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Abstract—The massive parallelism offered by Graphics Pro- range of GPUs, typically achieved througlto-tuning that
cessing Units (GPUs) is now routinely exploited to acceleta s, by generating several code variants and, through analyt
computationally_intensive tasks in a wide variety of appli@- jc51 models or empirical evidence, selecting the “best’ for

tion domains. Efficient GPU programming in languages such . . - .
as CUDA and OpenCL requires careful application of hand & specific GPU implementation. The auto-tuning stage can

optimisations to exploit parallelism and locality while minimising b€ greatly aided by WCET estimation because it helps to
synchronisation. The effectiveness of such optimisationsan be diagnose potential performance bottlenecks and servesad b

highly dependent on workload and the structure of input data  ties when average execution times among several alteesativ
making it difficult to assess performance in general by testig are (almost) equivalent. Computing WCET estimates is also

alone. To address this, we study the problem of estimating . . . .
the Worst-Case Execution Time (WCET) of GPU-accelerated crucial to the construction akal-time systemsince they are

applications. We propose the use ofhybrid WCET analysis assumed as input to the vast majority of scheduling algo-
whereby execution times of small program segments are deded rithms [5]. Indeed, subsequent verification that the scleedu

from traces of execution and a calculation backend derivedrbm  completes within a specific period is only valid when the

the Control Flow Graph (CFG) produces a WCET estimate. \ycET estimates bound thectual (non-computable) WCETS.

Standard techniques which construct a CFG from a binary Th int fi f GPUs int L-ti t .
cannot be applied directly to GPU code because they miss inipit us, Integration o S Into real-ume systems requires

execution paths that arise due the way branches are impleméed  Suitable support from WCET techniques and tools.
in hardware — we present a solution using standard compiler ~ This paper presents the first work on applying WCET anal-
analysis. We further describe how to extend the basic hybrid ysis to the analysis of GPU-accelerated software, a preigiou
WCET analysis of sequential code so that concurrent iming ninvestigated area [6]. We focus on applications running o
effects in the GPU execution model are incorporated. We have - -
implemented our analysis as a tool built on top of the GPGPU- the NV”:_)IA [7] family of GPU_S_’ _thoth_Olj'r novel te_chnlques
sim open source simulator. We evaluate our tool using a set are applicable to any GPU utilising a similar execution mode
of benchmarks drawn from the CUDA SDK: results show that Despite the fact that research in WCET analysis for single-
effective modelling of concurrency is key to reducing pessiism core, uniprocessor architectures has reached a certadh lev
in the WCET calculation. of maturity [8], these methods cannot be directly applied to
I. INTRODUCTION GPU software due to three principal problems: the limitagio
of static analysis, the complexity of tHeck-stepexecution
model employed by mainstream GPUs, and the requirement to
accurately reason about bulk-synchronous parallel ei@tut
We present novel solutions to each of these problems, iregult
in a hybrid WCET analysis which we have implemented as a
ractical tool and evaluate across a range of benchmarks.
We begin by discussing the above problems in a little more
¥tail and summarising the results of our evaluation.

Graphics Processing Units (GPUs) are highlyparallel
architectures, using features of Single-Instruction, tidid-
Data (SIMD) execution, Multiple-Instruction, Multiple-da
(MIMD) execution, and Instruction-Level Parallelism (IL&
deliver high performance [1]. Due to their raw compute pow
— and with the advent of CUDA [2] and OpenCL [3] helpin
to ease the programming burden — GPUs are now routin%
used as accelerators in fields such as bioinformatics, ctanpu
vision, weather forecasting, and medical imaging. Problem One: Static Analysis

As in the case of CPU programming, ensuring that a8 GPU\yceT analysis is presently dominated biatic analyses

appli_cation efficiently Uti“S?S. computationall resourgesa that require anaccurate model of the hardware to obtain
cardinal goal. Most often this involves analysiagerage-case execution times of program segments; recently, Lisper [6]

performance and optimising accordingly, but outlier exiecu has argued that this sort of analysis is pliable to GPUs.

times, such as theWorst—_Case Execution T'”?e(WCET_)’ Yet GPU manufacturers rarely reveal specific implementatio
also prove fruictul. F_or _mstance,_the emerging pfa9t'ce etails, which are vital to any model, in order to maintain
to write par_aIIeI app!lcauons at higher levels of abst@tt competitive edge. For instance, the associativitd an
using _Domaln—Spe_mflc L_anguages (DSL_S) and o generate %?)Iacement policies of the cache, the pipeline depth, amd h
GPU _|mplementat|on with a DSL ComP','er [4]. These ,DSLexactIy threads are scheduled on NVIDIA GPUs all remain
compilers aim for performance portability across a d'Ver%?ndisclosed. For these reasons, our belief is that soundly

This work was supported by the EU FP7 project CARP (projechiser .mo.delling the hardware and its associated run-time support
287767) is infeasible. Consequently, we argue that GPUs are only



