
Form Methods Syst Des (2012) 41:25–44
DOI 10.1007/s10703-012-0155-3

Counterexample-guided abstraction refinement
for symmetric concurrent programs

Alastair F. Donaldson · Alexander Kaiser ·
Daniel Kroening · Michael Tautschnig · Thomas Wahl

Published online: 25 April 2012
© Springer Science+Business Media, LLC 2012

Abstract Predicate abstraction and counterexample-guided abstraction refinement (CE-
GAR) have enabled finite-state model checking of software written in mainstream program-
ming languages. This combination of techniques has been successful in analysing system-
level sequential C code. In contrast, there is little evidence of fruitful applications of CE-
GAR to shared-variable concurrent software. We attribute this gap to the lack of abstraction
strategies that permit a scalable analysis of the resulting multi-threaded Boolean programs.
The goal of this paper is to close this gap. We have developed a symmetry-aware CEGAR
technique: it takes into account the replicated structure of programs that consist of many
threads executing the same procedure, and generates a Boolean program template whose
multi-threaded execution soundly overapproximates the original concurrent program. State
explosion during model checking parallel instantiations of this template can now be ab-
sorbed by exploiting symmetry. We have implemented our method in a tool, SYMMPA, and

Supported by EPSRC projects EP/G026254/1 and EP/G051100/1 and ERC project 280053.

A.F. Donaldson
Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2BZ, UK
e-mail: alastair.donaldson@imperial.ac.uk

A. Kaiser · D. Kroening · M. Tautschnig
Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford,
OX1 3QD, UK

A. Kaiser
e-mail: alexander.kaiser@cs.ox.ac.uk

D. Kroening
e-mail: daniel.kroening@cs.ox.ac.uk

M. Tautschnig
e-mail: michael.tautschnig@cs.ox.ac.uk

T. Wahl (�)
College of Computer and Information Science, Northeastern University, 360 Huntington Avenue, 202
West Village H, Boston, MA 02115, USA
e-mail: wahl@ccs.neu.edu

mailto:alastair.donaldson@imperial.ac.uk
mailto:alexander.kaiser@cs.ox.ac.uk
mailto:daniel.kroening@cs.ox.ac.uk
mailto:michael.tautschnig@cs.ox.ac.uk
mailto:wahl@ccs.neu.edu

26 Form Methods Syst Des (2012) 41:25–44

demonstrate its superior performance over alternative approaches on a range of synchroni-
sation programs.

Keywords Predicate abstraction · Concurrent programs · Symmetry reduction · CEGAR

1 Introduction

Concurrent software model checking is one of the most challenging problems facing the
verification community today. Not only does software generally suffer from data state ex-
plosion; concurrent software in particular is susceptible to state explosion due to the need
to track arbitrary thread interleavings, whose number grows exponentially with the number
of executing threads. Predicate abstraction [15] was introduced as a way of dealing with
data state explosion: the program state is approximated via the values of a finite number of
predicates over the program variables. Predicate abstraction turns an imperative-language
program (e.g., written in C) into a finite-state Boolean program [2], which can be model
checked. Since insufficiently many predicates can cause spurious verification results, predi-
cate abstraction is typically embedded into a counterexample-guided abstraction refinement
(CEGAR) framework [7]. The feasibility of the overall approach was convincingly demon-
strated for sequential software by the success of the SLAM project at Microsoft, which was
able to discover numerous control flow-related errors in low-level operating system code [3].

The majority of concurrent software is written using mainstream APIs such as POSIX
threads (pthreads) in C/C++. Multiple threads are spawned (up front or dynamically) to
execute a given procedure in parallel, communicating via shared global variables. For a
fixed number n of threads, this concurrency model turns a sequential program P into an
n-thread concurrent program P

n in which global program variables are shared (readable
and writeable) by all threads. Procedure-local variables become thread-local: each of the n

threads executing the procedure owns a distinct copy, which is inaccessible to other threads.
To execute P

n, a thread is chosen by the scheduler to execute a statement of P, which may
modify shared variables and the thread’s local variables. For such shared-variable concurrent
programs, predicate abstraction success stories similar to that of SLAM are few and far
between (see Sect. 6 for a detailed discussion). The bottleneck is the exponential dependence
of the generated state space on the number of running threads, which, if not addressed,
permits exhaustive exploration of such programs only for trivial thread counts, as experience
has shown [11].

The key to obtaining scalability is to exploit the symmetry naturally featured by these pro-
grams, namely the invariance of P

n under permutations of the involved threads. Fortunately,
much progress has recently been made on analysing replicated non-recursive Boolean pro-
grams executed concurrently by many threads [4, 21, 29]. In this paper, we present a CEGAR
technique for concurrent programs that leverages this recent progress. Our technique trans-
lates a non-recursive program P in a C-like language, with global-scope and procedure-scope
variables, into a Boolean program B such that the n-thread Boolean program, denoted B

n,
soundly overapproximates the n-thread program P

n. Our approach permits predicates in the
form of arbitrary expressions over the variables a thread has access to, local or global. The
abstract program B is refined in response to spurious counterexamples discovered in B

n,
in a way that preserves symmetry. Operating at the template level, our abstraction and re-
finement methods make exploiting symmetry during model checking of B

n straightforward.
We thus refer to our novel CEGAR technique as symmetry-aware counterexample guided
abstraction refinement.

Form Methods Syst Des (2012) 41:25–44 27

We first show that sequential predicate abstraction techniques cannot directly be applied
to symmetric concurrent programs at the template level if the abstraction relies on mixed
predicates: predicate expressions that contain both shared and thread-local variables. We
then outline our novel technique for soundly handling mixed predicates (Sect. 2). We define
a simple imperative language for writing concurrent programs, and an extended Boolean
programming language to be used as a target for abstracting such programs (Sect. 3). This
allows us to formally present our symmetry-aware CEGAR technique (Sect. 4). We then de-
scribe an implementation of our technique as a tool, SYMMPA, and experimental results
showing the effectiveness of SYMMPA in comparison to a recent CEGAR-based model
checker for concurrent programs that does not exploit symmetry (Sect. 5).

We present our results for a language without pointers and aliasing. For an extension that
covers these language features, we refer the reader to our prior work [11]. Concurrent threads
are assumed to interleave with statement-level granularity; see the discussion in Sect. 7 on
this subject.

2 Overview: symmetry-aware predicate abstraction

In this section we illustrate the basic ideas of our approach. We present programs as code
fragments consisting of a procedure to be executed by multiple concurrent threads. A pro-
gram declares shared global variables, visible to all threads, and local variables, of which
each thread has a private copy.

Shared, local and mixed predicates: As in traditional predicate abstraction for imperative
programs [2], the Boolean program B to be built from the program P will be defined over
Boolean variables, one for each predicate being used during abstraction. Since B is to be
executed by parallel threads, its variables have to be partitioned into “shared” and “local”.
As these variables track the values of various predicates over variables of P, the “shared”
and “local” attributes clearly depend on the attributes of the variables in P a predicate is
formulated over. We therefore classify predicates as follows.

Definition 1 A local predicate refers solely to local variables. A shared predicate refers
solely to shared variables. Any other predicate is mixed.

We reasonably assume that each predicate refers to at least one program variable.
A mixed predicate thus refers to both local and shared variables.

Given this classification, consider a local predicate φ, which can change only as a result
of a thread changing one of its local variables; a change that is not visible to any other thread.
This locality is inherited by the Boolean program: predicate φ is tracked by a local Boolean
variable. Similarly, shared predicates are naturally tracked by shared Boolean variables.

