Automatic Verification of Message-Based Device Drivers

Sidney Amar® Peter Chubf$ Alastair F. Donaldsoh
Alexander Legd) Leonid RyzhyK® Yanjin Zhu®
NICTA  University of New South Wales Timperial College London
sidney.amani@nicta.com.au

We develop a practical solution to the problem of automagidfication of the interface between
device drivers and the OS. Our solution relies on a comlmnaif improved driver architecture and
verification tools. It supports drivers written in C and canilmplemented in any existing OS, which
sets it apart from previous proposals for verification#fd drivers. Our Linux-based evaluation
shows that this methodology amplifies the power of existiagfication tools in detecting driver
bugs, making it possible to verify properties beyond theheat traditional techniques.

1 Introduction

Faulty device drivers are a major source of operating sy¢@8) failures [[14[17]. Recent studies of
Windows and Linux drivers show that over a third of driver sugsult from the complex interface
between driver and OS [21}, 3]. The OS defines numerous ruléseoordering and arguments of driver
invocations, rules that often are neither well documentedire stable across OS releases. Worse, the OS
can invoke driver functions from multiple concurrent thdsegand so driver developers must implement
complex synchronisation logic to avoid races and deadlocks

In addition to causing numerous programming errors, theskelgms complicate formal analysis of
device driver code. While automatic verification has prowseful in detecting OS interface violations in
device drivers, driver verification tools remain limitedtie complexity of properties that can be verified
efficiently [3,/9/8/ 16l 11].

One way to address the problem is through an improved devigerdarchitecture that simplifies
driver development and makes them more amenable to autoveaification [12[ 4]. In this architecture
each driver has its own thread and communicates with the @§ usessage passing, which makes the
driver control flow and its interactions with the OS easieutalerstand and analyse. We refer to such
drivers asactive driversin contrast to conventionghassive drivers that are structured as collections of
entry points invoked by OS threads.

Previous implementations of active drivers in Singulafff] and RMoX [4] OSs rely on OS and
language support for improved verifiability. As such, they bt help address the driver reliability
problem in mainstream operating systems written in C.

In this paper we show that the benefits of active drivers cache&ved while writing drivers in C for
a conventional OS. To this end, we present an implementafiam active driver framework for Linux
along with a new verification method that enables efficiamtipmatic checking of active driver protocols.
Our method leverages existing verification tools for C, edtsl with several novel optimisations geared
towards making active driver verification tractable. Likber existing automatic verification techniques,
the method is not complete—it helps to find bugs, but does natagtee their absence.

Through experiments involving verification of several cdexpdrivers for Linux, we demonstrate
that our driver design and verification methodology amgifiee power of verification tools in finding
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driver bugs. In particular, many properties that are haroinmossible to verify in conventional drivers
can be easily checked on active drivers.

In this paper we focus on verification of active device disvek detailed account of the design and
implementation of the active driver framework for Linux aitelpeformance evaluation can be found in
the accompanying technical repart [2].

The rest of the paper is structured as follows. Sedtion ddhices the active driver architecture.
Section B presents our visual formalism for specifyingwactriver protocols. Sectidd 4 describes our
verification methodology. Sectidd 5 outlines the design iamalementation of the active driver frame-
work for Linux. Sectiori b presents experimental resultsti8e[4 surveys related work on device driver
verification. Sectionl8 concludes the paper.

2 Passive vs active drivers

In this section we discuss the shortcomings of the conveatidriver architecture and show how active
drivers address these shortcomings.

Passive drivers The passive driver architecture supported by all mainstr&@ss suffers from two
problems that complicate verification of the driver-OS iifatee: stack rippingandconcurrency

A passive device driver comprises a collection of entry fminvoked by the OS. When writing the
driver, the programmer makes assumptions about possitérsom which its entry points are going to
be activated; however these assumptions remain impli¢iieimplementation. As a result, the control
flow of the driver is scattered across multiple entry poimtd aannot be reconstructed from its source
code. This phenomenon is known as stack ripging [1].

