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Abstract Modern multicore processors, such as the Cell Broadbanth&ngchieve high
performance by equipping accelerator cores with smalkitetrpad” memories. The price
for increased performance is higher programming complexthe programmer must man-
ually orchestrate data movement using direct memory a¢t¥d#\) operations. Program-
ming using asynchronous DMA operations is error-prone, BN\ racescan lead to non-
deterministic bugs which are hard to reproduce and fix. Wegmea method for DMA
race analysis in C programs. Our method works by autombticedtrumenting a program
with assertions modeling the semantics of a memory flow otiatr The instrumented pro-
gram can then be analyzed using state-of-the-art softwadehtheckers. We show that
bounded model checking is effective for detecting DMA raicebuggy programs. To en-
able automatic verification of the correctness of instrut@éprograms, we present a new
formulation ofk-induction geared towards software, as a proof rule opegath loops. Our
techniques are implemented as a to@R&TCH, which we apply to a large set of programs
supplied with the IBM Cell SDK, in which we discover a previby unknown bug. Our
experimental results indicate that dwinduction method performs extremely well on this
problem class. To our knowledge, this marks both the firstiegipn of k-induction to
software verification, and the first example of software nathecking in the context of
heterogeneous multicore processors.
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1 Introduction

Since the late 1950s until early the early 2000s, high-pevémce computing users.@.
scientists using computers to study complex physical pimema) have been able to simply
wait for consecutive generations of computer hardware doifitantly speed up the per-
formance of applications. This was due to the succedeeqtiency scalingfacilitated by
Moore’s law, which states that the number of transistorsdaa be inexpensively placed on
an integrated circuit will double approximately every tweays [Mo098].

Although transistor densities continue to double everyol®Bitmonths, further increases
in processor frequency have been found to lead to prohébjtitigh levels of power con-
sumption. Instead of increasing the frequency of indivigaracessor cores, manufacturers
have opted to deliver performance by using the additioraisistors afforded by Moore'’s
law to design processors consistinghadiltiple cores.

In principle, ahomogeneoumulticore processor, consisting ofidentical cores which
share memory, can offer a factorfimes execution speedup over a single-core processor
running at the same clock rate. However, such speedups ralg exhieved for realistic
applications, for two main reasons: 1) it may not be possiblpartition an application
into independent components for parallel execution, ancb@jention for access to shared
memory in a data-intensive parallel application may lead performance bottleneck. The
second problem, known as threemory wallmeans that even for highly parallel applications,
adding further processor cores quickly leads to diminighgturns.

Heterogeneous multicore processors, such as the Cell BaoddEngine (BE) [Hof05,
IBMO09], circumvent the memory wall problem by equipping e®with small “scratch-pad”
memories. These fast, private memories are not coheremtmatn memory, thus allowing
independent calculations to be processed in parallel bgragpcores without contention.
Movement of data between distinct memory spaces is undeva@ control, and can be
coordinated usinglirect memory acceg®MA) operations, combined with mailbox/inter-
rupt facilities for inter-core synchronization. A commoesign for heterogeneous multicore
architectures consists of a host core, connected to maironyetogether with a number of
accelerators each equipped with scratchpad memory. Thétisn is illustrated in Figure 1.

e.g. x86 or power

processor Main w
Host —
element (PPE) memory .
mailbox/interrupt / direct memory
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Accelerator Accelerator Acceleratolr‘/ small local
4 store, e.g.
RAM RAM RAM 4" 256K on Cell
BE processor

e.g. synergistic processing element (SPE) or graphical processing unit (GPU)

Fig. 1 Structure of a heterogeneous multicore architecture stingiof a host core with a number of accel-
erators. Each accelerator core is equipped with a singigckepad memory, to which it has exclusive access.
Direct memory access (DMA) is used to transfer data betwegin end scratch-pad memory



While the use of scratch-pad memory can boost performahpégdes heterogeneous
multicore programming at the far end of the concurrent @ogning spectrum. The pro-
grammer can no longer rely on the hardware and operatingrayst seamlessly transfer
data between the levels of the memory hierarchy, and musgaidsmanually orchestrate
data movement between memory spaces udirect memory acces®MA). Low-level
data movement code is error-prone: misuse of DMA operattamslead toDMA races
where concurrent DMA operations operate on the same parfioremory, and at least one
modifies the memory. If undetected, DMA races can lead to etmahinistic bugs that are
difficult to reproduce and fix.

We present a method for DMA race analysis which automagi¢afitruments a C pro-
gram containing DMA operations with assertions modelirgggmantics of a memory flow
controller. We consider two different encodings of DMA agi@ons. The first encoding, ini-
tially presented in [DKR10Jxplicitlytracks a bounded history of pending DMA operations.
DMA races are then detected by comparing each new DMA operatith every pending
DMA operation in the history. The second is a novel encodsikgiched in [DHK11], where
a single (nondeterministically selected) pending openais tracked, against which future
operations are compared. We call this timplicit encoding, because each DMA operation
is implicitly compared with every pending DMA operation \aasingle, arbitrary pending
operation. The implicit encoding resembles the concepraphecy variable§AL91] and
permits analysis of programs where an unbounded number ok Dpérations may be is-
sued. We show how these encodings can be extended to Handéandbarrier operations
which are supported by architectures such as the Cell BEhahdling of these features is
not discussed in [DKR10,DHK11].

The instrumented programs are amenable to automatic \aidficby state-of-the-art
model checkers. A DMA race involves a pair of DMAs either Bduy separate threads,
or by a single thread. In this paper, we restrict attentioth& latter scenario: we focus
on analyzing a thread program in isolation, to determinetidrethe thread can issue si-
multaneous DMA operations that race with one another. Ehaiimportant contribution,
since correctly programming a single accelerator thredbstee correct sequences of DMAS
is already a significant challenge. Furthermore, this ictgin enables scalability: recent
dramatic advances in SAT/SMT techniques have led to wigespuse of bounded model
checking (BMC) [BCC 03, CKLO04] for finding bugs in sequential software. We show ex
perimentally that applying BMC to instrumented programslds an effective strategy for
detecting DMA races.

As well as detecting DMA races, we are interested in provir@riabsenceHowever,
BMC is only complete if the bound exceeds a completenesshhte [KS03] for the prop-
erty under consideration, which is often prohibitivelyger We overcome this limitation by
presenting a novel formulation @finduction [SSS00]. Thé&-induction method has been
shown effective for verifying safety properties of hardevdesigns. In principle;-induction
can be applied to software by encoding a program as a moicdiitinsition function. This
approach has not proven successful due to the loss of cdlanoktructure associated with
such a naive encoding, and because important refinemekimadiiction €.g.restriction to
loop-free paths) are not useful for software where the stattor is very large.

We present a general proof rule feinduction that is applicable to imperative programs
with loops, and prove correctness of this rule. In contraghé naive encoding discussed
above, our method preserves the program structure by apgettthe loop level. Further-
more, it allows properties to be expressed through assestidements rather than as explicit
invariants. Our experimental results indicate that thishoe of k-induction performs very
well when applied to realistic DMA-based programs, which deuble- and triple-buffering



schemes for efficient data movement. Such programs invelyelarly-structured loops for
which k-induction succeeds with a relatively small

Experimental evaluation is performed using an impleméantadf our techniques as a
tool, SCRATCH, which checks programs written for the Synergistic ProoceBement (SPE)
cores of the Cell BE processor. We present an evaluatiorcaA8CH using a set of 22 ex-
ample programs provided with the IBM Cell SDK for Multicoreeéeleration [IBM09], in
which we discover a previously unknown bug, which has bedapendently confirmed. We
compare the explicit and implicit encodings of DMA operagsoempirically: when prov-
ing correctness using-induction, we find that the implicit encoding is less amdaab
k-induction analysis than the explicit encoding; for seberamples, the property of DMA
race freedom ig-inductive, for a small value df, only with the explicit encoding. However,
in the majority of our experimentg-induction can successfully prove DMA race freedom
with either encoding. In these cases, the implicit encodig@gls to significant reductions
in verification time, at best providing B)x reduction for one DMA-intensive benchmark.
Our experiments also show the effectiveness of our method®mparison to predicate
abstraction%-induction allows us to prove programs correct that caneovdrified using
current predicate abstraction tools, and bug-finding ieidf magnitude faster. Addition-
ally, SCRATCH s able to find bugs which go undetected by a runtime racectietetool for
the Cell processor.

In summary, our major contributions are:

— an encoding of DMA operations that allows automatic analp§iDMA races in mul-
ticore programs with scratch-pad memory. The new encodiegemted in this paper
builds on an earlier sketch [DKR11], and provides signiftcgeedups over the encod-
ing used in prior work [DKR10].

— a proof rule fork-induction operating on programs with loops, which we shovibé
effective when applied to a large set of realistic DMA-bapeagrams. On top of the
contribution of [DKR10] we present a proof of soundness far k-induction rule,
discuss methods for handling nests of loops, and experathgmiompare the relative
effectiveness ok-induction for our two encodings of DMA operations.

— SCRATCH, an automatic DMA race analysis tool for the Cell BE processo

To our knowledge, this line of work marks the first applicatad £-induction to software
verification, and of software model checking to heterogeseuulticore programs.

2 Direct memory access operations

We consider heterogeneous multicore processors comgistia host core, connected to
main memory, and a number of accelerator cores with privatatch-pad memories, as
depicted in Figure 1. Each core is equipped witkirggle scratch-pad memory, to which it
has exclusive access. One or more threads can run on eadérataecore, and threads do
not migrate between cores during execution. Thus eachdhraa an associated core. We
assume that the accelerator local memories are indexedjoydisets of addresses, so that
a pointerp refers to a location in the scratch-pad memory of at most aoelarator core.
This assumption is for ease of presentation only, and dodgsoha for some architectures. It
would be trivial (but laborious) to adapt our presentatimdrop this assumption, identifying
a scratch-pad memory location by a péirp), wherec specifies a particular accelerator
core, and is an address referring to the scratch-pad memory.for



A DMA operatiort specifies that a contiguous chunk of memory, of a given shmyld
be transferred between two memory addre¢sesd . The address refers to accelerator
memory (ocal storg, andh to main memory lfost memory A tag (typically an integer
value) must also be specified with a DMA; the operation is $aitie identified by this
tag. It is typical for DMA operations to be initiated by thecaterator cores: an accelerator
pulls data into local store, rather than having the hmsshdata. We assume this scenario
throughout the paper.

DMA operations are non-blocking — having issued a DMA, aredaator thread con-
tinues executing while the operation is handled by a speetlpiece of hardware called
amemory flow controllerEach accelerator core has its own associated memory flow con
troller. An accelerator thread can issugait operation, specifying a tag This causes the
thread to block until all DMAs being processed by the memaow ftontroller associated
with the thread’s core, and identified byhave completed. A DMA identified by tagis
pendinguntil a wait operation with tagis issued.

The asynchronous nature of DMA operations is essentiahigaing high-performance.
Several memory movement operations can be executed irlgdaeaid the latency associ-
ated with memory transfers can be hidden by overlapping ctatipn with communication.

