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Abstract. We present combined-case k-induction, a novel technique for veri-
fying software programs. This technique draws on the strengths of the classical
inductive-invariant method and a recent application of k-induction to program
verification. In previous work, correctness of programs was established by sepa-
rately proving a base case and inductive step. We present a new k-induction rule
that takes an unstructured, reducible control flow graph (CFG), a natural loop oc-
curring in the CFG, and a positive integer k, and constructs a single CFG in which
the given loop is eliminated via an unwinding proportional to k. Recursively ap-
plying the proof rule eventually yields a loop-free CFG, which can be checked
using SAT-/SMT-based techniques. We state soundness of the rule, and investi-
gate its theoretical properties. We then present two implementations of our tech-
nique: K-INDUCTOR, a verifier for C programs built on top of the CBMC model
checker, and K-BOOGIE, an extension of the Boogie tool. Our experiments, using
a large set of benchmarks, demonstrate that our k-induction technique frequently
allows program verification to succeed using significantly weaker loop invariants
than are required with the standard inductive invariant approach.

1 Introduction

We present a novel technique for verifying imperative programs using k-induction [21].
Our method brings together two lines of existing research: the standard approach to
program verification using inductive invariants [15], employed by practical program
verifiers (including [4, 5, 10, 20], among many others) and a recent k-induction method
for program verification [12, 13] which we refer to here as split-case k-induction. Our
method, which we call combined-case k-induction, is directly stronger than both the
inductive invariant approach and split-case k-induction. We show experimentally that
combined-case k-induction frequently allows program verification to succeed using sig-
nificantly weaker loop invariants than would otherwise be required, reducing annotation
overhead.

We start by recapping the inductive invariant and split-case k-induction approaches
to verification, and outlining our new combined-case k-induction technique. We then
make the following novel contributions:

– We formally present combined-case k-induction as a proof rule operating on control
flow graphs, and state soundness of the rule (§4)
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– We state a confluence theorem, showing that in a multi-loop program the order in
which our rule is applied to loops does not affect the result of verification (§5)

– We present two implementations of our method: K-INDUCTOR, a verifier for C pro-
grams, and K-BOOGIE, an extension of the Boogie tool, and experimental results
applying these tools to a large set of benchmarks (§6)

Compared with our previous work on k-induction techniques for software [12, 13],
which are restricted to programs containing a single while loop (supporting multiple
loops only via a translation of all program loops to a single, monolithic loop), our novel
proof rule handles multiple natural loops in arbitrary reducible control-flow graphs.

Throughout the paper, we are concerned with proving partial correctness with re-
spect to assertions: establishing that whenever a statement assert φ is executed, the
expression φ evaluates to true. We shall simply use correctness to refer to this notion of
partial correctness.

2 Overview

Throughout the paper, we present programs as control flow graphs (CFGs) and use
the terms program and CFG synonymously. We follow the standard approach of mod-
elling control flow using a combination of nondeterministic branches and assume state-
ments. During execution, a statement assume φ causes execution to silently (and non-
erroneously) halt if the expression φ evaluates to false, and does nothing otherwise.

Consider the simple example program of Figure 1(a). The program initialises a, b
and c to distinct values, and then repeatedly cycles their values, asserting that a and b
never become equal. The condition for the loop is i < n, and is encoded using assume
statements at the start of the loop body, and at the start of the node immediately follow-
ing the loop. Variable x is initialised to zero, and after the loop an assertion checks that
x has not changed. The program is clearly correct.
The inductive invariant approach. To formally prove a program’s correctness using
inductive invariants, one first associates a candidate invariant with each loop header in
the program. One then shows that a) the candidate invariants are indeed loop invariants,
and b) these loop invariants are strong enough to imply that no assertion in the program
can fail. A technique for performing these checks in the context of unstructured pro-
grams is detailed in [3]. The technique transforms a CFG with loops into a loop-free
CFG. Each loop header in the original CFG is prepended in the transformed CFG with
a basic block that: asserts the loop invariant, havocs each loop-modified variable,3 and
assumes the loop invariant. Loop entry edges in the original CFG are replaced with
edges to these new blocks in the transformed CFG. Each back edge in the original CFG
is replaced in the transformed CFG with an edge to a new, childless basic block that
asserts the invariant for the associated loop. Otherwise, the CFGs are identical.

We say that a loop is cut with respect to invariant φ. This is illustrated in Figure 1(b)
for the program of Figure 1(a), where invariant φ is left unspecified. Cutting every loop
in a CFG leads to a loop-free CFG, for which verification conditions can be computed

3 A variable is havocked if it is assigned a nondeterministic value. A loop-modified variable is a
variable that is the target of an assignment in the loop under consideration.



x:=0;
i:=0;
a:=1;
b:=2;
c:=3;

B1

assume i < n;
assert a 6= b;
a,b,c:=b,c,a;

i++;

B2

assume i ≥ n;
assert x = 0;

(a) Original CFG

B1

assert φ;
i,a,b,c := *;
assume φ;

B2

assume i ≥ n;
assert x = 0;

assert φ;

(b) CFG after loop cutting

Fig. 1. A simple program, and the CFG obtained using the inductive invariant approach.

using weakest preconditions (an efficient method for this step is the main contribution
of [3]). These verification conditions can then be discharged to a theorem prover, and
if they are proven, the program is deemed correct. In Figure 1(b), taking φ to be (a 6=
b ∧ b 6= c ∧ c 6= a) allows a proof of correctness to succeed.

The main problem with the inductive invariant approach is finding the required loop
invariants. Despite a wealth of research into automatic invariant generation (see [8] and
references therein for a discussion of state-of-the-art techniques), this is by no means a
solved problem, and in the worst case loop invariants must still be specified manually.