For a mixed predicate, the decision whether it should be tracked in the shared or local
space of the Boolean program is less obvious: Consider the following program P and a cor-
responding Boolean program B which tracks the mixed predicate s != l in a local Boolean
variable b (B is the Boolean program obtained from P via the Cartesian abstraction [2]):

P:

0: shared int s = 0;
local int l = 1;

1: assert s != l;
2: s = s + 1;

B:

0: local bool b = 1;

1: assert b;
2: b = b ? � : 1;

28 Form Methods Syst Des (2012) 41:25–44

Let P
2 be a two-thread instantiation of P. It is easy to see that execution of P

2 can lead to
an assertion violation, while the corresponding concurrent Boolean program B

2 is correct.
(In fact, B

n is correct for any n > 0.) As a result, B
2 is an unsound abstraction for P

2.
Consider now the following program P

′ and its abstraction B
′, which tracks the mixed

predicate s == l in a shared Boolean variable b:

P
′:

0: shared int s = 0;
shared bool t = 0;
local int l = 0;

1: if � then
2: if t then
3: assert s != l;
4: l = s + 1;
5: t = 1;

B
′:

0: shared bool b = 1;
shared bool t = 0;

1: if � then
2: if t then
3: assert !b;
4: b = 0;
5: t = 1;

Execution of (P′)2 leads to an assertion violation if the first thread passes the first condi-
tional, the second thread does not and sets t to 1, then the first thread passes the guard t . At
this point, s is still 0, as is the first thread’s local variable l; the assertion fails. On the other
hand, (B′)2 is safe. We conclude that (B′)2 is unsound for (P′)2.

These examples show that a mixed predicate cannot soundly be tracked by a standard
shared or a local variable. It is also fairly easy to see that simply prohibiting mixed predicates
is not an option, as it renders some trivial bug-free programs unverifiable using predicate
abstraction [12]. As a result, the abstraction process needs to be amended to accommodate
mixed predicates explicitly.

A technically simple but naive solution is to “resolve” mixed predicates by disambiguat-
ing local variables: we instantiate the template P n times, once for each thread, into programs
{P1, . . . ,Pn}, in which indices {1, . . . , n} are attached to the local variables of the template,
indicating the variable’s owner. The new program has two features: (i) all its variables, hav-
ing unambiguous names, can be declared at the global scope and are thus shared, including
the original global program variables, and (ii) it is multi-threaded, but the threads no longer
execute the same code. Feature (i) allows the new program to be predicate-abstracted in the
conventional fashion; each predicate will be stored in a shared Boolean variable. Feature (ii),
however, entails that the new program is no longer symmetric. Model checking it will there-
fore have to bear the brunt of concurrency state explosion. Such a symmetry-oblivious ap-
proach does not scale beyond a very small number of threads [11]. The goal of this paper
is a CEGAR technique that soundly handles mixed predicates without compromising the
efficiency afforded by symmetry reduction.

Mixed predicates and notify-all updates: We now describe informally our solution to
soundly handling mixed predicates. Let E = {φ1, . . . , φm} be a set of predicates over P,
i.e., a set of Boolean expressions over the shared and local variables declared in P. We
declare, in B, Boolean variables {b1, . . . , bm}; the intention is that bi tracks the value of
φi during abstract execution of P. We partition these Boolean variables into shared and
local by stipulating that bi is shared if φi is shared; otherwise bi is local. In particular,
mixed predicates are tracked in local variables. Intuitively, the value of a mixed predicate
φi depends on the thread it is evaluated over. Declaring bi shared would thus necessarily
lose information. Declaring it local does not lose information, but, as the example above has
shown, is insufficient to guarantee a sound abstraction. We will see shortly how to solve this
problem.

Form Methods Syst Des (2012) 41:25–44 29

Each statement in P is now translated into a corresponding statement in B. Statements
related to flow of control are handled using techniques from standard predicate abstrac-
tion [2]; the distinction between shared, mixed and local predicates does not matter here.
Consider an assignment to a variable v in P and a Boolean variable b of B with associated
predicate φ. If the assignment does not affect φ, i.e., if v does not appear in φ, b does not
change. Otherwise a statement needs to be generated to update b. This statement needs to
take into account the “flavors” of v and φ, which give rise to three different forms of updates
of b:

Shared update: Suppose v and φ are both shared. An assignment to v is visible to all threads,
so the truth of φ is modified for all threads. This is reflected in B: by our stipulation
above, the shared predicate φ is tracked by the shared variable b. Thus, we simply gen-
erate a statement to update b according to standard sequential predicate abstraction rules;
the new value of b is shared among all threads.

Local update: Suppose v is local and φ is local or mixed. An assignment to v is visible
only to the active (executing) thread, hence the truth of φ is modified only for the active
thread. This also is reflected in B: by our stipulation above, the local or mixed predicate
φ is tracked by the local variable b. Again, sequential predicate abstraction rules suffice;
the value of b changes only for the active thread.

Notify-All update: Suppose v is shared and φ is mixed. An assignment to v is visible to
all threads, so the truth of φ is modified for all threads. This is not reflected in B: as
stipulated above, the mixed predicate φ is tracked by the local variable b, which will be
updated only by the active thread. We solve this problem by (i) generating code to update
b locally according to standard sequential predicate abstraction rules, and (ii) notifying
all passive (non-active) threads of the modification of the shared variable v, to allow
them to update their local copy of b.

Note that the cases “v shared, φ local” and “v local, φ shared” cannot occur.
In order to illustrate how Notify-All updates can be realised in practice, let us consider

the concrete example of the assignment s = l, for shared and local variables s and l, and
the mixed predicate φ :: (s == l). The assignment causes the active thread’s copy of this
predicate to evaluate to true; what it does to other threads is not clear without inspecting
them. A reasonable modular translation of this assignment into the Boolean program might
therefore be:

havoc {all(b)} constrain a.b′ (1)

The new statement havocs (assigns nondeterministically) all threads’ copies of variable
b, under the constraint that the active thread a’s copy is forced to evaluate to true:
constrain a.b′ forces the post-havoc (primed) value of a’s copy of b to be true.

We can increase the precision of statement (1) by inferring knowledge about the other
threads’ copies of b. Consider some passive thread p, and suppose φ holds for both a and p

before the assignment s = l, thus a.l == s == p.l. In this case, φ holds for both a and p after
the assignment, too. On the other hand, if a and p disagree on φ initially, then a.l != p.l.
In this case, after the assignment s = l we will have s != p.l. This reasoning allows us to
strengthen statement (1), as follows:

havoc {all(b)} constrain ∀ p �= a . a.b′ ∧ (a.b ∧ p.b ⇒ p.b′)

∧(a.b ⊕ p.b ⇒ ¬p.b′)
(2)

where ⊕ denotes exclusive-or. This statement restricts the states that can be reached after
havocking b across all threads to those where b holds for the active thread, and such that for

30 Form Methods Syst Des (2012) 41:25–44

any other (i.e., passive) thread p, the value of b for thread p after havocking is consistent
with the state of the active thread.

