesses (i.e. no barrier separates them).

Terminating and Race Free Kernels. We say that a kernel P is terminating with respect
to the lock-step semantics if all maximal reductions of φ(P) are finite and do not end
with status error. We say that P is race free with respect to the lock-step semantics if
φ(P) has no data races according to Definition 4.1.

5 Equivalence Between Interleaving and Lock-Step Semantics

We are now in a position to prove our main result, an equivalence between the kernels
with interleaving semantics of Sect. 3 and lock-step programs of Sect. 4. The result
applies to well-formed kernels, which we define as follows:

Definition 5.1. A kernel P is well-formed if the following conditions hold for every
block B in P :

1. The first statement of B is assume e where e refers only to private variables.
2. No other assume-statements appear in B.
3. IfB ends with gotoB1, . . . , Bn, and everyBi begins with assume ei, then

∨n
i=1 ei

is a tautology.

Well-formedness means that, with the interleaving semantics, the infeasible status
can only result from nondeterministic branching in a goto statement leading to a failing
assume statement, and that in this case there is always an alternative way in which the
branch could be resolved that would not lead to infeasible.

We can trivially enforce condition 1 of Definition 5.1 by inserting statements of
the form assume true where necessary and removing shared variable accesses from

15

assumes via private temporary variables. Conditions 2 and 3 are guaranteed to hold
if the CFG for P has been obtained from a kernel written in a C-like language such as
OpenCL or CUDA.

Our main theorem, the following soundness and completeness result, applies to
well-formed kernels:

Theorem 5.2. Let P be a well-formed kernel and let φ(P) be the lock-step version
of P . Then, P is race free and terminating with respect to the interleaving semantics
iff P is race free and terminating with respect to the lock-step semantics. Moreover, if
race-freedom holds then for every terminating reduction of P there exists a terminating
reduction of φ(P), and vice versa, such that every shared variable v has the same value
at the end of both reductions.

To see why well-formedness is required, consider the following kernel, where each
thread t has a private variable tid whose value is t and where v is a shared:

Start : gotoB1, B2 ; B1 : assume tid = 1 ; B2 : assume tid 6= 1 ;
v := 4 ; v := 5 ;
assume v = 5 ; gotoEnd ;
gotoEnd ;

The interleaving semantics allows for reduction of assume v = 5 after all assignments
in all threads have taken place. Hence, if the assignment by thread 1 is not last among
these, v = 5 evaluates to true , and eventually termination occurs, with a data race. In the
case of lock-step execution and assuming Start ≤ B1 ≤ B2 in the sort order, we have
that assume v = 5 is always reduced immediately after v := 4. Hence, every reduction
terminates with infeasible and no data race occurs.

That termination is required follows by adapting the counterexamples from [11,10]
showing that CUDA hardware does not necessarily schedule threads from a non-
terminating kernel in a way that that is fair from an interleaving point-of-view.

The proof of the theorem proceeds by showing that P and its predicated version π(P)
are stutter equivalent, and then establishing a relationship between π(P) and φ(P).

Equality of P and π(P). To show that P and π(P) are stutter equivalent [13], we
define a denotational semantics of kernels is defined in terms of execution traces [5], i.e.,
sequences of tuples (σ, ~σ) = (σ, σ1, . . . , σTS) with σ the shared store and σt the private
store of thread t.

Definition 5.3. Let ρ be a maximal reduction. The denotation or execution trace D(ρ)
of ρ is the sequence of→-labels of ρ together with the termination status of ρ in case
ρ terminates. Let (b1, . . . , bTS) be a tuple block bodies or block ids. The denotation
D(b1, . . . , bTS) of (b1, . . . , bTS) is the set of denotations of all maximal reductions of
(b1, . . . , bTS) for all initial stores σ, σ1, . . . , σt not terminating as infeasible. Let P be a
kernel. The denotation D(P) of P is D(Start , . . . ,Start).

Observe that infeasible traces are not included in the denotations of (b1, . . . , bTS) and
P ; these traces do not constitute actual program behaviour.

Stutter equivalence is defined on subsets of variables, where a restriction of a
store σ to a set of variables V is denoted by σ�V and, where given a tuple (σ, ~σ) =
(σ, σ1, . . . , σTS), the restriction (σ, ~σ)�V is (σ, ~σ)�V = (σ�V , σ1�V , . . . , σTS �V).

