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Abstract Modern multicore processors, such as the Cell Broadband Engine, achieve high
performance by equipping accelerator cores with small “scratch-pad” memories. The price
for increased performance is higher programming complexity – the programmer must man-
ually orchestrate data movement using direct memory access(DMA) operations. Program-
ming using asynchronous DMA operations is error-prone, andDMA racescan lead to non-
deterministic bugs which are hard to reproduce and fix. We present a method for DMA
race analysis in C programs. Our method works by automatically instrumenting a program
with assertions modeling the semantics of a memory flow controller. The instrumented pro-
gram can then be analyzed using state-of-the-art software model checkers. We show that
bounded model checking is effective for detecting DMA racesin buggy programs. To en-
able automatic verification of the correctness of instrumented programs, we present a new
formulation ofk-induction geared towards software, as a proof rule operating on loops. Our
techniques are implemented as a tool, SCRATCH, which we apply to a large set of programs
supplied with the IBM Cell SDK, in which we discover a previously unknown bug. Our
experimental results indicate that ourk-induction method performs extremely well on this
problem class. To our knowledge, this marks both the first application of k-induction to
software verification, and the first example of software model checking in the context of
heterogeneous multicore processors.
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1 Introduction

Since the late 1950s until early the early 2000s, high-performance computing users (e.g.
scientists using computers to study complex physical phenomena) have been able to simply
wait for consecutive generations of computer hardware to significantly speed up the per-
formance of applications. This was due to the success offrequency scaling, facilitated by
Moore’s law, which states that the number of transistors that can be inexpensively placed on
an integrated circuit will double approximately every two years [Moo98].

Although transistor densities continue to double every 18 to 24 months, further increases
in processor frequency have been found to lead to prohibitively high levels of power con-
sumption. Instead of increasing the frequency of individual processor cores, manufacturers
have opted to deliver performance by using the additional transistors afforded by Moore’s
law to design processors consisting ofmultiplecores.

In principle, ahomogeneousmulticore processor, consisting ofn identical cores which
share memory, can offer a factor ofn times execution speedup over a single-core processor
running at the same clock rate. However, such speedups are rarely achieved for realistic
applications, for two main reasons: 1) it may not be possibleto partition an application
into independent components for parallel execution, and 2)contention for access to shared
memory in a data-intensive parallel application may lead toa performance bottleneck. The
second problem, known as thememory wall, means that even for highly parallel applications,
adding further processor cores quickly leads to diminishing returns.

Heterogeneous multicore processors, such as the Cell Broadband Engine (BE) [Hof05,
IBM09], circumvent the memory wall problem by equipping cores with small “scratch-pad”
memories. These fast, private memories are not coherent with main memory, thus allowing
independent calculations to be processed in parallel by separate cores without contention.
Movement of data between distinct memory spaces is under software control, and can be
coordinated usingdirect memory access(DMA) operations, combined with mailbox/inter-
rupt facilities for inter-core synchronization. A common design for heterogeneous multicore
architectures consists of a host core, connected to main memory, together with a number of
accelerators each equipped with scratchpad memory. This situation is illustrated in Figure 1.

Fig. 1 Structure of a heterogeneous multicore architecture consisting of a host core with a number of accel-
erators. Each accelerator core is equipped with a single scratch-pad memory, to which it has exclusive access.
Direct memory access (DMA) is used to transfer data between main and scratch-pad memory
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While the use of scratch-pad memory can boost performance, it places heterogeneous
multicore programming at the far end of the concurrent programming spectrum. The pro-
grammer can no longer rely on the hardware and operating system to seamlessly transfer
data between the levels of the memory hierarchy, and must instead manually orchestrate
data movement between memory spaces usingdirect memory access(DMA). Low-level
data movement code is error-prone: misuse of DMA operationscan lead toDMA races,
where concurrent DMA operations operate on the same portionof memory, and at least one
modifies the memory. If undetected, DMA races can lead to nondeterministic bugs that are
difficult to reproduce and fix.

We present a method for DMA race analysis which automatically instruments a C pro-
gram containing DMA operations with assertions modeling the semantics of a memory flow
controller. We consider two different encodings of DMA operations. The first encoding, ini-
tially presented in [DKR10],explicitlytracks a bounded history of pending DMA operations.
DMA races are then detected by comparing each new DMA operation with every pending
DMA operation in the history. The second is a novel encoding,sketched in [DHK11], where
a single (nondeterministically selected) pending operation is tracked, against which future
operations are compared. We call this theimplicit encoding, because each DMA operation
is implicitly compared with every pending DMA operation viaa single, arbitrary pending
operation. The implicit encoding resembles the concept ofprophecy variables[AL91] and
permits analysis of programs where an unbounded number of DMA operations may be is-
sued. We show how these encodings can be extended to handlefenceandbarrier operations
which are supported by architectures such as the Cell BE; thehandling of these features is
not discussed in [DKR10,DHK11].