To complicate things further, the OS can invoke driver eptiints from multiple concurrent threads,
forcing driver developers to implement intricate synclsation logic to avoid races and deadlocks.
Multithreading further complicates automatic verificatiof device drivers, as thread interleaving leads
to dramatic state explosion.

Previous research [21] has shown that the vast majority\o€delrivers do not get any performance
benefits from multithreading. The performance of most dsivie bound by I/O bandwidth rather than
CPU speed, therefore they do not require true multiprocesarllelism. Device drivers are multi-
threaded simply by virtue of executing within the multitaded kernel environment and not because
they require multithreading for performance or functidtyal

Active drivers  In contrast to passive drivers, an active driver runs in th&ext of its own thread.
Communication between the driver and the OS occurs via rgegsassing. The OS sends I/O requests
and interrupt notifications to the driver using messagese dfiver notifies the OS about completed
requests via reply messages.

In an active device driver, the order in which the driver Haadand responds to OS requests is
defined explicitly in its source code and can be readily aslyautomatically. Since the driver handles
I/0 requests sequentially, such analysis can be performéubut running into state explosion due to
thread interleaving.

We present our instantiation of the active driver architextfor Linux. Our design is based on the
Dingo active driver framework [21], improving upon it in tweays. First, Dingo’s message passing
primitives are implemented as C language extensions. Itrasin our framework supports drivers in
pure C. Second, Dingo does not support automatic drivenppobiverification.

In our framework, the driver-OS interface consists of a demailboxes where each mailbox is
used for a particular type of message. The driver exchangssages with the OS VEMIT andAWAIT
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1mb=AWAIT (suspend,unplug,..);

2if (mb==suspend) { E— r
3 dev_suspend() 5 Irequme_complete
4 EMIT(suspend_complete,msg);
5 //Bug! Uncomment to fix

6 ?resume
7

?suspend

.
SUSPENDING

Isuspend_complete

mb=AWAIT (resume/*,unplug*/) ; ...
l‘SUSPENDED

8} else if (mb==unplug) A
9

10}

lunplug_complete

(a) Faulty code (b) Protocol
Figure 1: Fragment of active driver code and the matchintppod specification.

primitives, that operate on messages and mailboxes.ENDE function takes a pointer to a mailbox, a
message structure, and a list of message arguments. Isplaeanessage in the mailbox and returns
control to the caller without blocking. Th&AIT function takes references to one or more mailboxes
and blocks until a message arrives in one of them. It retunefemence to the mailbox containing the
message. A mailbox can queue multiple messag@.IT always dequeues the first message in the
mailbox. This message is accessible via a pointer in thermetumailbox.

Figure[1(a) shows a fragment of an active driver. In line 1dheer waits onsuspend andunplug
mailboxes. After receiving a suspend request (checked dydndition at line 2) the driver suspends
the device (line 3) and notifies the OS about completion ofrdgriest by sending a message to the
suspend_complete mailbox (line 4). It then waits for aesume request at line 7. As can be seen from
this example, requests that the driver accepts in eachagiexplicitly listed in the driver source code,
which simplifies the analysis of driver behaviour and in jeatar its interaction with the OS.

3 Specifying driver protocols

This section presents our visual formalism for specifyimgva driver protocols. The formalism is
similar to protocol state machines of Dingo [21] and Singtyd12], extended with additional means to
capture liveness and fairness constraints, which enabélddtection of additional types of driver bugs.

The active driver framework associates a protocol with ehsler interface. The protocol specifies
legal sequences of messages exchanged by the driver andsther@ocols are defined by the driver
framework designer and are generic in the sense that evesr dihat implements the given interface
must comply with the associated protocol. In the case whemdkive driver framework is implemented
within an existing OS, the framework includes wrapper conguas that perform the translation between
the native function-based interface and message-based ddver protocols.