Split-case k-induction. The k-induction method was proposed as a technique for SAT-
based verification of finite-state transition systems [21]. Let I(s) and T(s, s′) be for-
mulae encoding the initial states and transition relation for a system over sets of propo-
sitional state variables s and s′, P(s) a formula representing states satisfying a safety
property, and k a non-negative integer. To prove P by k-induction one must first show
that P holds in all states reachable from an initial state within k steps, i.e., that the
following formula (the base case) is unsatisfiable:

I(s1) ∧T(s1, s2) ∧ · · · ∧T(sk−1, sk) ∧ (P(s1) ∨ · · · ∨P(sk)) (1)

Secondly, one must show that whenever P holds in k consecutive states s1, . . . , sk,
P also holds in the next state sk+1 of the system. This is established by checking that
the following formula (the step case) is unsatisfiable:

P(s1) ∧T(s1, s2) ∧ · · · ∧P(sk) ∧T(sk, sk+1) ∧P(sk+1) (2)

In prior work [12, 13] we investigated a direct lifting of k-induction from transition
systems to the level of program loops. We refer to the technique of [12, 13] as split-case
k-induction, as it follows the transition system approach of splitting verification into a
base case and step case. Split-case k-induction is applied to a single loop in a program.
In the simplest case, no loop invariant is externally provided. Instead, assertions appear-
ing directly in the loop body take the role of an invariant. Given a CFG containing a
loop, two programs are derived; we illustrate these for our running example in Figure 2



x:=0;
i:=0;
a:=1;
b:=2;
c:=3;

B1

assume i < n;
assert a 6= b;
a,b,c:=b,c,a;

i++;

B2

B2

B2

assume i ≥ n;
assert x = 0;

(a) Base case

x,i,a,b,c:=*;

assume i < n;
assume a 6= b;
a,b,c:=b,c,a;

i++;
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assume i ≥ n;
assert x = 0;

B2

(b) Step case

Fig. 2. Split-case k-induction, with k = 3

x:=0;
i:=0;
a:=1;
b:=2;
c:=3;

assume i < n;
assert a 6= b;
a,b,c:=b,c,a;

i++;

B2

B2

B2

i,a,b,c:=*;

assume i < n;
assume a 6= b;
a,b,c:=b,c,a;
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B2

assume i ≥ n;
assert x = 0

Fig. 3. Combined-case k-induction, with k = 3

with k = 3. The base case program (Figure 2(a)) checks that no assertion can be vi-
olated within k loop iterations. This is analogous to Equation 1 above. The step case
program (Figure 2(b)) is analogous to Equation 2. It checks whether, after executing the
loop body successfully k times from an arbitrary state, a further loop iteration can be
successfully executed. In this further loop iteration, back edges to the loop header are
removed, while edges that exit the loop are preserved. Thus the step case verifies that
on loop exit, the rest of the program can be safely executed.

Correctness of both base and step case implies correctness of the whole program.
On the other hand, an incorrect base case indicates an error; an incorrect step case might
either indicate an error or a failure of k-induction to prove the program correct with the
current value of k (which is, in fact, the case for the step case pictured in Figure 2(b)).
In a program with multiple loops, applying split-case k-induction to one loop may lead



to a base and step case that each contain loops. In this case, the splitting procedure can
be applied recursively until loop-free CFGs are obtained, whose verification conditions
can be discharged to a prover.

Compared with the inductive invariant approach, split-case k-induction has the ad-
vantage that verification may succeed using weaker loop invariants. The assertion a 6= b
in Figure 1(a) can be established using split-case k-induction as shown in Figure 2
by taking k ≥ 3: unlike the inductive invariant approach, no external invariant (like
a 6= b ∧ b 6= c ∧ c 6= a) is required. However, split-case k-induction has the disad-
vantage that in the step case (Figure 2(b)), information about the values of variables
not occurring in the loop is entirely lost. Although the variable x in the example is not
modified in the loop, proving the assertion x = 0 after the loop is beyond the reach
of split-case k-induction. For split-case k-induction to succeed on this example, an in-
variant like x = 0 must be added to the loop body as an assertion. In contrast, with
the inductive invariant approach, the fact that x is assigned to zero before the loop is
preserved by the loop cutting process.

Our contribution: combined-case k-induction. In combined-case k-induction, the
strengths of split-case k-induction and the inductive invariant approach are brought
together. Like the inductive invariant approach, combined-case k-induction works by
cutting loops in the input CFG one at a time, resulting in a single program that needs to
be checked, but like split-case k-induction, no external invariant is required.

A non-negative integer kL is associated with each loop L in the input CFG. Loop
L is then kL-cut by replacing it with: kL copies of the loop body, statements havocking
all loop-modified variables, and kL copies of the loop body where all assertions are
replaced with assumptions and edges exiting the loop are removed. The last of the
“assume” copies of the loop body is followed by a regular copy of the loop body, in
which back edges to the loop header are removed.

Figure 3 illustrates combined-case k-induction applied to the example CFG of Fig-
ure 1(a); the single loop has been 3-cut. Comparing Figure 3 with Figure 2, observe that
the base and step cases of Figure 2 are essentially merged in Figure 3. There is one key
difference: variable x, which is not modified by the loop of Figure 1(a), is not havocked
in Figure 3. Thus, unlike with split-case k-induction, we do not lose the information
that the variable always retains its original value. With combined-case k-induction, the
program of Figure 1(a), which is beyond the reach of split-case k-induction, can be
directly verified with k ≥ 3. As a further difference, note that base and step case are
composed sequentially, with a transition leading from the last blockB2 of the base case
to the first block of the step case. For some programs, this can increase the strength
of the induction rule considerably compared to split-case k-induction, since path con-
straints established in the base case can be helpful for verifying the step case. Unlike
with the inductive invariant approach, no external invariant is required.