applicable to firm, soft, or probabilistic [9] real-time sgms set of time-stamped traces into setsvedirp-specific traces
where occasional deadline misses can be tolerated. and then feed these into the standard IPG analysis framework
Our solution is to uséybrid techniques [10], [11] that can, However, this is generally not sufficient to derive an upper
in principle, avoid hardware modelling. In hybrid analysisbound on the end-to-end execution time because it does not
the execution times of small program segments are obtairsztount forconcurrenttiming effects, in particular the delay
from thedynamicprofile of the program whilestatic analysis experienced by warps before they commence execution. We
technigues serve to stitch these execution times togelher.propose two solutions: one computes the worst-case release
particular, this paper builds upon ttestrumentation Point  jitter experienced before a warp is dispatched to compartati
Graph (IPG) [10], [12] approach, pertinent details of whiclresources by analysing the time-stamped traces, whereas th
are reviewed in Section II. other constructs an analytical model of how warps arrivein s
) calledwavesand obtains values for this model from the time-
Problem Two: Branch Divergence stamped traces. How we slice traces and handle concurrent
The majority of WCET analyses adopt ti@ontrol Flow timing effects are presented in Section V.
Graph (CFG), e.g. to obtain flow analysis data [13], to com- )
pute a WCET estimate [14], or to construct the IPG [10]. THevaluation
salient feature of the CFG is that it is an over-approxinmatib ~ We have implemented our techniques on top of GPGPU-
the set of possible paths through the program, and any subsia: [19], an open-source cycle-accurate GPU simulator that
guent analysis on the CFG therefore yields an overestimatisupports recent generations of NVIDIA hardware. Using our
of the actual behaviour. tool, we evaluate multiple CUDA applications shipped with
However, standard techniques [15]-[17] to obtain the CFtAe CUDA SDK [2]: Section VI presents results of our
do not capture all possible execution paths through appliexperiments, and the paper concludes in Section VII.
tions running on NVIDIA GPUs because of the way threads
are executed on NVIDIA hardware (see Section Ill). Threads
are grouped together into units of 32, ternveakps such that  We begin with an overview of how hybrid WCET analysis
all threads within a warp share a program counter and herneerks for sequentialprograms.
follow the same execution path. When a conditional branch is )
encountered, it is possible that different threads withimaap A Instrumentation
want to explore different paths (so-callbcanch divergence Hybrid analysis insertdnstrumentation Points (Ipoints)
The hardware handles this situation by executing one sideiofo a program, the purpose of which is to time stamp
the branch with a subset of threads until reaching a point&vhesxecution at particular program points. We assume thaether
control flow re-converges, then backtracking to the othde siare always Ipoints at the start and end of the program, which
of the branch with the remaining threads enabled. Contnol ceve denote by andt, respectively.
effectively jump from a basic block that appears textuatly t Instrumentation can take one of several forms: either soft-
have no branch instructions, to another basic block thaeangp ware probes [20], hardware probes [21], or virtual probehk wi
at compile time not to be a branch target. the support of a cycle-accurate simulator. Merits and dalisf
We show how the post-dominator relation [17] and dat&f these options are discussed extensively elsewhere(22].
flow analysis [15] can be used to insert additional edges intatension of hybrid WCET analysis to GPU code uses a cycle-
the CFG to correctly model branch divergence. In partigulaaccurate simulator, namely GPGPU-sim [19], because it®ffe
we demonstrate that these edges can only be addied great flexibility as to where Ipoints are placed and allowasdss
loops have been identified in the CFG, otherwise problertts be buffered and stored easily (see Section VI).
associated with irreducibility [18] will curtail the WCET .
analysis. Full details of the solution appear in Section Iv. B- Trace Parsing and the IPG

II. BACKGROUND TOHYBRID WCET ANALYSIS

) The instrumented program then undergoes rigorous testing
Problem Three: Parallelism and Concurrency (see [23]) in order to stress the execution times of Ipoint
Existing WCET analyses (including the approach based tnansitions. The output of the testing phase is a sdtamfes
the IPG) assume that tasks run witlsiaglethread of control. A trace is a sequenc@,t;), (ia,t2),. .., (in, t,) Of tuples
However, this assumption does not hold for massively pargenerated by a single execution of a program, where for each
lel GPU applications. Thus, any WCET analysis, or indeed < j < n, 4; is an Ipoint identifier andt; its time of
timing analysis in general, must account for concurrenay aexecution, and wherg = s andi,, = t.
synchronization to output reasonable estimates. Hybrid analysis processes these traces to extract, at a
Specifically within the context of IPG-based analysis, theinimum, the observed WCET of Ipoint transitions. In ad-
GPU execution model adds two particular complicationsstFir dition, it may also procure upper bounds on the number of
instrumentation events generated by distinct warps apipeatoop iterations as required in the WCET calculation, though
an interleaved fashion in a trace, and we cannot deducegathering any piece of data from the traces potentially eend
compile time how these interleavings will manifest becauske WCET calculation unsafe; an alternative is to utilisgist
the scheduling policy is unknown. Our solution isdlice the high-level analyses [13] for path-related information.



Traces are parsed using an automaton, the IPG, whichuises the latter because it is generally more accurate, bet he
simply a graph where vertices are Ipoints and transitioes ave demonstrate the tree-based approach as it is morevstuiti
a contraction of Ipoint-free paths between all Ipoint pdirs  The IPG is first transformed into a tree representation that i
the instrumented program. Formally, an Ipoint-free patla issimilar to an abstract syntax tree: its internal verticggesent
sequence; — by — ... — b, — v such that everyp, is a sequential, alternative, and iterative constructs, whékves
basic block anchot an Ipoint. represent Ipoint transitions as these are the atomic units o

Although it is possible to build the IPG on the fly duringcomputation. The tree is then traversed bottom up, com@inin
trace parsing, generally it must be construcséatically from the WCET values of every internal vertex’s children using a
the structure of the CFG and the Ipoint locations withispecific rule: for a loop, multiply the body’'s WCET by the loop
the CFG. The reason is that the WCET calculation phabeund; for a sequence, sum the values; and for an alterpative
requires loops and their nesting hierarchy to be identifred fake the maximum.

the IPG, but standard algorithms [18] fail when the IPG igxample: Reconsider Fig. 1, which shows the tree represen-
irreducible [15], [24], i.e. when loops have multiple entriesation of the IPG. Leaves in the tree have been annotated with
Irreducibility is much more prevalent in the IPG becausgeir observed WCETs, as obtained from parsing the traces.
Ipoints are not always placed inside CFG loop headers. TRge \WWCET of the loop vertex i§ - 2 = 14 because the

infers from each CFG loop which Ipoint transitions creatgyCET of the alternative (root) vertex isiaz(31,8) = 31,
cycles in the IPG. A reducible CFG is therefore pivotal tQyhich is the WCET estimate.