We specify driver protocols using deterministic finite statachines (FSMs). The protocol state
machine conceptually runs in parallel with the driver: wénesr the driver sends or receives a message
that belongs to the given protocol, this triggers a matcistiage transition in the protocol state machine.
Figure[1(b) shows a state machine for the protocol used bgxhmple driver, describing the handling
of power management and hot unplug requests. Each protateltsgansition is labelled with the name
of the mailbox through which the driver sends (*!") or re@sv('?’) a message. We represent complex
protocol state machines compactly using Statecharts Jiiith organise states into a hierarchy so that
several primitive states can be clustered into a supes-stat
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In some protocol states the OS is waiting for the driver to plete a request. The driver cannot
remain in such a state indefinitely, but must eventuallydehe state by sending a response message to
the OS. Such states are call@dedstates and are labelled with the clock symbol in Figdre 1(b).

In order to ensure that the driver does not deadlock inv&IT statement, the developer must rely
on an additional assumption that if the driver waits for alaming OS messages enabled in the current
state, then one of them will eventually arrive. This is a fahweak fairnesgonstraint[[18] on the OS
behaviour, which means that if some event (in this casejauof a message) is continuously enabled, it
will finally occur. Not all protocol states have the weak ffi@giss property. In the protocol state machine,
we show fair states with dashed border. For exampleSU$®ENDED state in Figur&llb is fair, which
guarantees that at least onerekume andunplug messages will eventually arrive in this state.

A protocol-compliant device driver must obey the followigules.

Rule 1. (EMIT) The driver is allowed to emit a message to a mailboihi§ message triggers a valid
state transition in the protocol state machine.

Rule 2. (AWAIT1) When in a state where there is an enabled incomirgsage, the driver must even-
tually issue ardWAIT on the corresponding mailbox or transition into a state vehitis message is not
enabled.

Rule 3. (AWAIT2) AllAWAIT operations eventually terminate. Equivalently, whenelierdriver per-
forms anAWAIT operation, at least one of its protocols must be in a fairestand thedWwAIT must wait
for all enabled messages of this protocol.

Rule 4. (Timed) The driver must not remain in a timed state forever.

Rule 5. (Termination) When the main driver function returns, thetpcol state machine must be in a
final state. Note that this rule does not require that everyeairrun terminates, merely that if it does
terminate then all protocols must be in their final states.

Rules 1, 3 and 5 descritsafetyproperties, whose violation can be demonstrated by a firéelgion
trace. Rules 2 and 4 aliwenesgules, for which counterexamples are infinite runs.

Going back to the example in Figurk 1, we can see thatWh&T statement in line 6 violates Rule 3.
This line corresponds to trBJSPENDED state of the protocol, where the driver can receiuglug and
resume messages. By waiting for only one of these messages, ther dawn potentially deadlock.

4 \erifying driver protocols

The goal of driver protocol verification is to check whethke tdriver meets all safety and liveness
requirements assuming fair OS behaviour. We use two todlsiscend: 2TABS [8], geared towards
safety analysis, and @NNA [13], geared towards liveness analysis. These tools peaadplementary
capabilities that, when combined, enable full verificatadrmany driver protocols. We useABABS to
check safety rules 1, 3, and 5 and&\NA to check liveness rules 2 and 4. This combination works
well in practice, yielding a low overall false positive rat®ur methodology is compatible with other
similar tools. We use &ABs and GOANNA because our team is familiar with their internals and has
the expertise required to implement novel performancaragétions for these tools.

4.1 Checking safety

SATABS is an abstraction-refinement based model checker for C ard@-theckingsafetyproperties.
It is designed to perform best when checking control-flow ohated properties with a small number of
data dependencies. Active driver protocol-compliancetgathecks fall into this category.
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Given a program to verify, &TABS iteratively computes and verifies its finite-state absimacivith
respect to a set of predicates over program variables. Atiezration it either terminates (by discovering
a bug or proving that the program is correct) or generatesiacgs counterexample. In the latter case,
the counterexample is analysed by the tool to discover nedigaites, used to construct a refined program
abstraction. Abstraction and refinement are both fully @uatiic.