The instrumented programs are amenable to automatic verification by state-of-the-art
model checkers. A DMA race involves a pair of DMAs either issued by separate threads,
or by a single thread. In this paper, we restrict attention tothe latter scenario: we focus
on analyzing a thread program in isolation, to determine whether the thread can issue si-
multaneous DMA operations that race with one another. This is an important contribution,
since correctly programming a single accelerator thread toissue correct sequences of DMAs
is already a significant challenge. Furthermore, this restriction enables scalability: recent
dramatic advances in SAT/SMT techniques have led to widespread use of bounded model
checking (BMC) [BCC+03,CKL04] for finding bugs in sequential software. We show ex-
perimentally that applying BMC to instrumented programs yields an effective strategy for
detecting DMA races.

As well as detecting DMA races, we are interested in proving their absence. However,
BMC is only complete if the bound exceeds a completeness threshold [KS03] for the prop-
erty under consideration, which is often prohibitively large. We overcome this limitation by
presenting a novel formulation ofk-induction [SSS00]. Thek-induction method has been
shown effective for verifying safety properties of hardware designs. In principle,k-induction
can be applied to software by encoding a program as a monolithic transition function. This
approach has not proven successful due to the loss of control-flow structure associated with
such a naı̈ve encoding, and because important refinements ofk-induction (e.g.restriction to
loop-free paths) are not useful for software where the state-vector is very large.

We present a general proof rule fork-induction that is applicable to imperative programs
with loops, and prove correctness of this rule. In contrast to the naı̈ve encoding discussed
above, our method preserves the program structure by operating at the loop level. Further-
more, it allows properties to be expressed through assertion statements rather than as explicit
invariants. Our experimental results indicate that this method ofk-induction performs very
well when applied to realistic DMA-based programs, which use double- and triple-buffering
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schemes for efficient data movement. Such programs involve regularly-structured loops for
whichk-induction succeeds with a relatively smallk.

Experimental evaluation is performed using an implementation of our techniques as a
tool, SCRATCH, which checks programs written for the Synergistic Processor Element (SPE)
cores of the Cell BE processor. We present an evaluation of SCRATCH using a set of 22 ex-
ample programs provided with the IBM Cell SDK for Multicore Acceleration [IBM09], in
which we discover a previously unknown bug, which has been independently confirmed. We
compare the explicit and implicit encodings of DMA operations empirically: when prov-
ing correctness usingk-induction, we find that the implicit encoding is less amenable to
k-induction analysis than the explicit encoding; for several examples, the property of DMA
race freedom isk-inductive, for a small value ofk, only with the explicit encoding. However,
in the majority of our experiments,k-induction can successfully prove DMA race freedom
with either encoding. In these cases, the implicit encodingleads to significant reductions
in verification time, at best providing a10× reduction for one DMA-intensive benchmark.
Our experiments also show the effectiveness of our methods in comparison to predicate
abstraction:k-induction allows us to prove programs correct that cannot be verified using
current predicate abstraction tools, and bug-finding is orders of magnitude faster. Addition-
ally, SCRATCH is able to find bugs which go undetected by a runtime race-detection tool for
the Cell processor.

In summary, our major contributions are:

– an encoding of DMA operations that allows automatic analysis of DMA races in mul-
ticore programs with scratch-pad memory. The new encoding presented in this paper
builds on an earlier sketch [DKR11], and provides significant speedups over the encod-
ing used in prior work [DKR10].

– a proof rule fork-induction operating on programs with loops, which we show to be
effective when applied to a large set of realistic DMA-basedprograms. On top of the
contribution of [DKR10] we present a proof of soundness for our k-induction rule,
discuss methods for handling nests of loops, and experimentally compare the relative
effectiveness ofk-induction for our two encodings of DMA operations.

– SCRATCH, an automatic DMA race analysis tool for the Cell BE processor.

To our knowledge, this line of work marks the first application of k-induction to software
verification, and of software model checking to heterogeneous multicore programs.

2 Direct memory access operations

We consider heterogeneous multicore processors consisting of a host core, connected to
main memory, and a number of accelerator cores with private scratch-pad memories, as
depicted in Figure 1. Each core is equipped with asinglescratch-pad memory, to which it
has exclusive access. One or more threads can run on each accelerator core, and threads do
not migrate between cores during execution. Thus each thread has an associated core. We
assume that the accelerator local memories are indexed by disjoint sets of addresses, so that
a pointerp refers to a location in the scratch-pad memory of at most one accelerator core.
This assumption is for ease of presentation only, and does not hold for some architectures. It
would be trivial (but laborious) to adapt our presentation to drop this assumption, identifying
a scratch-pad memory location by a pair(c, p), wherec specifies a particular accelerator
core, andp is an address referring to the scratch-pad memory forc.
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A DMA operation1 specifies that a contiguous chunk of memory, of a given size, should
be transferred between two memory addressesl andh. The addressl refers to accelerator
memory (local store), andh to main memory (host memory). A tag (typically an integer
value) must also be specified with a DMA; the operation is saidto be identified by this
tag. It is typical for DMA operations to be initiated by the accelerator cores: an accelerator
pulls data into local store, rather than having the hostpushdata. We assume this scenario
throughout the paper.

