
Automatic Safety Proofs for
Asynchronous Memory Operations ∗

Matko Botinčan Mike Dodds
University of Cambridge, UK

{matko.botincan,mike.dodds}@cl.cam.ac.uk

Alastair F. Donaldson
University of Oxford, UK

alastair.donaldson@comlab.ox.ac.uk

Matthew J. Parkinson
Microsoft Research Cambridge, UK

mattpark@microsoft.com

Abstract
We present a work-in-progress proof system and tool, based on sep-
aration logic, for analysing memory safety of multicore programs
that use asynchronous memory operations.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying, Verifying & Reasoning about Programs

General Terms Languages, Theory, Verification

Keywords Separation logic, memory safety, concurrency

1. Introduction
Asynchronous memory operations are an important feature of mod-
ern multicore systems. They provide a means for coping with
the high cost of shared memory access: cores can delegate data-
movement to dedicated hardware, and continue processing on fast,
private memory, without contention. Asynchronous memory opera-
tions are widely available, e.g. DMA operations in the Cell BE, I/O
Acceleration Technology in Intel Xeon cores, and asynchronous
memory copying in CUDA/OpenCL.

The high performance permitted by asynchronous memory op-
erations comes at a price: increased programming complexity. Er-
roneous synchronisation within a thread can lead to data races, for
example when copying a section of memory by an asynchronous
operation and then writing to it before the operation completes. If
a function returns while an asynchronous operation on a local vari-
able is still pending (perhaps as a part of a speculative pre-fetch),
the operation may corrupt the stack frame of subsequently called
functions. These problems are compounded in a multithreaded set-
ting: incorrectly managed asynchronous operations can lead to
inter-core data races. Asynchronous operations run concurrently
with other threads, and they have undefined behaviour over written
memory until synchronised. The defects described above thus lead
to highly nondeterministic behaviour, thus buggy programs may
behave entirely correctly on some implementations, while failing
dramatically on others.

We report work in progress on a methodology and tool for au-
tomatically proving safety of multicore programs that use asyn-

∗ This work was supported by the EPSRC, RAEng and the Gates trust.

Copyright is held by the author/owner(s).

PPoPP’11, February 12–16, 2011, San Antonio, Texas, USA.
ACM 978-1-4503-0119-0/11/02.

void master(char src[length], char dst[length]) {
tid∗ t[N]; int i; // ‘master’ runs on host core.
for (i=0; i<N; i++)
{ t[i] = fork(slave, src+i∗M∗L, dst+i∗M∗L, M, i); }

for (i=0; i<N; i++) { join(t[i]); }
}
void slave(char∗ in, char∗ out, int M, int t) {

char buf[L]; int i = 0;
while (i < M) {

get(buf, in, L, t); // ‘slave’ runs on accelerator cores, e.g. SPEs
wait(t); // ‘in’ and ‘out’ point to host memory
in = in + L; // ‘buf’ allocated in scratch−pad memory
// Process data in the array
put(buf, out, L, t);
wait(t);
out = out + L; i = i + 1;

} }

Figure 1. Data processing example using single buffering.

chronous memory operations. Reasoning about such operations in-
volves complex flow-, path- and context-sensitive analysis of ac-
cesses to possibly overlapping regions of memory. We propose a
deductive, proof-based approach that enables automation of this
analysis. If a proof can be found via our method then the program is
guaranteed to be race-free and memory-safe. We show how proofs
are performed with an example drawn from the IBM Cell SDK [4].
We then outline our approach to automating this proof strategy.

2. Proving safety: a worked example
Single buffering. In the example of Fig. 1, a master thread divides
array processing among several slave threads. The master thread
runs on the host core, while slave threads run on accelerator cores
equipped with scratch-pad memory, e.g. SPEs in the Cell BE archi-
tecture. In the slave function, operation get/put initiates an asyn-
chronous copy to/from the thread’s private memory, respectively.
Operations are parameterised by associated tags; calling wait on a
tag t blocks until all operations associated with t have completed.
The function slave uses these operations to implement single buffer-
ing. An internal buffer of size L is used to store chunks of the shared
array. Operations get and put are used to fill the buffer and push
the results of processing (details of which are omitted) back to the
main program. More complex algorithms, using double- or triple-
buffering, exploit asynchrony to improve performance by overlap-
ping computation with communication.

Proving safety. Our system is based on separation logic [5], which
extends Hoare logic to permit reasoning about dynamically allo-
cated data structures. This is achieved via a new spatial conjunction
logical connective: P1 ∗P2 means that there exists a splitting of the



memory into two disjoint parts, one satisfying P1 and the other P2.
Separation logic also has a new rule, the frame rule, which allows
us just consider the memory that a command changes, and know
that the rest is unchanged implicitly.

To reason about the single-buffer example, we introduce two
new assertions: arr(x, l) denotes that x is the address of the first
element of an array segment of length l; MFC(t,O) (for ‘mem-
ory flow controller’), denotes pending asynchronous memory oper-
ations. The argument t is the tag controlling the operations, while
O is the set of pending operations. When a thread calls get or put,
the arguments of the operation are added to the set, as follows:j
arr(l, s) ∗ arr(h, s)

∗ MFC(t,O)

ff
get/put(l, h, s, t)

˘
MFC (t, {〈l, h, s〉} ∪ O)

¯

Note that the source and target arrays disappear in the operation
post-conditions. Intuitively, these resources are given away to the
memory flow controller until the operation finishes. This transfer of
resource is essential to ensure race-freedom of the client program.