IPG-based analyses — Section IV expands on complications
with this assumption because of the way the GPU implements |ll. BACKGROUND TO CUDA AND NVIDIA GPUs
branch divergence. This section gives a brief overview of the CUDA program-
Example: Consider Fig. 1, which shows a CFG with basighing model (Section IllI-A) as well as the architecture and
blocks as square vertices and Ipoints as circular verticéxecution model of NVIDIA GPUs (Section I1I-B).
Because there is an Ipoint-free path — by — b3 — iq .
in the CFG, and Ipoini; is both the source and sink of thisA' Programming Model
path, there is an IPG edge — i,. Moreover, this edge is The CUDA programming model slices a code base into two
identified as an IPG loop because Ipointis a loop header disjoint parts: code intended for execution on the CPU (the
in the CFG. The other edges in the IPG are derived similarfjost is written in vanilla C/C++, whereas code intended for
The figure additionally includes two traces: each tracastagxecution on the GPU (theevice) is implemented in CUDA
atiy, i.e.i; = s, and ends at4, i.e. iy = t. Parsing of these C/C++, which is a superset of a subset of C/C++. Its language
traces with the IPG uncovers the following?CET (i, — extensions allow a programmer to label and launch a number
iy) = 10, WCET (iy — is) = 7, WCET (iy — i4) = T, of data-parallel functions callekernels which are intended
WCET(iy — i3) = 3, WCET(is — is) = 5, and that for GPU execution. Every kernel is executed by hundreds or
i» — i, iterates at most twice. All of this information isthousands of threads which, for reasons that become clear
subsequently fed into the WCET calculation. shortly, are partitioned by the programmer into a sehofad-
blocks such that there is an equal number of threads per
thread-block.

WCET calculation
B. Architecture and Execution Model

The architecture of NVIDIA GPUs is evolving rapidly and
giving sufficient coverage to each variation is beyond tlopec
of the paper. Thus the remainder of the paper concentrates on
the Fermi generation of GPUs, although the principles of our
techniques are applicable to all NVIDIA hardware.
A GPU consists of a number ¢étreaming) multiproces-
sors each of which is composed of several lightweigbtes
How many multiprocessors and cores actually reside on a GPU
is implementation specific; for instance, the Fermi GF108 ha
16 multiprocessors and 32 cores per multiprocessor, fotah to
Fig. 1. Example of hybrid WCET analysis. of 512 cores overall.
During program execution, thread-blocks are assigned to
. specific multiprocessors. The number of thread-blocks that
C. WCET Calculations on the IPG a multiprocessor can actively process depends on the upper
Two approaches exist to compute a WCET estimate frobound imposed by the GPU implementation and on the
an IPG: a tree-based approach [25] or through implicit pathsources (e.g. number of registers) consumed by a thread-
enumeration [10], [14]. Our toolset described in Section \Hlock. The CUDA run time dynamically adjusts the number of




thread-blocks assigned to a multiprocessor as its resparee IV. IMPACT OF BRANCH DIVERGENCE ONCFG
occupied or relinquished. Moreover, since a kernel is ipic CONSTRUCTION

launched with more thread-blocks than the multiprocessams  gection 11 described how WCET analyses employing the

handle, the run time maintains a list of _unserviced threagbg generally require the CFG as input. In addition there
blocks and dispatches them when multiprocessors becogyg assumptions that all potential paths through the progra
avall_able. Thread—t_)loc_ks thgrefore arriveswaveson each g represented in the CFG and that all loops in the CFG
multiprocessor, which is an important property for our WCERe reducible. In this section we show that, for GPU code,
analysis as explained in Section V. conventional algorithms [15]-[17] to construct CFGs viela
Individual threads within a thread-block execute on a spthe first assumption because of the way GPUs implement
cific core. However, on an NVIDIA GPU, threads are ndoranch divergence. We present a solution to update the CFG
the atomic unit of scheduling — rather, it is a sub-groupith so-called branch-divergent edges, but demonstraie th
of the thread-block called avarp. The number of threads this causes the CFG to become irreducible, hence violating
in a warp, i.e. the warp size, has remained 32 across ik second assumption. We thus describe how the analysis
NVIDIA GPUs. The maximum number of warps availablestages must proceed in a specific order. We start by reviewing
is a function of a multiprocessor’s thread-block threshollevant terminology and notation.
(which potenually changes dynam|ca}lly as explam(_ad ap)ovs\_ Terminology and Notation
and the warp size. The scheduling unit of every multiprooess
maintains a scoreboard that tracks which warps are ready tf\ CFG C = (Vc, Ec) is a directed graph whergc are
execute. Among this pool of warps, it dispatches warps initg basic blocks (vertices) anflc its edges. For any € Vc:
fine-grained multi-threaded fashion [1]; the exact meatgaf Ppred(v) = {u: (u,v) € Ec} denotes its set of predecessors
howthe choice is made is undisclosed and hence we assudiésucc(v) = {u: (v,u) € Ec} denotes its set of successors.
nothing in this regard (see Section V). A natural loop inC has a unique header vertax the single
. . . .entry point to the loop, and one or more loop-back edges from
Once issued, warps execute in SIMD fashion, meanin loop vertex to the header — see [15] for further details. Let

that all threads in a warp are issued the same instructign. , : )
; X . = (Vc, Er) be the CFG obtained from@ by removing all
When different threads in a warp want to follow d|ﬁ‘eren§ its loop-back edges. Then we say a verteis a forward

e e o St (o o, SonSonal v 1, and oy oneof e olowng s 1
handled ir; hardware b gexecutin e\./er branch g€ v, & header vertex anbucc(v)| > 1; or v is a header vertex,
y 9 Y sathally, |suce(v)] > 1, and everyu € succ(v) belongs to the loop

one after another, until thenmediate post-dominatasf the body. A vertexu is a merge vertex providegred(v)| > 1
branch is reached. Since all threads in a warp see the samey' 9 P '

instruction stream, inactive threads are masked off teanjpr B. Branch-Divergent Edges