SATABS verifies program properties expressed as source codeiassekl/e encode rules 1 and 3 as
assertions embedded in modified versiondawfIT andEMIT functions. These functions keep track of
the protocol state using a global state variable. WL T function simulates the receiving of a message
by randomly selecting one of incoming mailboxes enablechandurrent state and updating the state
variable based on the current state and the message sel&itaithrly, theEMIT function updates the
state variable based on the current state and the messagesket. It contains an assertion that triggers
an error when the driver is trying to send a message that islfwted in the current state. To verify
rule 5, we append to the driver's main function a check to enthat, if the driver does terminate, the
protocol state machine is in a final state.

Our preliminary experiments show that straightforwardligption of SATABS to active drivers re-
sults in very long verification times. This is in part due t@ ttomplexity of driver protocols being
verified and in part because predicate selection heuristipemented in 8TABS introduce large num-
bers of unnecessary predicates, leading to overly comgisttactions. The problem is not unique to
SaTABS. Our preliminary experiments with SLAM3], another statethe-art abstraction-refinement
tool, produced similar results. We describe several navategjies that exploit the properties of active
drivers to make their safety verification feasible. We haithat these techniques will also be useful in
other software protocol verification tasks.

Protocol decomposition The abstraction-refinement technique is highly sensitivethé size of the
property being checked. Complex properties require maegipgates. Since verification time grows
exponentially with the number of predicates, it is benefici@ecompose complex properties into simple
ones that can be verified independenly.

We decompose each driver protocol state machine into a setich simpler subprotocols as a pre-
processing step. The decomposition is constructed in suely éhat the driver satisfies safety constraints
of the original protocol if and only if it does so for each ool in the decomposition. The following
proposition (stated informally) gives a sufficient conalitifor correctness of decomposition.
Proposition 1. Consider a protocol P and its decomposition into protocals.P., R. If the following
conditions hold then a driver satisfies P if and only if it sfiés each of ..., R:

1. The regular language generated by the protocol state maatf P is equivalent to the intersection

of languages generated by,P. ., R.

2. There exists a bijection between fair states of P and thenuof fair states of B ..., R, such that
for each fair state s of P and the corresponding fair stdtefsR, the set of incoming messages
enabled in s is equal to the set of incoming messages in s

Figure[2 shows one possible decomposition of the protoc@ligure[1(b). Every subprotocol in
the decomposition captures a simple rule related to a siygke of message, shown in bold italics in
the diagram. For instance, the third protocol from the lefsatibes the occurrence of teaspend
messagesuspend can arrive in the initial state, is reenabled by H&ume _complete message, and is
permanently disabled by thewplug message. Messages that do not participate in the subpr@ieo
allowed in any state (as they are constrained by separapeatabols) and are omitted in the diagram.

In our experience, even complex driver protocols allow dggosition into simple subprotocols with
no more than four states and only a few transitions. Verifygach subprotocol requires a small subset
of predicates involved in checking the monolithic protodeading to exponentially faster verification.
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Figure 2: Decomposition of the protocol in Figlue 1(b).

Correctness of a decomposition can be automatically clidoised on Propositidd 1. Furthermore,
we found construction of protocol decompositions to be gdgr mechanical task. As part of future
work on the project we will investigate approaches to autorgahis task.

Automatically provide key predicates One way to speed-up the abstraction-refinement algorithm is
seed it with a small set of key predicates that avoid largeliesrof spurious counterexamples. Guessing
such key predicateis generalis extremely difficult. In case of active driver verificatican important
class of key predicates can be provided xa/SBs automatically.

As mentioned above, when checking a driver protocol, wethtce a global variable that keeps track
of protocol state. During verification,A3ABS eventually discovers predicates over this variable of the
form (state==1), (state==2), ..., one for each state of the protocol. These predicagesrgrortant
to establishing the correspondence between the driveratdiiw and the protocol state machine. We
therefore provide these predicates wr&Bs on startup, which accelerates verification significantly.

Control-flow transformations ~ We found that it often takes SABS many iterations to correlate
dependent program branches. This problem frequently sac@ctive drivers when the driveWAITS on
multiple mailboxes and then checks the returned value, (ng.2 in Figurd_1(a)). If the driver executes
the same comparison later in the execution, then both chreaks produce the same outcomeT&BS
does not know about this correlation initially, leading tsurious counterexample trace that takes
inconsistent branches, potentially leading to spuriousteraexample traces. These counterexamples
can be refuted using predicape«» (mb== suspeng. In practice, however, &ABS may introduce
many predicates that only refute a subset of these coumte@rs before discovering, which allows
refuting all of them.