Abstracting over multiple threads: Boolean program statements such as (2) that may ex-
plicitly refer to variables of passive threads are not only useful for Notify-All updates. Con-
sider the mixed predicate φ :: (s == l) and the local predicate ψ :: (l == 4), tracked by local
Boolean variables b and c, respectively, and the assignment l = s (which only affects the
active thread’s state). The statement:

havoc {a.b,a.c} constrain a.b′ ∧ (a.b ∧ a.c ⇒ a.c′) ∧ (a.b ⊕ a.c ⇒ ¬a.c′) (3)

soundly over-approximates the assignment. Here, we use the notation {a.b,a.c} to indicate
that local variables b and c belonging to the active thread should be havocked; the values of
these variables in other threads are not changed.

However, statement (3) does not take into account information available from other
threads in the Boolean program. Suppose there is some thread p different from the active
thread such that p.b and p.c both hold. In a corresponding concrete state, this means that
p.l == 4 and s == p.l, implying s == 4. Similarly, if exactly one of p.b and p.c hold,
we can conclude s != 4. This reasoning allows us to translate the assignment l = s with
more precision than in (3), as follows:

havoc {a.b,a.c} constrain ∀ p �= a . a.b′ ∧ (((a.b ∧ a.c) ∨ (p.b ∧ p.c)) ⇒ a.c′)

∧(((a.b ⊕ a.c) ∨ (p.b ⊕ p.c)) ⇒ ¬a.c′)

It is easy to refine these examples to cases where the precision benefits from using pred-
icates over several non-active threads; we omit the details. In practice, as demonstrated in
Sect. 5, we have found that predicates involving the active thread and a single passive thread
are a good compromise between increased precision and increased predicate complexity.
This finding is intuitive since the update of a passive thread p’s local variable p.b is due to
an assignment performed by some active thread. Nevertheless, because our benchmark set
does not rule out the utility of predicate abstraction over multiple passive threads in general,
and because this form of predicate abstraction is of theoretical interest, we present a fully
general CEGAR technique that allows constraints over multiple passive threads.

3 Concrete and abstract programming languages

Before formalising our CEGAR procedure (Sect. 4), we define a concrete C-like program-
ming language, and a Boolean programming language with Notify-All.

3.1 Symmetric concurrent programming language

Let SharedNames and LocalNames be disjoint sets of names. Figure 1 provides the syntax
for a simple language for writing symmetric concurrent programs, which we call Symmetric
Concurrent Programming Language (SCPL), defined over these sets.

An SCPL program is a template to be executed by some number of concurrent threads.
The number of threads is not part of the program description: an SCPL program can be
instantiated with any positive number of threads. Each program declares a set of shared
integer variables with distinct names drawn from SharedNames, followed by a set of lo-
cal integer variables with distinct names drawn from LocalNames. When the program is

Form Methods Syst Des (2012) 41:25–44 31

prog ::= shared shared_name = lit; . . . ; shared_name = lit;
local local_name = lit; . . . ; local_name = lit;
1: stmt; . . . ; k: stmt;

stmt ::= shared_name = expr | local_name = expr
| assume expr | goto pc, . . . ,pc

expr ::= lit | shared_name | local_name | compound expression
lit ::= integer literal
pc ::= integer in range 1 . . . k

shared_name, local_name denote elements of SharedNames and LocalNames
respectively

Fig. 1 Syntax for Symmetric Concurrent Programming Language (SCPL)

instantiated, there will be one instance of each shared variable, shared among all threads,
while each thread will own a separate copy of every local variable. The names of shared
and local variables occurring in an SCPL program P are denoted V P

S ⊆ SharedNames and
V P

L ⊆ LocalNames, respectively.
Program behaviour is defined by a sequence of statements numbered 1 through k (for

some k ≥ 1). During execution, each thread has an associated program counter. An execution
step consists of selecting a thread, and having this thread execute the statement associated
with its program counter.

There are four forms of statements: assignments to a shared or a local variable have the
obvious meaning; assume φ causes thread execution (and therefore program execution) to
halt if φ does not hold in the context of the executing thread; goto causes the executing
thread’s program counter to be set nondeterministically to one of a given set of values.
Expressions occurring on the right-hand sides of assignments and as arguments to assume
are defined over program variables and integer literals; compound expressions are formed in
the usual way. Conditional flow of control and looping can be modelled using a combination
of goto and assume statements.

We do not define a formal semantics for SCPL, since it is similar to many simple con-
current programming languages proposed in the literature. The crucial feature of SCPL is
that threads are fully symmetric: nothing in the language allows a distinction to be made
between one thread and another. This allows us to translate an SCPL program template into
a Boolean program template, using the techniques described in the following section, and
exploit symmetry for efficient model checking.

Property specification: We assume that the property of interest can be expressed as the
unreachability of some location e ∈ {1, . . . , k} of P. This characterisation captures assertion
checking by redirecting control flow to a designated undesirable location after an assertion
failure has been detected.

Predicates: A predicate over P is a Boolean expression of the form expr that contains at
least one variable. As in Definition 1 we categorise a predicate as shared/local/mixed if it
refers to variables in V P

S only/V P

L only/both V P

S and V P

L , respectively.

3.2 Boolean broadcast programming language

Our CEGAR technique for symmetric concurrent programs yields a form of concurrent
Boolean programs. Although languages for such programs are known [4, 8], they do not

32 Form Methods Syst Des (2012) 41:25–44

prog ::= shared shared_name; . . . ; shared_name;
local local_name; . . . ; local_name;
1: stmt; . . . ; k: stmt;

stmt ::= havoc {havoc_var, . . . ,havoc_var}
constrain ∀�= {thread_idx, . . . , thread_idx} . expr

| goto pc, . . . ,pc

havoc_var ::= shared_name | a.local_name | all(local_name)

expr ::= 0 | 1 | shared_name | shared_name′ | thread_idx.local_name
| thread_idx.local_name′ | compound expression

pc ::= integer in range 1 . . . k

shared_name, local_name, thread_idx denote elements of SharedNamesBP,
LocalNamesBP and ThreadIndices respectively

Fig. 2 Syntax for Boolean broadcast programs

suit our purpose: as discussed earlier, the facility for a Boolean program thread to read
and update variables of other threads is fundamental to our approach. We therefore now
present syntax and semantics for this variant of concurrent Boolean programs, which we
call Boolean broadcast programs.

Syntax: Let SharedNamesBP, LocalNamesBP and ThreadIndices be disjoint sets of names,
and suppose that ThreadIndices contains a distinguished name a, which we call the active
thread index. Figure 2 provides the syntax for Boolean broadcast programs, defined over
these sets. Like an SCPL program, a Boolean broadcast program is a template to be executed
by some number of concurrent threads. Below, we provide operational semantics describing
the execution of a Boolean broadcast program by a specified number of threads. While
discussing the language syntax, we informally describe the intended semantics in order to
motivate the formal semantics.

A Boolean broadcast program declares a set of shared Boolean variables with distinct
names drawn from SharedNamesBP, followed by a set of local Boolean variables with
distinct names drawn from LocalNamesBP. When the program is instantiated, there will be
one copy of each shared variable, shared among all threads, while each thread will own a
separate copy of every local variable. All variables are initialised nondeterministically.

As in an SCPL program, behaviour is defined by a sequence of statements numbered 1
through k (for some k ≥ 1). There are two forms of statements: goto and constrained as-
signment. The latter causes the values of specified local and shared variables to be havocked
and, if the resulting state satisfies a given constraint, the executing thread’s program counter
to be incremented. In a constrained assignment, the variables to be havocked are specified
as a set following the havoc keyword. Havocking a shared variable is specified simply by
providing the variable’s name. Havocking the copy of a local variable b owned by the thread
that executes the statement, which we call the active thread, is specified as havoc {a.b}.
Havocking local variable b in all threads is specified as havoc {all(b)}.