As soon as all divergent paths have been explored, warpcompjications arising through branch divergence are best
execution continues from the immediate post-dominatdr; &\ strated through an example: Fig. 2 shows a CFG (top left)
threads enabled at the branch are re-enabled so that negigdher with three possible warp executions through thi6 C
branches can bg handled. The hardware.op.umlses the C@%Rtom) on an NVIDIA GPU. We assume for simplicity that a
where branch divergence doest occur, skipping over the \ o only consists of eight threads and have labelled \estic
appropriate sequence of instructions as in regular cofitw! i, the warp execution figure according to which threads are
The GPU has a separate RAM to the CPU caliidice active: 1 signals enabled and 0 signals disabled.
memory. Data in device memory is accessible to every Consider the first execution. Initially, all threads branch
multiprocessor, and therefore every thread-block can agad to b,-, but then half of the threads branch &g, followed
write its contents. Access times are extremely slow, in thenmediately byb;; (because that is the sole successor of
order of hundreds of cycles, as device memory resides 6ff). When the last instruction of;; is finished, execution
chip. Since requesting data from global memory is costlgust continue fronb,3, and notby4, in order to explore the
every multiprocessor is equipped with two on-chip caches:ather divergent path frondo. When by finishes, execution
software-managedhared memoryand a hardware-managedhen passes tb4 since all sides of the conditional have been
L1 cache Access times of these memories approach thoseexplored andh4 is the immediate post-dominator 6f,. At
registers, but only thread-blocks executing on that paldic this point, all threads become active again since all ttsead
multiprocessor can access them. These caches compete fomtbre active a5, and the end of the program is eventually
same silicon area in that increasing the size of one degeasmched ab;5.
the size of the other. On a Fermi architecture, 64 KiB of The other two executions demonstrate similar behaviour,
total cache capacity can be configured either as 48 KiB afthough two properties are particularly noteworthy. irs
shared memory with 16 KiB of L1 cache, or 16 KiB of shared,, is executedtwice in both executions: once as the re-
memory with 48 KiB of L1 cache. The backing store for alconvergence vertex for forward branéh, and the other
L1 caches is a shared off-chif?2 cachewhose capacity is a because execution forks that way frdm Second, the order
mere 768 KiB on a Fermi GPU. in which sides of the branch are executed is implementation



post-dominatorn, and a predecesseprof m.
On the one hand, if only one successoof b can reach
p then s, p must execute on theamedivergent path; control
can then transfer fromp to any successor df excepts. For
example, in the original CFG of Fig. 2, when execution forks
alongbio — b1g, b1 Must execute and; s is the only vertex
where control can transfer aftéy; if divergence occurred.
One the other hand, if more than one successob o&n
reachp then we cannot statically determine which of these
successors will lead to executionmfin principle, control can
transfer toany successor ob. An example of this property in
the original CFG of Fig. 2 i$y4 with respect to branchg:
on the one hand, if the pathy — b7 — b1g — b11 — b4 IS
followed thenb;s is executed next; on the other hand, if the
path bg — bia — big — b1 — bis is followed thenb7 is
executed next.

Original CFG Updated CFG

Warp execution

ﬁ m E ADD-BRANCH-DIVERGENT-EDGEYC)
1 foreachv € V¢ do
2 reachable(v) < 0
’11110000| b7‘ ‘00001111‘b12‘ 3 foreach v € V¢ in reverse post-ordeto
’11110000|b10‘ ’11110000|b10‘ ‘00001111|b13‘ 4 reachable(v) <+ {v} U U reachable(p))
pEpred(v)
5 foreach forward branchb € Vi do
’11110000|b11‘ ’11110000|b11‘ ‘00001111\%4\ 6 m < immediate post-edorﬁinator af
7 foreach p € pred(m) do
‘00001111‘b13‘ ‘00001111‘b14‘ ’11110000| b7‘ 8 newsucc(p) < succ(b) \ reachable(p)
9 if newsucc(p) # 0 then
(000011117 [11110000p 10 Ec < Ec U{(p,s) : s € newsucc(p)}
11 else
[00001111p; 5 [11110000P ;| 12 Ec « Ec U{(p,s) : 5 € succ(b)}
00001111P14 [11110000p; 4 Fig. 3. Algorithm to insert branch-divergent edges.
b b

15 15

Fig. 3 presents an algorithm to update the edges of a CFG
) ] based on these observations. It uses data-flow analysisd15]
Fig. 2. Example to demonstrate the effect of branch diver-  propagate through the CFG which vertices can reach a vertex
gence on CFG construction. v, the result of which is stored ineachable(v) (Lines 1—
4). Note that a reverse post-order of the CFG is utilised in
the second sweep through the vertices so that executiom orde
defined: in the second execution the edge- b; is followed among vertices is preserved.
first, while in the third execution it is the edde — b15. The next stage analyses the region in the CFG between
As this example establishes, branch divergence alters cénforward branchb and its immediate post-dominator
ventional flow of control: it becomes possible to transfeftines 5-6). It deduces, for each predecegsof m (Line 7),
from a predecessop of a merge vertexn to a successor Which successors df currently cannotreachp (Line 8), and
s # m of a forward branch vertex, even thoughonly performs one of two actions. Either a proper subseb'sf
has a single successer in the CFG. In principle we could successors cannot regekiLine 9), and we add edges to model
solve this problem conservatively by adding extra edges frahow control flow potentially branches to one of these logeio
every predecessor of a merge vertex to every successor dff@r the branch-divergent path jafinishes (Line 10). Or, all
forward branch vertex. Yet this would yield infeasible mathb's successors can reagh in which case we cannot infer at
and could lead to inaccuracies in the execution time estimagompile time which successor led to executiorpphence we
For instance, this solution adds an edge — b; to the CFG add edges to all of them (Line 12).
of our running example, although the reader can verify it Example: The original CFG of Fig. 2 contains three forward
impossible for this transfer of control to arise along angrwh  branchesig, b7, b12. We will concentrate exclusively on the
divergent path. region (b, b15), noting that the successors &f = {b7, bi2}
We instead offer a precise solution grounded on two kend the predecessors bfs; = {bg,b14}. In this region we
observations with respect to a forward bramclits immediate compute:newsucc(byg) = {bz,b12} \ {bs, b7,bs,bg} = {b12}




and hence add the edgg — b12; newsucc(b14) = {b7,b12}\ Since the execution path followed by a warp only flows
{bs, b7, b10,b11, b12, b13,b14} = 0 and hence add edgés, — through the sequential part of code, every WST can then be
b7 andby4 — b1o. Performing the same analysis on the regionsarsed by the IPG.