It is also this asynchronous nature which makes DMA opematf@ard to program correctly.
Although a DMA maycomplete before an explicit wait operation is issued, thisnot be
guaranteed. Access (by the host or accelerator) to therregfionemory being modified
by a pending DMA should be regarded as a bug, as should writesacdo either region
of memory associated with a pending DMA.. Failure to issueia operation can result in
nondeterministic behavior: it maysuallybe the case that the required data has arrived, but
occasionally the lack of an explicitait may result in reading from uninitialized memory,
leading to incorrect computation. This nondeterminism msethat bugs arising due to mis-
use of DMA can be extremely difficult to reproduce and fix. Thietivates the need for
formal analysis techniques to aid programmers in the dpweémt of correct DMA-based
programs.

2.1 DMA primitives and properties of interest

We consider the following basic primitives for DMA operat

— put(l, h, s, t): issues a transfer of bytes from local store addre$do host address,
identified by tag

— get(l, h, s, t): issues a transfer of bytes from host addregsto local store address
identified by tag

— wait(t): blocks until completion of all pending DMA operations idéied by tagt

In addition, we consider variants piit and get which allow sequences of DMA op-
erations identified by the same tag to be efficiently syndaeshwithout requiringwait
operations:

— putf/getf(l, h, s,t) (put/get with fencg: same aput/get, except that the operation will
not commence until all currently pending operations idediby tagt have completed

— putb/getb(l, h, s,t) (put/get with barrier): same agut/get, except that the operation,
and any future operations identified by tagvill not commence until all currently pend-
ing operations identified by taghave completed

1 For brevity, we sometimes write “DMA(s)” rather than “DMA egation(s)”.



(Note that a barrier operation identified by tagrotects prior operations identified by
from itself and future operations that use tagiowever, the barrier doe®t protectitself
from such future operations.)

For each accelerator core, we assume hardware-imposecomaxialues\/ andT for
the number of bytes that may be transferred by a single DMA,tha number of distinct
tags, respectively. We assume that tags are integers iatige[0, 7' — 1].

We have informally described the notion of memory being wated by DMA opera-
tions. A special case of memory corruption is where two pem@MAs refer to overlapping
regions of memory, and at least one of the DMAs modifies thsnegf memory. We call
this aDMA race and focus our attention on the detection of DMA races forémeainder of
the paper. This focus is for ease of presentation only: amigues can be readily adapted
to detect races where the buffer referred to by a pending DMactessed by non-DMA
statements.

In the remainder of the paper, we use the following predicate

disjoint(a1, s1, a2, $2) =S (a1 + 81 <a2)V(ag + s2 <aq)
specifying that the memory regiofs;, a; + s1) andlas, as + s2) are disjoint.

Definition 1 Letop,(I1,h1, s1,t1) andops(l2, ha, s2, t2) be a pair of simultaneously pend-
ing DMA operations, wherep,,op, € {put, get}. The pair is said to beace freeif the
following holds:

((opl = put A opy = put) V disjoint(ll,sl,lg,SQ)) A
((opy = get A opy = get) V disjoint(h1, 51, ha, 52)).

The first conjunct in Definition 1 asserts that the local stegions referred to byp,
andop, do not overlap, unless both aset operations (which do not modify local store);
the second conjunct asserts that the host memory regionstdoverlap, unless botbp,
andop, areget operations (which do not modify host memory). We say theaddMA race
when some pair of pending DMA operations is not race free.

The conditions for race freedom with fence and barrier dpmra are more complex,
and are discussed in detail§5.4.

2.2 DMA operations in the Cell BE processor

The Cell BE processor [Hof05,IBMQ9] is a heterogeneous icarié architecture consisting
of a host Power Processor Element (PPE) core, together wattc8lerator cores, known
as Synergistic Processor Elements (SPEs). The PPE is ardégfal core connected to a
large main memory, whereas the SPE cores are fast vect@gsas, each equipped with a
256K scratch-pad memory. As discusseginthese scratch-pad memories aoécoherent
with main memory, and SPE software must use DMA operatiorigattsfer data between
scratch-pad memory and main memory.

Each SPE is equipped with a memory flow controller supportipgo 16 concurrent
DMA operations, which may be executed out-of-order. If afc@Rempts to issue a DMA
operation when the hardware limit of 16 concurrent openatioas been reached, SPE exe-
cution stalls until some DMA operation completes.

The maximum amount of data that can be transferred by a sDiglA operation is
16K, thusM = 16384. The number of distinct tagg;, is 32. This allows a set of tags to be
represented using a 32-bit word.



2.3 lllustrative example: triple-buffering

Figure 2, adapted from an example provided with the IBM CBIK$IBMO09], illustrates the
use of DMA operations to stream data from host memory to Isicak to be processed, and
to stream results back to host memory. Triple-bufferingssedito overlap communication
with computation: each iteration of the looptini pl e_buf f er puts results computed during
the previous iteration to host memory, gets input to be see next iteration from host
memory, and processes data which has arrived in local memory

If num chunks is greater than three, this example exhibits a local storé\Date, which
we can observe by logging the first six DMA operations. To tgbktrof each operation we
record its source code location and, if appropriate, itp liberation. We omit host address
parameters as they are not relevant to the data race.

#define CHUNK 16384 // Process data in 16K chunks
float buffers[3][CHUNK sizeof (float)]; // Triple-buffering requires 3 buffers
void process_data(float* buf) { ... } // Unspecified data-processing procedure
void triple_buffer(charx in, char* out, int numchunks) {
unsigned int tags[3] ={ 0, 1, 2}, tnp, put_buf, get_buf, process_buf;
(1) get(buffers[0], in, CHUNK, tags[O]); // Get triple-buffer schenme rolling
in += CHUNK;
(2) get(buffers[1], in, CHUNK, tags[1]);
in += CHUNK;
(3) wait(tags[O0]); /1 Wait for and process
process_dat a(buffers[0]); I first buffer
put _buf = 0;
process_buf = 1;
get _buf = 2;

for(int i =2; i < numchunks; i++) {

(4) put (buffers[put_buf], out, CHUNK, tags[put_buf]); // Put data processed

out += CHUNK; /1 last iteration
(5) get (buffers[get_buf], in, CHUNK, tags[get_buf]); // Get data to process

in += CHUNK; /1 next iteration
(6) wai t (tags[ process_buf]); /1 Wait for and process data

process_dat a( buffers[process_buf]); 11 requested last iteration

tnp = put_buf;

put _buf = process_buf; // Cycle the buffers
process_buf = get_buf;
get _buf = tnp;

}

put (buffers[put_buf], out, CHUNK, tags[put_buf]); // Put data processed during
out += CHUNK; /1 final loop iteration
wai t (tags[ process_buf]); /1 Wit and process final
process_dat a( buf f er s[ process_buf]); Il chunk of data

put _buf = process_buf;
put (buffers[put_buf], out, CHUNK, tags[put_buf]); // Put final result
wai t (tags[ put_buf]); /1 Wait for transfer of final result to conplete

Fig. 2 Source code of the triple-buffering example



get(buffers[0], ..., CHUNK 0) (1)
get(buffers[1], ..., CHUNK 1) (2)
wait(0) (3)

™* put(buf fers[ 0], ..., CHUNK 0) (4),i =2
get(buffers[2], ..., CHUNK, 2) (5),i=2
wait(1) (6),i =2
put(buf fers[1], ..., CHUNK 2) (4),i =3

*) get(buffers[ 0], ..., CHUNK, 0) (5),i =3

At this point in execution the operations marked (*) are bpéimding, since the only
interveningwait operation uses a distinct tag. The operations are not raeeaficording to
Definition 1 since they use the same region of local store aedi®aget. The race can be
avoided by inserting avait with tagt ags[ get _buf] before theget at (5), or replacing the
get at (5) with agetf operation.

We discovered this bug usingc8ATCH, our automatic DMA analysis tool, described
in §7, which can also show that the fix is correct. The bug occuemiexample provided
with the IBM Cell SDK, and was, to our knowledge, previoushjkoown. Our bug report
via the Cell BE forum has been confirmed by IBM engineers. énrédmainder of the paper,
we present the techniques employed IBRETCH to enable these results.

3 Overview of our method

We present a DMA race analysis technique geared towardBcegion of a single single
accelerator thread, which may be running as part of a comeuapplication. Our method
can detect races between multiple DMA operations issuetidgame accelerator thread,
but not races between operations issued by distinct thr&etause an accelerator thread
can issue many concurrent DMA operations, writing corrextecfor a single thread can
be challenging, as demonstrated by the triple-bufferirgngple of§2.3. Providing a DMA
race analysis technique for sequential software is thusanritant contribution. Restricting
the analysis to consider a single thread enables a scalatl®d) avoiding the state-space
explosion associated with multiple thread interleavildsvertheless, the detection of DMA
races between multiple threads remains an important prohte§9 we discuss plans for
future work in this area.

Our method is summarised by the flowchart of Figure 3, and bas bnplemented, for
the Cell BE processor, in theCRATCH tool (see§7). We now discuss the various compo-
nents of this flow-chart.

Program slicing. Typically, programs for scientific or media-processing paoiation con-
tain a significant amount of intricate code that is irrelévtarthe way in which DMA is used
to transfer data between host and accelerator memory. Toveeas much of this detail as
possible, we first perform program slicing, reducing thegpam code to the DMA-relevant
statements.

Encoding DMA operationsAfter slicing, the program is instrumented with assertitivet
check the conditions required for a DMA race to occur. Insieatation depends on an
appropriate encoding of DMA operations; §6 we present two encoding schemes, which
are implemented in SRATCH. Once instrumentation is complete, the resulting program c
be analysed in an attempt to reveal potential DMA races, @reptheir absence.

Bounded model checking, for detection of DMA radés. program is suspected to give rise
to a DMA race, then BMC techniques [BC©3] can be applied to search for races up to a
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Fig. 3 Overview of our DMA race analysis method

user-specified execution depthc@aTcH uses CBMC [CKL04], a bounded model checker
for C programs, for this purpose. If CBMC finds a violation of assertion introduced by
DMA instrumentation then the corresponding counterexang@monstrates how a DMA
race may manifest.

Proving absence of DMA races usigginduction. Alternatively, our method can attempt
to prove DMA race-freedom for a program using thénduction technique, applied at the
level of program loops. I§6, we present a proof rule farinduction which operates on a
singleloop. This rule can be applied to programs containing miglfipops by first rewriting
all program loops as a single, monolithic loop, using a stathdechnique [Har80] which
we recap irg7. This is thdoop transformatiorstage in the flowchart of Figure 3.

Applying k-induction involves checking a base case and a step casejieemvalue of
k. Our k-induction rule guarantees that these are straight-liognam, whose correctness
can be established in a straightforward manner& cH invokes CBMC for such checks.
If the base case fails, this indicates that the program ces igse to a DMA race, and
a counterexample is reported. If both the base and step passs soundness of ok
induction rule (proved ir§6) means that the program has been shown to be free of DMA
races. Otherwise, in the case where the base case pasdes $teixt case fails, there are two
options: the verification attempt can be abandoned, or alaue ofk can be tried.