The constraint that must be satisfied following havocking of variables is specified as an
expression over shared variables, variables of the active thread, and variables of one or more
symbolically represented additional threads. We refer to these additional threads as passive
threads, since their state is modified and/or inspected even though they are not actively
executing a statement. A constraint has the form:

∀�= I . φ

Form Methods Syst Des (2012) 41:25–44 33

Initial states. All states � satisfying �.PC(t) = 1 (1 ≤ t ≤ n)

Execution rules.
d : goto . . . , d ′, . . . appears in B

�.S = �′.S �.L = �′.L
�.PC(t) = d �′.PC(t) = d ′

∀t ′ . t ′ �= t ⇒ �′.PC(t ′) = �.PC(t ′)
� →t �′

d : havoc H constrain ∀�= I . φ appears in B

�′ ∈ havoc(�, t,H)

�,�′, t |= ∀�=I.φ

�.PC(t) = d

� →t �′

Havocking variables. We define a function havoc which generates the set of states
arising from havocking a set of variables in state �, and incrementing the active thread
t ’s program counter:

havoc(�, t, {x1, . . . , xa,a.y1, . . . ,a.yb,all(z1), . . . ,all(zc)}) =
{�′ | �′.PC(t) = �.PC(t) + 1

∧ ∀t ′ ∈ {1, . . . , n} \ {t} .�′.PC(t ′) = �.PC(t ′)
∧ ∀x ∈ V B

S \ {x1, . . . , xa} .�.S(x) = �′.S(x)

∧ ∀y ∈ V B

L \ {y1, . . . , yb, z1, . . . , zc} .�.L(t)(y) = �′.L(t)(y)

∧ ∀t ′ ∈ {1, . . . , n} \ {t} .∀z ∈ V B

L \ {z1, . . . , zc} .�.L(t ′)(z) = �′.L(t ′)(z)}
Constraint satisfaction. For sets A and B , Inj(A,B) denotes the set of all injective
functions from A to B . We define:

�,�′, t |= ∀�= I . φ ⇔ ∀δ ∈ Inj(I, {1, . . . , n}) . δ(a) = t ⇒ �,�′, δ |= φ

�,�′, δ |= 1 �,�′, δ �|= 0
�,�′, δ |= b ⇔ �.S(b) �,�′, δ |= b′ ⇔ �′.S(b)

�,�′, δ |= τ.b ⇔ �.L(δ(τ))(b) �,�′, δ |= τ.b′ ⇔ �′.L(δ(τ))(b)

�,�′, δ |= φ is defined inductively for compound expressions

Fig. 3 Operational semantics for Boolean broadcast programs

where I is a set of symbolic thread indices, which must contain the distinguished active
thread index a. Such a constraint should be read as follows: “expression φ holds under
every assignment of distinct thread ids to the symbolic thread indices appearing in I such
that a is assigned the id of the active thread”. We call the symbol ∀�= the “for all distinct”
quantifier. In φ, unprimed and primed variables refer to the values before and after executing
the havoc part of the statement, respectively.

A constraint ∀�= I . φ must be closed. For instance, if t.b or t.b′ appear in φ (where b is
a local variable), then I must contain t , so that it is bound under ∀.

Semantics: Let B be a Boolean broadcast program. Let V B

S and V B

L be the names of the
shared and local variables declared in B, respectively. Operational semantics for Boolean
broadcast programs are presented in Fig. 3, defined with respect to a fixed number of
threads, n.

Definition 2 A state � of a Boolean broadcast program over n threads is a tuple (S,L,PC)

where

– S : V B

S → {0,1} maps each shared variable to a Boolean value,

34 Form Methods Syst Des (2012) 41:25–44

– L is an n-tuple representing the local variables of each thread. For 1 ≤ t ≤ n, L(t) : V B

L →
{0,1} maps each local variable of thread t to a Boolean value,

– PC : {1, . . . , n} → {1, . . . , k + 1} maps each thread to a program counter.

We write �.S, �.L and �.PC to refer to the components of a state �.

The initial states are those in which every thread’s program counter is set to 1 (shared
and local variables are nondeterministic). Transitions are defined by two execution rules. For
goto statements, the executing thread’s program counter is set nondeterministically to one
of the destinations; all other state components are left unchanged, as are all components of
passive threads. A constrained assignment is executed by first setting all state components
under the havoc clause nondeterministically, and incrementing the active thread’s program
counter. The havoc function specifies the states that arise from performing this havoc and
increment. A transition then exists to any such state where the constraint associated with
the constrained assignment holds. A thread is permanently disabled if its program counter
becomes k + 1, since there is no program statement associated with this value.

4 CEGAR for symmetric concurrent programs

Armed with the definitions of SCPL and Boolean broadcast programs, we can now formally
present our CEGAR technique, which allows verification of a concurrent SCPL program
through finite-state model checking of a series of successively refined Boolean broadcast
programs. The key method we use to achieve scalability is performing abstraction and re-
finement generically at the template level. While our method is thread-aware, at no point
does it distinguish explicitly between particular threads. This means that it is always pos-
sible to exploit symmetry during Boolean program model checking. We demonstrate the
benefits of this in Sect. 5.

4.1 Initial abstraction

Let P be an SCPL program, and E a set of predicates over P. The CEGAR process starts with
an almost trivial Boolean broadcast program B that overapproximates the behaviour of P in
a very coarse way. We call this program the initial abstraction. Given a injective mapping
bool from shared predicates to SharedNamesBP, and from local and mixed predicates to
LocalNamesBP, the declarations in B are as follows:

shared bool(φ1); . . . ;bool(φa);
local bool(ψ1); . . . ;bool(ψb);

where φ1, . . . , φa are the shared predicates in E and ψ1, . . . ,ψb are the local and mixed pred-
icates. Thus, as discussed in Sect. 2, shared predicates are tracked by shared Boolean vari-
ables, while local and mixed predicates are tracked by local Boolean variables. B contains
the same number of statements as P: each statement in B is derived from the corresponding
statement in P according to the rules in Fig. 4.

By construction, the initial abstraction yields a Boolean program B such that, for any
n ≥ 1, the n-thread instantiation of B is an existential abstraction of the n-thread instantia-
tion of P: whenever a statement in P might affect the truth of a predicate in E, the associated
statement in B sets the Boolean variable associated with the predicate to a nondeterministic

Form Methods Syst Des (2012) 41:25–44 35

Statement in P Corresponding statement in B

goto d1, . . . , dm goto d1, . . . , dm

assume φ havoc { } constrain ∀�= {a} .1
v = φ (v ∈ V P

L) havoc {a.bool(ψ) | ψ ∈ E ∧ v appears in ψ}
constrain ∀�= {a} .1

v = φ (v ∈ V P

S) havoc {bool(ψ) | ψ ∈ E ∧ v appears in ψ ∧ ψ is shared}∪
{all(bool(ψ)) | ψ ∈ E ∧ v appears in ψ ∧ ψ is mixed}
constrain ∀�= {a} .1

Fig. 4 Initial abstraction of SCPL statements into Boolean broadcast program statements

value. As argued above, mixed predicates are handled soundly by nondeterminising the rel-
evant Boolean variables across all threads. A statement assume φ is translated into a havoc
statement that havocs no variables and constrains the result to true, rendering it equivalent
to assume true.