DMA operations are non-blocking – having issued a DMA, an accelerator thread con-
tinues executing while the operation is handled by a specialized piece of hardware called
a memory flow controller. Each accelerator core has its own associated memory flow con-
troller. An accelerator thread can issue await operation, specifying a tagt. This causes the
thread to block until all DMAs being processed by the memory flow controller associated
with the thread’s core, and identified byt, have completed. A DMA identified by tagt is
pendinguntil a wait operation with tagt is issued.

The asynchronous nature of DMA operations is essential to achieving high-performance.
Several memory movement operations can be executed in parallel, and the latency associ-
ated with memory transfers can be hidden by overlapping computation with communication.
It is also this asynchronous nature which makes DMA operations hard to program correctly.
Although a DMAmaycomplete before an explicit wait operation is issued, this cannot be
guaranteed. Access (by the host or accelerator) to the region of memory being modified
by a pending DMA should be regarded as a bug, as should write access to either region
of memory associated with a pending DMA. Failure to issue await operation can result in
nondeterministic behavior: it mayusuallybe the case that the required data has arrived, but
occasionally the lack of an explicitwait may result in reading from uninitialized memory,
leading to incorrect computation. This nondeterminism means that bugs arising due to mis-
use of DMA can be extremely difficult to reproduce and fix. Thismotivates the need for
formal analysis techniques to aid programmers in the development of correct DMA-based
programs.

2.1 DMA primitives and properties of interest

We consider the following basic primitives for DMA operations:

– put(l, h, s, t): issues a transfer ofs bytes from local store addressl to host addressh,
identified by tagt

– get(l, h, s, t): issues a transfer ofs bytes from host addressh to local store addressl,
identified by tagt

– wait(t): blocks until completion of all pending DMA operations identified by tagt

In addition, we consider variants ofput andget which allow sequences of DMA op-
erations identified by the same tag to be efficiently synchronized without requiringwait

operations:

– putf/getf(l, h, s, t) (put/get with fence): same asput/get, except that the operation will
not commence until all currently pending operations identified by tagt have completed

– putb/getb(l, h, s, t) (put/get with barrier): same asput/get, except that the operation,
and any future operations identified by tagt, will not commence until all currently pend-
ing operations identified by tagt have completed

1 For brevity, we sometimes write “DMA(s)” rather than “DMA operation(s)”.
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(Note that a barrier operation identified by tagt protects prior operations identified byt

from itself and future operations that use tagt. However, the barrier doesnot protectitself
from such future operations.)

For each accelerator core, we assume hardware-imposed maximum valuesM andT for
the number of bytes that may be transferred by a single DMA, and the number of distinct
tags, respectively. We assume that tags are integers in the range[0, T − 1].

We have informally described the notion of memory being corrupted by DMA opera-
tions. A special case of memory corruption is where two pending DMAs refer to overlapping
regions of memory, and at least one of the DMAs modifies the region of memory. We call
this aDMA race, and focus our attention on the detection of DMA races for theremainder of
the paper. This focus is for ease of presentation only: our techniques can be readily adapted
to detect races where the buffer referred to by a pending DMA is accessed by non-DMA
statements.

In the remainder of the paper, we use the following predicate:

disjoint(a1, s1, a2, s2) , (a1 + s1 ≤ a2) ∨ (a2 + s2 ≤ a1)

specifying that the memory regions[a1, a1 + s1) and[a2, a2 + s2) are disjoint.

Definition 1 Let op1(l1, h1, s1, t1) andop2(l2, h2, s2, t2) be a pair of simultaneously pend-
ing DMA operations, whereop1, op2 ∈ {put, get}. The pair is said to berace freeif the
following holds:

`

(op1 = put ∧ op2 = put) ∨ disjoint(l1, s1, l2, s2)
´

∧
`

(op1 = get ∧ op2 = get) ∨ disjoint(h1, s1, h2, s2)
´

.

The first conjunct in Definition 1 asserts that the local storeregions referred to byop1

andop2 do not overlap, unless both areput operations (which do not modify local store);
the second conjunct asserts that the host memory regions do not overlap, unless bothop1

andop2 areget operations (which do not modify host memory). We say there isaDMA race
when some pair of pending DMA operations is not race free.

The conditions for race freedom with fence and barrier operations are more complex,
and are discussed in detail in§5.4.

2.2 DMA operations in the Cell BE processor

The Cell BE processor [Hof05, IBM09] is a heterogeneous multicore architecture consisting
of a host Power Processor Element (PPE) core, together with 8accelerator cores, known
as Synergistic Processor Elements (SPEs). The PPE is a regular CPU core connected to a
large main memory, whereas the SPE cores are fast vector processors, each equipped with a
256K scratch-pad memory. As discussed in§1, these scratch-pad memories arenot coherent
with main memory, and SPE software must use DMA operations totransfer data between
scratch-pad memory and main memory.