Of course, combined-case k-induction does not solve the problem of finding invari-
ants. The technique depends on invariants appearing as assertions in loop bodies. For
example, if the assertion a 6= b was moved to the exit of the loop in Figure 1(a), the
program could not be proved using combined-case k-induction. In practice it may be
necessary to strengthen the induction hypothesis by adding manually or automatically
derived invariants as assertions in the body of a loop. However, our experimental evalu-



ation in §6 demonstrates that combined-case k-induction frequently makes verification
possible with significantly weaker invariants than are otherwise required, thus reducing
annotation overhead.

3 Control flow graphs and loops

We present our results in terms of control flow graphs, which are minimal but general
enough to uniformly translate imperative programs where procedure calls are either
inlined, or replaced with pre- and post-conditions. In the diagrams of §2 we presented
CFGs whose nodes are basic blocks. For ease of formal presentation, from this point on
we consider CFGs whose nodes are single statements.

LetX be a set of integer variables, and let Expr be the set of all integer and boolean
expressions over X , using standard arithmetic and boolean operations. The set Stmt of
statements over X covers nondeterministic assignments, assumptions, and assertions:

Stmt = {x := ∗ | x ∈ X} ∪ {assume φ | φ ∈ Expr} ∪ {assert φ | φ ∈ Expr}.

Intuitively, a nondeterministic assignment x := ∗ alters the value of x arbitrarily; an
assumption assume φ suspends program execution if φ is violated and can be used
to encode conditional statements and constrain the effects of nondeterministic assign-
ments, while an assertion assert φ raises an error if φ is violated. Neither assume φ
nor assert φ have any effect if φ holds. We also use x := e as shorthand for ordinary
assignments, which can be expressed in the syntax above via a sequence of nondeter-
ministic assignments and assumptions.

Definition 1. A control flow graph (CFG) is a tuple (V, in, E, code), where V is a finite
set of nodes, in ∈ V an initial node, E ⊆ V × V a set of edges, and code : V → Stmt
a mapping from nodes to statements.

Loops and reducibility. We briefly recap notions of dominance, reducibility, and natu-
ral loops in CFGs, which are standard in the compilers literature [1].

Let C = (V, in, E, code) be a CFG. For u, v ∈ V , we say that u dominates v if
u = v, or if every path from in to v must pass through u. Edge (u, v) ∈ E is a back
edge if v dominates u.

Definition 2. The natural loop associated with back edge (u, v) is the smallest set
L(u,v) ⊆ V satisfying the following conditions:

– u, v ∈ L(u,v)

– (u′, v′) ∈ E ∧ v′ ∈ L(u,v) \ {v} ⇒ u′ ∈ L(u,v)

For a node v such that there exists a back edge (u, v) ∈ E, the natural loop associated
with v is the set Lv =

⋃
u∈V,(u,v) is a back edge L(u,v). Node v is the header of loop Lv .

For a loop L ⊆ V , modified(L) denotes the set of variables that may be modified
by nodes in L. Formally, modified(L) = {x ∈ X | ∃l ∈ L . code(l) = ‘x := ∗’}.4

4 In practice, modified(L) could be computed more precisely, e.g. disregarding assignments in
dead code. For a language with pointers, modified(L) is computed with respect to an alias
analysis, in the obvious way.



In a reducible CFG, the only edges inducing cycles are back edges. More for-
mally, C is reducible if the CFG C ′ = (V, in,FE , code) is acyclic, where FE is the
set {(u, v) ∈ E | (u, v) is not a back edge} of forward edges; otherwise we say that C
is irreducible.

From now on, we assume that all CFGs are reducible. This ensures that every cycle
in a CFG is part of a loop, and allows our k-induction method to work recursively, un-
winding loops one-by-one until a loop-free CFG is obtained. This is not a severe restric-
tion: structured programming techniques guarantee reducibility, and standard (though
expensive) techniques exist for transforming irreducible CFGs into reducible ones [1].
Semantics. Semantically, a CFG denotes a set of execution traces, which are defined
by first unwinding CFGs to prefix-closed sets of statement sequences. Subsequently,
statements and statement sequences are interpreted as operations on program states.

Definition 3. Let C = (V, in, E, code) be a CFG. The unwinding of C is defined as:

unwinding(C) =

{
〈code(v1), . . . , code(vn)〉 | n > 0 ∧ v1 = in ∧

∀i ∈ {1, . . . , n− 1}. (vi, vi+1) ∈ E

}
∪{ε} ⊆ Stmt∗

where ε denotes the empty sequence.

A non-error state is a store mapping variables to values in some domain D. The set
of program states for a CFG over X is the set of all stores, together with a designated
error state: S = {σ | σ : X → D} ∪ { }.

For an expression φ and store σ, we write φσ to denote the value obtained by eval-
uating φ according to the valuation of variables given by σ.

We give trace semantics to CFGs by first defining the effect of a statement on a
program state. This is given by the function post : S × Stmt → 2S defined as follows:

post( , s) = { } (for any statement s)
For non-error states σ 6=  :

post(σ, x := ∗) = {σ′ | σ′(y) = σ(y) for all y 6= x}
post(σ, assume φ) =

(
if φσ = tt then {σ}, otherwise ∅

)
post(σ, assert φ) =

(
if φσ = tt then {σ}, otherwise { }

)
The function post is lifted to the evaluation function traces : S × Stmt+ → 2S

∗
on

non-empty statement sequences as follows:

traces(σ, s) = {〈σ, σ′〉 | σ′ ∈ post(σ, s)}
traces(σ, 〈s1, . . . , sn〉) = {σ.τ | ∃σ′. σ′ ∈ post(σ, s1) ∧ τ ∈ traces(σ′, 〈s2, . . . , sn〉)}

Here, for a state σ ∈ S and state tuple τ ∈ Sm, σ.τ ∈ Sm+1 is the concatenation of σ
and τ . The set of traces of a CFG C is the union of the traces for any of its paths:

traces(C) =
⋃
{traces(σ, p) | σ ∈ S \ { } ∧ p ∈ unwinding(C)}.