To remedy the problem, we have implemented a novel contral-ffraph transformation that uses
static analysis to identify correlated branches, and nsefgem. The analysis identifies, through inspect-
ing the use of the\WAIT function, where to apply the transformation. Then infel@sjaths through
each candidate region are identified by generating Boola@sfiability queries which are discharged to
a SAT solver. The CFG region is then rewritten to eliminateasible paths. The effect of the rewriting
on the CFG is shown in Figufé 3.

This technique effectively avoids the expensive searcladigiitional predicates using much cheaper
static program analysis. In our experimentaT&BS performs orders of magnitude more effectively
over the new program structure, being able to quickly infey gredicates that could previously only be
inferred after many abstraction refinement iterations aedriference of many redundant predicates.
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Figure 3: CFG transformation example.

4.2 Checking liveness

As SATABS s restricted to analysis of safety properties, th@a@NA tool comes into play for analysis of
liveness properties. GANNA is a C and C++ bug finding tool that supports user-defined miéten in
the CTL temporal logic [10], which allows natural specifioatof safety and liveness properties. Unlike
SATABS, GOANNA is intended as a fast compile-time checker and therefore doeperform data-flow
analysis.

Properties to be checked for each protocol are extractedtfie protocol specification. In particular,
we apply theAWAIT1rule to every incoming mailbox and thEmedrule to every timed state of the
protocol.

Describing a temporal property using th®@&NA specification language involves two steps. First,
we identify a set of important program events related to tiopgrty being verified, such as sending and
receiving of messages. We use syntactic pattern matchiladpéd program locations that correspond to
these events. Second, we encode the property to be checkegmaporal logic formula in a dialect of
CTL, defined over events identified at the previous step. Diienited space, we omit the details of this
encoding.

5 Implementation

We implemented the active driver framework along with traeetve device drivers in Linux 2.6.38. The
framework consists of loadable kernel modules and doesegoine any changes to other kernel compo-
nents. The framework provides services required by aNadiivers, including cooperative scheduling,
message passing, and message-based interrupt deliveagldition it defines protocols for supported
classes of drivers and provides wrappers to perform thelation between the Linux driver interface
and message-based active driver protocols. Wrappersescaiventional and active drivers to co-exist
within the kernel.

The generic part of the framework shared by all active dsiy@ovides support for scheduling and
message passing. It implements ttooperative domaimbstraction, which constitutes a collection of
cooperatively scheduled kernel threads hosting an activerd Threads inside the domain communicate
with the kernel via a shared message queue. The frameworkrgeas that at most one thread in the
domain is runnable at any time. The thread keeps executitiigturocks in theAWAIT function. AWAIT
checks whether there is a message available in one of thbored specified by the caller and, if so,
returns without blocking. Otherwise it calls the threacpdisher function, which finds a thread for which
a message has arrived. The dispatcher uses the kernel krhetkrface to suspend the current thread
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| driver protocol #states #transitions #subprotocols|
PCI bus 13 41 11
Ethernet 17 36 6
Serial ATA (SATA) 39 70 22
Digital Audio Interface (DAI) 8 20 6

Table 1: Implemented active driver protocols.

and make the new thread runnable. In the future this desigrbeaptimised by implementing native
support for light-weight threads in the kernel.

EMIT andAWAIT functions do not perform memory allocation and thereforgenéil. This simplifies
driver development, as the driver does not need to implemeot handling logic for each invocation
of these ubiquitous operations. On the other hand this miéanshe driver is responsible for allocating
messages sent to the OS and deallocating messages receivetié OS. By design of driver protocols,
most mailboxes can contain at most one message, since tbersesm only emit a new message to
the mailbox after receiving a completion notification foe threvious request. Such messages can be
pre-allocated statically.