Extent of automation. While SCRATCH attempts to perform automatic analysis of SPE
programs for the Cell BE processor, we do not describe theagfolly automatic, for two
reasons. First, SPE programs typically make heavy use gfesinstruction multiple data
(SIMD) intrinsic functions that are specific to the Cell atehture. The prototype &RATCH
tool does not support reasoning about this large set ofifomgtthus program slicing is per-
formed manually in our experiments. However, it can in gphebe automated. Second,
and more crucially, the successiefnduction in automatically producing a conclusive ver-
ification result is largely dependent on the strength of isses appearing in the program
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text. As discussed if6.2, and demonstrated experimentallyify our encodings of DMA
operations usually lead to assertions that are inductieady for small values of. How-
ever, in some of our experiments, it proved necessary tolgw@ggulitional strengthening
assertions by hand. In related work we have shown that sisehntams can often be inferred
automatically using abstract interpretation [DHK11].

4 Goto programs

We present our results in terms of a simple goto language;hwii minimal, but general
enough to uniformly translate C programs like the one in Fédl The syntax of the goto
language is shown in the following grammar, in whicke X ranges over integer variables,
a € A over array variablesy ande over boolean and integer expressions (for which we do
not define syntax, assuming the standard operations);and, [, € Z over integers:

Prog ::= 1: Stmt;...;n: Stmt VarRef = x | ale]

Stmt ::= VarRef := % ‘ assume ¢ | assert ¢ ‘ goto Iy, ...,k

A goto program is a list of statements numbered frota n.

The language includes assertions, nondeterministicrasgigt (VarRef := x), assump-
tions (which can constrain variables to specific values),reandeterministic gotos. Execu-
tion of a goto statement, which is given a sequence of integleles as argument (tlgnto
target9, causes the value of one of these (possibly negative)ergeg be added to the in-
struction pointer. We use := e anda[i] := e as shorthands for assignments to variables and
array elements, respectively, which can be expressed isytitax above via a sequence of
nondeterministic assignments and assumptions. For giityplive assume variables and ar-
ray elements range over the mathematical integ&rsyhen translating C programs into the
goto language the actual range of variables will always hened, so SAT-based analysis
of goto programs by means of bit-blasting is possible.

The transition system described by a progr@m 1: a1;...;n: ayn is a graph(s, Ea),
whereS is the set of program states afd the transition relation. Program states are given
by the set

S={(o,pc)|0: (XU(AXZ)) —Z, pcecZ}U {4}

in which o is a store mapping variables and array locations to integkreg, pc is the
instruction pointer, and is a distinguished state that designates erroneous teffomirat a
program.

We writet? for the value of an expression given the variable assignmgedénote the
set of all storage locations by = X U (A x Z), and definet, ff to be the truth values of
boolean expressions. The set of transitidiis,is as follows:

/

= {(o,pc) = (¢',pc+1) | ape =z :=*, ¥l € L\ {z}. o(l) = o' (1)}
U{(,pc) = (o', pe +1) | ape = ale] :=*, VI € L\ {(a,e”)}. o(1) = o' (D)}
U {(o, pc) — (o, pc + 1) | apec = assume qS, =1t}
U {(o, pc) — (o, pc + 1) | apec = assert ¢, ¢° = tt}
U (0, p6) — & | ape = assert 6, 67 = ff}
UA{(o,pc) — (o,pc+1;) | ape =gotoly,...,lg, i €{1,...,k}}

If the contexta is clear, we just writgs — s’ for the memberships — s) € E,.
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Proper termination of in a states is denoted by | and occurs if the instruction pointer
of s does not point to a valid statement] = s = (o, pc) A pc € [1,n]. Note that no tran-
sitions exist from stateswith s |.

The setiraces () of (finite and infinite) traces of a programis defined in terms of its
transition system:

Jdo. 51 :(071)7 Skl Orsk:é7
ViG{l,...,k—l}.Si—)SH_l

U{s1s2--+|3o.s1 =(0,1), Vie N.s; — s;41}

traces(a) = {81 S+ Sk |

In particular, no traces exist on which assumptions¥ailprograma is considereaorrect
if no trace intraces(«) terminates erroneousliye. no trace containg.

5 Encoding DMA operations in goto programs

We now consider the goto language extended with the DMA pixies of§2.1:

Stmt == ... ‘ get(e, e, e, e) ’ put(e, e, e, e) ’ getf(e, e, e, e) ’ putf(e, e, e, e)
’ getb(e, e, e, €) ‘ putb(e, e, e, e) ’ wait(e)

We present two methods for translating a goto program inekisnded language to a
standard goto program, replacing DMA operations with slg@nstrumentation code such
that a potential DMA race results in a failed assertion.

In §5.1 we present an explicit encoding, where DMA races areyaadlby logging a
bounded history of previously pending operations. Thihéencoding used in [DKR10].
We then present, if5.2, a new, implicit encoding where a single pending DMA agien
is selected nondeterministically for tracking. This altomnalysis of programs which may
issue an unbounded number of DMA operations.

We choose the namexplicit andimplicit for our encodings because the first encoding
detects a DMA race by comparing a newly issued DMA expliaitlth every pending DMA,
while, the second encoding performs this comparison intylidy comparing the newly
issued DMA with a single, arbitrary pending DMA.

In §7 we show experimentally that the implicit encoding can pevsignificant im-
provements in verification time over the explicit encodiW¢ge illustrate the difference be-
tween these approaches using examplésia.

In both cases, we do not initially present details of the weayce and barrier operations
are encoded. 185.4 we show how this is achieved for the implicit encoding iailar
approach can be applied to the explicit encoding).

5.1 An explicit encoding

Our goal is to ensure that, during program execution, a thdees not issue a DMA that
races with another DMA issued previously by the thread. sppfor a given program, we
have an upper bount on the number of DMAs that may be concurrently pending. Ia thi
case, we can check the conditions for a DMA race by expli¢igyging the set of DMAs

2 In our context, this is preferable to modeling failed asstioms via a distinguished “blocked program”
state: it simplifies the notion of sequential compositiopafgrams ¢f. §6.1).
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| Statement [ Translated form | Notes
program start | Vo<, p assume —walid[j]; No pending DMASs initially
get(l,h,s,t) | assert 0 < s < MAO0O<t<T; Check size/tag within range
Yo<j<D assert Consider every position in log
—walid [j]V Either: no DMA at positiory, or
(disjoint(l, s, local[j], size[j])A no race on local regions and
(is-get[j] Vv disjoint(h, s, host[j], size[4]))); no race on host regions
assert =(valid[0] A - -+ A valid[D — 1]); Assert log not full
1= %; Pick arbitrary free position
assume 0 < i < D A —walid|[i];
valid[i] := 1; is_get[i] := 1; local[i] := ; Log details of new DMA
host[i] := h; sizeli] := s; tag[i] :==t;
put(l,h,s,t) | assert 0 < s < MAO<t<T;
Vo<j<D assert Similar toget(l, h, s, t)
—walid[j]V
(disjoint(h, s, host[j], size[j])A Roles of local/host regions
(—is_getlj] V disjoint(l, s, local[j], size[j]))); reversed in race check
assert —(valid[0] A - - - A valid[D — 1]);
1 1= *;
assume 0 < ¢ < D A —walid|[i];
valid[i] := 1; is_get[i] := 0; local[i] = I;
host[i] := h; size[i] == s; tag[i] == t;
wait(t) assert 0 <t < T}, Check tag within range
Yo<j<D Remove operations with tag
valid[j] := valid[j] A =(¢t = tag[j]) from log

Fig. 4 Explicit encoding of DMA operations. The rules translate Rbperations into assertions/assignments
over tracker arrays of siz®

that are concurrently pending during program executions Téquires recording a history
of at most sizeD. When a new DMA is issued, we first assert that the operati@s dot
race with any existing DMA. We then assert that the size oftteof concurrently pending
DMAs is smaller thanD. Finally, we add the new DMA to the log. A wait operation of the
form wait(t), wheret is a tag, is encoded by removing from the log any DMA identifigd
tagt.

The log of DMA operations is encoded as a serietratker arrays as follows, with
0<j<D:

— walid: valid[j] = 1 if values at positiory in the other arrays are being used to track a
DMA, otherwisevalid[j] = 0 and values at positiofin the other arrays are meaningless

— is_get: is_get[j] = 1if the j-th tracked DMA is gget, otherwiseis_get[j] = 0

— local, host, size, tag: element; records the local store address, host address, size and
tag of thej-th tracked DMA, respectively

Figure 4 shows how a program with basic DMA primitives can tamdlated into a
standard goto program, wheget, put andwait operations are replaced with assertions and
assignments over the tracker arrays. The translation medeesf thedisjoint predicate, de-
fined in§2.1. We us&/< ;. p Stmt to indicate thatStmt should be duplicated times with
increasing values for. Note that, because is fixed at translation time, this leads fbcon-
secutive statements, rather than the generation of a laoge $he rules of Figure 4 replace
single statements with multiple statements, it is necgsgaperform a re-numbering of
program statements and goto targets after translationmiedetails of this re-numbering.

The encoding of DMAs is based on Definition 1, and is desigoegrohibit the issue
of DMAs that are simultaneously pending but not race freeteNbat in our simple goto
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| Statement [ Translated form | Notes |
program start assume —walid; Initially no DMA is tracked
get(l, h,s,t) assert 0 < s < M AO<t<T; Check size/tag within range
assert —walid V (disjoint(l, s, local, size) | Check new DMA does not
Alis_get V disjoint(h, s, host, size))); race with tracked DMA, if any
goto track, after Nondeterministically choose
track: whether to track new DMA
valid := 1; is_get := 1; local :=1; Log details of new DMA
host := h; size := s; tag :=t;
after: ...
put(l, h,s,t) assert 0 < s < M AO<t<T;
assert —walid V (disjoint(h, s, host, size) | Similar toget(l, h, s, t)
A(—is_get V disjoint(l, s, local, size)));
goto track, after Roles of local/host regions
track: reversed in race check
valid 1= 1; is_get := 0; local :=1;
host := h; size 1= s; tag :=t;
after: ...
wait(t) assert 0 <t < T} Checkt within range; assume ng
assume —(tag = t); DMA with this tag was tracked

Fig. 5 An implicit encoding of DMA operations. During executiort, raost a single, nondeterministically
chosen DMA operation is tracked

language we do not model actual movement of data via DMA. detjwe, to achieve sound-
ness, we must set the memory locations written to by a DMAatjmeT to nondeterministic
values.

This explicit encoding is natural as it mirrors the idea aftimne logging of DMA op-
erations, which is performed for example by the IBM Race ®RHéwary [IBM08]. The
disadvantage of the encoding is that it depends on the egistaf a limit,D, for the number
of DMAs that may be concurrently pending in a given prograime Tost of the encoding
increases proportionally witly. This can lead to scalability issues when analyzing instru-
mented programs using SAT-based bounded model checkinthefoore, the encoding
does not allow reasoning about programs that may issue &nagylnumber of simultane-
ous DMAs.

5.2 A more efficient, implicit encoding

We now present a more efficient encoding of DMA operationsciviioes not require the
upper limit D. This encoding allows us to analyze programs which may iasuenbounded
number of DMAs.