Note that there are no traces along which assume statements fail.
We say that CFG C is correct if  does not appear on any trace in traces(C). Oth-

erwise C is not correct, and a trace which leads to  is a counterexample to correctness.



Algorithm 1: ANALYSE

Input: Reducible CFG C = (V, in, E, code).
Output: One of {CORRECT,DON’T KNOW}
if C is loop-free then

if DECIDE(C) = CORRECT then // Program is correct
return CORRECT;

else // Correctness not determined
return DON’T KNOW;

end
else // apply the k-induction rule

(∗) choose loop L in C and depth k ∈ N;
result←− ANALYSE(CL

k );
if result = CORRECT then // k-induction succeeded

return CORRECT;
else // k-induction was inconclusive

(∗∗) either back-track to (∗), or return DON’T KNOW;
end

end

4 Proof rule and verification algorithm

Given a CFG C containing a natural loop L (see Def. 2), and a positive integer k, we
shall define a k-induction rule that transforms C into a CFG CLk in which loop L is
eliminated via k-cutting, such that correctness of CLk implies correctness of C. We start
by motivating the use of the rule, considering the procedure ANALYSE of Algorithm 1.

ANALYSE attempts to prove correctness of C by applying the k-induction rule re-
cursively. At each step, a loop in the CFG, and a corresponding value of k is chosen.
The loop is eliminated from the CFG by k-cutting. If the result is a loop-free CFG,
correctness is checked by an appropriate decision procedure (e.g. an SMT solver). Oth-
erwise, the process continues with the selection of another loop. If a k-cut CFG is not
found to be correct (a recursive call to ANALYSE returns DON’T KNOW) then the pro-
cedure either returns an inconclusive result, or backtracks and applies k-induction to a
different loop, and/or using a different value for k.

Note that ANALYSE cannot be used to determine that a program is incorrect. It could
be modified to do so, by explicitly marking those portions of a k-cut CFG in which an
error signifies a genuine bug. Genuine bugs can only be detected via traces through
the k-cut CFG that do not pass through any havoc nodes introduced by the k-induction
rule. Alternatively, ANALYSE can simply be executed in parallel with bounded model
checking [6].

4.1 Graphical description of k-induction proof rule

Figure 4(a) depicts an arbitrary CFG C that contains at least one loop, L. The CFG is
separated into L (the smaller cloud), and the set of nodes outside L (the cloud labelled
“Main program”). The main program may contain further loops, and L may contain
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Fig. 4. Schematic overview of the new k-induction rule, assuming modified(L) = {x1, . . . , xd}.

nested loops. We assume that entry to the CFG, indicated by the edge into “Main pro-
gram”, is not via L. The program can be re-written to enforce this, if necessary.

Loop L has a single entry point, or header, indicated by the large dot in Figure 4(a).
There are edges from at least one (and possibly multiple) node(s) in the main program
to this header. Inside L, there are back edges from at least one node to the header. In
addition, there are zero-or-more edges that exit L, leading back to the main program.

For some unspecified k > 0, Figure 4(b) shows the CFG CLk generated by our
novel k-induction rule, which we present formally in §4.2. The loop L has been k-cut,
producing a CFG CLk with four components. The nodes outside L are labelled “Main
program”. Edges from the main program into L in Figure 4(a) are replaced with edges
into the first of k copies of the body of L, denoted L1, . . . , Lk. These are marked “Base
case” in Figure 4(b). In each Li, edges leaving L are preserved, as are edges within L,
except for back edges. For i < k, a back edge in L is replaced in Li with an edge to the
header node of the next copy of L, namely Li+1. The base case part of CLk checks that
the first k iterations of L can be successfully executed.

In the final copy of L appearing in the base case, Lk, back edges are replaced with
edges to the sequence of nodes marked Z in Figure 4(b). Z has the effect of havocking
the variables x1, . . . , xd that comprise modified(L), the loop-modified variables for L.

The final node of Z is followed by k copies of the body of L in which all state-
ments of the form assert φ are replaced with assume φ, and all edges leaving L are
removed. These modified copies of the body of L are denoted La1 , . . . , L

a
k (where a de-

notes assume), and back-edges in L are replaced in Lai with edges to to the header of
Lai+1, for i < k. In Lak, back edges are replaced with edges to Lk+1. This is a final copy
of the body of L, where assertions are left intact, edges leaving L are preserved, and



back-edges are removed. The fragments La1 , . . . , L
a
k and Lk+1 are denoted “Step case”

in Figure 4(b). Together with the Z nodes, they check that, from an arbitrary loop entry
state, assuming that k iterations of L have succeeded, a further iteration that is followed
by execution of the main program, will succeed.

It may be instructive to compare the abstract program of Figure 4(a), and corre-
sponding k-cut program of Figure 4(b), with the program of Figure 1(a) and 3-cut pro-
gram of Figure 3. Loop L of Figure 4(a) corresponds to B2 in Figure 1(a). Components
L1, . . . , Lk in Figure 4(b) correspond to the three copies of B2 on the left of Figure 3,
La1 , . . . , L

a
k to the three copies ofBa2 on the right of Figure 3, and Lk+1 to the additional

copy of B2 on the right of Figure 3. Finally, the Z nodes of Figure 4(b) are reflected by
the statement i, a, b, c := ∗ in Figure 3.

4.2 Formal definition of k-induction proof rule

We now formally define our novel k-induction rule as a transformation rule on control
flow graphs, using the same notation as presented in Figure 4.