Interrupt handling in active drivers is separated into tog@ bottom halves. The driver registers with
the framework a top-half function that is invoked by the ledrin the primary interrupt context (outside
the cooperative domain). A typical top-half handler redmsinterrupt status register, acknowledges the
interrupt in the device, and sends an IRQ message to the.diibe actual interrupt handling happens
inside the cooperative domain in the context of the driveedll that receives the IRQ message. IRQ
delivery latency can be minimised by queueing interruptgages at the head of the message queue;
alternatively interrupts can be queued as normal messagdgsh avoids interrupt livelock an ensures
fair scheduling of interrupts with respect to other drivasks.

In addition to the generic functionality described abolie,dctive driver framework defines protocols
for supported classes of drivers and provides wrappers fforpe the translation between the Linux
driver interface and message-based active driver prgocdlrappers enable conventional and active
drivers to co-exist within the kernel.

Active driver protocols are derived from the correspondingux interfaces by replacing every inter-
face function with a message or a pair of request/responssages. While multiple function calls can
occur concurrently, messages are serialised by the wrapper

Since Linux lacks a formal or informal specification of dnviaterfaces, deriving protocol state
machines often required tedious inspection of the kernetcgo On the positive side, we found that,
compared to building an OS model as a C program, state machio@ide a natural way to capture
protocol constraints and are useful not only for automadidfication, but also as documentation for
driver developers.

Table[1 lists protocols we have specified and implementegpena for. For each protocol, it gives
the number of protocol states and transitions, and the nuoflsibprotocols in its decomposition (see
Section[4.11). Tablg]2 lists active device drivers we havelemgnted along with protocols that each
driver supports. All three drivers control common types ev¥ides found in virtually every computer
system. These drivers were obtained by porting native Lihivers to the active architecture, which
allows direct comparison of their performance and verifiglgainst conventional drivers.
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driver supported LOC LOC avg(max) avg(max) avg(max)
protocols (native)  (active) time(minutes) refinements predicates
RTL8169 1Gb Ethernet  PCI, Ethernet 4,220 4,317 29 (103) 3(7) 3(8)
AHCI SATA controller  PCI, SATA 2,268 2,487 123 (335) 2 (6) )1
OMAP DAl audio DAl 583 705 5(13) 2 (5) 2 (0)

Table 2. Active device driver case studies, protocols tlthedriver implements, size of the native
Linux and active versions of the driver in lines of code (Lg@easured usingloccount), along with
statistics for checking safety properties usimgrSBs for each driver.

6 Evaluation

6.1 \Verification

We applied the verification methodology described in Sedddo RTL8169, AHCI, and OMAP DAl
drivers. Verification was performed on machines with 2GHadjaore Intel Xeon CPUs.

Verification using SATABsand GOANNA For each of the three drivers we were able to verify all safety
properties defined by their protocols usingt8Bs with zero false positives. The last three columns of
Table[2 show statistics for verifying safety propertiesngsBaTABS for each driver: average and maxi-
mum time, the number of abstraction refinement loop itenatend the number of predicates required for
verification to succeed, across all subprotocols of theedrivhe number of predicates reflects predicates
discovered dynamically by the abstraction refinement laag does not include candidate predicates
with which SATABs is initialised (see Sectidn 4.1).

The small number of predicates involved in checking theepgaties indicates that the control skele-
ton of an active driver responsible for interaction with @8 has few data dependencies. This confirms
that the active driver architecture achieves its goal of ingakhe driver-OS interface amenable to effi-
cient automatic verification. At the same time, the fact #eaeral refinements are required in most cases
indicates that the power of the abstraction refinement ndeithoecessary to avoid false positives when
checking safety.

Despite the small number of predicates required, verifioaiimes are relatively high for our bench-
marks. This is due to the large size of our drivers, and thetfet SMV [20], the model checker used
by SATABS, was not designed primarily for model checking boolean @ots. We experimented with
the BOOM model checkef [5], which is geared towards booleagnam verification. While in many
cases verification using BOOM was several times faster thi#m SMV, we did not use it in our final
experiments due to stability issues.

All optimisations described in Sectibn #.1 proved esseétttimaking verification tractable. Disabling
any one of them led to overly large abstractions that coutdbe@nalysed within reasonable time.