The key insight which leads to a more efficient encoding isféog that checking for
DMA races only requirepairwiseconsideration of DMA operations. In translatipgt and
get in Figure 4, we use a universal quantifier to compare the newARderation against
every previously issued DMA operation that is still live. €2iove that it suffices to nonde-
terministically record details of a singlatbitrary DMA operation, and check further oper-
ations for races with respect to this operation. A wait openaof the formwait(¢) can be
encoded by an assumption that the currently tracked DMAngij does not have associated
tagt. In other words, the encoding ensures that we discard erecinices along which it
was chosen to track, and subsequently wait for completipa given DMA operation. This
approach resembles the concepprfphecy variablefAL91], since the future program ex-
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1: get(l, h, s, t); 1: get(l, h, s, t);

2: wait(t); 2: put(l,h + s, s,1);
3: put(l, h + s, s,1); 3: wait(t);

4: wait(t);

(a) A race-free program (b) Program with a potential DMA race due to use of same local
store region byet andput, with no interveningwait

Fig. 6 Two simple programs using DMA operations

Explicit encoding Implicit encoding

do not track
get(l, h, s, 1) get(l, h, s, « track get(l, i, s, 1)
2, {getll,h,s,1) } 2,- 2, get(l, h, s, 1)

wait(r) wait(r) ' wait(r)
3, - assume false
lput(l, s, s, 1) do not track S« track put(l, h+s, s, 1)
put(l, h+s, s, 1) “
| 4. {put(l, hts. s.0) ) | (4] [4put, nes, 5,0

wait(r) wait(r) ' wait(r)
v
5{} 5, - assume false

Fig. 7 A comparison of traces for the race-free program of Figugy 6btained via the explicit encoding of
Figure 4 (left) and the implicit encoding of Figure 5 (right)

ecution determines whether a DMA operation should be thokeot. As discussed above,
we call this encodingmplicit because a new DMA is implicitly compared with all pending
DMAs by tracking a single, arbitrary pending DMA.

Translation rules for this implicit encoding are presenteéigure 5. Note thavalid,
local, host, size andtag are no longer arrays: they are now scalar variables thedlumia-
tively track asingle DMA operation whenvalid = 1. For clarity in the translation rules,
we use labeldrack and after to denote the targets of a nondeterministic goto statement,
rather than explicit integer offsets to the instructionrper as the goto program syntax of
84 strictly requires.

The encoding of Figure 5 is more compact than the explicibdimy of Figure 4, since
it involves tracking just one DMA operation, rather than arag of D operations. Ir§7 we
demonstrate experimentally that the implicit encodinailtssn faster verification compared
with the explicit encoding.

5.3 Examples

We illustrate the difference between the explicit and iiplencodings using the simple
examples of Figure 6.

The program of Figure 6(a) is clearly race-free: gae operation identified by tag
is immediately followed by awvait operation using tag, ensuring that thget operation
completes before thgput operation at line 3 commences. The left-hand-side of Figure
illustrates the transition system corresponding to thegmam when DMA operations are
translated using the explicit encoding of Figure 4. Eactarggle represents a state, labeled
with a program counter location followed by a set of pendingAoperations. The figure
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Explicit encoding Implicit encoding
L{} do not track
get(l, h, s, 1) get(l, s, 1 track get(l, h, s, 1)
2, (get(l, h, s, 1) } do not track 2, get(l, h s, 1)
put(l, h+s, s, 1) Put(l, hi+s, 5, + track ¢pul(l, h+s, s, 1)
Aput(l, h+s, 5, 1)
DMA race on / ‘ 3. - 3, put(l, h+s, s, 1) ‘ DMA race on /
wait(r) . wait(r)

assume false

Fig. 8 A comparison of traces for the program of Figure 6(b), whesds to a potential DMA race, obtained
via the explicit encoding of Figure 4 (left) and the implieitcoding of Figure 5 (right)

illustrates that, as the program is executed, the set oketh®MAs is modified accord-
ingly. The right-hand-side of Figure 7 illustrates the esponding transition system when
the implicit encoding of Figure 5 is used. Dashed lines aezlus illustrate paths through
the transition system which end in failed assumptions, tiaisforming part of the set of
program traces. States are labeled by a program countdiolodallowed by details of a
single tracked DMA operation, with ‘-’ used to represent tase where no operation is
tracked {(.e. whenwalid = 0). From the initial state, a nondeterministic choice deteawn
whether operatioget(, h, s, t) is tracked. The right-hand branch represents the case where
this operation is tracked. The encoding of thst(¢) operation assumes that no operation
with tagt is tracked, invalidating this branch. As a result, the ordjidsstate from which
put(l, h + s, s,t) can be executed is the stase—]|, in which case there is clearly no DMA
race.

The program of Figure 6(b) is the same as that of Figure 6f@gep that thevait(t)
operation has been removed. This results in a potential Db& rsince data may be si-
multaneously read from and written&oT he left- and right-hand-sides of Figure 8 illustrate
the transition systems for this program when the explicit emplicit encodings are used,
respectively. Comparing the right-hand-sides of Figuresd 8, observe the same nonde-
terministic choice to tracket(l, h, s, t) is initially made. However, in Figure 8 the choice
to track this operation isot invalidated by a subsequewtit operation, since no such op-
eration occurs in the program of Figure 6(b). As a result, then#pt to execute operation
put(l,h + s, s,t) can be made from the stdte get(l, h, s, t)], leading to a DMA race.

5.4 Handling fences and barriers

As discussed i1§2.1, DMA subsystems such as that of the Cell processor tyypsapport
modified versions oget andput that us€fencesandbarriers [IBM09].

Recall from§2.1 that a fenced put/get operation (denagtetf/getf) identified by tag:
will not commence until all currently pending operationsritified by tag have completed.
However, the fenced operation provides no guarantees fiorefwperations on A put/get
operation with barrier (denotegghitb/getb) identified by tagt similarly will not commence
until all currently pending operations identified by talgave completed. In addition, future
operations identified by tagwill not commence until operations pending before issue of
the barrier have completed. However, a barrier does noggtitself from future operations
identified byt.
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| Statement | Translated form | Notes |
program start assume —walid; Initially no DMA is tracked
get(l, h,s,t) assert 0 < s < MAO<t<T; Check size/tag within range
assert —walidV Check either: a) tracked DMA
(protected A tag = t) V protected by barrier and
(disjoint(l, s, local, size) A shares tag with new DMA, or (b)
(is_get V disjoint(h, s, host, size))); no race between new/tracked DMAs
goto track, after; Nondeterministically choose
track: whether to track new DMA
valid := 1; is_get := 1; local :=; Log details of new DMA
host := h; size := s; tag := t;
protected := 0; DMA not initially protected by a
after: ... barrier
put(l, h, s, t) assert 0 < s< MAO<t<T;
assert —walidV Similar toget(l, h, s, t)
(protected A tag = t) V
(disjoint(h, s, host, size) A Roles of local/host regions
(—is-get V disjoint(l, s, local, size))); reversed in race check
goto track, after;
track:

valid 1= 1; is_get := 1; local :=1;
host := h; size := s; tag :=t;
protected := 0;

after: ...
getf(l, h, s, t) assert 0 < s < MAO<t<T; Similar toget(l, h, s, t), but fence
assert —walid V tag =t V allows new DMA and tracked
(disjoint(l, s, local, size) A DMA memory regions to overlap
(is-get V disjoint(h, s, host, size))); if both DMAs use the same tag
goto track, after; Nondeterministically choose
track: whether to track new DMA
valid := 1; is_get := 1; local :=1; Log details of new DMA
host := h; size := s; tag := t;
protected = 0; DMA not initially protected by a
after: ... barrier
putf(l, h, s, t) assert 0 <s< MAO<t<T; Similar togetf(l, h, s, t)
assert —walid V tag =t V
(disjoint(h, s, host, size) A Roles of local/host regions
(—is-get V disjoint(l, s, local, size))); reversed in race check
goto track, after;
track:

valid := 1; is_get := 1; local := I,
host := h; size := s; tag 1= t;
protected := 0;

after: ...
getb(l, h,s,t) | protected := (tag =t 7 1 : protected); Barrier protects tracked DMA
translation forget(l, h, s, t) if tags match

putb(l, h,s,t) | protected := (tag =t 7 1: protected); | Similar
translation forput(l, h, s, t)
wait(t) assert 0 <t < T} Check tag within range, and assume
assume —(tag = t); no DMA with this tag was tracked

Fig. 9 Rules to translate DMA operations into assertions and as®gts to tracker arrays, with support for
fences and barriers
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Note that the operatioputb/getb(l, &, s, t) is notequivalent to the sequeneait(t); put/
get(l, h, s,t). In the latter case, theait(¢) operation causes execution to block until the
DMA operation on tag has completed. In the former case, the DMA barrier is a non-
blocking operation.

To extend our existing encodings to handle fences we wedi@®MA race check
condition to allow a new DMA to overlap with an existing DMA ihe new DMA is a
fenced operation and both DMAs are identified by the same tag.

Adapting our encodings to support barriers requires antiaddl protected flag to be
associated with each tracked DMA. For any DMA (including &iea), protected is initially
set to 0. When a barrier DMA is issued with identifying tagrotected is set totrue for
every existing DMA identified by. The DMA race check condition is then weakened (for
all types of DMA, not just barriers) to permit a new DMA to olagy with an existing DMA
if both DMAs are identified by the same tag amatected holds for the existing DMA.

In Figure 9, we show how the implicit encoding of Figure 5 carelktended with support
for fence and barrier operations. The explicit encodingigtife 4 is extended in a similar
manner. In Figure 9, to avoid redundancy in our presentaifahe translation for barrier
operations, we write “translation f@et/put(l, h, s, t)” to denote the statements obtained by
applying the translation faget/put(l, h, s, t) verbatim.

Note thatprotected is set to O for all newly issued DMA operations, including rexs.
This is because, as discussed above, a barrier identifiexbbytotects all prior operations
identified byt, but not itself from future operations identified kiy

6 k-Induction for goto programs

Our encodings of DMA programs are directly amenable to aislyia bounded model
checking [BCC 03] as an effective method to discover DMA races. However(Balone
cannot be used to verify the (unboundathsenceof DMA races in programs with loops.

Thek-induction procedure [SSS00], proposed as a method to aloification of hard-
ware designs (represented as finite state machines) usiAg sofser, is a stronger version
of the standard invariant approach to verify safety progertJsing normal invariants, prov-
ing that a system satisfies a safety propertgquires showing that

(i) some formulal (possibly identical t@) holds in all initial states,
(i) Iis preserved by all state transitions of the systéns {(nductive,, and
(i) I impliesg.

The main difficulty of this method is the construction of itive formulael. The k-
induction principle addresses this difficulty by weaken(iigto the property that has to
be preserved only if it held in the previoudsstates of execution. In return, (i) has to be
strengthened appropriately.