Improved initial abstractions: Our tool SYMMPA uses a less coarse abstraction by default.
For an assignment v = e and predicate φ, if the weakest precondition for φ to hold after the
assignment is a constant or equivalent to another predicate, the new value for bool(φ) is cap-
tured precisely in the corresponding abstract assignment. SYMMPA also supports Cartesian
abstraction with maximum cube length approximation [2]. When a standard assignment is
generated, cube enumeration is performed over predicates of the active thread only. When a
broadcast assignment is generated, cube enumeration is done with respect to predicates of
both the active thread and a passive thread. Thus, when Cartesian abstraction is used, rela-
tively precise abstract broadcast assignments can be derived. For example, abstract statement
(2) on page 30 is generated directly. In Sect. 5 we experimentally evaluate the impact of us-
ing Cartesian abstraction vs. the more straightforward weakest-precondition abstraction.

4.2 Model checking boolean broadcast programs

During the CEGAR process, we must repeatedly model-check the n-thread Boolean pro-
gram B

n. As B
n is an existential abstraction of P

n, correctness of B
n (i.e., unreachability of

the error location e) implies correctness of P
n. Any counterexample reported by the model

checker is a trace of the form:

�0 →t1 �1 →t2 · · · →tm �m

where �0 is an initial state of B
n; ti ∈ {1, . . . , n} (1 ≤ i ≤ m) is the identity of the thread that

executed a statement to cause the i-th transition; for i < m we have �i.PC(t) �= e (1 ≤ t ≤ n)
and �m.PC(tm) = e.

The extended syntax and semantics for broadcasts mean that we cannot simply use exist-
ing concurrent Boolean program model checkers such as BOOM [4] for the model checking
phase of the CEGAR loop. We have implemented an extension, B-BOOM, of BOOM, which
adjusts the counter abstraction-based symmetry reduction capabilities of BOOM to support
broadcast operations. Symbolic image computation for broadcast assignments is more ex-
pensive than for standard assignments. In the context of BOOM it involves (1) converting
states from counter representation to a form where the individual local states of threads are
stored using distinct BDD variables, (2) computing the intersection of n−1 successor states,
one for each passive thread paired with the active thread, and (3) transforming the resulting

36 Form Methods Syst Des (2012) 41:25–44

state representation back to counter form using Shannon expansion. The cost of image com-
putation for broadcasts motivates our investment into determining tight conditions under
which broadcasts are required. Checking constrain clauses of the form constrain ∀�= I . φ

becomes more expensive as the set I of thread indices grows. Thus, during abstraction and
refinement, it is desirable to avoid large index sets.

4.3 Simulation

Given a counterexample for B
n, we reconstruct a multi-threaded trace through P

n that fol-
lows exactly the same control path. Each statement of the trace is labelled with the identity
of the respective active thread. We are able to obtain a unique path as our abstraction yields
one abstracted statement for each concrete statement. This trace through P

n can be used
to construct an equation representing the constraints that must be satisfied for execution to
follow this route. Such constraints arise from assume statements and assignments in P

n that
are traversed by the trace.

If the resulting equation is satisfiable, a feasible error trace through P
n has been iden-

tified, and P can be reported as incorrect (along with the thread count n). Otherwise the
counterexample in B

n is spurious: no corresponding counterexample exists in P
n. To elim-

inate this counterexample (and possibly others), the abstract program B must be refined,
either by improving the precision of individual statements in B (transition refinement), or
by adding further predicates (predicate discovery).

4.4 Transition refinement

Suppose that model checking and simulation have revealed a spurious counterexample trace
in B

n. It is possible that some transition � →t �′ occurring in the trace is spurious: no
concrete state corresponding to � can lead via execution of the statement at �.PC(t) by
thread t to a concrete state corresponding to �′. In this case we can refine the constrain
clause of the statement in B associated with the transition, such that this particular transition
is eliminated without adding new predicates.

This type of refinement, which goes back to early work by Das and Dill [10] and has
become known as transition refinement, is by now standard in CEGAR techniques for se-
quential software; it is, for example, implemented in SLAM [1]. We extend SLAM’s transi-
tion refinement technique to our symmetric concurrent setting. In order to do so in a scal-
able manner we require the ability to add constraints over the variables of a small subset
of threads: those threads actually responsible for the spuriousness of a transition. Further-
more, to retain symmetry, we cannot add constraints over specific threads; we must apply
generalisation.

We first describe how to detect whether a transition is spurious with respect to a concrete
set J of thread ids. For a Boolean variable b occurring in B, let pred(b) be the predicate
in E that b tracks; pred is the inverse of the injective mapping bool. For a predicate φ and
t ∈ {1, . . . , n}, we write φt to denote the expression identical to φ except that each local
variable v ∈ V P

L appearing in φ is replaced by vt in φt .

Definition 3 (Concretisation of a state) Let J ⊆ {1, . . . , n} be a set of thread ids, and �

a state of B. The concretisation of � with respect to J is denoted γJ (�), and defined as
follows:

γJ (�) =
(∧

{b∈V B

S
|�.S(b)}

pred(b)

)
∧

(∧
{b∈V B

S
|¬�.S(b)}

¬pred(b)

)
∧

Form Methods Syst Des (2012) 41:25–44 37

∧
t∈J

((∧
{b∈V B

L
|�.L(t)(b)}

pred(b)t

)
∧

(∧
{b∈V B

L
|¬�.L(t)(b)}

¬pred(b)t

))

Definition 4 (Weakest precondition) Let φ be an expression over integer literals, variables
in V P

S , and variables of the form vi where v ∈ V P

L and i ∈ {1, . . . , n}. Let t ∈ {1, . . . , n}, and
suppose s is a statement in P. We define the weakest precondition of φ with respect to t

executing s, denoted WP(s, t, φ), as follows:

– WP(goto . . . , t, φ) = φ

– WP(v =ψ, t,φ) = φ[v/ψt] if v ∈ V P

S

– WP(v =ψ, t,φ) = φ[vt/ψt] if v ∈ V P

L

– WP(assume ψ, t,φ) = (ψt ⇒ φ).

Definition 5 A transition � →t �′ is spurious with respect to a set J ⊆ {1, . . . , n} of thread
ids, written spurious(t, J,�,�′), if

γJ (�) ⇒ ¬WP(�.PC(t), t, γJ (�′)).

(Recall that �.PC(t) denotes the statement to be executed by t in �.)
Suppose a transition � →t � is spurious with respect to a set of thread ids J , and that

t ∈ J .1 Suppose that the statement at program point �.PC(t) in B is

havoc H constrain ∀�= I . φ

We wish to add a conjunct to φ that will rule out the spurious transition. In order to do so in
a manner that preserves symmetry, we require the notion of generalising a concrete state to
refer to a set of symbolic thread indices.

Definition 6 (Generalisation of a state) Let J and � be as in Definition 3, and let δ : J →
ThreadIndices be an injective function. The generalisation of � with respect to J and δ, de-
noted βδ

J (�), is a formula representing the constraints satisfied in � by the threads in J , but
with thread identities abstracted to symbolic names drawn from ThreadIndices. Formally:

βδ
J (�) =

(∧
{b∈V B

S
|�.S(b)}

b

)
∧

(∧
{b∈V B

S
|¬�.S(b)}

¬b

)
∧

∧
t∈J

((∧
{b∈V B

L
|�.L(t)(b)}

δ(t).b

)
∧

(∧
{b∈V B

L
|¬�.L(t)(b)}

¬δ(t).b

))

Adding the required conjunct to φ can be achieved as follows. First, if |J | ≥ |I |, i.e.,
the spurious transition involves more concrete threads than the number of threads currently
represented symbolically in the constrained assignment, we add |J | − |I | distinct fresh el-
ements to I taken from ThreadIndices. Second, we choose an arbitrary injection δ : J → I

1It is easy to generalise what follows to handle the case where t /∈ J . Because in practice it usually makes
sense to refine transitions with respect to a set of threads that includes the active thread (indeed often the
set J will simply be {t}) we do not present this generalisation, which would add tests on t /∈ J in several
occurrences of J .