Let C = (V, in, E, code) be a CFG and L ⊆ V a loop in C with header h. Assume
that in /∈ L. (This can be trivially enforced by adding an assume tt node to C if neces-
sary.) We present a k-induction proof rule for positive values of k, under the assumption
that modified(L) is non-empty. Extending the definition, and all the results presented
in this paper, to allow k = 0, and modified(L) = ∅, is trivial, and the implementations
we describe in §6 incorporate such extensions. However, a full presentation involves
considering pedantic corner cases which make the essential concepts harder to follow
without providing further insights into our work.

Thus, let k > 0, and suppose modified(L) = {x1, . . . , xd} for some d > 0. For
1 ≤ i ≤ k + 1, define Li = {vi | v ∈ L}. Similarly, for 1 ≤ i ≤ k, define Lai =
{vai | v ∈ L}. Let Z = {zh1 , . . . , zhd}. Assume that the sets Li (1 ≤ i ≤ k + 1), Lai
(1 ≤ i ≤ k) and Z consist of fresh nodes, all distinct from each other and from the
nodes in V .

Definition 4. CLk = (V Lk , in
L
k , E

L
k , codeLk ) is defined as follows:

V Lk = (V \ L) ∪
⋃k+1
i=1 Li ∪

⋃k
i=1 L

a
i ∪ Z

inLk = in (recall that, by assumption, in /∈ L)

ELk =
{ (u, v) | (u, v) ∈ E ∧ u, v /∈ L } Edges in Main program
∪ { (u, h1) | (u, h) ∈ E ∧ u /∈ L } Main program→ L1

∪ { (ui, vi) | 1 ≤ i ≤ k + 1 ∧ (u, v) ∈ E ∧ u, v ∈ L ∧ v 6= h } Edges in Li
∪ { (uai , v

a
i ) | 1 ≤ i ≤ k ∧ (u, v) ∈ E ∧ u, v ∈ L ∧ v 6= h } Edges in Lai

∪ { (ui, hi+1) | 1 ≤ i < k ∧ (u, h) ∈ E ∧ u ∈ L } Li → Li+1 (i < k)
∪ { (uai , h

a
i+1) | 1 ≤ i < k ∧ (u, h) ∈ E ∧ u ∈ L } Lai → Lai+1 (i < k)

∪ { (uak, hk+1) | (u, h) ∈ E ∧ u ∈ L } Lak → Lk+1

∪ { (ui, v) | 1 ≤ i ≤ k + 1 ∧ (u, v) ∈ E ∧ u ∈ L ∧ v /∈ L } Li →Main program
∪ { (uk, zh1 ) | (u, h) ∈ E ∧ u ∈ L } Lk → Z
∪ { (zhi , z

h
i+1) | 1 ≤ i < d } Edges in Z

∪ { (zhd , h
a
1) } Z → La1



codeLk (zhi ) = ‘xi := ∗’ (1 ≤ i ≤ d)

codeLk (vai ) =

{
assume φ if code(v) = assert φ

code(v) otherwise
(1 ≤ i ≤ k)

codeLk (vi) = code(v) (1 ≤ i ≤ k + 1)
codeLk (v) = code(v) for v ∈ V Lk ∩ V

Theorem 1 (Soundness). If CLk is correct then C is correct.

5 Theoretical properties of the k-induction rule

Confluence. We now turn to the question of confluence: for fixed values of k, does it
matter in which order the loops of a CFG are processed when recursively applying the
k-induction rule? First, we define what it means for CFGs to be isomorphic.

Definition 5. Let C = (V, in, E, code) and C ′ = (V ′, in ′, E′, code ′) be CFGs. A
bijection α : V → V ′ is an isomorphism between C and C ′ if α(in) = in ′ and, for
all u, v ∈ V , code(u) = code ′(α(u)), and (u, v) ∈ E ⇔ (α(u), α(v)) ∈ E′. If there
exists an isomorphism between C and C ′, we say that C and C ′ are isomorphic and
write C ≡ C ′.

It is easy to show that ≡ is an equivalence relation on CFGs.
In what follows, C denotes a CFG. The next result follows directly from the defini-

tion of a natural loop:

Lemma 1. For distinct loops L and M in C, either L ∩M = ∅, L ⊂M or M ⊂ L.

Lemma 2 (Confluence of k-induction rule for disjoint loops). Let L and M be dis-
joint loops in C, and let kL and kM be positive integers. Then (CLkL

)MkM
≡ (CMkM

)LkL
.

Lemma 2 shows that, for disjoint loops, the order in which k-induction is applied to
each loop is irrelevant; an isomorphic CFG always results. Thus, for mutually disjoint
loops L1, . . . , Ld in a CFG C, and positive integers k1, . . . , kd, we can write CL1,...,Ld

k1,...,kd

to denote a CFG obtained by applying the k-induction rule d times, on each application
eliminating one of the loops Li according to ki.

Now consider loops L ⊂M of C, and positive integers kL and kM .
The CFG CMkM

contains kM +1 direct copies of L, and kM copies of L in which all
assertions are replaced with assumptions. This is because L forms part of the body of
M . Let us denote these copies of L by L1, . . . , LkM+1 and La1 , . . . , L

a
kM

respectively.
Def. 4 ensures that they are all disjoint in CMkM

.
The CFG CLkL

contains a loopM ′ identical toM , except that L has been eliminated
from the body of M ′, and replaced with an unwinding of L proportional to kL.

Lemma 3 (Confluence of k-induction rule for nested loops). Let L ⊂M be loops of
C, and kL and kM positive integers. Using the above notation, we have:

(CLkL
)M
′

kM
≡ (CMkM

)L1,...,Lk+1,L
a
1 ,...,L

a
k

kL,.....................,kL
.



We now show that if we repeatedly apply the k-induction rule to obtain a loop-free
CFG, as long as a value for k is used consistently for each loop in C the order in which
the k-induction rule is applied to loops is irrelevant.