We describe the principle using the notation of [ES03].1(8} andT(s, s’) be formu-
lae encoding the initial states and transition relationgdmite state system over sets of
propositional state variablesands’, andP(s) a formula representing states satisfying a
safety property. Fok > 0, to proveP by k-induction it is required first to show th& holds
in all states reachable from an initial state witkistepsj.e.that the following formula (the
base case) is unsatisfiable:

I(s1) A T(s1,82) A=+ AT(sp_1,86) N (P(s1)V---VP(s)) .
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Secondly, itis required to show that wheneeholds ink consecutive states, .. ., s,
P also holds in the next statg, ; of the system. This is established by checking that the
following formula (the step case) is unsatisfiable:

P(s1) ANT(s1,82) A=+ AP(sk) AN T(sk, spr1) AP (Sk41) -

In principle, k-induction can be used for SAT-based software model chgckint-of-
the-box”. A program can be encoded as a monolithic tramsftiaction, where the program
counter is an explicit variable. Assertions appearing éndtiginal program can be gathered
together into a single invariant. The encoded program avatient can be represented as a
SAT formula, to whichk-induction can be applied.

This naive encoding has not shown success in practice dhe toss of structure asso-
ciated with the translation process. Furthermore, an itapbrefinement which boost the
applicability ofk-induction to hardware designs is the restriction to lo@efpaths [SSS00].
This refinement is not useful when dealing with software, ightbe state-vector is very
large, leading to extremely long loop-free paths. To ses ttansider a program consisting
of a simple loop, which increments a counter until somea#ii unknown maximum value
is reached:

void f(unsigned int x) {
unsigned int i;
i =0;
while(i <= x) {
i ++;
}
}

For a fixed word sizel, the length of the longest loop-free path in the prograngsest
space exceeds, the number of possible integer values for this word sizeaBse realistic
programs involve many loops, frequently with unknown bayrapplyingk-induction with
a value ofk as large as the longest loop-free path in the state spacefisasible.

To verify absence of DMA races in goto programs, we presenb\elnformulation
of k-induction, which operates at the loop level, and prove disectness§p.1). We then
give some intuition as to why-induction is effective in proving absence of DMA races
in example programs written for the Cell processi#.2); this intuition is backed up by
experimental results ifi7.

6.1 A proof rule fork-induction with loops

To present our proof rule fde-induction we require some additional machinery and nota-
tion. Given programs: = 1: a1;...;m: am andg = 1: B1;...;n: By, thesizeof a, denoted
|a|, Ism, and we define the sequential compositiorv@nd s as follows:

as B =def L:ay;...;m:am; m~+1: 61;...;m~+n: Bn .
Fori > 0, we usex’ to denote the sequential composition;iafopies ofa, anda to
denote the empty program. For a single-statement progratmedbrm1: oy, we drop the

leading1:, writing simply a .

Definition 2 A programe is self-containeddenotedcontained (), if, for each goto state-
ment:: goto ..., [,... appearing iny, we have(i +1) € {1,...,|a| + 1}.
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In other words, goto statements can only change the ingirupbinter to the locations
of statements inside, or to the location immediately following. The traces of programs
formed using concatenation of self-contained componarse derived from the traces of
the components (this is formalized in Lemma 1 below).

In our version ofk-induction, assertions contained in a program are usedvasants.
To turn assertions into induction hypotheses in this sgttwe define a function that re-
places all assertions in a program with assumptions. Gi@ograma = 1: aq;. .. ;n: an,
the corresponding programgssume = 1: of; ...;n: o), is defined by:a) = assume ¢ if
a; = assert ¢, anda); = ; otherwise.

Finally, we present-induction as a proof rule operating on distinguished Idagsgoto
program of the following form:

as goto 1, (|8] +2)5 B3 goto (—|B] —1)5 v

whereq, 3 andy are self-contained. The program consists of a prety@eoop with body3
and a taily. Other than self-containedness, we do not make any assamagtbout the shape
of componentsy, 3 and~, which may contain further (nested) loops and arbitrarytrbn
structure. We do not demand the presence of an explicit loogdition: loop conditiorb can
be simulated by choosingsume b as the first statement of the loop body, asglime —b as
the first statement of the tail. Note that the restrictioneif-sontained components is mild,
e.g.early exit from the loop via a break statement can be simdilagea flag together with
an appropriate loop condition. Our implementatiorkehduction (se€7) can be applied to
C programs with arbitrary loop structures, provided thetm#flow-graph associated with
a given program is reducible [ALSUOG].

Proof rule for k-induction

contained () contained(3) contained () k>0
«a$ v Is correct {Oéassume S B?zgslume 3 B3 s Correc}ie{l,...,k}

Bhssume 3 B 1S COMECt  Bhissume § 7 IS correct
ag goto1,(|8]+2)s B goto (—|B] —1)¢ v is correct

In this rule, the assertions present in the prograng.the formulae in Figures 4, 5
and 9) take the role of the inductive invariant needed foification. The premises include
base cases requiring the program to be shown correct wheprehele, followed by be-
tween zero and: loop iterations, are executed. The premi:?é,gmme s [ is correctand
ﬂ(’fssume ¢ ~ is correctform the induction step, establishing that if it is possitdexecute
k loop iterations from an arbitrary state without violatingyaassertions then it is possible
to successfully execute a further loop iteration, or theltzol.

Theorem 1 (Correctness)rhe above proof rule is sound.

Before we can prove the correctness of Theorem 1, we needataatBrize the traces of
programs constructed by concatenation of self-containegrpms. The next lemma follows
directly from the trace semantics of goto prograi§¥) @nd the definition of self-contained
programs (Definition 2):

Lemma 1 Supposen, 8 are self-contained programs such that = n. Given the state
t = (o,pc) € S, we writet" = (o, pc + n) for the state with instruction pointer shifted by
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n € Z (with the special case™ = 7). The traces ofv 3 3 are:

S182 -+ S € traces(a),
traces(a§ B) = { 8182+ - Sp_1t1 ts -+ | t1to -+ € traces(B),
Jo,l. s, = (0,0) ANty = (0,1)

U{s182 - Sk4|s1s2 - sk4 € traces(a)}
U{s182-]s182 - € traces(a)}

In the first caset; to --- denotes both finite and infinite traces@fwhile s; so - -+ in the
last case is an infinite trace.

We also require the following simple result about the relathip between progranas
and@assume:

Lemma 2 The traces ot and aassume are related as follows:
traces(assume) = {s € traces(a) | s does not contairj }
Proof (Theorem 1With the help of Lem. 1, it can be observed that the program
as goto 1,(|8]+2)5 B3 goto (—[B] —1)3 v

is correct if and only if the programs, o g 3%, anda s 8°5 ~ are correct for eache N.
Furthermore, for any self-contained programs «s it is the case that:

a1 § agiscorrect= «; is correct 2)
a1 andag gseume § Q2 @re correct= a1 § as Iis correct 2)

We have:

— «ais correct: by (1), this follows from the correctness of; .

— a3 Btiscorrectfori € {1,...,k}: thisis proven by induction oh We assume that; 3
is correct (fori € {0, ...,k — 1}) and show the correctness @t 7! = a5 8°5 8.
From the correctness ofussume 3 Bhssume § B3 v and (1), we know that the program
Qassume § Bhssume § 0 1S correct. By the induction hypothesis and (2), this imptieat
as Blis correct.

— a3 (' is correct fori > k: again, we reason by induction ovieand assume that; 3°
is correct for somé > k. Because3”, ... 3 3 is correct, SO iSvassume 3 Biskme 3
B’;“ume ¢ B = aassume § Bhssume $ B (by Lem. 1), which together with (2) and the
induction hypothesis entails the correctness of 3.

— a§ «yis correct:given as premise of the rule.

— a3 @' ~is correct fori € {1,...,k}: follows from the correctness of the programs
Qassume § ngslume $ Bs vandas Bi_lx and (2).

—ay B3 ~ is correct fori > k: because3”ume $ -y is correct, so is the program
Qassume § Bastume 3 Bhssume § 7 = Qassume § Bhssume § 7. Together with (2) and the
correctness o § 3, this entails thatv § 8° § « is correct. O

By presentingi-induction using a general proof rule, we do not restrictrifethod to
a SAT-based implementation. Although our practical immemation is SAT-based, the rule
could also be used in any (possibly interactive) deducterdigation system.
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6.2 k-induction for DMA programs

Through our experiments {Y we observe that-induction works extremely well for check-
ing assertions representing DMA race-freeness, genegtéee rules in Figures 4, 5 and 9.
For realistic example programs written for the Cell proogsthe generated assertions are
mostly inductive already for smali, with no further annotations required to verify correct-
ness. The result is a verification method that is fully auticrend efficient on a large range
of Cell programs. For a small number of benchmarks we findtti@atmplicit encoding of
DMAs does not yield inductive assertions, while the expkeicoding does. We discuss this
in detail in§7.5.

Intuitively, k-induction works well in this application domain because Bbperations
in loops are typically designed to be pending for only a bashdumber of loop itera-
tions, allowingk-induction to succeed with a value &fproportional to the bound. This
is analogous to the intuition thatinduction works well for sequential hardware circuits
with pipelines, where thé required for induction to succeed is proportional to thespipe
depth [AFF"05].

7 Experimental evaluation
7.1 SCRATCH

We have implemented a prototype toot;iaTcH?, built on top of the CBMC model checker
[CKLO4]. SCRATCH accepts an arbitrary C program written for an SPE core of teké C
BE processor, and checks for DMA races involving scratath-peemory. The tool uses
the encodings described §% to transform the input program into a form where DMAs
are replaced with assertions and assignments over traakiables. In the case of the ex-
plicit encoding, the sizé® of the tracker arrays is specified as a command-line argutoent
SCRATCH.

Having translated the input program into an instrumentethfdSCRATCH can apply
bounded model checking to check for DMA races up to a certeggugion depth. To prove
absence of races C®ATCH combines bounded model checking withinduction, using the
loop-level formulation of$6. For a program consisting of a single, non-nested looph(wit
prelude and tail)k-induction is applied starting with = 0, and incrementing by one until
either the base case fails (a DMA race has been detectetl)ii®mbase case and step case
succeed (the program has been proved free of DMA races)esceeds 10. The starting
value, step size and upper limit fércan be configured via command-line arguments. For
such restricted loops, the combinationkeinduction and SAT-based bounded model check-
ing is sound: the base and step case programs generated kynithection proof rule are
loop-free, thus SAT-based bounded model checking cangeam exhaustive analysis.

Handling multiple loops.SCRATCH can be applied to arbitrary sequences of loop nests (as
long as the control-flow-graph associated with the inpug@m is reducible [ALSUO06]).

A sequence of loop nests is automatically transformed irgmgle, monolithic loop sim-
ulating the nest, using the following well-known technidt#ar80]. A positionvariable is
used to record which of the original loop bodies is due to beceted. The body of the

3 ScRATCH, together with source code for all benchmarks, is availabline:
http://www.cprover.org/scratch/.
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monolithic loop consists of a case-split on this variablagve each case contains the body
of the corresponding loop, together with code to update tsitipn variable appropriately.
Once this transformation has been appliedyduction can be used to directly analyze the
monolithic loop, since unwinding this loop leads to a loogef program.