38 Form Methods Syst Des (2012) 41:25–44

satisfying δ(t) = a. (Note that a ∈ I , according to the definition of a Boolean broadcast
program.) Finally, we add the following conjunct to φ:

¬(βδ
J (�) ∧ primed(βδ

J (�′)))

where primed(φ) denotes φ with every Boolean variable name b replaced by b′.
Our implementation, SYMMPA, follows the strategy of always performing transition re-

finement if it is possible to do so, only adding additional predicates (see Sect. 4.5) as a last
resort. This reflects a design decision in SATABS, on which SYMMPA is based, which has
been shown to work well for verification of sequential software. As discussed above, it is
expensive to model check Boolean broadcast programs that involve constraints over many
threads. The strategy for applying transition refinement is thus to attempt to refine a spurious
transition with respect to a single thread: the active thread. If this fails, SYMMPA attempts to
refine with respect to two threads: the active thread and one passive thread. If this also fails,
three threads are considered, and so on. In other words, the set J of concrete thread indices
used for transition refinement is first taken to have size one, which is subsequently increased
by one in each iteration. In practice, as we show in Sect. 5, for a large set of benchmarks we
find that it is never necessary to consider |J | > 2.

4.5 Predicate discovery

Transition refinement may fail to add precision to B if all transitions in a given trace belong
to the most precise Boolean abstraction with respect to the current set of predicates. In this
case, the abstraction can only be refined using additional predicates.

New predicates can be extracted from counterexamples using thread-aware variants of
standard techniques based on weakest preconditions, strongest postconditions, or interpo-
lation. These standard methods require a small modification in our context: they generate
predicates over shared variables, and local variables of specific threads. For example, if
thread 1 branches according to a condition such as l < s, where l and s are local and shared,
respectively, weakest precondition calculations generate the predicate l1 < s, where l1 is
thread 1’s copy of l. Because our CEGAR technique operates at the template program level,
we cannot add this predicate directly. Instead, we generalise such predicates by removing
thread indices. Hence, in the above example, we add the predicate l < s, at the template
level. Since it is mixed, adding it is tantamount to adding such a predicate for all threads.

5 Experimental evaluation

We evaluate SYMMPA in two steps. First, we analyse in detail the relative merits of various
options offered by the tool. Second, we compare it to a recent verifier, THREADER [17],
which exploits the compositional nature of many programs [16] but ignores any thread sym-
metry. This allows us to measure the impact of our reduction mechanism. In both steps we
consider thread counts ranging from 2 to 4; the impact of larger thread counts was consid-
ered in prior work [11].

Benchmarks: The evaluation is based on a set of 24 concurrent C programs. In these bench-
marks, threads synchronise via locks, or in a lock-free manner via atomic compare-and-swap
instructions. Fourteen of the benchmarks are parametric, i.e., they contain procedures to be
executed by any number of replicated threads. In contrast to the (idealised) syntax presented

Form Methods Syst Des (2012) 41:25–44 39

in Sect. 3, where the number of running threads is determined on program entry, most of our
benchmarks consist of an initial thread, while further threads are created dynamically. In
such cases, we use a parameter n to bound the number of threads that can be created: once
this bound is reached, thread creation statements have no effect. The remaining 24−14 = 10
benchmarks are non-parametric, with a built-in thread count.

We compare SYMMPA and THREADER on benchmarks that were previously used in the
evaluation reported in our prior work [11], or in [17]:

Parametric benchmarks

1–4 a counter, concurrently incremented, or incremented and decremented, by multiple
threads [27];

5, 6 algorithms to establish mutual exclusion for an arbitrary number of threads [24];
7, 8 concurrent pseudo-random number generator [27];
9–12 implementations of parallel reduction operation to find the maximum element in an

array (as “simple” and “optimised” version; the latter reduces communication by lo-
cally computing a partial maximum value);

13 a program used in [12] to illustrate the need for mixed predicates;
14 a simple program used in [14] to illustrate thread-modular model checking;

Non-parametric benchmarks

15–22 algorithms to establish mutual exclusion for fixed thread counts; QRCU is a variant
of the Linux read-copy-update algorithm [23];

23 a vulnerability fix from the Mozilla repository described in [22];
24 a Linux character driver related to global memory area access [9].

For each benchmark, we consider verification of a safety property, specified via an assertion.
All experiments are performed on a 3 GHz Intel Xeon machine with 8 GB RAM, running
64-bit Linux, with a timeout of 30 minutes.

Impact of Cartesian abstraction: Table 1 presents the results for our approach with-
out (SYMMPA-c0) and with Cartesian abstraction, using a maximum cube length of 1
and 2 (SYMMPA-{c1,c2}). For benchmarks 1–12, the suffix indicates whether locks (L) or
compare-and-swap (C) instructions were used for synchronisation. For each parametric in-
stance (above the double line) we present statistics for the largest thread count that could
be verified within the time limit for at least one of {c0,c1,c2}. The table shows this thread
count (n), the number of local, mixed, and shared predicates (L, M, S) over the program that
were required for verification to succeed, the number of CEGAR iterations (It.) and transi-
tion refinement operations performed (T.r.), and the total run time (Time). We find that the
number of local, mixed and shared predicates required for verification varies slightly with n,
but mostly remains unchanged for n ≥ 3. As a result, the total run time increases for larger
thread counts are mostly due to the increased complexity of model checking the Boolean
abstractions.

With the exceptions of 6/TICKET-L and 8/PRNG-C, most parametric instances could
be easily verified for four threads, and all non-parametric ones for the given fixed thread
count. Generating more precise Cartesian-style predicate images whenever possible is more
expensive but results in fewer iterations and transition refinements.2 In our examples, the

2Exceptions are 2/INC-C and 17/READERS-WR., which is due to different counterexamples reported by the
model checker.

40 Form Methods Syst Des (2012) 41:25–44

Table 1 Results of SYMMPA without and with Cartesian abstraction; (joint) fastest run times per line in
bold. The double line separates parametric and non-parametric instances

Benchmark
id/Name

n Predicates

Maximum cube length approximation

SYMMPA-c0 SYMMPA-c1 SYMMPA-c2

L M S It. T.r. Time It. T.r. Time It. T.r. Time

1/INC-L 4 2 2 5 7 12 1 6 12 2 6 12 2

2/INC-C 4 4 2 0 7 21 3 6 9 2 7 15 5

3/INC-DEC-L 4 4 3 9 16 43 25 10 17 10 10 17 17

4/INC-DEC-C 4 8 4 2 24 108 908 – – T.O. – – T.O.

5/TAS-L 4 1 1 4 3 1 1 3 1 1 2 0 1

6/TICKET-L 3 2 5 9 9 44 15 8 7 18 6 5 75

7/PRNG-L 4 8 0 3 4 5 2 3 0 <1 3 0 5

8/PRNG-C 3 15 1 2 – – T.O. 15 60 834 – – T.O.