We used ®ANNA to verify liveness properties of drivers as explained int®ed4.2. GOANNA
performs a less precise analysis thaxt&Bs and is therefore much faster. It verified all drivers in less
than 1 minute while generating 8 false positives due to iipeedata flow analysis.

These results demonstrate that active drivers’ protocoiptiance can be verified using existing
tools. At the same time they suggest that an optimal combimaif accuracy and verification time
requires a trade-off between full-blown predicate absmacmf SATABS and purely syntactic analysis of
GOANNA.

Comparison with conventional driver verification  In order to compare the effectiveness of our
verification methodology against conventional verificatiechniques for passive drivers, we carried out
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a case study using the native Linux version of the RTL816® ikt controller driver. We analysed the
history of bug fixes made to this driver, and identified thosedithat address OS interface violation bugs.
A typical example involves the driver attempting to use anr@®urce such as timer after it has been
destroyed by a racing thread. We found 12 such bugs. We appi &5 to detect these bugs.ABABS
has been successfully applied to Linux drivers in the paZj [Rsing SATABS as a model checker for
both active and traditional drivers provides a fair comgami

Detecting OS interface bugs in a passive driver requires deinaf the OS. We built a series of
such models of increasing complexity so that each new madelats additional errors but introduces
additional execution traces and is therefore harder tdywerhis way we explore the best-case scenario
for the passive driver verification methodology: using onokledge of the error we tune the model for
this exact error. In practice more general and hence lessegffimodels are used in driver verification.

By gradually improving the OS model, we were able to find 8 dutdbugs. However, when being
provided a model accurate enough to trigger the remainingotss SATABS was not able to find the
bugs before being interrupted after 12 hours.

We carried out an equivalent case study on the active verditime RTL8169 driver. To this end,
we simulated the 12 OS protocol violations found in the matiinux driver in the active driver. We
were able to detect each of the 12 protocol violation bugkiw® minutes per bug. This result confirms
that the active driver architecture along with the verifmaimethodology presented above lead to device
drivers that are more amenable to automatic verification gassive drivers.

6.2 Performance

Microbenchmarks The performance of active drivers depends on the overhdamtlirced by thread
switching and message passing. We measure this overheatachéne with 2 quad-core 1.5GHz Xeon
CPUs.

In the first set of experiments, we measure the communicd#ticoughput by sending a stream of
messages from a normal kernel thread to a thread inside &iaiye domain. Messages are buffered in
the message queue and delivered in batches when the coapel@hain is activated by the scheduler.
This setup simulates streaming of network packets throndttlaernet driver. The achieved throughput is
2-10° messages/s (500 ns/message) with both threads running sarte core and2: 10° messages/s
(800 ns/message) with the two threads assigned to diffecgas on the same chip.

Second, we run the same experiment with varying number oiekéinreads distributed across avail-
able CPU cores (without enforcing CPU affinity), with eacimi thread communicating with the co-
operative thread through a separate mailbox. As shown inréig, we do not observe any noticeable
degradation of the throughput or CPU utilisation as the nemab clients contending to communicate
with the single server thread increases (the drop betweerod two client threads is due to the higher
cost of inter-CPU communication). This shows that our im@atation of message queueing scales well
with the number of clients.

Third, we measure the communication latency between a Lihntead and an active driver thread
running on the same CPU by bouncing a message between thepirig-aong fashion. The average
measured roundtrip latency is 1.&. For comparison, the roundtrip latency of a Gigabit nekwioik is
at least 5pis [19].

Macrobenchmarks We compare the performance of the active RTL8169 Ethernatrater driver
against equivalent native Linux driver using the Netperfidienark suite on a 2.9GHz quad-core Intel
Core i7 machine. Results of the comparison are shown in &@ur In the first set of experiments
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Figure 5: Performance of the RTL8169 Ethernet driver mesbwith Netperf.

we send a stream of UDP packets from the client to the host imachneasuring achieved throughput
(using Netperf) and CPU utilisation (usirgrofile) for different payload sizes. The client machine
is equipped with a 2GHz AMD Opteron CPU and a Broadcom NetKged8CM5704 NIC. The active
driver achieved the same throughput as the native Linuweddn all packet sizes, while using 20% more
CPU in the worst case (Figuré 5(a)).