We also experimented with handling sequences of loop ngsigilying thek-induction
rule recursively as follows. Given a sequence of loop nésitsgluction is applied to the first
outer loop. Unwinding this loop to yield a base case and siep tesults in programs which
themselves contain loops. Theinduction rule can then be applied again to each of these
programs, in an attempt to prove their correctness by inoluct his process leads to a tree
of programs to be analyzed: an interior nodef this tree is a program containing loops;
the left and right children of are the base and step cases associated withiaductive
proof of correctness forn. (Note that the values,, used for separate inductive proofs are
independent.) The leaf nodes of the tree are loop-free anegwhich can be analyzed using
SAT-based bounded model checking.

We have implemented both of the above approaches, In the@bdsd heuristics for
guessing effective starting and increment valueskfathe transformation to a monolithic
loop leads to faster verification of our benchmark exampliess transformation is used in
our experimental evaluation.

7.2 Benchmarks and experimental platform

We evaluate SRATCH using a set of 22 benchmarks adapted from examples suppiiled w
the IBM Cell SDK for Multicore Acceleration [IBM09], categiaed as follows:

— z-buf (z € {1,2,3}) Eleven data processing programs which use single-, dooble-
triple-buffering for data-movementf Figure 2). ‘I/O’ in the benchmark title indicates
that separate buffers are used for input and output. Sonensof these programs use
fences/barriers, indicated by ‘+ fence’/'+ barrier’ in thenchmark title

— race check, simple dmaExamples which illustrate data races and use of DMA

— sync atomic/mutex Programs illustrating the use of SDK synchronization ptivas
for atomic operations and mutexes, in conjunction with DM#emtions

— cpaudio, normalize Applications which copy one channel of a stereo audio fildéo t
other, and normalize the volume of a mono audio file, respelgti

— checksum Computes a checksum on data in host memory. Multiple buffegsised to
coordinate data-movement efficiently

— Euler simple/complex Particle simulation using Euler integration. The simplesi@n
uses separate individual buffers for position, velocitgt avass data; the complex version
uses double-buffering

— Julia n Quaternion Julia set ray-tracing, where an SPE renderdumns of output

As discussed ir$3, manual program slicing has been applied to each benchtoark
remove portions of code that do not affect DMA operationssThutine slicing could be
automated: the sliced code uses vector datatypes andsintfimctions specific to the Cell
processor, which the slicer would need to understand. Afteing, most of the benchmark
examples consist of a single, non-nested loop. Ebker simple Euler complexand Julia
benchmarks each involve a loop containing a nested inner loo

We apply SRATCH to correct and buggy versions of the benchmarks. With thegxc
tion of 3-buf and cpaudiq bugs are injected into the examples, either by removingia
operation, changing the tag used to identify a DMA, or switghan operation fronget
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to put (or vice-versa). The-buf benchmark is the triple-buffering example discussed in
§2.3, in which £RATCH uncovered an existing bug. A DMA race occurs whendpaudio
benchmark is executed with zero frames of audio. This isadiyua bug since the precon-
dition that the number of frames should be positive is notsieel.

We present results demonstrating the effectivenessc&ascH, equipped with either
the explicit or implicit encoding o§5, for bug-finding and proving correctness with respect
to DMA races. Experiments are performed on a 3GHz Intel Xasadecore machine with
48Gb RAM, running Ubuntu. MiniSat 2.0, compiled with full topizations, is used as a
back-end SAT solver. It has been reported to perform contipalato state-of-the-art SMT
solvers for SMTBY [CFMS09] on this type of workload. All times reported are i@aged
over 5 consecutive runs.

7.3 Bug-finding

With both encodings, bounded model checking proves exiseeféective for detecting
DMA races. For each benchmark and each encoding, we perfaepeated bounded model
checking runs to find the minimum execution depth requiresktabit a DMA race. For the
explicit encoding, we also iteratively computed, for eaehdhmark, the smallest value bf
(the size of the tracker arrays) necessary to allow racetiete \We then measured the time
taken for verification (instrumentation + bounded modelakiteg) using these minimum
values, averaged over multiple runs.

With the explicit encoding, the maximum verification timer@ss all benchmarks is
1.32s; this is for one of theace checlexamples. For each benchmark, time taken for verifi-
cation with the implicit encoding is identical or marginalbwer, with a maximum time of
0.87s for the sameace checkexample. This gap of 0.45s is the largest difference between
the two encodings exhibited for our benchmarks with resfebtig-finding—a speedup of
1.52x using the implicit encoding instead of the explicit encagdithe bugs in our bench-
marks are relatively shallow; all bugs are found within aa@xion depth of 523 and 320 C
program statements for the explicit and implicit encodjimgspectively.

By reporting verification times for the explicit encoding evhthe optimal value ob
is used, we have shown the explicit encoding in a favoraplet.When using the explicit
encoding in practice, one would have to guess a suitableeVialuD. Guessing a larger
value than necessary would result in large BMC instance#ewhessing too small a value
would result in failed verification attempts. The implicit@ding does not suffer from this
practical constraint.

7.4 Proving correctness.

Figure 10 presents experimental data obtained apply@RpSCH to correct versions of the
benchmarks, using both the explicit and implicit encodiriggs each encoding, the time (in
seconds) taken for verification is shown, together with tinalkest value ofc required to
prove correctness. Assuming that the requiréslm (for somem > 0), verification time is
the sum of the times for program instrumentation, constoadf base/step case programs
for 0 < k < m, successful bounded model checking of base case programsfé < m,
unsuccessful bounded model checking of step case progoaumsfk < m, and successful
bounded model checking of the final step case prograrh form.
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Benchmark Explicit encoding Implicit encoding
D time k vars clauses| time k vars  clauses
1 race check 1 2 015 O 1409 3518 0.15 O 794 1625
2 race check 2 4 017 O 3893 11550 0.15 O 1669 4616
3 sync atomic op 1 019 1 8212 225520 022 1 7074 19628
4 sync mutex 1 022 1 7517 21303 0.23 1 6465 19599
5 simple dma 1 015 O 3585 9857 0.14 O 3441 9453
6 1-buf 1 031 1 7968 21994 034 1 6861 19163
7 1-buf 110 1 040 1 7973 22011 043 1 6866 19180
8 2-buf 2 056 1 28524 84783 1.04 2 23591 70828
9 2-buf + fence 4 175 3 65566 202220 1.02 2 18038 54268
10  2-buf + barrier 4 186 3 66322 205724 1.03 2 18187 54964
11 2-bufl/O 4 220 3 65064 199696 1.23 2 17950 53807
12 3-buf 3 5.89 3 76835 236073 290 3 35335 108929
13 3-buf + fence 5 1181 3 86578 269935 2.63 3 27931 86849
14 3-bufl/O 2 417 4 70445 216907 - - - -
strengthened 2 194 3 57772 177474 260 3 35475 109597
15  3-bufl/O + fence 4 571 4 87727 274294 - - - -
strengthened 4 242 3 72519 226087 2.41 3 28071 87517
16  3-buf /O + barrier| 4 8.03 4 88779 279190 - - - -
strengthened 4 254 3 73415 230263 2.43 3 28294 88561
17  cpaudio 4 293 3 108418 327857 169 2 25886 76796
18 normalize 8 13.85 3 262822 812394 12.32 4 54889 163873
19  checksum 4 207 4 64328 19535(0 - - - -
strengthened 4 191 4 64339 195413 124 4 23543 71356
20  Euler simple 5 160 2 79057 253441 - - - -
strengthened 5 175 2 74262 23905 1.21 2 17467 54457
21  Euler complex 10 3875 3 495504 1596834 3.89 2 50855 161300
22 Julia2 3 7208 8 337622 981717 43.80 7 207616 590011

Fig. 10 Benchmark results for proving correctness ugtrigduction, with explicit and implicit encodings of
DMA operations

As with the results for bug-finding, we iteratively computiéet smallest value ob
required to prove correctness using the explicit encoding, report results for the explicit
encoding when optimum values f@ are used; the optimum value f@ is shown, for
each benchmark, in Figure 10. Again, this shows the ex@initding in a favorable light:
in practice one would have to guess a suitable valugXpthis is not necessary when the
implicit encoding is used.

Figure 10 also shows the size (number of variables and nuafleéaiuses) of the largest
SAT instance solved for each benchmark durirignduction. In all cases, this corresponds
to the SAT instance associated with verification of the fibgbscase program.

In five cases, we found that DMA race freedom could be provednaatically using
k-induction, for a small value of, with the explicit encoding buhot with the implicit
encoding. This scenario is indicated by ‘-’ entries in Fegli®, and indicates thatinduction
did not succeed fok < 10. We discuss reasons for this in detail§in5. In each case, it is
possible to manually add a simple strengthening asseui@tdw k-induction to succeed
with the implicit encoding; we give an example of this§in.5. In Figure 10, rows marked
‘strengthened’ show results for variants of benchmarks giitengthening assertions.

Whenk-induction succeeds for both encodings, the valugsrefjuired are identical, or
differ by one due to benchmark-specific differences in thergjth of the induction hypoth-
esis yielded by assertions associated with each encoding.
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Fig. 11 Comparison of explicit and implicit encodings of DMA opéoais when proving correctness usikg
induction, using a logarithmic scale. Numbers are usedentify benchmarks according to the row numbers
of Figure 10

The results of Figure 10 indicate thiainduction provides a tractable method for prov-
ing correctness for this set of benchmarks: for both eng=d{excepting cases wheke
induction does not succeed for the implicit encoding), tleimum time taken for verifi-
cation is less than 73 seconds. Restricting our attentidret@whmarks wherg-induction
succeeds for both encodings (17 of the standard benchnadss5 strengthened bench-
marks), we see that the implicit encoding outperforms th@ieik encoding in the majority
of cases. This is highlighted by the scatter plot of Figurealtiich plots (using a logarithmic
scale) the relationship between verification times witthketcodings for each benchmark;
benchmarks are identified by their row number in Figure 10sdme cases, the implicit
encoding significantly outperforms the explicit encodiugrification with the implicit en-
coding is 10 times faster for tieuler complebenchmark. This is due to the dependence of
the explicit encoding o, the maximum number of operations that may be simultangousl|
pending. For theeuler complexbenchmark,D is relatively large, which necessitates the
solving of large SAT instances, as shown in Figure 10. By canispn, the largest SAT in-
stance associated with the implicit encoding for this bemafk is almost ten times smaller,
since the implicit encoding is independent of the parambter

The Julia benchmark contains a loop for which the number of iteratisres fixed pa-
rametern, the columns of a raytraced image to be computed by one SREhiE@xample,
k-induction succeeds with = n+ 6 for the explicit encoding, ankd = n+ 5 for the implicit
encoding. The results in Figure 10 are for the case whete2. In Figure 12, we illustrate
the scalability ofk-induction by plotting the time taken for verification of tlalia bench-
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Fig. 12 Verification time for theJulia benchmark increases cubically wikh The values ofc required to
prove correctness with the explicit and implicit encodiagsk = n + 6 andk = n + 5 respectively, where
n is the number of image columns processed by an SPE

mark when we vary parameterbetween 2 and 18. Growth is less than cubic, showing that
our k-induction method scales well.

7.5 Examples where the implicit encoding is too weakkénduction

As mentioned above, and as indicated in Figure 10, our beadtsmeveal examples where
k-induction succeeds with the explicit encoding of DMA ojenas, but not with the im-
plicit encoding. We discuss the reasons for this by congigeone of the examples, the
checksunbenchmark, in detail.