16

Definition 5.4. Let V be a set of variables. Define the map δV over execution traces
as the map that replaces every maximal subsequence (σ1, ~σ1) (σ2, ~σ2) · · · (σn, ~σn) · · ·
where (σ1, ~σ1)�V = (σ2, ~σ2)�V = . . . = (σn, ~σn)�V = . . . by (σ1, ~σ1).

Let Σ and T be execution traces. The traces are stutter equivalent with respect to V ,
denoted Σ ∼Vst T , iff:

– Σ and T are both finite with equal termination statuses and δV (Σ) = δV (T);
– Σ and T are both infinite and δV (Σ) = δV (T).

Let P and Q be kernels. The kernels are stutter equivalent with respect to V , denoted
P ∼Vst Q, iff for every Σ ∈ D(P) there is a T ∈ D(Q) with Σ ∼Vst T , and vice versa.

Recall that π(P) denotes predication of P , we have the following:

Theorem 5.5. If P is a kernel with variables V , then π(P) ∼Vst P . A data race occurs in
P iff a data race occurs in π(P) where, during reduction of neither of the two statements
causing the data race, vactive 6= B with B is the block containing the statement.

The result follows immediately by a case distinction on the statements that may
occur in kernels once we establish the following lemma, which is a direct consequence
of our construction and the first requirement on the sort order of blocks.

Lemma 5.6. Let P be a kernel with variables V . For any thread t and each block B of
P , if (σ, σt) is a store of t and (σ̂, σ̂t) is a store of in t in π(P) such that σ̂�V = σ and
σ̂(vactive,t) = B, then

1. if the reduction of B is immediately followed by the reduction of a block C, then
there exists a reduction of π(B) such that vactive,t = C at the end of π(B) and
eventually π(C) is reduced;

2. if the reduction of π(B) ends with vactive,t = C, then there exists a reduction of B
that is immediately followed by the reduction of a block C.

Soundness and Completeness. Theorem 5.2 is now proved as follows.

Proof (Sketch6). For termination and race-freeness of φ(P), it suffices by Lemma 5.6 to
consider π(P) — the predicated version of P . Reason by contradiction and construct
for a reduction of φ(P) which is either infinite or has data race, a reduction of π(P)
that also is either infinite or has a data race: Replace each statement and goto from the
right-hand columns of Table 3 by a copy of the statement or goto in the left-hand column
and reduce, where we introduce a copy for each thread. That SYNC can be replaced by
BARRIERS follows as no statements from outside loops can be reduced while we are
inside a loop (cf. the second requirement on sort order of blocks).

The remainder of the theorem follows by permuting steps of different threads so the
reverse transformation from above can be applied. ut

6 A full proof of the theorem is provided at http://multicore.doc.ic.ac.uk/tools/
GPUVerify/ESOP2012/paper.pdf.

17

6 Implementation and Experiments

Implementation in GPUVerify. We have implemented the predication technique de-
scribed here in GPUVerify [7], a verification tool for OpenCL and CUDA kernels built
on top of the Boogie verification engine [6] and Z3 SMT solver [18]. GPUVerify previ-
ously employed a predication technique for structured programs. Predication for CFGs
has allowed us to build a new front-end for GPUVerify which takes LLVM intermediate
representation (IR) as input; IR directly corresponds to a CFG. This allows us to compile
OpenCL and CUDA kernels using the Clang/LLVM framework and perform analysis on
the resulting IR. Hence, tricky syntactic features of C-like languages are taken care of by
Clang/LLVM. Analysing kernels after compilation and optimisation also increases the
probity of verification, opening up the opportunity to discover compiler-related bugs.

Experimental Evaluation. To assess the performance overhead in terms of verification
time for our novel predication scheme and associated tool chain we compared our new
implementation (GPUVerify II) with the original structured one (GPUVerify I).