Each SPE is equipped with a memory flow controller supportingup to 16 concurrent
DMA operations, which may be executed out-of-order. If an SPE attempts to issue a DMA
operation when the hardware limit of 16 concurrent operations has been reached, SPE exe-
cution stalls until some DMA operation completes.

The maximum amount of data that can be transferred by a singleDMA operation is
16K, thusM = 16384. The number of distinct tags,T , is 32. This allows a set of tags to be
represented using a 32-bit word.
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2.3 Illustrative example: triple-buffering

Figure 2, adapted from an example provided with the IBM Cell SDK [IBM09], illustrates the
use of DMA operations to stream data from host memory to localstore to be processed, and
to stream results back to host memory. Triple-buffering is used to overlap communication
with computation: each iteration of the loop intriple_bufferputs results computed during
the previous iteration to host memory, gets input to be processed next iteration from host
memory, and processes data which has arrived in local memory.

If num_chunks is greater than three, this example exhibits a local store DMA race, which
we can observe by logging the first six DMA operations. To the right of each operation we
record its source code location and, if appropriate, its loop iteration. We omit host address
parameters as they are not relevant to the data race.

#define CHUNK 16384 // Process data in 16K chunks

float buffers[3][CHUNK/sizeof(float)]; // Triple-buffering requires 3 buffers

void process_data(float* buf) { ... } // Unspecified data-processing procedure

void triple_buffer(char* in, char* out, int num_chunks) {

unsigned int tags[3] = { 0, 1, 2 }, tmp, put_buf, get_buf, process_buf;

(1) get(buffers[0], in, CHUNK, tags[0]); // Get triple-buffer scheme rolling
in += CHUNK;

(2) get(buffers[1], in, CHUNK, tags[1]);
in += CHUNK;

(3) wait(tags[0]); // Wait for and process
process_data(buffers[0]); // first buffer

put_buf = 0;
process_buf = 1;
get_buf = 2;

for(int i = 2; i < num_chunks; i++) {

(4) put(buffers[put_buf], out, CHUNK, tags[put_buf]); // Put data processed
out += CHUNK; // last iteration

(5) get(buffers[get_buf], in, CHUNK, tags[get_buf]); // Get data to process
in += CHUNK; // next iteration

(6) wait(tags[process_buf]); // Wait for and process data
process_data(buffers[process_buf]); // requested last iteration

tmp = put_buf;
put_buf = process_buf; // Cycle the buffers
process_buf = get_buf;
get_buf = tmp;

}

put(buffers[put_buf], out, CHUNK, tags[put_buf]); // Put data processed during
out += CHUNK; // final loop iteration
wait(tags[process_buf]); // Wait and process final
process_data(buffers[process_buf]); // chunk of data
put_buf = process_buf;
put(buffers[put_buf], out, CHUNK, tags[put_buf]); // Put final result
wait(tags[put_buf]); // Wait for transfer of final result to complete

}

Fig. 2 Source code of the triple-buffering example
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get(buffers[0], . . . , CHUNK, 0) (1)
get(buffers[1], . . . , CHUNK, 1) (2)
wait(0) (3)

(*) put(buffers[0], . . . , CHUNK, 0) (4),i=2
get(buffers[2], . . . , CHUNK, 2) (5),i=2
wait(1) (6),i=2
put(buffers[1], . . . , CHUNK, 2) (4),i=3

(*) get(buffers[0], . . . , CHUNK, 0) (5),i=3

At this point in execution the operations marked (*) are bothpending, since the only
interveningwait operation uses a distinct tag. The operations are not race free according to
Definition 1 since they use the same region of local store and one is aget. The race can be
avoided by inserting await with tagtags[get_buf] before theget at (5), or replacing the
get at (5) with agetf operation.

We discovered this bug using SCRATCH, our automatic DMA analysis tool, described
in §7, which can also show that the fix is correct. The bug occurs inan example provided
with the IBM Cell SDK, and was, to our knowledge, previously unknown. Our bug report
via the Cell BE forum has been confirmed by IBM engineers. In the remainder of the paper,
we present the techniques employed by SCRATCH to enable these results.

3 Overview of our method

We present a DMA race analysis technique geared towards verification of a single single
accelerator thread, which may be running as part of a concurrent application. Our method
can detect races between multiple DMA operations issued by the same accelerator thread,
but not races between operations issued by distinct threads. Because an accelerator thread
can issue many concurrent DMA operations, writing correct code for a single thread can
be challenging, as demonstrated by the triple-buffering example of§2.3. Providing a DMA
race analysis technique for sequential software is thus an important contribution. Restricting
the analysis to consider a single thread enables a scalable method, avoiding the state-space
explosion associated with multiple thread interleavings.Nevertheless, the detection of DMA
races between multiple threads remains an important problem; in §9 we discuss plans for
future work in this area.