(b7, b15) and (b12,b14) leads to the updated CFG pictured inexample: Suppose that the program of Fig. 1 has been
Fig. 2, through which all warp executions can now be tracegyecuted twice (that is, with two different test vectors) on
C. Irreducible CEGs an NVIDIA_GPU. Assume for simplicity that there _is only a
] ) . single multiprocessor with three warps scheduled in a reund
After applying the algorithm of Fig. 3 to a CF@, a (gpjn fashion, and no warps execute divergent branchese¥ra
CFG (' enhanced with branch-divergent edges is produceshnerated from the example program under these assumptions
However, these new edges create irreducible loogs'iBven  apnear in Fig. 4a: this figure shows which Ipoints each warp
if C" were acyclic; for example, in Fig. 2, the original CFGyiggers, the cycle at which each Ipoint executes, and how

is acyclic whereas the modified CFG has an irreducible 10Qgecution on the multiprocessor switches between warps.
betweenb;; andb;s.

Since the construction of an IPG assumes that the CF"‘ T ey ey

is reducible, the consequence is that the analysis StagkeS € .. .1 warp w2 worp #3  warp #1 Warp #2 Warp 43

alterations to the CFG must adhere to the following ordel

Initially the IPG is built using the CFQ that is free from 1 Wz 3
branch-divergent edges; as a consequence, the cyclehiigduc 6E on om
edges of the IPG can be detected (see [12]). Next, branc oz 6B G
divergent edges are inserted into the CFG, credailhd-inally, el @ e
the edges of the IPG are updated according to whether the @) 6w 6m o
are new lpoint-free paths between Ipoints(ifi o ©m O

Observe that adding branch-divergent edges after stalctui o o
analysis of the CFG is applicable &l CFG-based WCET (8) Traces generated from program in Fig. 1. (b) W;}{Q;i’;’ggg";m}'nzces
analyses. For example, WCET calculations using integeatin '
programming [14], [26] and loop-bound analysers [13] agsum
the CFG is reducible.

Fig. 4. Example of how traces are processed.

Slicing the traces produces the WSTs of Fig. 4b. Observe
V. HYBRID WCET ANALYSIS oOF GPU CoDE how the edges depicting warp interleavings have effegtivel

Our overarching aim is to estimate the WCET of GPU codd€n Stripped away and substituted by transitions between
using traces and the IPG, but two additional hurdles remalRCiNts in each warp. Conceptually it now appears that warps

First, parallel and concurrent execution on the GPU Spa\,\,ge]gecutein parallel and can all start running at the first clock

traces where Ipoints from different warps airgerleaved CYCI€; to underline this side effect, execution times ofiff®
hence blocking trace parsing with the IPG (Section V_Ajw_ave been normall_sed to this baseline. Parsing these WSTs
Second, the WCET calculation performed on the IPG in effedficovers the following observed WCET of IPG edges:
assumesequentialexecution and ignores how parallelism or « WCET (i1 — iz) = 12 (test #2, warp #2);

concurrency affect timing (Section V-B). o WCET (i1 — i3) = 13 (test #2, warp #3);
o o WCET(is — i4) = 18 (test #1, warp #3);
A. Trace Slicing o WCET(iz — i4) = 14 (test #1, warp #2).

The motivation for launching multiple thread-blocks is to Finally we carry out a WCET calculation on the IPG. There
boost performance by executing the GPU kernel in parallate only two alternative paths in the IPG: — iy — is — i4
across multiple multiprocessors. Likewise, maintainingn;n  whose WCET isl2 + 0 + 18 = 30; or 47 — i35 — 34 Whose
warps in flight concurrently on a single multiprocessor i®/CET is 13 + 14 = 27. The WCET estimate is thud0.
motivated by latency hiding since ready warps can be satvice _ )
while other warps wait on memory accesses. This parallel aRd Accounting for Parallel and Concurrent Execution
concurrent execution model implies, however, that suceess Comparing the WCET estimate with thiigh Water-Mark
Ipoints written to a trace are not necessarily generatechey Time (HWMT) of 34 (c.f. Fig. 4a), we observe there is an
same warp on the same multiprocessor. In fact, the interleanderestimation. The reason is that this value encapstitate
ing of Ipoints in this fashion must be assumed to be nomworst case of amdividualwarp — termed thevarp-specific
deterministic because the exact scheduling policies @faivr WCET in the remainder of the paper — but it ignores two
blocks to multiprocessors and warps to cores are unknown.flmdamental properties of the execution model. First, when
this form the IPG cannot parse these traces because its edgé&srnel commences, the scheduler must choose which warp
only represent transitions across sequential code catstru among a pool of warps it will issue to cores; hence, there

Our solution is toslice traces into a set diVarp-Specific is always a delay before a final warp within this pool starts
Traces (WSTs) whereby only Ipoints generated by a specifiexecuting. Second, there is a tacit assumption that theekern
warp on a particular multiprocessor are retained in its WSgompletes as soon as the warps within this initial pool do so,



although generally warps arrive in a seriesaalves i.e. when hence the WCET estimate computed by (1) is optimistic. The
the number of thread-blocks launched saturate resourcteonhybrid approach attempts to resolve this issue by congtigict
multiprocessors (see Section llI). a model of how warps arrive. The crucial observation is
We propose two solutions, both of which are contingent ahat thread-blocks always arrive in waves — as soon as
further analysis of the traces. The first is akin to a dynamiearps within one wave complete, warps spawned by other
technique in that we simply consider end-to-end behaviotinread-blocks arrive, until completion. The heart of thedelo
whereas the second is akin to a hybrid technique in that weerefore comprises a maximum number of waves,each
create a static analytical model whose actual parameters @&ave itself consisting of a maximum number of warps,
obtained from the dynamic profile of the program. This approach also takes a different approach to computing
The dynamic technique (c.f. Fig. 5).This approach is the worst-case release jitter of the final warp. Let the seceie
grounded on the observation that, on every multiprocesswn,, w2, - .., w, denote the warps in a wave ordered so that
there is always a final warp to execute. The idea, therefsre appears before; if w; is scheduled for the first time before
to analyse the traces generated by a multiprocessor and irife iS scheduled for the first time. Then we assume that, for
the worst-case release jitterof its final warp, defined to be every warpw; with i > 1, the start Ipoint ofw; is only written
the longest time until the Ipoint of the final warp executes. to a trace after a constant-time deldy, with respect to the
Then we conservatively presume that the final warp on evefiart Ipoint of its preceding warp; ;. In effect, every pair of
multiprocessor is only released after this delay and thiiein neighbouring warps stall each other Bycycles — the delay
goes on to consume the warp-specific WCET. That is: therefore accumulates and ripples downwards to the finad.war
Zamamic = Zwar + maz(s 5 1) To combing_ these va_1|ues, we assume that, after the worst-
ynamae warp ot T case release jitter, the final warp in a wave consumes the-warp
where Z,.., is the warp-specific WCET estimate andspecific WCET, and that this pattern repeats for the maximum