We compared the tool versions using 163 OpenCL and CUDA kernels drawn from
the AMD Accelerated Parallel Processing SDK v2.6 [4] (71 OpenCL kernels), the
NVIDIA GPU Computing SDK v2.0 [19] (20 CUDA kernels), Microsoft C++ AMP
Sample Projects [17] (20 kernels translated from C++ AMP to CUDA) and Rightware’s
Basemark CL v1.1 [21] suite (52 OpenCL kernels, provided to us under an academic
license). These kernels were used for analysis of GPUVerify I in [7], where several of
the kernels had to be manually modified before they could be subjected to analysis: 4
kernels exhibited unstructured control flow due to switch-statements, and one featured
a do-while-loop which was beyond the scope of the predication scheme of [7]. Further-
more, unstructured control flow arising from short-circuit evaluation of logical operators
had been overlooked in GPUVerify I, which affected 30 of our example kernels. In
GPUVerify II all kernels are handled uniformly due to our novel predication scheme in
combination with the use of Clang/LLVM, which removes short-circuit evaluation in
favour of unstructured control flow.

All experiments were performed on a PC with a 3.6 GHz Intel i5 CPU, 8 GB RAM
running Windows 7 (64-bit), using Z3 v4.1. All times reported are averages over 3 runs.
Both tool versions and all our benchmarks, except the commercial Basemark CL kernels,
are available online to make our results reproducible:

http://multicore.doc.ic.ac.uk/tools/GPUVerify/ESOP2012

The majority of our benchmark kernels could be automatically verified by both
GPUVerify I and GPUVerify II; 22 kernels were beyond the scope of both tools and
result in a failed proof attempt. Key to the usability of GPUVerify is its response time,
the time the tool takes to either report successful verification vs. a failed proof attempt.
Comparing GPUVerify I and GPUVerify II we found that across the entire benchmark set
the analysis time taken by GPUVerify II was 2.25 times that of GPUVerify I. The average
and longest analysis time across all kernels were 4 seconds and 157 seconds respectively
for GPUVerify I, and 10 seconds and 300 seconds respectively for GPUVerify II. Thus
overall the accurate handling of unstructured control flow afforded by GPUVerify II
comes at the price of a moderate performance penalty.

18

On 124 of the 163 kernels (76%), GPUVerify II was marginally (though not signifi-
cantly) faster than GPUVerify I. For a further 21 kernels (13%) GPUVerify II was up to
50% slower than GPUVerify I. The remaining 18 kernels (11%) caused the slow down
on average. In each case the time it took to run the front-ends and predication engines
of both tool chains was negligible; the difference lay in constraint solving times; the
SMT queries generated by our CFG-based tool chain can be somewhat more complex
than in the structured case. The most dramatic example is a kernel which was verified by
GPUVerify I and GPUVerify II in 3 and 202 seconds, resp., a slow-down for GPUVer-
ify II of 70 times. This kernel exhibits a large number of shared memory accesses. In the
LLVM IR processed by GPUVerify II these accesses are expressed as many separate,
contiguous loads and stores, requiring reasoning about race-freedom between many
pairs of operations. The structured approach of GPUVerify I captures these accesses at
the abstract syntax tree level, allowing a load/store from/to a contiguous region to be
expressed as a single access, significantly simplifying reasoning. This illustrates that
there are benefits to working at the higher level of abstract syntax trees, and suggests
that we might implement optimisations in GPUVerify II to automatically identify and
merge contiguous memory accesses.

7 Related Work and Conclusion

Related Work. Interleaving semantics for GPU kernels has been defined by [14,16,11].
These are similar to our semantics, except that [14,11] do not give a semantics for
barriers. Contrary to our lock-step approach, [14,16] battle the state space explosion due
to arbitrary interleavings of threads by considering one particular schedule.

In [10,11], a semantics of CUDA kernels is defined that tries to model NVIDIA
hardware as faithfully as possible. The focus is, however, not on predicated execution
(although it does figure briefly in [10]), but on so-called immediate post-dominator
re-convergence [9], a method to continue lock-step execution of threads as soon as
possible after branch divergence has occurred between threads.

In addition to the above and similar to us, [11] shows for terminating kernels that
CUDA execution of kernels can be faithfully simulated by certain interleaving thread
schedules. The reverse is not shown; our analysis is that such a result is difficult to
establish due to data races that occur in their examples.