9/MAXSIMP-L 4 6 7 2 3 2 8 3 1 39 2 0 276

10/MAXSIMP-C 4 2 4 0 13 45 1515 – – T.O. – – T.O.

11/MAXOPT-L 4 2 1 2 3 2 5 3 1 5 2 0 5

12/MAXOPT-C 4 3 4 0 – – T.O. 11 45 1460 – – T.O.

13/UNVEREX 4 0 3 5 8 30 3 4 2 2 3 0 2

14/SPIN 4 0 0 3 2 0 <1 2 0 <1 2 0 <1

15/DEKKER 2 0 0 5 2 0 <1 2 0 <1 2 0 <1

16/PETERSON 2 0 0 6 2 0 <1 2 0 <1 2 0 <1

17/SZYMANSKI 2 0 0 7 2 0 <1 2 0 <1 2 0 <1

18/READERS-WR. 2 0 0 7 3 0 <1 4 2 <1 4 2 <1

19/TIME-V.-MU 2 0 0 7 2 0 <1 2 0 <1 2 0 <1

20/LAMPORT 2 0 0 11 5 3 <1 5 3 1 5 3 <1

21/QRCU-2 2 10 2 13 11 40 6 11 40 12 11 40 80

22/QRCU-3 3 10 2 13 11 40 6 11 40 11 11 40 51

23/MOZILLA-FIX 2 0 0 5 3 0 <1 3 0 <1 3 0 <1

24/SCULL 3 9 0 5 6 6 1 6 6 2 6 6 2

latter reduction causes the percentage of total run time spent in the abstraction phase to
increase from 3 to 11 and 32 % respectively, while reducing the model checking time from
80 to 72 and 55 %, respectively. Each of SYMMPA-c0 and SYMMPA-c1 time out for two
benchmarks. We find that the more precise Cartesian abstraction used in SYMMPA-c2 does
not pay off: timeout occurs for four benchmarks that require many predicates to verify.

Mixed predicates were required for verification to succeed in 13 of the 23 cases. These
require broadcast transitions for sound abstraction, which are more expensive to implement
than traditional single-thread transitions. The table reflects that with higher run-times for
benchmarks with large numbers of mixed predicates (M), such as the four examples where
SYMMPA-c0 and SYMMPA-c1 time out for 4 threads, compared to similar examples with
smaller numbers of mixed predicates.

In all cases, the precision of the abstraction did not benefit from considering more than
one passive thread: it was always possible to eliminate a spurious transition by adding a con-
straint over the active thread and perhaps a single passive thread. In the notation of Sect. 4.4,
we were always able to demonstrate spurious transitions using a set J of concrete threads
with |J | ≤ 2, and correspondingly for symbolic index sets I appearing in constrain ∀�= I

Form Methods Syst Des (2012) 41:25–44 41

Fig. 5 Runtime comparison for various thread counts of THREADER-OG (�), THREADER-RG (�), and
SYMMPA-c0 (�). The vertical axis shows the runtimes in seconds. The horizontal axis arranges the bench-
mark instances with increasing runtime

clauses, we always found |I | ≤ 2 sufficed. We also considered a version of configuration
SYMMPA-c0 with abstraction and refinement restricted to consider only variables of the ac-
tive thread. This restriction removes the ability to precisely refine over mixed predicates,
and significantly decreases the overall performance: for 9 benchmarks the CEGAR proce-
dure times out already with just two threads.

Scalability: The effect of turning symmetry reduction features of SYMMPA on and off was
demonstrated in prior work [11]; we do not repeat this evaluation here. We evaluate the scal-
ability of SYMMPA by comparing it against two approaches implemented in the THREADER

tool [17]:

THREADER-OG: Owicki-Gries proof system [26];
THREADER-RG: A compositional version of Owicki-Gries [20].

THREADER’s front-end capabilities are similar to that of SYMMPA, facilitating compar-
ison of the tools.3 On the other hand, we emphasise that THREADER is not optimised for
the analysis of replicated multi-threaded programs. Support in THREADER for replicated
threads is limited to the predicate discovery phase: predicates over the variables of one
thread are replicated to threads with identical functionality, so as to avoid rediscovery. The
authors point out that supporting “symmetry reduction . . . would be beneficial for [their]
approach” [17].

Figure 5 presents a “cactus plot” showing verification times (in seconds) for the 14 para-
metric benchmarks with 2, 3 and 4 concurrent threads. For a given tool and thread count,
a point (x, y) on the corresponding graph indicates that if the tool was launched on all 14
benchmarks in parallel, verification of x of the benchmarks would have completed within
y seconds. As previously demonstrated, SYMMPA-c0 and SYMMPA-c1 perform similarly,
hence we only show data for the former. In the vast majority of cases, our technique signifi-
cantly outperforms both THREADERapproaches. This can be attributed to the fact that, with
THREADER, the number of predicates grows according to the number of threads consid-
ered, while with SYMMPA, this is thread-count independent. The Owicki-Gries method only

3A notable difference is that THREADER relies on natural integers for representing numeric C types, whereas
SYMMPAuses machine integers, hence is “bit-precise”. For comparability we skipped three benchmarks from
[17] where this difference affects the verification outcome.

42 Form Methods Syst Des (2012) 41:25–44

outperforms our approach significantly for 8/PRNG-C and n = 2, and the Rely-Guarantee
method in addition for 10/MAXSIMP-C and n = 4. For these, THREADER is able to dis-
cover very compact thread-modular proofs. For the non-parametric benchmarks our method
is also superior: The Rely-Guarantee method times out for one instance and requires 160
seconds for the remaining ones. The Owicki-Gries method succeeds on all instances but
requires 1800 seconds in total. In contrast, our configuration SYMMPA-c0 takes only 12
seconds for all instances (again no time out).

6 Related work

Predicate abstraction for sequential programs [2] was implemented as part of the SLAM

project, building on foundational work by Graf and Saïdi [15]. Although SLAM has had
great success in finding real bugs in system-level code, we are not aware of any extensions
of it to concurrent programs. We attribute this to a large part to the infeasibility, at the time, to
handle realistic multi-threaded Boolean programs. We believe our own work on BOOM [4]
has made progress in this direction, motivating us to revisit concurrent predicate abstraction.

We are not aware of other work that presents precise solutions to the problem of mixed
predicates. Some approaches disallow such predicates, e.g. [28], whose authors do not dis-
cuss, however, the reasons for (or consequences of) doing so. Another approach nondeter-
ministically resets global variables that may be affected by an operation [6], taking away
the mixed flavour from certain predicates. The authors of [18], for example, use predicate
abstraction to finitely represent the environment of a thread in multi-threaded programs. The
“environment” consists of assumptions on how threads may manipulate the shared state of
the program, irrespective of their local state. Our case of replicated threads, in which mixed
predicates would constitute a problem, is only briefly mentioned in [18]. In [5], an approach
is presented that handles recursive concurrent C programs. The abstract transition system
of a thread (a pushdown system) is formed over predicates that are projected to the global
or the local program variables and thus cannot compare “global against local” directly. As
discussed in Sect. 2, some reachability problems cannot be solved using such restricted pred-
icates. We conjecture this problem is one of the potential causes of non-termination in the
algorithm of [5].

Other model checkers with some support for concurrent software include BLAST,
which does not support general assertion checking when concurrency is enabled [19], and
MAGIC [5], which does not support shared variable communication. These limitations pre-
vent a meaningful experimental comparison of these tools with our work.