Our method is summarised by the flowchart of Figure 3, and has been implemented, for
the Cell BE processor, in the SCRATCH tool (see§7). We now discuss the various compo-
nents of this flow-chart.

Program slicing. Typically, programs for scientific or media-processing computation con-
tain a significant amount of intricate code that is irrelevant to the way in which DMA is used
to transfer data between host and accelerator memory. To remove as much of this detail as
possible, we first perform program slicing, reducing the program code to the DMA-relevant
statements.

Encoding DMA operations.After slicing, the program is instrumented with assertionsthat
check the conditions required for a DMA race to occur. Instrumentation depends on an
appropriate encoding of DMA operations; in§5 we present two encoding schemes, which
are implemented in SCRATCH. Once instrumentation is complete, the resulting program can
be analysed in an attempt to reveal potential DMA races, or prove their absence.

Bounded model checking, for detection of DMA races.If a program is suspected to give rise
to a DMA race, then BMC techniques [BCC+03] can be applied to search for races up to a
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Fig. 3 Overview of our DMA race analysis method

user-specified execution depth. SCRATCH uses CBMC [CKL04], a bounded model checker
for C programs, for this purpose. If CBMC finds a violation of an assertion introduced by
DMA instrumentation then the corresponding counterexample demonstrates how a DMA
race may manifest.

Proving absence of DMA races usingk-induction. Alternatively, our method can attempt
to prove DMA race-freedom for a program using thek-induction technique, applied at the
level of program loops. In§6, we present a proof rule fork-induction which operates on a
singleloop. This rule can be applied to programs containing multiple loops by first rewriting
all program loops as a single, monolithic loop, using a standard technique [Har80] which
we recap in§7. This is theloop transformationstage in the flowchart of Figure 3.

Applying k-induction involves checking a base case and a step case for agiven value of
k. Our k-induction rule guarantees that these are straight-line program, whose correctness
can be established in a straightforward manner. SCRATCH invokes CBMC for such checks.
If the base case fails, this indicates that the program can give rise to a DMA race, and
a counterexample is reported. If both the base and step casespass, soundness of ourk-
induction rule (proved in§6) means that the program has been shown to be free of DMA
races. Otherwise, in the case where the base case passes but the step case fails, there are two
options: the verification attempt can be abandoned, or a larger value ofk can be tried.

Extent of automation. While SCRATCH attempts to perform automatic analysis of SPE
programs for the Cell BE processor, we do not describe the tool as fully automatic, for two
reasons. First, SPE programs typically make heavy use of single instruction multiple data
(SIMD) intrinsic functions that are specific to the Cell architecture. The prototype SCRATCH

tool does not support reasoning about this large set of functions, thus program slicing is per-
formed manually in our experiments. However, it can in principle be automated. Second,
and more crucially, the success ofk-induction in automatically producing a conclusive ver-
ification result is largely dependent on the strength of assertions appearing in the program
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text. As discussed in§6.2, and demonstrated experimentally in§7, our encodings of DMA
operations usually lead to assertions that are inductive already for small values ofk. How-
ever, in some of our experiments, it proved necessary to supply additional strengthening
assertions by hand. In related work we have shown that such assertions can often be inferred
automatically using abstract interpretation [DHK11].

4 Goto programs

We present our results in terms of a simple goto language, which is minimal, but general
enough to uniformly translate C programs like the one in Figure 2. The syntax of the goto
language is shown in the following grammar, in whichx ∈ X ranges over integer variables,
a ∈ A over array variables,φ ande over boolean and integer expressions (for which we do
not define syntax, assuming the standard operations), andl1, . . . , lk ∈ Z over integers:

Prog ::= 1: Stmt ; . . . ; n: Stmt VarRef ::= x || a[e]

Stmt ::= VarRef := ∗ || assume φ || assert φ || goto l1, . . . , lk

A goto program is a list of statements numbered from1 to n.
The language includes assertions, nondeterministic assignment (VarRef := ∗), assump-

tions (which can constrain variables to specific values), and nondeterministic gotos. Execu-
tion of a goto statement, which is given a sequence of integervalues as argument (thegoto
targets), causes the value of one of these (possibly negative) integers to be added to the in-
struction pointer. We usex := e anda[i] := e as shorthands for assignments to variables and
array elements, respectively, which can be expressed in thesyntax above via a sequence of
nondeterministic assignments and assumptions. For simplicity, we assume variables and ar-
ray elements range over the mathematical integers,Z; when translating C programs into the
goto language the actual range of variables will always be bounded, so SAT-based analysis
of goto programs by means of bit-blasting is possible.