The checksunbenchmark uses four local buffers, numbered 0, 1, 2 and JZdeive
data from host memory via DMA. Each buffer has siZé bytes, and the collection of
four buffers is implemented as4x 2'2 array of typechar, calledbuf . At the start of
the program, the value'? is written to a variablesize. There follows a data processing
loop with induction variable such that, on iteration (: = 0,1,...), a get operation is
issued to copy2'? bytes of data from host memory into buffé¥4, i.e. into the region
[(i%4) x 212, (1%4 + 1) x 2'2) of buf . However, the variableize, rather than the explicit
constant2'?, is specified as the size argument to gee command. The loop is structured
so that DMA operations targeting all four buffers may be dtemeously pending.

When proving the step case fefinduction, the value ofize is havocked: the model
checker considers paths from the start of the loop from stateeresize is arbitrary. In
particular, states whereze is larger thar2'? are considered. Such states can clearly lead
to DMA races.e.g.a get operation requesting that more thzlt bytes are transferred into
buffer O will result in buffer overflow: thget operation will target memory locations that
form part of buffer 1. This will lead to a DMA race during thextéoop iteration, when a
get is issued targeting buffer 1. Such states are, of courseaohable, sinceize is set to
212 pefore the loop and is never modified further. The asserion < 22 is part of the
invariant required to show correctness of the program.

With the explicit encoding, this assertion is computedriecily viak-induction. A his-
tory of four DMA operations is trackedX = 4). Thus, when proving the step case for 4
the model checker assumes that, on loop iteratiord, the DMA operations issued in pre-
vious loop iterations did not race. This assumption is ¢yefaise in states whereize is
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Benchmark [ iterations [ time | SCRATCHspeedup]

1-buf correct 15 4.49 14.48 x
2-buf correct >100 >1025.27 >1830.83x%
3-buf correct >100 >2646.87 >449.38x
1-buf buggy 3 0.39 2.07x
2-buf buggy 20 2421 93.11x
3-buf buggy >100 >5226.91 >14934.02x

Fig. 13 Results applying CEGAR-based verification to three of thé S8BK examples using 8rABs in
comparison to SRATCH. The explicit encoding of DMA operations is used

greater thar2'?, thus states which do not satisfy the invariaizt < 2'2 are not considered
by the model checker as initial states when checking thecstep.

With the implicit encoding, increasingdoes not yield this invariant. This is because the
implicit encoding tracks aingle arbitrary DMA operation. Consider a state wheig: =
2'2 4 1 andi%4 = 3. Executing four iterations of the loop resultsgét operations targeting
buffers 3, 0, 1 and 2, in that order. Call these operatigisg, get, get; andget,. Since
size = 212 + 1, operationget; targets the regiom; = [j x 2'%, (j + 1) x 2'?] of buf.
Consider a trace wherget; is nondeterministically chosen for tracking. Whegst, get;
andget, are issued, they are checked with respegletg. No race is detected fget, and
get,, sincers Nro = P andrs Nr; = (. However,rs N ry = {3 x 2!}, thus there is a
DMA race betweerget; andget,. For anyk, we can construct a path consistingkoloop
iterations, ending in a state whesge = 2'2 + 1 andi%4 = 3, along which no DMA is
tracked. We can correctly assume that no DMA race is detedted) such a path. However,
as demonstrated above, the path can be extended so that a &@Accurs. Thus, for any
k, we have a counterexample enduction.

The essential point here is that with the explicit encodthg,combination of multiple
DMA operations yields the invariantze < 2'2, whereas the implicit encoding considers
operations in isolation, and does not derive this invariant

The implicit encoding withk-induction fails on four further benchmarks, as indicated
in Figure 10, for similar reasons. In all cases, the inductkigpothesis can be strengthened
so thatk-induction succeeds for the implicit encoding, by addingnapte assertion to the
body of the loop. For example, for tltmecksunbenchmark, addingssert size == 2'2 to
the loop body suffices. Experimental results for strengtddpenchmarks are presented in
rows marked ‘strengthened’ in Figure 10.

7.6 Comparison with predicate abstraction

The translation implemented bycC8ATCH operates at the level of control flow graphs. In
order to compare with other tools, we have hand-transldexttof our benchmarké;buf
2-buf and3-buf into C programs that track DMA operations as describe®ie aimed to
compare with BAST [BHIMO07] and TABS [CKSYO05] but were unable to obtain results
using BLAST due to a bug in the tool, which we have reported to the 8r developers.
Figure 13 shows results for proving correctness and findiigs lising 81 ABs (version
2.5), with Cadence SMV as a back-end model checker. For ecanh@e, we show the
number of refinement iterations requiretk(ations, the time taken for verificatiortiine),
and the speed-up factor obtained by usi@RETCH over SATABS (obtained by comparing
with the results of Figure 10). The explicit encoding is usedll cases. For buggy versions



28

of 1-buf and2-buf SATABSIs able to find the bug within 100 iterations, but is two ordwrs
magnitude slower thancRATCHwhen applied t@-buf. The abstraction-refinement process
leads to a conclusive verification result when applied tocitreect version ofl.-buf, but is
almost five times slower than o#rinduction technique. 8rABs was not able to find the
bug in the buggy version @&-buf, or prove correctness of correct versionduf or 3-buf
within 100 refinement iterations.

7.7 Comparison with IBM Race Check library

The IBM Cell SDK [IBM09] comes with a library for detecting DMraces [IBM08] at
runtime. The library maintains a log of pending operatiatsgcking each new operation
against entries in the log in a manner similar to our expkeitoding. If a DMA race is
detected, then an error message is written to the console.

Using a Sony PlayStation 3 console, which is equipped witkeldfLocessor, we tested
the Race Check library on each of our buggy examples. DMAsrace detected for all but
two benchmarks, and race detection takes less@hanin each case. The bug opaudio
was not detected since the example runs on a specific inpuh&itedoes not expose the
bug. Although the buggy version &fbuf 1/0 crashes when executed on the Cell hardware,
the Race Check library does not detect the DMA race resplenfaibthis crash. This false
negative appears to be a bug in the Race Check library rathera fundamental limitation,
sincel-buf 1/0Ois similar to examples where the Race Check library sucokgsfetects
DMA races.

Note that runtime race detection cannot be used to pibgencef DMA races, unlike
our k-induction method.

8 Related work

The concept ok-induction was first published in [SSS00, BC00], targeting terification
of hardware designs represented by transition relatidtieo(agh the basic idea had already
been used in earlier implementations [LS99] and a versianefinduction used for BDD-
based model checking [DM97]). A major emphasis of these tejoeps is on the restric-
tion to loop-free or shortest paths, which we do not considesur k-induction rule due
to the size of state vectors and the high degree of determimissoftware programs. Sev-
eral optimizations and extensions to the technique have pesposed, including property
strengthening to reduce induction depth [VHO7], improvpgrformance via incremental
SAT solving [ES03], and supporting verification of tempapabperties [AFF 05]. Appli-
cations ofk-induction have focused exclusively on hardware desig8S[®, BC00,LS99],
synchronous programs [HT08, Fra06] and, recently, Systeegigns [GLD10]. A princi-
ple related tak-induction has also been used for circular reasoning albeeridss proper-
ties [McM99].

To the best of our knowledge, there has been no previous wodpplyingk-induction
to imperative programs comparable to our proceduirOur formulation oft-induction,
and the explicit encoding of DMA operations, were first préed in [DKR10]. A technique
for strengtheningk-induction in the context of DMA race analysis, using statialysis
techniques, has been proposed [DHK11]; this work sketdiesplicit encoding of DMA
operations presented in full in this paper. As discussegi7ib, the implicit encoding of
DMA operations may lead to assertions that arekatductive, where the explicit encoding
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would yield k-inductive assertions. The strengthening techniques Bii{DL] can be used
to overcome this weakness of the implicit encoding, autaaby inferring the kinds of
strengthening assertions discusseglfirh. The £RATCHtool is also described in [DKR11].

Techniques for detecting data races in shared memory hmeltitled applications have
been extensively studied. Notable static methods are laséatmal type systems [FF00],
or use classic pointer-analysis techniques; the latteroagp is used by tools such aa®&
ERX [EA03] and QHORD [NAWO06]. The ERASER tool [SBNT97] uses binary rewriting
to monitor shared variables and to find failures of the logkdiiscipline at runtime. Other
dynamic techniques include [FGO5], which is based on seste-search with partial-order
reduction, and [HMMCMO6], which is based on a partial-ordetuction technique for Sys-
temC similar to the method of Flanagan and Godefroid [FG8B6he of these race detection
techniques are applicable to software for heterogeneolticore processors with multiple
memory spaces. The only race detection tool we are aware iohugigeared towards het-
erogeneous multicore is the IBM Race Check library [IBM0O8hich we compare with in
§7. The speed of runtime race detection with this library tisaative, but the library requires
access to commodity hardware and can only be used to find bhoigh are revealed by a
particular set of inputs. In contrast, ok#induction technique can provagsenceof DMA
races, and allows analysis to be carried out on any standapieform. Furthermore, BMC
is able to detect potential races by assuming that inpunpeters may takanyvalue.

Our focus in this paper has been on the use of formal analysagdtprogrammers in
writing correct DMA-based programs. An alternative appto#s to relieve programmers
of the need to write DMA operations by providing a higherdieprogramming formal-
ism, where data-movement between memory spaces is notiexipdw level, DMA-based
code can then be automatically generated from high-levadrams. High-level program-
ming models for the Cell processor which avoid explicit DMPogramming include Se-
quoia [FHK"06], CellSs [BPBL06], CellFS [INM09], Sieve C++ [DKL09] and@ffload
C++ [CDD™10,DDRR10]. A formal approach along these lines involvésgisession types
to specify communication [YVPHO08,HVY09]. Given a commuations protocol expressed
using session types, subtyping rules allow send/receiegatipns to be automatically re-
ordered so that independent communications may be efficieverlapped. We regard these
high-level approaches as complimentary to our technigié&de higher-level programming
formalisms are clearly desirable, there is always an aasatiperformance trade-off: to
achieve optimal performance on architectures like the BEIlit is typically necessary to
write low-level code with explicit DMA operations, which ptechniques can be used to
analyze. Furthermore, our methods could be used to anadigzedrrectness of code gen-
erated from higher-level formalisms. Finally, the higlharel approaches discussed above
come equipped with runtime libraries, which are writtemgdbow-level C, and could clearly
benefit from formal verification using the techniques we hdexeeloped.

Our novel encoding of DMA races resembles the concept oftgopvariables [AL91].
Similar techniques have found application in other area®whal verification, including
liveness-to-safety rewriting for bounded model checki®B(6], reducing concurrent anal-
ysis to sequential analysis under a context bound [LRO9, EXDRnd proving LTL proper-
ties of infinite-state programs [CK11].