The above specifications require that each operation can write
to both local and shared arrays. In our real proof system, we ad-
ditionally parameterise arrays by a permission level π, controlling
read and write access. If π ∈ (0..1) then the elements of the array
can only be read by the thread, while if π = 1 then the elements
can also be written to. The specification for get is then as follows
(the specification for put is dual):j
arr(1, l, s) ∗ arr(π, h, s)

∗ MFC(t,O)

ff
get(l, h, s, t)

˘
MFC (t, {〈l, h, s〉} ∪ O)

¯

When a thread calls wait(), the resources held by the memory flow
controller are returned. Here � is the iterated version of ∗:

{MFC(t,O)} wait(t)

j
MFC(t, ∅) ∗
�〈l,h,s〉∈O . arr(l, s) ∗ arr(h, s)

ff

The precondition to slave must ensure that the function can read
elements of the in array and write to elements of the out array:

arr(in, M · L) ∗ arr(out, M · L) (1)

The proof for the body of the while loop in slave is given in Fig. 2; it
uses the array segment splitting rule that allows arr(x, l) to be split
as arr(x, i) ∗ arr(x+i, l−i) for 0 < i < l. This rule is also applied
backwards to combine smaller array segments into a bigger one. At
slave’s exit point we end up with the postcondition having the same
symbolic representation as the precondition.

Verifying master (Fig. 3) requires rules for fork and join. Here
Γ is an environment associating threads with specifications.

f(x̄) : {P} {Q} ∈ Γ

Γ � {P [ē/x̄]} t = fork(f, ē) {thread(t, f, ē)} FORK

f(x̄) : {P} {Q} ∈ Γ

Γ � {thread(t, f, ē)} v = join(t) {Q[ē; v/x̄; ret]} JOIN

Upon forking a new thread, the parent thread obtains the assertion
thread that stores information about passed arguments for program
variables and gives up ownership of the precondition of the func-
tion. Joining requires that the executing thread owns the thread han-
dle which it then exchanges for the function’s postcondition.

3. Automating the proof system
We have built a prototype tool for automating proofs of the kind
illustrated in §2; the proof annotations in Figs. 2 and 3, marked in
blue, were synthesized by our tool. The tool accepts Cell BE pro-
grams written in a C fragment, where asynchronous memory oper-
ations correspond to DMA requests. An input program is translated

while (i < M) {j
arr(in−(i · L), L·M) ∗ arr(out−(i · L), L·M)

∗ arr(buf , L) ∗ MFC(t, ∅) ∧ i < M

ff

get(in, buf, L, t);j
arr(in−(i·L), i·L) ∗ arr(in+L, L·(M−i−1)) ∗
arr(out−(i · L), L·M) ∗ MFC(t, {〈in, buf , L〉}) ∧ i < M

ff

wait(t);j
arr(in−(i · L), L·M) ∗ arr(out−(i · L), L·M)

∗ arr(buf , L) ∗ MFC(t, ∅) ∧ i < M

ff

in = in + L;
// Process data in the array.
put(buf, out, L, t);j
arr(out−(i·L), i·L) ∗ arr(out + L, L·(M−i−1)) ∗
arr(in−((i+1)·L), L·M) ∗ MFC(t, {〈buf , out, L〉}) ∧ i < M

ff

wait(t);j
arr(in−((i+1)·L), L·M) ∗ arr(out−(i·L), L·M) ∗

arr(buf, L) ∗ MFC(t, {〈buf , out, L〉}) ∧ i < M

ff

out = out + L; i = i + 1;
}

Figure 2. Proof of the main loop of the slave function.

˘
arr(src, N·M·L) ∗ arr(dst, N·M·L)

¯
for(i=0; i<N; i++){ t[i] = fork(slave, src+i∗M∗L, dst+i∗M∗L, M, i)}˘�0≤i<N. thread(t[i], slave, 〈src+i·M·L,dst+i·M·L,M, i〉)¯
for(i=0; i<N; i++){ join(t[i])}˘
arr(src, N·M·L) ∗ arr(dst, N·M·L)

¯
Figure 3. Proof of the master’s body.

into the internal representation of jStar, a theorem prover for sepa-
ration logic [2]. Using jStar, we have built a fully-fledged proof sys-
tem for race-freedom and memory safety in presence of thread con-
currency, incorporating the proof rules of §2. Asynchronous mem-
ory operations are defined at the byte level but are usually applied
to structured data. Our logic uses rewrite rules to marshal data be-
tween structured and byte-level representations, according to the
C memory model and Cell alignment rules. Arithmetic obligations
are discharged to an SMT solver. Currently, the user is required to
manually specify pre- and post-conditions for functions (e.g., like
the one in Eq. 1 for the slave function). To avoid this, we plan to
use abduction [1]. Abduction automatically generates (approxima-
tions of) resources needed for an operation to execute without error.
They can be pushed to the start of a function, automatically gener-
ating (partial) preconditions, and from that function specifications.

Unlike an approach to solving this problem based on model
checking [3], our method applies to concurrent programs that use
dynamic thread creation. Our implementation focuses on Cell BE
programs, but could be applied to other platforms (e.g., CUDA and
OpenCL). We are intentionally building our logic and our tools to
be generic and modular, thus adaptable to these other settings.

References
[1] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Compositional

shape analysis by means of bi-abduction. In POPL, 2009.

[2] D. Distefano and M. J. Parkinson. jStar: towards practical verification
for Java. In OOPSLA, 2008.

[3] A. F. Donaldson, D. Kroening, and P. Rümmer. Automatic analysis of
scratch-pad memory code for heterogeneous multicore processors. In
TACAS, 2010.

[4] IBM. Cell BE, 2009. http://ibm.com/developerworks/power/cell.

[5] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In LICS, 2002.