We assume a map origin which, given any CFGD derived from C by zero-or-more
applications of the k-induction rule and a loop L of D, tells us the original loop in C
to which L corresponds. For example, given loops L ⊂ M ⊂ N in C and positive
integers kL, kM , kN , CFG CNkN

contains many duplicates of L and M , including loops
L1 ⊂ M1. In turn, CFG (CNkN

)M1
kM

contains many duplicates of L1, including L11 . We
have origin(L11) = origin(L1) = origin(L) = L, origin(M1) = origin(M) = M ,
and origin(N) = N . Also, CFG CLkL

includes loops M ′ ⊂ N ′ identical to M and N ,
except that L has been unrolled. We have origin(M ′) = M and origin(N ′) = N .

Definition 6. Let k : (loops of C) → N associate a positive integer with each loop
of C. For i ≥ 0, let Pi be the set of all CFGs that can be derived from C by exactly
i applications of the k-induction rule, together with all loop-free CFGs that can be
derived from C by up to i applications of the k-induction rule. In all applications of the
rule, k is chosen according to the mapping k.

The sequence (Pi) is defined by P0 = {C} and

Pi = {DL
k(origin(L)) | D ∈ Pi−1 ∧ L is a loop of D} ∪

{D ∈ Pi−1 | D is loop free } .
(for i > 0)

Our main confluence theorem states that the result of exhaustively applying the
combined-case k-induction rule is independent (up to isomorphism) of the order in
which loops are eliminated. The result is stated with respect to Def. 6, and is proved
using Lemmas 1–3.

Theorem 2 (Global confluence). There is an integer n such that Pm = Pn for all
m ≥ n. All the CFGs in Pn are isomorphic, and loop-free.

It should be noted that, although the final CFGs are isomorphic regardless of the or-
der of loop elimination, intermediate CFGs can differ both in size and in the number of
remaining loops. Also, the total number of required applications of the k-induction rule
depends on this order: eliminating loops starting from innermost loops will altogether
need fewer rule applications than elimination starting with outer loops.

Size of loop-free programs produced by k-induction. Since the program CLk ob-
tained via a single application of the k-induction rule contains 2k + 1 copies of the
loop L, repeated application can increase the size of a program exponentially. Such
exponential growth can only occur in the presence of nested loops, however, because
k-induction leaves program parts outside of the eliminated loop L unchanged. By a
simple complexity analysis, we find that the size of loop-free programs derived though
repeated application of k-induction is (singly) exponential in the depth of the deepest
loop nest in the worst case, but only linear in the number of disjoint loops. Thus the size
of generated programs is not a bottleneck for combined-case k-induction in practice.



6 Experimental evaluation

We have implemented our techniques in two tools. K-BOOGIE is an extension of the
BOOGIE verifier, allowing programs written in the BOOGIE language to be verified
using combined-case k-induction, as well as with the inductive invariant approach sup-
ported by regular BOOGIE. When combined-case k-induction is selected, our novel
k-induction rule is used to eliminate innermost loops first. As BOOGIE is an inter-
mediate language for verification, K-BOOGIE can be applied to programs originating
from several different languages, including Spec# [4], Dafny [20], Chalice, VCC, and
Havoc. K-INDUCTOR is a k-induction-based verifier for C programs built on top of
the CBMC tool [9]. K-INDUCTOR supports both split- and combined-case k-induction.
Again, with combined-case k-induction, loops are processed innermost first. With split-
case k-induction, all outermost loops are simultaneously eliminated in each application
of the k-induction rule; we have found this strategy works best in practice.

We use K-BOOGIE to compare the standard inductive invariant approach to verifica-
tion with our novel combined-case k-induction method, and K-INDUCTOR to compare
combined-case k-induction with split-case k-induction. Both tools, and all our bench-
marks, are available online: http://www.cprover.org/kinduction
Experiments with K-BOOGIE. We apply K-BOOGIE to a set of 26 Boogie programs,
the majority of which were machine-generated from (hand-written) Dafny programs
included in the Boogie distribution. Most of the programs verify functional correctness
of standard algorithms, including sophisticated procedures such as the Schorr-Waite
graph marking algorithm. The Boogie programs contain altogether 40 procedures, an-
notated with assertions, pre-/post-conditions, and loop invariants, and were not previ-
ously known to be amenable to k-induction. Six of the procedures contain multiple
loops, three contain (singly) nested loops. Our findings are summarised in Table 1.

To evaluate the applicability of k-induction, we first split conjunctive loop invariants
in the programs into multiple invariants, and then eliminated all invariants that were
not necessary to verify assertions and post-conditions even with the normal Boogie
induction rule. Since Boogie uses abstract interpretation (primarily with an interval
domain) to automatically infer simple invariants, in this step also all those invariants
were removed that can be derived with the help of inexpensive abstract interpretation
techniques. The elimination of invariants was done in a greedy manner, so that in the
end a minimum set of required invariants for each procedure was obtained (though not
necessarily a set with the smallest number of invariants).