The transition system described by a programα = 1: α1; . . . ; n: αn is a graph(S,Eα),
whereS is the set of program states andEα the transition relation. Program states are given
by the set

S =
˘

(σ, pc) | σ : (X ∪ (A ×Z)) → Z, pc ∈ Z
¯

∪
˘

 
¯

in which σ is a store mapping variables and array locations to integer values,pc is the
instruction pointer, and is a distinguished state that designates erroneous termination of a
program.

We write tσ for the value of an expression given the variable assignmentσ, denote the
set of all storage locations byL = X ∪ (A ×Z), and definett , ff to be the truth values of
boolean expressions. The set of transitions,Eα is as follows:

Eα = {(σ, pc) → (σ′, pc + 1) | αpc = x := ∗, ∀l ∈ L \ {x}. σ(l) = σ′(l)}

∪ {(σ, pc) → (σ′, pc + 1) | αpc = a[e] := ∗, ∀l ∈ L \ {(a, eσ)}. σ(l) = σ′(l)}

∪ {(σ, pc) → (σ, pc + 1) | αpc = assume φ, φσ = tt}

∪ {(σ, pc) → (σ, pc + 1) | αpc = assert φ, φσ = tt}

∪ {(σ, pc) →  | αpc = assert φ, φσ = ff }

∪ {(σ, pc) → (σ, pc + li) | αpc = goto l1, . . . , lk, i ∈ {1, . . . , k}}

If the contextα is clear, we just writes → s′ for the membership(s → s′) ∈ Eα.
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Proper termination ofα in a states is denoted bys ↓ and occurs if the instruction pointer
of s does not point to a valid statement:s ↓ ≡ s = (σ, pc) ∧ pc 6∈ [1, n]. Note that no tran-
sitions exist from statess with s ↓.

The settraces(α) of (finite and infinite) traces of a programα is defined in terms of its
transition system:

traces(α) =



s1 s2 · · · sk |
∃σ. s1 = (σ, 1), sk ↓ or sk =  ,

∀i ∈ {1, . . . , k − 1}. si → si+1

ff

∪ {s1 s2 · · · | ∃σ. s1 = (σ, 1), ∀i ∈ N. si → si+1}

In particular, no traces exist on which assumptions fail.2 A programα is consideredcorrect
if no trace intraces(α) terminates erroneously,i.e.no trace contains .

5 Encoding DMA operations in goto programs

We now consider the goto language extended with the DMA primitives of§2.1:

Stmt ::= . . . || get(e, e, e, e) || put(e, e, e, e) || getf(e, e, e, e) || putf(e, e, e, e)

|| getb(e, e, e, e) || putb(e, e, e, e) || wait(e)

We present two methods for translating a goto program in thisextended language to a
standard goto program, replacing DMA operations with suitable instrumentation code such
that a potential DMA race results in a failed assertion.

In §5.1 we present an explicit encoding, where DMA races are analyzed by logging a
bounded history of previously pending operations. This is the encoding used in [DKR10].
We then present, in§5.2, a new, implicit encoding where a single pending DMA operation
is selected nondeterministically for tracking. This allows analysis of programs which may
issue an unbounded number of DMA operations.

We choose the namesexplicit andimplicit for our encodings because the first encoding
detects a DMA race by comparing a newly issued DMA explicitlywith every pending DMA,
while, the second encoding performs this comparison implicitly, by comparing the newly
issued DMA with a single, arbitrary pending DMA.

In §7 we show experimentally that the implicit encoding can provide significant im-
provements in verification time over the explicit encoding.We illustrate the difference be-
tween these approaches using examples in§5.3.

In both cases, we do not initially present details of the way fence and barrier operations
are encoded. In§5.4 we show how this is achieved for the implicit encoding (a similar
approach can be applied to the explicit encoding).

5.1 An explicit encoding

Our goal is to ensure that, during program execution, a thread does not issue a DMA that
races with another DMA issued previously by the thread. Suppose, for a given program, we
have an upper boundD on the number of DMAs that may be concurrently pending. In this
case, we can check the conditions for a DMA race by explicitlylogging the set of DMAs

2 In our context, this is preferable to modeling failed assumptions via a distinguished “blocked program”
state: it simplifies the notion of sequential composition ofprograms (cf. §6.1).
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Statement Translated form Notes

program start ∀0≤j<D assume ¬valid [j]; No pending DMAs initially
get(l, h, s, t) assert 0 ≤ s ≤ M ∧ 0 ≤ t < T ; Check size/tag within range