9 Summary and Future Work

We have contributed an automatic technique for analyzingADdlces in heterogeneous
multicore programs which manage scratch-pad memory. Ah#get of our method is a
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novel formulation oft-induction. We have demonstrated the effectiveness otehbisnique
experimentally via a prototype tool CRATCH. SCRATCH is able to detect or prove absence
of DMA races in a wide range of example programs for the Cell@&cessor, handling
examples which cannot be verified using current predicagéradiion tools, and finding
bugs which go undiscovered by a runtime race checking lbrar

We plan to extend this work in the following ways.

We intend to generalize and make precise our intuitions aghtpk-induction works
well for DMA-based programs. Our vision is a set of conditidar identifying classes of
programs amenable to verification byinduction, thus making the technique more broadly
applicable for software analysis.

SCRATCH focuses on analyzing DMA races for accelerator memory byyaimg ac-
celerator source code in isolation. It is not possible tacklmaeaningful properties of host
memory without some knowledge of how this memory is strieduifo check DMA races
for host memory we plan to design a method which analysesdmabtccelerator source
code side-by-side. A further challenge is the problem of DM&e checking between con-
currently executing accelerator cores in a heterogenegaiera. A starting point towards
this goal could involve combining our methods with adaptesions of race checking tech-
niques for shared memory concurrent softwarfesg).

Our technique is currently limited to sequential analysis:check memory safety for a
singleaccelerator thread. This restriction allows us to checkulpeoperties of DMA-based
programs in a scalable manner. However, we would idealtydik analysis capable of han-
dling concurrent threads, to detect or prove absence of Datas between threads running
on distinct accelerator cores. Naively applying a BMCdohapproach in the concurrent
setting is not a scalable solution, due to the exponentiadbar of thread interleavings that
must be considered. We plan to investigate the use of BMGhitqubs specifically tailored
towards concurrent analysis, as proposed in [Cor10]. iRiediry results for a recent, com-
plementary approach to race analysis for concurrent pnagjtesing asynchronous memory
operations using separation logic also show promise [BOIDP1

Acknowledgment

We are grateful to Matko Botincan, Leopold Haller and thergmous reviewers for their
comments on an earlier draft of this work.

References

[AFFT05]  Roy Armoni, Limor Fix, Ranan Fraer, Scott Huddleston; Riterman, and Moshe Y. Vardi.
SAT-based induction for temporal safety propertie€lectr. Notes Theor. Comput. Sci.
119(2):3-16, 2005.

[AL91] Martin Abadi and Leslie Lamport. The existence ofinement mappingsTheor. Comput.
Sci, 82(2):253-284, 1991.

[ALSUO6]  Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffr®. Ullman. Compilers: Principles,
Techniques and Tool#\ddison Wesley, 2006.

[BCOO] Per Bjesse and Koen Claessen. SAT-based verificatithrout state space traversal. FiM-
CAD, volume 1954 oL NCS pages 372-389. Springer, 2000.

[BCCtT03] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofrichman, and Yunshan Zhu.
Bounded model checkingddvances in Computer§8:118-149, 2003.

[BDDP11]  Matko Botincan, Mike Dodds, Alastair F. Donalds@md Matthew J. Parkinson. Automatic
safety proofs for asynchronous memory operation?POPP, pages 313-314. ACM, 2011.



31

[BHIMO7]

[BPBLO6]

[CDD*10]

[CFMS09]
[CK11]
[CKLO4]

[CKSYO05]

[Cor10]

[DDRR10]

[DHK11]

[DKLO9]

[DKR10]

[DKR11]

[DM97]

[EA03]
[EQR11]
[ES03]
[FFOO]
[FGO5]

[FHK*06]

[Fra06]
[GLD10]

[Har80]

Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, dapak Majumdar. The software model
checker BlastSTTT 9(5-6):505-525, 2007.

Pieter Bellens, Josep M. Perez, Rosa M. Badia, @sds]Labarta. CellSs: a programming
model for the Cell BE architecture. IRroceedings of the 2006 ACM/IEEE Conference on
Supercomputing (SCpage 86. ACM, 2006.

Pete Cooper, Uwe Dolinsky, Alastair F. Donaldson, AmdRichards, Colin Riley, and George
Russell. Offload — automating code migration to heterogemeoulticore systems. In
HIPEAC, volume 5952 oL NCS pages 337-352. Springer, 2010.

Lucas Cordeiro, Bernd Fischer, and Joao Marqulea-SMT-based bounded model checking
for embedded ANSI-C software. IRSE 2009.

Byron Cook and Eric Koskinen. Making prophecies wdtrision predicates. IROPL, pages
399-410. ACM, 2011.

Edmund Clarke, Daniel Kroening, and Flavio Lerda.todl for checking ANSI-C programs.
In TACAS volume 2988 oL.NCS pages 168-176. Springer, 2004.

Edmund Clarke, Daniel Kroening, Natasha Sharggand Karen Yorav. SATABS: SAT-based
predicate abstraction for ANSI-C. TACAS volume 3440 of NCS pages 570-574. Springer,
2005.

Lucas Cordeiro. SMT-based bounded model checlongnulti-threaded software in embed-
ded systems. ITCSE (2) pages 373-376. ACM, 2010.

Alastair F. Donaldson, Uwe Dolinsky, Andrew Rictis, and George Russell. Automatic of-
floading of C++ for the Cell BE processor: a case study usirftpp@d. InMuCoCoS pages
901-906. IEEE, 2010.

Alastair F. Donaldson, Leopold Haller, and Danield€ning. Strengthening induction-based
race checking with lightweight static analysis. In Ranlfjiala and David A. Schmidt, editors,
VMCAI, volume 6538 of.NCS pages 169-183. Springer, 2011.

Alastair F. Donaldson, Paul Keir, and Anton Lokhroet Compile-time and run-time issues in
an auto-parallelisation system for the Cell BE processdeuro-Par 2008 Workshopsolume
5415 ofLNCS pages 163-173. Springer, 2009.

Alastair F. Donaldson, Daniel Kroening, and PhiliRimmer. Automatic analysis of scratch-
pad memory code for heterogeneous multicore processolAQAS volume 6015 oLNCS
pages 280-295. Springer, 2010.

Alastair F. Donaldson, Daniel Kroening, and PhliRiUmmer. SCRATCH: a tool for automatic
analysis of DMA races. II?PPOPPR pages 311-312. ACM, 2011.

David Déharbe and Anamaria Martins Moreira. Usingliction and BDDs to model check
invariants. INCHARME volume 105 ofFIP Conference Proceedingpages 203—-213. Chap-
man & Hall, 1997.

Dawson Engler and Ken Ashcraft. RacerX: Effectiviatis detection of race conditions and
deadlocks. IrBOSR pages 237-252. ACM, 2003.

Michael Emmi, Shaz Qadeer, and Zvonimir Rakam&@ay-bounded scheduling. ROPL,
pages 411-422. ACM, 2011.

Niklas Eén and Niklas Sérensson. Temporal indacby incremental SAT solvingElectr.
Notes Theor. Comput. Scg9(4), 2003.

Cormac Flanagan and Stephen N. Freund. Type-basedletection for Java. IRLDI, pages
219-232. ACM, 2000.

Cormac Flanagan and Patrice Godefroid. Dynamidgantder reduction for model checking
software. InPOPL, pages 110-121. ACM, 2005.

Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Kriigharkhoon Leem, Mike Houston,
Ji Young Park, Mattan Erez, Manman Ren, Alex Aiken, WillianDally, and Pat Hanrahan.
Sequoia: programming the memory hierarchySlipercomputing (SCpage 83. ACM, 2006.
Anders Franzén. Using satisfiability modulo thesffor inductive verification of Lustre pro-
grams.Electr. Notes Theor. Comput. Sci44(1):19-33, 2006.

Daniel Grof3e, Hoang M. Le, and Rolf Drechsler. Pnoviransaction and system-level prop-
erties of untimed SystemC TLM designs. MEMOCODE pages 113-122. |IEEE, 2010.
David Harel. On folk theorem€ommun. ACM23(7):379-389, 1980.

[HMMCMO6] C. Helmstetter, F. Maraninchi, L. Maillet-Corzp and M. Moy. Automatic generation of

[Hofos]

[HTOS]

schedulings for improving the test coverage of systems-chip. InFMCAD, pages 171—
178. |IEEE, 2006.

H. Peter Hofstee. Power efficient processor archite and the Cell processor. HPCA
pages 258-262. IEEE, 2005.

George Hagen and Cesare Tinelli. Scaling up the foreafication of Lustre programs with
SMT-based techniques. FMCAD, pages 109-117. IEEE, 2008.



32

[HVY09]

[IBMO8]
[IBMO9]

[INMO9]
[KS03]
[LRO9]
[LS99]
[McM99]
[M0098]
[INAWOS]
[SBO6]

[SBNT97]

[SSS00]
[VHO7]

[YVPHOS]

Kohei Honda, Vasco Thudichum Vasconcelos, and Nab¥Yoshida. Type-directed compila-
tion for multicore programmingElectr. Notes Theor. Comput. S@41:101-111, 2009.

IBM. Example Library API Reference, version 3Jiily 2008.

IBM. Cell BE resource center, October 2009.

http://ww.ibm con devel operwor ks/ power/cel | /.

Latchesar lonkov, Aki Nyrhinen, and Andrey Mirtchiski. CellFS: Taking the “DMA” out of

Cell programming. IHPDPS pages 1-8. IEEE, 2009.

Daniel Kroening and Ofer Strichman. Efficient comgtign of recurrence diameters. M-
CAl, volume 2575 oL NCS pages 298-309. Springer, 2003.

Akash Lal and Thomas W. Reps. Reducing concurrentyaisaunder a context bound to
sequential analysigzormal Methods in System Desjdb(1):73-97, 2009.

Carl Johan Lillieroth and Satnam Singh. Formal veatfion of FPGA coresNord. J. Comput.
6(3):299-319, 1999.

Kenneth L. McMillan. Circular compositional reasing about liveness. IGHARME volume

1703 ofLNCS pages 342—-345. Springer, 1999.

Gordon E. Moore. Cramming more components ontaginatied circuits.Proceedings of the
IEEE, 86:82-85, 1998.

Mayur Naik, Alex Aiken, and John Whaley. Effectivéatic race detection for Java. RLDI,

pages 308-319. ACM, 2006.

Viktor Schuppan and Armin Biere. Liveness checkirsgsafety checking for infinite state
spacesElectr. Notes Theor. Comput. Sci49(1):79-96, 2006.

Stefan Savage, Michael Burrows, Greg Nelson, Patridkafarro, and Thomas Anderson.
Eraser: A dynamic data race detector for multithreadednarog. ACM Trans. Comput. Syst.
15(4):391-411, 1997.

Mary Sheeran, Satnam Singh, and Gunnar Stalm@hecking safety properties using induc-
tion and a SAT-solver. IFMCAD, volume 1954 oL NCS pages 108-125. Springer, 2000.
Vishnu C. Vimjam and Michael S. Hsiao. Explicit safgiroperty strengthening in SAT-based
induction. InVLSID, pages 63-68. IEEE, 2007.

Nobuko Yoshida, Vasco Thudichum Vasconcelos,yé@dPaulino, and Kohei Honda. Session-
based compilation framework for multicore programming FMCO, volume 5751 oLNCS
pages 226-246. Springer, 2008.



