SCRATCH: a Tool for Automatic Analysis of DMA Races *

Alastair F. Donaldson

Daniel Kroening

Philipp Riimmer

Oxford University Computing Laboratory, Oxford, UK
{Alastair.Donaldson,Daniel.Kroening, Philipp.Ruemmer}@comlab.ox.ac.uk

Abstract

We present the SCRATCH tool, which uses bounded model check-
ing and k-induction to automatically analyse software for multicore
processors such as the Cell BE, in order to detect DMA races.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying, Verifying & Reasoning about Programs

General Terms Languages, Theory, Verification
Keywords Model checking, k-induction, Cell BE, DMA

1. Introduction

Multicore processors such as the Cell BE avoid the memory wall
problem by equipping cores with local, “scratch-pad” memories.
Direct Memory Access (DMA) is the mechanism used to transfer
data between main and scratch-pad memories. A DMA operation
requests that a contiguous chunk of memory be copied between
memory spaces asynchronously: program execution can continue
while the DMA operation is pending. This allows the latency as-
sociated with data movement to be hidden, by overlapping compu-
tation with communication using double- or triple-buffering. Cor-
rect programming of DMAs is notoriously difficult. DMA races,
where two DMAs operate on the same region of memory and at
least one modifies the memory, are easily introduced due to miss-
ing synchronization commands, and lead to nondeterministically
occurring bugs that are hard to reproduce and fix.

We present SCRATCH,' a formal verification tool for automatic,
static analysis of DMA races on scratchpad memory. SCRATCH op-
erates on a C program for one of the Synergistic Processor Element
(SPE) cores of the Cell BE processor, and uses a combination of
SAT-based bounded model checking [2, 3] and k-induction [6] to
detect, or prove absence of, DMA races on SPE local store. The
tool uses a novel, implicit encoding of DMA operations, drawing
on the notion of prophecy variables [1]. We describe this encoding
and our use of k-induction, and show experimentally that SCRATCH
is effective in DMA race analysis for a range of benchmarks.

Although implemented for the Cell platform, the techniques
behind SCRATCH are general, and could easily be adapted to other
multicore systems that use DMA.

* Supported by EPSRC grants EP/G051100 and EP/G026254/1, the EU FP7
STREP MOGENTES, and the EU ARTEMIS CESAR project.

!Tool and benchmarks available at http: //www . cprover . org/scratch.

Copyright is held by the author/owner(s).

PPoPP’11, February 12-16, 2011, San Antonio, Texas, USA.
ACM 978-1-4503-0119-0/11/02.

2. An implicit encoding of DMAs

SCRATCH uses four tracker variables to collaboratively track a sin-
gle, arbitrary DMA operation. DMA races are detected by instru-
menting the program so that on issue, a DMA is compared with
the DMA currently tracked by the variables (if any). Because the
tracked DMA is chosen arbitrarily from the set of previously issued
DMAs, any potential DMA race will be detected by symbolic ex-
ecution of the instrumented program up to a sufficient depth. We
call this encoding implicit: a DMA is implicitly compared with all
prior DMAs; no explicit history of active DMAs is required. The
tracker variables are: valid, a flag which is false if no DMA op-
eration is tracked, and true otherwise; addr, sz and tag, which
record the local store address, size and identifying tag for a pend-
ing DMA operation if valid=true, and whose values are irrelevant
if valid=false. Initially, valid is set to false, and the other tracker
variables are nondeterministically assigned.

A DMA get operation has the form get(l,h,s,t), and re-
quests a data transfer of s contiguous bytes from host memory re-
gion [h, h + s) to local memory region [I,! + s). The operation is
identified by tag ¢ (a value in the range [0..ws — 1], where ws is the
processor word-size); this tag can be used subsequently to synchro-
nize with the get operation. The size parameter s must be less than
maz, a hardware-imposed maximum transfer size. The SCRATCH
instrumenter replaces a get operation with the following code:

(1) assert((unsigned)t < ws && (unsigned)s < maz);
(2) assert(!valid || l+s <= addr || addr+sz <= s);
(3) memset(l,*,s);

(4) if(x){valid = true;addr = l;sz = s;tag = ¢; }

Statement (1) ensures that the size and tag associated with the
operation are within the range permitted by the hardware. State-
ment (2) checks that if the tracker variables are tracking a DMA
operation d, the new DMA operation does not locally race with d.
Statement (3) over-approximates the effect of the DMA by mod-
elling transfer of arbitrary data from host memory. Here * denotes
a nondeterministic value, and the intended semantics is that * is
evaluated separately for each byte in the region [I, [+ s). The state-
ments labelled (4) assign details of the new DMA operation to the
tracker variables, setting valid to true. By nondeterministically
guarding these statements, we ensure that an arbitrary DMA opera-
tion is tracked in the instrumented program. A DMA put operation
is dual to a get operation and is encoded similarly.

A DMA wait operation has the form wait (mask), and causes
execution to block until all DMA operations identified by tag ¢ have
completed, for each 0 < ¢ < ws such that mask[i] = 1. A wait
operation is encoded by SCRATCH as follows:

assume(((1<<tag)&mask) == 0);

If assume (e) is executable with e=false, the current execution
trace is discarded; otherwise the statement is a no-op. Rather than
handling a wait by explicitly erasing details of a DMA if it is iden-
tified by a tag whose bit is set in mask, the encoding simply decides
that no DMA with this property was tracked in the first place! The

instrumentation variables can be regarded as prophetic [1] since
the future program execution determines whether a DMA opera-
tion should be tracked.