We then checked, using 0 ≤ k ≤ 4, which of the loop invariants were unnecessary
with combined-case k-induction. This was done by first trying to remove invariants in-
dividually, keeping all other invariants of a procedure. In Table 1, # removable shows
the number of invariants that could be individually removed, in comparison to the total
number of invariants. As second step, we determined maximum sets of invariants that
could be removed simultaneously, shown under # sim. remov. in Table 1. In both cases,
we show the largest value of k required for invariant removal, over all loops (required
k), which was determined by systematically enumerating all combinations of k. For
each procedure, we show the verification time with the normal Boogie loop rule (time
w/o k-ind.), the range of times needed by the various runs with k-induction (times w/
k-ind., using the smallest k for which verification succeeded), the number of lines of



Procedure # removable, # sim. remov., time w/o times w/ LOC/ LOC
required k required k k-ind. k-ind. # loops program

Procedures generated from Dafny programs
VSI-b1.Add 2/4, 1 2/4, 1 2.5s [2.6s, 2.9s] 114/2 710
VSI-b2.BinarySearch 0/5, 1 2.5s 2.6s 100/1 595
VSI-b3.Sort 1/16, 1 1/16, 1 3.9s [6.2s, 6.2s] 186/2

798VSI-b3.RemoveMin 1/6, 1 1/6, 1 3.0s [4.5s, 4.5s] 176/2
VSI-b4.Map.FindIndex 3/4, 2 2/4, 1 3.7s [3.6s, 4.6s] 84/1 956
VSI-b6.Client.Main 1/3, 1 1/3, 1 3.1s [3.5s, 3.5s] 139/1 900
VSI-b8.Glossary.Main 4/16, 1 3/16, 1 5.3s [18.7s, 21.6s] 381/3
VSI-b8.Glossary.readDef 0/1, 1 3.4s 3.6s 71/1 1998
VSI-b8.Map.FindIndex 0/1, 1 3.3s 3.4s 66/1
Composite.Adjust 1/3, 2 1/3, 2 5.3s [44.3s, 44.3s] 80/1 1275
LazyInitArray 1/5, 1 1/5, 1 5.0s 5.0s 165/1 806
SchorrWaite.RecursiveMark 0/6, 1 3.4s 4.2s 98/1
SchorrWaite.IterativeMark 2/17, 1 2/17, 1 4.8s 5.7s 177/1 1175
SchorrWaite.Main 4/27, 1 3/27, 1 33.3s [16.9s, 34.5s] 275/1
SumOfCubes.Lemma0 1/2, 1 1/2, 1 2.6s [2.6s, 2.6s] 81/1
SumOfCubes.Lemma1 1/2, 1 1/2, 1 2.7s [2.7s, 2.7s] 65/1

915SumOfCubes.Lemma2 1/2, 1 1/2, 1 2.5s [2.5s, 2.5s] 48/1
SumOfCubes.Lemma3 1/2, 1 1/2, 1 2.5s [2.5s, 2.5s] 51/1
Substitution 0/1, 1 2.7s 2.8s 131/1 846
PriorityQueue.SiftUp 1/2, 2 1/2, 2 2.9s 3.3s 92/1

819PriorityQueue.SiftDown 1/2, 2 1/2, 2 3.1s [16.0s, 16.0s] 101/1
MatrixFun.MirrorImage 2/6, 1 2/6, 1 2.9s [3.5s, 3.5s] 125/2

922MatrixFun.Flip 1/3, 1 1/3, 1 2.7s [2.8s, 2.8s] 103/1
ListReverse 2/3, 2 2/3, 2 2.4s [2.4s, 2.4s] 71/1 329
ListCopy 1/4, 1 1/4, 1 2.5s [2.5s, 2.5s] 141/1 434
ListContents 1/3, 1 1/3, 1 3.4s [6.1s, 6.1s] 141/1 717
Cubes 3/4, 2 3/4, 4 2.8s [2.7s, 3.3s] 97/1 339
Celebrity.FindCelebrity1 1/1, 2 1/1, 2 2.5s [3.0s, 3.0s] 98/1
Celebrity.FindCelebrity2 0/1, 1 2.5s 2.7s 99/1 795
Celebrity.FindCelebrity3 0/2, 1 2.5s 2.6s 86/1
VSC-SumMax 1/2, 1 1/2, 1 2.4s [2.7s, 2.7s] 77/1 458
VSC-Invert 0/1, 1 15.4s [3.2s, 3.2s] 61/1 568
VSC-FindZero 1/2, 1 1/2, 1 2.7s [2.7s, 2.7s] 90/1 625
VSC-Queens.CConsistent 0/3, 1 2.6s 2.7s 79/1

825VSC-Queens.SearchAux 0/1, 1 2.9s 3.2s 139/1

Native Boogie programs
StructuredLocking 1/1, 1 1/1, 1 1.8s [1.8s, 1.8s] 16/1

40StructuredLockingWithCalls 0/1, 1 1.8s 1.8s 13/1
Structured.RunOffEnd1 1/1, 1 1/1, 1 1.8s [1.8s, 1.8s] 12/1 53
BubbleSort 7/14, 1 7/14, 1 2.1s [3.0s, 3.2s] 33/3 42
DutchFlag 1/5, 1 1/5, 1 1.9s [2.0s, 2.0s] 29/1 37

Table 1. Experimental results applying K-BOOGIE to Dafny and Boogie benchmarks included in
the Boogie distribution.

Benchmark LOC # loops nesting split-case combined-case speedup with
depth min k max k time (s) # invariants min k max k time (s) combined-case

1-buf 151 2 2 1 1 0.32 3 0 1 0.23 1.35
1-buf I/O 178 2 2 1 1 0.39 5 0 1 0.27 1.44
2-buf 254 3 2 1 2 1.18 17 0 2 0.45 2.62
2-buf I/O 304 3 2 1 2 2.06 29 0 2 0.53 3.85
3-buf 282 4 2 1 3 9.56 27 0 3 1.00 9.58
3-buf I/O 364 4 2 1 3 8.47 38 0 3 1.03 8.19
Euler simple 101 3 3 1 2 3.30 10 0 2 2.95 1.12
sync atomic op 91 3 2 1 1 0.40 4 0 1 0.18 2.24
sync mutex 83 2 2 1 1 0.87 2 0 1 0.28 3.08

Table 2. Experimental results applying K-INDUCTOR to DMA processing benchmarks.



executable code (LOC), and the number of loops (# loops). We also show the total num-
ber of lines for each program (LOC program), including all procedures and additional
definitions (which can be quite considerable). Experiments were run on a 2.5GHz Intel
Core2 Duo machine with 2 GB RAM and Windows Vista.