Conclusion. Our lock-step semantics for GPU kernels expressed as arbitrary reducible
CFGs enables automated analysis of a wider class of GPU kernels than previous tech-
niques for structured programs, and allows for the analysis of compiled kernel code, after
optimisations have been applied. Our soundness and completeness result establishes an
equivalence between our lock-step semantics and a traditional semantics based on inter-
leaving, and our implementation in GPUVerify and associated experimental evaluation
demonstrate that our approach is practical.

Because our kernel programming language supports non-deterministic choice and
havocking of variables it can express an over-approximation of a concrete kernel. In
future work we plan to exploit this, investigating the combination of source-level ab-
straction techniques such as predicate abstraction with GPUVerify’s verification method.

19

The well-formedness restrictions of Definition 5.1 mean that our equivalence result
does not apply to kernels that exhibiting “dead end” paths. This is relevant if such paths
are introduced through under-approximation, e.g., unwinding a loop by a fixed number
of iterations in the style of bounded model checking. We plan to investigate whether it is
possible to relax these well-formedness conditions under certain circumstances.

References
1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.

Pearson Education, 2nd edn. (2007)
2. Allen, J., Kennedy, K., Porterfield, C., Warren, J.: Conversion of control dependence to data

dependence. In: POPL’83. pp. 177–189 (1983)
3. Alshawabkeh, M., Jang, B., Kaeli, D.: Accelerating the local outlier factor algorithm on a

GPU for intrusion detection systems. In: GPGPU-3. pp. 104–110 (2010)
4. AMD: AMD Accelerated Parallel Processing (APP) SDK, http://developer.amd.

com/sdks/amdappsdk/pages/default.aspx
5. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In: PASTE’05.

pp. 82–87 (2005)
6. Barnett, M., et al.: Boogie: A modular reusable verifier for object-oriented programs. In:

FMCO 2005. LNCS, vol. 4111, pp. 364–387 (2005)
7. Betts, A., Chong, N., Donaldson, A.F., Qadeer, S., Thomson, P.: GPUVerify: a verifier for

GPU kernels. In: OOPSLA 2012 (2012)
8. Collingbourne, P., , Cadar, C., Kelly, P.H.J.: Symbolic testing of OpenCL code. In: HVC 2011

(2012)
9. Fung, W.W., Sham, I., Yuan, G., Aamodt, T.M.: Dynamic warp formation and scheduling for

efficient GPU control flow. In: MICRO 2007. pp. 407–418 (2007)
10. Habermaier, A.: The model of computation of CUDA and its formal semantics. Tech. Rep.

2011-14, University of Augsburg (2011)
11. Habermaier, A., Knapp, A.: On the correctness of the SIMT execution model of GPUs. In:

ESOP 2012. LNCS, vol. 7211, pp. 316–335 (2012)
12. Khronos Group: The OpenCL specification, version 1.2 (2011)
13. Lamport, L.: What good is temporal logic? In: Information Processing 83. pp. 657–668 (1983)
14. Leung, A., Gupta, M., Agarwal, Y., Gupta, R., Jhala, R., Lerner, S.: Verifying GPU kernels by

test amplification. In: PLDI 2012. pp. 383–394 (2012)
15. Li, G., Gopalakrishnan, G.: Scalable SMT-based verification of GPU kernel functions. In:

FSE 2010. pp. 187–196 (2010)
16. Li, G., Li, P., Sawaya, G., Gopalakrishnan, G., Ghosh, I., Rajan, S.P.: GKLEE: concolic

verification and test generation for GPUs. In: PPoPP 2012. pp. 215–224 (2012)
17. Microsoft Corporation: C++ AMP sample projects for download, http://blogs.

msdn.com/b/nativeconcurrency/archive/2012/01/30/c-amp-sample-
projects-for-download.aspx

18. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS 2008. LNCS, vol.
4963, pp. 337–340. Springer (2008)

19. NVIDIA: CUDA Toolkit Release Archive, http://developer.nvidia.com/cuda/
cuda-toolkit-archive

20. NVIDIA: NVIDIA CUDA C Programming Guide, Version 4.2 (2012)
21. Rightware Oy: Basemark CL, http://www.rightware.com/en/Benchmarking+

Software/Basemark\%99+CL
22. Zhu, F., Chen, P., Yang, D., Zhang, W., Chen, H., Zang, B.: A GPU-based high-throughput

image retrieval algorithm. In: GPGPU-5. pp. 30–37 (2012)

20