SCRATCH handles the full range of DMA operations supported
by the Cell architecture, including fence, barrier and list operations,
via appropriate adaptations of the above instrumentation.
Comparison with an existing, explicit encoding. An alterna-
tive encoding of DMA operations for race analysis has been pre-
sented [4]. This explicit encoding mirrors the runtime monitoring
approach employed by the IBM Race Check library [5], record-
ing a bounded history of D pending DMA operations (for some
D > 0), and checking new DMA operations against the history
log. Although more intuitive than our new implicit encoding, the
explicit encoding is less efficient when SAT-based symbolic model
checking is used for analysis, since the size of the representation is
proportional to the parameter D, which may be large for complex
examples. Furthermore, the explicit encoding cannot handle pro-
grams where the number of DMA operations that may be issued
simultaneously is unbounded; our new encoding does not suffer
from this restriction.

3. SAT-based model checking with %k-induction

SCRATCH builds on the SAT-based model checker CBMC [3],
which allows instrumented programs to be symbolically executed
up to a given depth, and bit-blasted to yield a SAT representation
for which satisfying assignments correspond to DMA races. This
facilitates bug-finding, but cannot prove absence of DMA races.
To achieve this latter goal, SCRATCH combines SAT-based analy-
sis with k-induction [6], applying k-induction directly to program
loops. To verify unbounded absence of DMA races for an instru-
mented program of the form «; while(c) {8} 7, SCRATCH
solves a series of verification problems using bounded model
checking. For increasing values of k, starting with k& = 0, a base
case and a step case are checked:

Base case: «; if(c) {B}...if(c) {8} if('c) {7}

Step case: k times

B ; assume(c); B; if(c) {8} else {7}

havoc; assume(c); ;...

k times
The base case consists of the loop unwound k times. A base case

failure yields a counterexample exposing a DMA race; otherwise
we know that a DMA race cannot occur within & loop iterations.

In the step case, havoc sets every program variable to a nonde-
terministic value, and 3 denotes the sequence (3 with assert re-
placed by assume throughout. The step case succeeds when, from
any potential state, if k loop iterations can be executed without en-
countering a DMA race then a further iteration can be executed (if
c still holds), or the loop epilogue can be executed (if ¢ does not
hold), without a DMA race occurring. If there is some k for which
both the base case and step case hold, the theory of k-induction
guarantees that a DMA race can never occur. SCRATCH tries k-
induction with increasing values for k until a result is obtained, or
a “give up” value for k is reached. Nested loops are handled via
translation to a single, monolithic loop.

We find k-induction works well in our application domain be-
cause DMA operations in loops are typically designed to be pend-
ing for only a bounded number of loop iterations. This often allows
k-induction to succeed with a value of k proportional to the bound.

4. Experimental evaluation

Benchmarks. We evaluate SCRATCH using a set of 22 benchmarks
adapted from examples supplied with the IBM Cell SDK [5]. The
benchmarks include a variety of data processing programs, using
single-, double- or triple-buffering for data-movement; two audio

100 I .

10 b -

a?
"
01 L L)

Verification time with implicit encoding (seconds)

0.1 1 10 100
Verification time with explicit encoding (seconds)

Figure 1. Verification times for correct benchmarks using an ex-
plicit encoding of DMAs [4] and our new, implicit encoding

processing applications; two particle simulations using Euler inte-
gration; and quaternion Julia set ray-tracing.

We apply SCRATCH to correct and buggy versions of the bench-
marks. In two cases we found genuine bugs. For the remaining
benchmarks, bugs are injected into the examples, either by remov-
ing a wait operation, changing the tag used to identify a DMA, or
switching an operation between get and put. Experiments are per-
formed on a 3GHz Intel Xeon platform with 48Gb RAM, running
Ubuntu. MiniSat 2.0 is used as a back-end SAT solver.
Bug-finding. Bounded model checking proves extremely effective
for detecting DMA races in buggy versions of our benchmarks.
With our new encoding, the maximum verification time across all
benchmarks (averaged over multiple runs) is 0.87s. Performance is
slightly better than with the explicit encoding of [4], a speedup of
1.52x is achieved using our new encoding in the best case.
Proving race freedom. Each point in the scatter plot of Figure 1
represents one of our benchmarks; its z- and y-coordinates show
the time (in seconds) taken to verify the correct version of this
benchmark using the explicit and implicit encoding of DMA opera-
tions, respectively. Points appearing below the diagonal line corre-
spond to benchmarks where our new encoding is faster. The results
show that k-induction provides a tractable method for proving ab-
sence of races. Sometimes the implicit encoding significantly out-
performs the explicit encoding: verification with the implicit en-
coding is 10 times faster for one of the Euler examples. In this
benchmark, an SPE can issue 10 concurrent DMAs. The explicit
encoding tracks all these DMAs, leading to a large SAT instance,
while the largest SAT instance for the implicit encoding, which is
independent of the number of issued DMAs, is almost 10x smaller.

References

[1] M. Abadi and L. Lamport. The existence of refinement mappings.
Theor. Comput. Sci., 82(2):253-284, 1991.

[2] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded
model checking. Advances in Computers, 58:118-149, 2003.

[3] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C
programs. In TACAS, pages 168-176, 2004.

[4] A. F. Donaldson, D. Kroening, and P. Riimmer. Automatic analysis of
scratch-pad memory code for heterogeneous multicore processors. In
TACAS, pages 280-295, 2010.

[5] IBM. Cell BE resource center, October 2009.
http://www.ibm.com/developerworks/power/cell/.

[6] M. Sheeran, S. Singh, and G. Stalmarck. Checking safety properties
using induction and a SAT-solver. In FMCAD, pages 108-125, 2000.