for multiprocessorsmn, through m,, 6pm,,...,0m, are the number of waves. That is:
observed worst-case release jitters of their final warps.
Let us apply this equation to our running example, noting Znybrida = QX+ (Zwarp + (p — 1) - A) (2)

from Fig. 4a that the worst-case release jitter of warp #3
(the last scheduled warp in both test cases)7igycles.
Once it starts executing, the warp consuniéscycles, that ~ The values, ¢, andA are derived by analysing the traces
iS Zaynamic = 30 + 7 = 37, which now bounds the HWMT generated on every multiprocessor. The basic idea is thraa, f
of 34. traceT’, we maintain a set of warp setSy, where each warp

It may appear that (1) only accounts for the timing effects &€t contains warps observed in a particular wave. Initisity
a singlemultiprocessor. However, multiprocessors are parallépntains a single sé’. Whenever the parser sees a stream of
processing units, operating largely independently unilesy Start Ipointswithoutinterleaving exit Ipoints, this indicates that
compete for bandwidth to global memory or L2 cache. widie multiprocessor is starting a new wave of warps, and hence
argue that the time consumed by these interactions is iitiplic We add the warp identifier td’. However, when an exit Ipoint
included in the warp-specific WCET estimate, because exe&lieaks this sequence, it signifies that the warps in a péaticu
tion times of IPG edges include time spent waiting on the¥¢ave are on the verge of completion; at that point, we insert
transactions. Furthermore, an accurate worst-case statiel @ nNew empty selV’’ into St in readiness for the next wave of

of this behaviour is impossible without intricate knowledgf Warps. This process is repeated for every trace, and likewis
the memory and scheduling policies. for every multiprocessor. At the end, the maximum number

of waves() is the maximum size ofr, while the maximum
number of warps is the maximum size dfi’. The valueA is
wiove TWE Neighbour simply the maximum observed difference between execution
delay times of consecutive start Ipoints in tkamewave.
Warpspecifc We demonstrate this process through Fig. 6, which plots
weetesimate|  the sequence of start and exit Ipoints observed on a paticul
multiprocessor horizontally from left to right. Moreovexery
o Ipoint is subscripted by its warp identifier and, in the cake o
- start Ipoints, time stamps are included. On encounteriagéa
weer etimete|  quence of pointsy, s, s3, Warpswy , ws, ws are added to set-
1 because there are no exit Ipoints in between. Howeventpoi
to signals the end of the first wave and we create the empty set-
Fig. 5. Incorporating concurrency into the timing analysis.  2: eventually warpsu, andws become members of this set. In
this example, therefor® = 2 and ¢ = maxz(3,2) = 3. Also
The hybrid technique (c.f. Fig. 5). The downside of the note that we compute the difference between the time stamps
dynamic approach is that there may always be another tes{s;,sq), (s2,s3), (s4,55) butnot (ss,s4) becausevs, w, are
vector or schedule which stalls the final warp even furthed, anot in the same wave; henee = maxz(3,8,5) = 8.

Dynamic approach Hybrid approach

Worst-case
release jitter|

Wave Warp

Warp-specific
WCET estimate




Application Description

Difference 3 8 5
m Bi t oni cSort Parallel algorithm to sort elements
] Bl ackSchol es Computes European pricing options using the
Time [4] Black-Scholes formula
i Ei genVal ues Computes all eigenvalues for a square matrix
Ipoints
@ @ @ @ @ @ @ @ Hi st ogram Computes a 64-bin histogram

MatrixMil tiply Multiples two n. X m matrices
Mat ri xTranspose  Transposes an x m matrix
Set-1 Vect or Add Adds two n-element vectors
Reduct i on Parallel summation of elements using a
tree-based implementation
et Scan Given an arrayA of n elements, computes
an arrayA’ where element’[i] = >=%_, A[j]
Scal ar Pr oduct

Calculates the scalar product of tweelement
vectors

Fig. 6. How the multiprocessor portion of a trace is pro-
cessed to derive values of parameters in (2). TABLE I. Summary of analysed CUDA SDK benchmarks.

Returning to the running example of Fig. 4a, we obser}@ & trace: the address (i.e. the Ipoint ID), the multipreoces
thatQ =1, o = 3, andA = maz(5—1,8—5,3—1,5—-3) = D the warp ID, and the cycle time (number of cycles since

4. Hence: Zyyprig = 1- (30 + 4 - 2) = 38. Note that this execution commenced). Hence in our tool, every basic block

value bounds the HWMT o#4 and that it is more pessimistic COrresponds to an Ipoint. However, it is important to sttbas
than the37 cycles computed through the dynamic approacHl€ analysis works with coarser instrumentation. In additi

the next section evaluates the differences in more detaiusPecause a simulator was deployed to monitor Ipoint exeaytio
actual GPU kernels. Ipoints did not add timing overhead to the application. A ful

discussion of advantages and disadvantages of these shoice
VI. EVALUATION is beyond the scope of the paper (see [27]).