Symmetry reduction as a technique to handle state explosion in model checking has
become well established (see [25, 30] for a survey). The scalability of our approach hinges
on a recent method that allows symmetry reduction to be combined with a BDD-based
representation [4].

7 Open problems

We have presented the ideas, a formalisation, and an implementation of a CEGAR strategy
for symmetric concurrent programs. Our strategy is symmetry-aware, passing on the sym-
metry from the concurrent source program to the abstract Boolean program, enabling the
application of powerful reduction methods to facilitate model checking. Our experiments
have clearly demonstrated the impact that our strategy thus affords, resulting in significant
efficiency gains.

Form Methods Syst Des (2012) 41:25–44 43

In conclusion, we mention two open problems for future consideration. We have here
assumed a very strict (and unrealistic) memory model that guarantees atomicity at the state-
ment level. One can work soundly with the former assumption by pre-processing input pro-
grams so that the shared state is accessed only via word-length reads and writes, ensuring
that all computation is performed using local variables. Extending our approach to weaker
memory models is one aspect of future work.

Our technique assumes that the input program is known to replicate threads in a per-
fectly symmetric manner. To fully automate the application of our method to source code,
we additionally need a technique for detecting the presence of thread symmetry. Existing
approaches try to identify symmetries in PROMELA models [13] or in fact multi-threaded
C code [31]. In practice, there are two options: one can focus on full symmetry, checking
that the code of the replicated function does not use thread ids in a symmetry-breaking way.
A more general approach is to permit symmetry violations and determine the largest sym-
metry group that still accommodates such violations. Classical examples include the rotation
group for threads with a round-table communication pattern. As a consequence, the algo-
rithmic methods used in BOOM, which are based on counter abstraction, no longer apply.

References

1. Ball T, Cook B, Das S, Rajamani SK (2004) Refining approximations in software predicate abstraction.
In: TACAS. Lecture notes in computer science, vol 2988. Springer, Berlin, pp 388–403

2. Ball T, Majumdar R, Millstein TD, Rajamani SK (2001) Automatic predicate abstraction of C programs.
In: Programming language design and implementation (PLDI), pp 203–213

3. Ball T, Rajamani S (2002) The SLAM project: debugging system software via static analysis. In: Princi-
ples of programming languages (POPL), pp 1–3

4. Basler G, Mazzucchi M, Wahl T, Kroening D (2010) Context-aware counter abstraction. Form Methods
Syst Des 36(3):223–245

5. Chaki S, Clarke EM, Kidd N, Reps T, Touili T (2006) Verifying concurrent message-passing C programs
with recursive calls. In: Tools and algorithms for the construction and analysis of systems (TACAS).
Lecture notes in computer science. Springer, Berlin, pp 334–349

6. Cimatti A, Micheli A, Narasamdya I, Roveri M (2010) Verifying SystemC: a software model checking
approach. In: Formal methods in computer-aided design (FMCAD)

7. Clarke E, Grumberg O, Jha S, Lu Y, Veith H (2003) Counterexample-guided abstraction refinement for
symbolic model checking. J ACM 50(5):752–794

8. Cook B, Kroening D, Sharygina N (2007) Verification of Boolean programs with unbounded thread
creation. Theor Comput Sci 388(1–3):227–242

9. Corbet J, Rubini A, Kroah-Hartman G (2005) Linux device drivers, 3rd edn. O’Reilly Media, Sebastopol
10. Das S, Dill DL (2001) Successive approximation of abstract transition relations. In: Logic in computer

science (LICS)
11. Donaldson AF, Kaiser A, Kroening D, Wahl T (2011) Symmetry-aware predicate abstraction for shared-

variable concurrent programs. In: CAV. Lecture notes in computer science, vol 6806. Springer, Berlin,
pp 356–371

12. Donaldson AF, Kaiser A, Kroening D, Wahl T (2011) Symmetry-aware predicate abstraction for shared-
variable concurrent programs (extended technical report). CoRR. arXiv:1102.2330

13. Donaldson AF, Miller A (2008) Automatic symmetry detection for Promela. J Autom Reason 41(3–
4):251–293

14. Flanagan C, Qadeer S (2003) Thread-modular model checking. In: Model checking of software (SPIN)
15. Graf S, Saïdi H (1997) Construction of abstract state graphs with PVS. In: Computer-aided verification

(CAV). Lecture notes in computer science. Springer, Berlin, pp 72–83
16. Gupta A, Popeea C, Rybalchenko A (2011) Predicate abstraction and refinement for verifying multi-

threaded programs. In: POPL. ACM, New York, pp 331–344
17. Gupta A, Popeea C, Rybalchenko A (2011) Threader: a constraint-based verifier for multi-threaded pro-

grams. In: Computer-aided verification (CAV)
18. Henzinger T, Jhala R, Majumdar R, Qadeer S (2003) Thread-modular abstraction refinement. In: CAV.

Lecture notes in computer science. Springer, Berlin, pp 262–274

http://arxiv.org/abs/arXiv:1102.2330

44 Form Methods Syst Des (2012) 41:25–44

19. Henzinger T, Jhala R, Majumdar R (2004) Race checking by context inference. In: Programming lan-
guage design and implementation (PLDI), pp 1–13

20. Jones CB (1983) Tentative steps toward a development method for interfering programs. ACM Trans
Program Lang Syst 5(4):596–619

21. Kaiser A, Kroening D, Wahl T (2010) Dynamic cutoff detection in parameterized concurrent programs.
In: Computer-aided verification (CAV)

22. Lu S, Park S, Seo E, Zhou Y (2008) Learning from mistakes: a comprehensive study on real world
concurrency bug characteristics. In: Architectural support for programming languages and operating
systems (ASPLOS)

23. McKenney P (2007) Using Promela and Spin to verify parallel algorithms. LWN.net, weekly edition
24. Mellor-Crummey J, Scott M (1991) Algorithms for scalable synchronization on shared-memory multi-

processors. ACM Trans Comput Syst 9(1):21–65
25. Miller A, Donaldson A, Calder M (2006) Symmetry in temporal logic model checking. ACM Comput.

Surv. 38(3)
26. Speer Owicki S (1975) Axiomatic proof techniques for parallel programs. PhD thesis, Cornell University
27. Peierls T, Goetz B, Bloch J, Bowbeer J, Lea D, Holmes D (2005) Java concurrency in practice. Addison-

Wesley, Reading
28. Timm N, Wehrheim H (2010) On symmetries and spotlights—verifying parameterised systems. In:

ICFEM. Lecture notes in computer science. Springer, Berlin, pp 534–548
29. La Torre S, Madhusudan P, Parlato G (2010) Model-checking parameterized concurrent programs using

linear interfaces. In: Computer-aided verification (CAV)
30. Wahl T, Donaldson A (2010) Replication and abstraction: symmetry in automated formal verification.

Symmetry 2(2):799–847
31. Yang Y, Chen X, Gopalakrishnan G, Wang C (2009) Automatic discovery of transition symmetry in

multithreaded programs using dynamic analysis. In: SPIN

	Counterexample-guided abstraction refinement for symmetric concurrent programs
	Abstract
	Introduction
	Overview: symmetry-aware predicate abstraction
	Concrete and abstract programming languages
	Symmetric concurrent programming language
	Boolean broadcast programming language

	CEGAR for symmetric concurrent programs
	Initial abstraction
	Model checking boolean broadcast programs
	Simulation
	Transition refinement
	Predicate discovery

	Experimental evaluation
	Parametric benchmarks
	Non-parametric benchmarks

	Related work
	Open problems
	References