∀0≤j<D assert Consider every position in log
¬valid [j]∨ Either: no DMA at positionj, or
(disjoint(l, s, local [j], size[j])∧ no race on local regions and
(is get [j] ∨ disjoint(h, s, host [j], size[j]))); no race on host regions

assert ¬(valid [0] ∧ · · · ∧ valid [D − 1]); Assert log not full
i := ∗; Pick arbitrary free position
assume 0 ≤ i < D ∧ ¬valid [i];
valid [i] := 1; is get [i] := 1; local [i] := l; Log details of new DMA
host [i] := h; size[i] := s; tag[i] := t;

put(l, h, s, t) assert 0 ≤ s ≤ M ∧ 0 ≤ t < T ;
∀0≤j<D assert Similar toget(l, h, s, t)
¬valid [j]∨
(disjoint(h, s, host [j], size[j])∧ Roles of local/host regions
(¬is get [j] ∨ disjoint(l, s, local [j], size[j]))); reversed in race check

assert ¬(valid [0] ∧ · · · ∧ valid [D − 1]);
i := ∗;
assume 0 ≤ i < D ∧ ¬valid [i];
valid [i] := 1; is get [i] := 0; local [i] := l;
host [i] := h; size[i] := s; tag[i] := t;

wait(t) assert 0 ≤ t < T ; Check tag within range
∀0≤j<D Remove operations with tagt

valid [j] := valid [j] ∧ ¬(t = tag [j]) from log

Fig. 4 Explicit encoding of DMA operations. The rules translate DMA operations into assertions/assignments
over tracker arrays of sizeD

that are concurrently pending during program execution. This requires recording a history
of at most sizeD. When a new DMA is issued, we first assert that the operation does not
race with any existing DMA. We then assert that the size of theset of concurrently pending
DMAs is smaller thanD. Finally, we add the new DMA to the log. A wait operation of the
form wait(t), wheret is a tag, is encoded by removing from the log any DMA identifiedby
tagt.

The log of DMA operations is encoded as a series oftracker arrays, as follows, with
0 ≤ j < D:

– valid : valid [j] = 1 if values at positionj in the other arrays are being used to track a
DMA, otherwisevalid [j] = 0 and values at positionj in the other arrays are meaningless

– is get : is get [j] = 1 if the j-th tracked DMA is aget, otherwiseis get [j] = 0

– local , host , size , tag : elementj records the local store address, host address, size and
tag of thej-th tracked DMA, respectively

Figure 4 shows how a program with basic DMA primitives can be translated into a
standard goto program, whereget, put andwait operations are replaced with assertions and
assignments over the tracker arrays. The translation makesuse of thedisjoint predicate, de-
fined in§2.1. We use∀0≤j<D Stmt to indicate thatStmt should be duplicatedD times with
increasing values forj. Note that, becauseD is fixed at translation time, this leads toD con-
secutive statements, rather than the generation of a loop. Since the rules of Figure 4 replace
single statements with multiple statements, it is necessary to perform a re-numbering of
program statements and goto targets after translation; we omit details of this re-numbering.

The encoding of DMAs is based on Definition 1, and is designed to prohibit the issue
of DMAs that are simultaneously pending but not race free. Note that in our simple goto
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Statement Translated form Notes

program start assume ¬valid ; Initially no DMA is tracked
get(l, h, s, t) assert 0 ≤ s ≤ M ∧ 0 ≤ t < T ; Check size/tag within range

assert ¬valid ∨ (disjoint(l, s, local , size) Check new DMA does not
∧(is get ∨ disjoint(h, s, host , size))); race with tracked DMA, if any

goto track , after Nondeterministically choose
track: whether to track new DMA
valid := 1; is get := 1; local := l; Log details of new DMA
host := h; size := s; tag := t;

after: . . .

put(l, h, s, t) assert 0 ≤ s ≤ M ∧ 0 ≤ t < T ;
assert ¬valid ∨ (disjoint(h, s, host , size) Similar toget(l, h, s, t)
∧(¬is get ∨ disjoint(l, s, local , size)));

goto track , after Roles of local/host regions
track: reversed in race check
valid := 1; is get := 0; local := l;
host := h; size := s; tag := t;

after: . . .

wait(t) assert 0 ≤ t < T ; Checkt within range; assume no
assume ¬(tag = t); DMA with this tag was tracked

Fig. 5 An implicit encoding of DMA operations. During execution, at most a single, nondeterministically
chosen DMA operation is tracked

language we do not model actual movement of data via DMA. In practice, to achieve sound-
ness, we must set the memory locations written to by a DMA operation to nondeterministic
values.

This explicit encoding is natural as it mirrors the idea of runtime logging of DMA op-
erations, which is performed for example by the IBM Race Check library [IBM08]. The
disadvantage of the encoding is that it depends on the existence of a limit,D, for the number
of DMAs that may be concurrently pending in a given program. The cost of the encoding
increases proportionally withD. This can lead to scalability issues when analyzing instru-
mented programs using SAT-based bounded model checking. Furthermore, the encoding
does not allow reasoning about programs that may issue an arbitrary number of simultane-
ous DMAs.

5.2 A more efficient, implicit encoding

We now present a more efficient encoding of DMA operations which does not require the
upper limitD. This encoding allows us to analyze programs which may issuean unbounded
number of DMAs.