We have developed a complete WCET toolchain for GPE. Benchmarks

code base_d on GPGPU-sim [19] W_ith the aim of obtaining We analysed CUDA applications shipped with the CUDA
WCET estimates of several kernels in the CUDA SDK [2]. SDK [2]. We selected those for which the application perferm
A. GPGPU-sim meaningful computation (some benchmarks merely illustrat
a CUDA feature) and for which it was straightforward to

GPGPU-sim is a cycle-accurate simulator of NVIDIA hard_enerate a test vector. The specific benchmarks analysed are
ware, which has been engineered by inspecting NVIDIAS ' P y

patents; it is highly accurate, having been validated agai Iven n Table 1. Note that many applications in the_ CUDA
real hardware. DK include several variants of a GPU kernel, moving from

We used a default GPU configuration shipped with tha nave mplementatlon to a progressively optimised vVexsio
e&Mat ri xTranspose. Also, some kernels are called in a

source code that conforms to a Tesla C2050 GPU. Thit . :
is a Fermi-based architecture which includes the following. 2o e ce to comput_e a desired O.Utpl.n’ Eigst ogram We
features: 14 multiprocessors, 32 cores per multiprocess%galysed all kernels in these applications.
48KiB of shared memory (per multiprocessor), 16KiB ot Experimental Set-Up

L1 cache (per multiprocessor), 786KiB of L2 cache (shared

amggg;w&ltl_%o%es;(;rtz) argd a _crInOCII;t_snpeet(:];)f ;Tl)? G;;Zr'a”f rm amenable to WCET analysis. First, we stripped the code

Thread XSI " per tS t'y S| ? Ikg L PTX .( own to a minimal form that included data transfers and Kerne
read execution) Instructions of a kernel. F1A 1S an a?'unches, but without compromising the desired functibyal

sembly language devised by NVIDIA, which is either outp econd, we added a simple random test-vector generator to

as a by-produpt of compilation from source code, or by hch benchmark because our hybrid analysis requires a test
object code disassembler. The latter is hence more accurﬁg?ness_ as all of the benchmarks expect an array of a basic
as it represents more faithfully what executes on the b '

. : . . . 1ype (e.g. integer or floating point), this was straightfard:
metal, in particular because the CUDA compiler can optimis . .
PTX further; in our experiments, all results are based Every program was then compiled usingvcc va.0

disassembled object code. c{RIVIDIAS CUDA compiler) using the default values for

Some modifications to GPGPU-sim were necessary in or(Jhread-block size and number of threads per thread-block as

ftluded in the benchmark. After compilation the binary can
to extract time-stamped traces of executiowe added code . i : : .
. o . . . X nativel PGPU-sim r inter in
to intercept when the first instruction of a basic block isiext be executed natively, as GPGPU-sim operates by intergept

to the cores of a multiprocessor, which writes the followinCaIIS made by the binary into the CUDA run time. In our
P ' gxperiments, multiple executions (up to eight) of the bmar

Lour analysis tools and modifications to GPGPU-sim are pyticailable WETe launched in parallel on a compute cluster that usessnode
at http://wcet.doc.ic.ac.uk. with dual 2.66GHz Intel Xeon 5150 cores, 4GiB of RAM, and

Some work was required to sanitise the benchmarks into a



running under RedHat Linux 6.3. We decided to use 100@ence, in future work we will investigate how to better
test vectors per benchmark, producing 1000 traces that weoenpute the valué).
concatenated together into a single, monolithic trace. . L .
Traces were then split and parsed as detailed in Sections Iil'he deductilon of the valua from "‘?‘CGS IS §|m|larly hm-
and V to determine the observed WCET of IPG edges, tﬁgred by multiple waves. Recall that this v_alue IS the_ Maxmu
maximum execution counts of IPG edges, and to extract t gferen_ce between the time of start Ipqmts of neighbogirin
values of parameters in Equation (1) and Equation (2). THEPS In th_esamewave. The problem is Fhe.lt Some warps
warp-specific WCET estimate was computed using an inted&}™ & Previous wavewaue,q, usually remain in flight when

linear program derived from the IPG and the data [10]. & N€W Wavewaveyew, begins. Hence, warps fromave,iq are
scheduledn betweerwarps ofwave,.,, and the delay between

D. Results consecutive warps iwave,., can therefore be considerable.

Table Il displays the following: the HWMT obtained duringIn th? case ohot ri x_Tr anspose-1, A = 1681_' and
testing @ swasrr); the warp-specific WCET estimaté {o.,): combined with its maximum number of waves, this already
’ arp)s _
the WCET estimate computed through (Bfnem:.); the dif- accounts for26 - 1681 = 43,706 cycles.
ference between (1) and the HWMT; the WCET estimate com-gp, the other hand, the thread-blocksRifack Schol es

puted through (2) Znyuria); and the difference between (2)and Ej genval ues arrive in a single wave, ands = 1

and the HWMT. The units of time in the table are cycles angecause warps are issued to cores immediately in round-robi
differences are percentages rounded up to the nearestalecigshion. In this casenaz(d,m,, . . . 6m )=Q-(A-(p—1)),

place. Each row of the table gives the results for a CUDAnd henceZuymamic = Ziyria (C.f. (1) and (2)).

application — where the application contains multiple ledsn

these results have been Separated out according|y_ With respect to the Warp—specific WCET estimate, we arrive
The most striking observation from these results is tHd two conclusions. First, the results confirm that compuutin

difference between the HWMT and the WCET estimategwarp @lOne is generally not sufficient to bouriy w1z

Under the assumption that the HWM3 the actual WCET, Second, whet,.,, > Zpwur holds, the dynamic approach

and interpreting the difference aserestimationthe dynamic Overestimates much more (almost always ove0%) than

approach is generally much more accurate than the hybyiien the inverse holds: reducing the pessimism in the warp-

counterpart: the average overestimation of the formeo % Specific WCET estimate thus remains a key research challenge

whereas for the latter it i896%.