For all but 11 of the procedures, spread over 22 of the 26 programs, we find that,
with 1- or 2-induction, we are able to remove invariants that are necessary for the normal
Boogie loop rule. Since the normal Boogie rule corresponds to 0-induction, augmented
with assumptions and assertions encoding the loop invariant, already 1-induction is
often able to succeed with a significantly reduced number of invariants. Values of k
larger than two proved to be beneficial only for a single procedure (Cubes); additional
gains with even larger values of k therefore seem unlikely. On average, 32% of the
invariants could be removed (simultaneously) when using k-induction. The verification
times with k-induction are only marginally larger than those with the normal Boogie
rule, and for some examples even smaller (averaging over all benchmarks, verification
time increased by 44%). In cases where the same set of invariants is used, verification
times almost coincide. This shows that k-induction, with small values of k, can be
useful for general-purpose verification, since the (extremely time-consuming) process
of constructing inductive invariants can be shortened.

Experiments with K-INDUCTOR. We apply K-INDUCTOR to a set of benchmarks
from the domain of direct memory access (DMA) race checking, studied in [12, 13]
(in which full details can be found). These consist of data processing programs for
the Cell BE processor, where data is manipulated using DMA. In [12, 13], split-case
k-induction is applied to these benchmarks, under the simplifying assumption that in
many cases inner loops unrelated to DMA are manually sliced away, leaving single-
loop programs. We find that combined-case k-induction allows us to handle inner loops
in these benchmarks directly. With split-case k-induction, handling inner loops requires
the addition of numerous invariants, as assertions in the program text.

For each DMA processing benchmark, Table 2 shows the number of lines of code
(LOC), the number of loops processed by k-inductor (# loops, this is the number of
loops after function inlining, which may cause loop duplication), and the depth of the
deepest loop nest (nesting depth). All benchmarks involve nested loops. For the split-
case and combined-case approaches, we manually determined the smallest values of k
required for each loop in order for verification to succeed. In each case, the minimum
and maximum values of k required are shown (min/max k), as well as the time (in
seconds) taken for verification with this combination of k values (time). For the split-
case approach, we show the number of invariants that had to be added manually for
verification to succeed (# invariants) – these invariants are not required when our novel
combined-case method is employed. Finally, we show the speedup obtained by using
combined-case k-induction instead of split-case k-induction (speedup with combined-
case). Experiments are performed on a 3GHz Intel Xeon machine, 40 GB RAM, 64-bit
Linux. MiniSat 2 is used as a back-end SAT solver for CBMC. Manually specified
invariants are mainly simple facts related to variable ranges; many could be inferred
automatically using abstract interpretation.

The results show that combined-case k-induction avoids the need for a significant
number of additional invariants when verifying these examples. This allows many in-



ner loops that are unrelated to DMA processing (and thus do not contain assertions of
interest) to be handled using k = 0. In such cases, k = 0 is sufficient because we
do not havoc variables that are not modified by the loop in question. With split-case
k-induction, explicit invariant assertions must be added to assert that such variables are
invariant under loop execution. This involves a lot of manual effort, and verification
with k-induction requires at least k = 1 to take advantage of these assertions.

We also find that combined-case k-induction is uniformly, and sometimes signifi-
cantly faster than split-case k-induction. We attribute this to the multiple loop-free pro-
grams that must be solved with split-case k-induction, compared with the single loop-
free program associated with combined-case k-induction. Verification using combined-
case k-induction never takes longer than three seconds for this benchmark set, suggest-
ing good scalability of the approach.

7 Related work and conclusions

The concept of k-induction was first published in [21, 7], targeting the verification of
hardware designs and transition relations. A major emphasis of these two papers is
on the restriction to loop-free or shortest paths, which is so far not considered in our
k-induction rule due to the size of state vectors and the high degree of determinism in
software. Several optimisations and extensions to the technique have been proposed, in-
cluding property strengthening to reduce induction depth [22], improving performance
via incremental SAT solving [14], and verification of temporal properties [2].

Besides hardware verification, k-induction has been used to analyse synchronous
programs [18, 16] and, recently, SystemC designs [17]. To the best of our knowledge,
the first application of k-induction to imperative software programs was done in the
context of DMA race checking [12, 13], from which we also draw some of the bench-
marks used in this paper. A combination of the k-induction rule of [12, 13], abstract
interpretation, and domain-specific invariant strengthening techniques for DMA race
analysis is the topic of [11]. The main new contributions of this paper over our previous
work are that we present a k-induction technique that can be applied in a structured
manner to multiple, arbitrary loops in a reducible control-flow graph (prior work was
restricted to single-loop programs, with multiple loops handled via translation to a sin-
gle, monolithic loop), and we present the novel idea of combined-case k-induction,
where base and step case are combined into a single program. We have demonstrated
experimentally that combined-case k-induction can allow verification to succeed using
weaker loop invariants than are required with either split-case k-induction or the induc-
tive invariant approach, and that it can significantly out-perform split-case k-induction.

Combined-case k-induction depends on analysis of those variables which are not
modified by a given loop. This can be viewed as a simple kind of loop summary. We
plan to investigate whether k-induction can be strengthened using more sophisticated
loop summarisation analyses [19]. In addition, we intend to study automatic techniques
for selecting and exploring values of k for programs with multiple loops.

Finally, our experiments show that the effectiveness of k-induction varies signif-
icantly from example to example. It would be interesting and useful to characterise,
ideally formally but at least intuitively, classes of programs for which k-induction is



likely to be beneficial for verification. Our initial efforts in this direction indicate that it
is a challenging problem.
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