In the second set of experiments, we fix payload size to 64skamel vary the number of clients
generating UDP traffic to the host between 1 and 8. The cliamslistributed across four 2GHz Intel
Celeron machines with an Intel PRO/1000 MT NIC. The resigure[5(b)) show that the active driver
sustains up to 10% higher throughput while using propoaligrmore CPU. Further analysis revealed
that the throughput improvement is due to slightly higheRlRtency, which allows the driver to handle
more packets per interrupt, leading to lower packet loss rat

The third set of experiments measures the round trip congation latency between the host and a
remote client with 2GHz AMD Opteron and NetXtreme BCM57040NFigure[h(c) shows that the la-
tency introduced by message passing is completely mask#wmetwork latency in these experiments.
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Figure 6: Native vs. active AHCI and ATA framework driver fl@mance on the iozone benchmark.

We evaluate the performance of the AHCI SATA controller driusing theiozone benchmark
suite running on a system with a 2.33GHz Intel Core 2 Duo CPEMell 88SE9123 PCle 2.0 SATA
controller, and WD Caviar SATA-Il 7200 RPM hard disk. We rine toenchmark with working set of
500MB on top of the raw disk.

We benchmark the driver against equivalent Linux driver. thBdrivers achieved the same 1/O
throughput on all tests, while the active driver's CPU gétion was slightly higher (Figufd 6). This
overhead can be reduced through improved protocol desigm. SBTA driver protocol, based on the
equivalent Linux interface requires 10 messages for e&2loperation. A clean-slate redesign of this
protocol would involve much fewer messages.

We did not benchmark the DAI driver, as it has trivial perfamae requirements and uses less than
5% of CPU.

7 Related work

Active drivers  Singularity [12] is a research OS written in the Sing# pragming language. It
comprises a collection of processes communicating ovesageschannels. Sing# supports a state-
machine-based notation for specifying communicationqmois between various OS components, in-
cluding device drivers. The Sing# compiler checks prot@aohpliance at compile time. RMoX][4] is

a process-based OS written in occam-pi. RMoX processes coinaie using synchronous rendezvous.
Communication protocols are formalised using the CSP gmakgebra and verified using the FDR tool.

The Dingo [21] active driver framework for Linux aims to silifp driver programming in order to
help driver developers avoid errors. It relies on a C languadension to provide language-level support
for messages and threads. Dingo uses a Statechart-bageddano specify driver protocols; however
it only supports runtime protocol checking and does not enmnt any form of static verification.

The CLARITY [6] programming language is designed to makespasdrivers more amenable to
automatic verification. To this end it provides construtist tallow writing event-based code in a se-
quential style, which reduces stack ripping. It simplifieagoning about concurrency by encapsulating
thread synchronisations insideord objects that expose well-defined sequential protocolsdaer.

Verification tools  Automatic verification tools for C3,/9, 8, 16]is an activearof research, which is
complementary to our work on making drivers amenable to &amalysis using such tools. Several ver-
ification tools, including SPIN [18], focus on checking mags-based protocols in distributed systems.
These tools work on an abstract model of the system thathisreitritten by the user or extracted from
the program source code |17]. Such a model constitutes adisiaction of the system that cannot be
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automatically refined if it proves too coarse to verify thegerty in question. Our experiments show
that abstraction refinement is essential to avoiding fatsgtiges in active driver verification; therefore
we do not expect these tools to perform well on active driegification tasks.

8 Conclusion

Improvements in automatic device driver verification cédrmety solely on smarter verification tools and

require an improved driver architecture. Previous prolsofes verification-friendly drivers were based

on specialised language and OS support and were not conepatth existing systems. Based on ideas
from this earlier research, we developed a driver architecand verification methodology that can be
implemented in any existing OS. Our experiments confirmttiiatmethodology enables more thorough
verification of the driver-OS interface than what is pogsifar conventional drivers.
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