. We inspected the source code of kernels in conjunc-
We therefore inspected those kernels whefgy,ia > P )

tion with the code parts contributing to the warp-specific
Zaynamic and found that these kernels are always launch CET estimate, e.gScal ar Product , Hi st ogr am and

with.mapy more thread—blocks than the multiprocessorsq:o%educti on, to investigate where execution time is spent.
service in one chunk. That is, thregd—blocks always armve Unsurprisingly, the majority 0%,a., is consumed in loops;
multiple waves, and the values obtained from our trace Bmlyhowever, it is noteworthy that each such loop contains a

forF(2) are solmet|me§ dpesks;gustl_c. T 1k | barrier synchronization statement, the semantics of wkich
h'or: Examp €, ci:)(n;:leerft tt)r I'Xblr arllsposde-_ (Ierne ' tqg forces all threads in a thread-block to wait at that progra
which has a sma (four basic blocks) and simple cont@im until all threads arrive. Clearly barrier synchratinns

ﬂOW prqperties (one loop but no bran_ches). Through_ mantige costly because they block warp progress. Our analysis
inspection of the kernel, we found that itis launched Wit4 ¢ 105 "\ith barriers is pessimistic because it extracts th

thread-blocks an@56 threads per thread-block. On the GP aximum observed waiting time from the traces and then

configuratio.n used in thgse experiments, each mUItiproceSﬁactors this value by the maximum loop bound. For instance, i
has a ma_xmurE cap_amty & _thread-t;lc;zks_. Iysrfore{j lheReduct i on- 2 kernel, the IPG edge containing execution
any one time, there is a maximum 6f- 14 = thread- ¢ yhe narrier synchronization had a best-case executia ti

blocks in flight. Assuming a fair scheduling policy wher%f 33 cycles, an average-case execution timé®tycles, and

thread—blocks are d'St”bUt.ed evenly among multllprooesssoa WCET 0f293 cycles. In future work we aim to reduce the
and assuming each multiprocessor pauses until all thre

%’ssimism by incorporating trexecution time profilesf IPG
blocks of a particular wave have completed, the threadldsloc% y P g P

. S edges into the warp-specific WCET calculation.
will arrive in [1024/112] = 10 waves; however, our trace
analysis instead computét= 26. This is because we assume The results also show that optimising a kernel can also
that an exit Ipoint followed by a sequence of start Ipointeduce its HWMT and WCET estimate. For example, the
signals a new wave: if new thread-blocks b, ...,b, of a suffix of each Reducti on kernel indicates an increas-
wave arrive piece by piece and not together in a single batamgly optimised implementationReducti on-4 through
it is possible that all warps of thread-bloék finish before Reducti on- 6 clearly perform better thaReducti on- 1
warps ofb; 1 begin, and we conservatively assume that throughReduct i on- 3. Note, however, that both the HWMT
is a new wave. The GPU is likely to schedule thread-blockesxd WCET estimates d®educt i on- 2 are higher than those
in this manner because it eagerly allocates unserviceddhreof Reduct i on- 1, even though the former claims to maintain
blocks to multiprocessors as soon as other thread-blodkk fin better warp progress and hence increase parallelism.



Kernel | Zawur | Zwarp | Zaynamic ~ Difference | Znyvria  Difference
BitonicSort-1 1,045,259 173,548 1,186,941 14% 6,929,575 563%
Bi tonicSort-2 101,582 7,769 107,222 6% 1,438,780 1,316%
BitonicSort-3 264,934 39,091 296,152 12% 2,448,819 824%
Bl ackSchol es 793,333 408,700 1,080,880 36% 2,138,670 170%
Ei genVal ues- 1 1,143,429 2,801,330 2,801,337 145% 2,801,337 145%
Ei genVal ues- 2 1,811,709 4,190,040 4,190,047 131% 4,190,047 131%
Ei genVal ues- 3 2,576,497 | 10,292,800 10,292,807 299% 10,292,807 299%
Hi st ogram 1 181,164 1,274,430 1,274,469 603% 1,274,469 603%
Hi st ogram 2 1,220,518 69,455 1,266,381 4% 2,884,400 136%
MatrixMWil tiply 3,642 4,678 4,680 29% 4,680 29%
Mat ri xTr anspose- 1 97,303 23,364 117,330 21% 2,661,646 2,635%
Mat ri xTr anspose- 2 40,621 6,734 44,747 10% 1,314,576 3,136%
Mat ri xTr anspose- 3 39,671 6,406 43,268 9% 898,864  2,166%
Matri xTr anspose- 4 27,807 6,276 32,282 16% 371,462 1,236%
Reduction-1 2,158 4,548 4,555 111% 4,555 111%
Reducti on-2 2,407 6,442 6,449 168% 6,449 168%
Reduction-3 2,625 4,583 4,590 75% 4,590 75%
Reducti on-4 1,947 3,906 3,913 101% 3,913 101%
Reduction-5 1,880 2,580 2,587 38% 2,587 38%
Reducti on- 6 1,645 2,196 2,203 34% 2,203 34%
Scal ar Pr oduct 107,625 684,002 744,425 591% 1,378,438 1,181%
Scan-1 98,838 52,350 146,603 48% 4,097,887 4,064%
Scan- 2 34,116 50,886 50,893 49% 50,893 49%
Scan- 3 46,328 2,417 47,940 3% 373,170 705%
Vect or Add 656 652 659 < 1% 659 < 1%

TABLE Il. Analysis results for benchmarks. All execution times are in cycles.

VIlI. CONCLUSIONS

ACM Transactions on Embedded Computer Systewis 7, no. 3, pp.
36:1-36:53, 2008.

This paper extended a previous hybrid technique to estimai§) . Bemat, A. Colin, and S. M. Petters, “WCET analysis affabilistic
the WCET of sequential code so that it now targets GPU
applications running on NVIDIA hardware. We proposed w0l
ways in which to incorporate the effect of concurrency int@1j A. Colin and S. M. Petters, “Experimental EvaluationGxide Properties
the timing model: one is a pure dynamic technique using
measurements alone, while the other is a hybrid techniqﬂ@
in that it computes a value through a static analytical model
whose parameter values are derived from measurements.[BY A. Ermedahl, C. Sandberg, J. Gustafsson, S. Bygde, andidper,
analysing several GPU kernels from the CUDA SDK, our
results show that the former method is much more accurate:
indeed, our principal conclusion is that how concurrency (4]
integrated into the timing model largely determines therdeg
of accuracy. Future work will investigate how to automdtica [15)
diagnose performance bottlenecks in GPU applicationggusin

our performance model, and the applicability of our framewo (16

to GPUs manufactured by other companies.
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