The key insight which leads to a more efficient encoding is thefact that checking for
DMA races only requirespairwiseconsideration of DMA operations. In translatingput and
get in Figure 4, we use a universal quantifier to compare the new DMA operation against
every previously issued DMA operation that is still live. Observe that it suffices to nonde-
terministically record details of a single,arbitrary DMA operation, and check further oper-
ations for races with respect to this operation. A wait operation of the formwait(t) can be
encoded by an assumption that the currently tracked DMA (if any) does not have associated
tag t. In other words, the encoding ensures that we discard execution traces along which it
was chosen to track, and subsequently wait for completion of, a given DMA operation. This
approach resembles the concept ofprophecy variables[AL91], since the future program ex-
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1: get(l, h, s, t);
2: wait(t);
3: put(l, h + s, s, t);
4: wait(t);

(a) A race-free program

1: get(l, h, s, t);
2: put(l, h + s, s, t);
3: wait(t);

(b) Program with a potential DMA race due to use of same local
store region byget andput, with no interveningwait

Fig. 6 Two simple programs using DMA operations

Fig. 7 A comparison of traces for the race-free program of Figure 6(a) obtained via the explicit encoding of
Figure 4 (left) and the implicit encoding of Figure 5 (right)

ecution determines whether a DMA operation should be tracked or not. As discussed above,
we call this encodingimplicit because a new DMA is implicitly compared with all pending
DMAs by tracking a single, arbitrary pending DMA.

Translation rules for this implicit encoding are presentedin Figure 5. Note thatvalid ,
local , host , size andtag are no longer arrays: they are now scalar variables that collabora-
tively track asingleDMA operation whenvalid = 1. For clarity in the translation rules,
we use labelstrack and after to denote the targets of a nondeterministic goto statement,
rather than explicit integer offsets to the instruction pointer as the goto program syntax of
§4 strictly requires.

The encoding of Figure 5 is more compact than the explicit encoding of Figure 4, since
it involves tracking just one DMA operation, rather than an array of D operations. In§7 we
demonstrate experimentally that the implicit encoding results in faster verification compared
with the explicit encoding.

5.3 Examples

We illustrate the difference between the explicit and implicit encodings using the simple
examples of Figure 6.

The program of Figure 6(a) is clearly race-free: theget operation identified by tagt
is immediately followed by await operation using tagt, ensuring that theget operation
completes before theput operation at line 3 commences. The left-hand-side of Figure7
illustrates the transition system corresponding to this program when DMA operations are
translated using the explicit encoding of Figure 4. Each rectangle represents a state, labeled
with a program counter location followed by a set of pending DMA operations. The figure
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Fig. 8 A comparison of traces for the program of Figure 6(b), which leads to a potential DMA race, obtained
via the explicit encoding of Figure 4 (left) and the implicitencoding of Figure 5 (right)

illustrates that, as the program is executed, the set of tracked DMAs is modified accord-
ingly. The right-hand-side of Figure 7 illustrates the corresponding transition system when
the implicit encoding of Figure 5 is used. Dashed lines are used to illustrate paths through
the transition system which end in failed assumptions, thusnot forming part of the set of
program traces. States are labeled by a program counter location followed by details of a
single tracked DMA operation, with ‘-’ used to represent thecase where no operation is
tracked (i.e. whenvalid = 0). From the initial state, a nondeterministic choice determines
whether operationget(l, h, s, t) is tracked. The right-hand branch represents the case where
this operation is tracked. The encoding of thewait(t) operation assumes that no operation
with tag t is tracked, invalidating this branch. As a result, the only valid state from which
put(l, h + s, s, t) can be executed is the state[3,−], in which case there is clearly no DMA
race.

The program of Figure 6(b) is the same as that of Figure 6(a), except that thewait(t)

operation has been removed. This results in a potential DMA race, since data may be si-
multaneously read from and written tol. The left- and right-hand-sides of Figure 8 illustrate
the transition systems for this program when the explicit and implicit encodings are used,
respectively. Comparing the right-hand-sides of Figures 7and 8, observe the same nonde-
terministic choice to trackget(l, h, s, t) is initially made. However, in Figure 8 the choice
to track this operation isnot invalidated by a subsequentwait operation, since no such op-
eration occurs in the program of Figure 6(b). As a result, an attempt to execute operation
put(l, h + s, s, t) can be made from the state[2, get(l, h, s, t)], leading to a DMA race.

5.4 Handling fences and barriers

As discussed in§2.1, DMA subsystems such as that of the Cell processor typically support
modified versions ofget andput that usefencesandbarriers [IBM09].

Recall from§2.1 that a fenced put/get operation (denotedputf/getf) identified by tagt
will not commence until all currently pending operations identified by tagt have completed.
However, the fenced operation provides no guarantees for future operations ont. A put/get
operation with barrier (denotedputb/getb) identified by tagt similarly will not commence
until all currently pending operations identified by tagt have completed. In addition, future
operations identified by tagt will not commence until operations pending before issue of
the barrier have completed. However, a barrier does not protect itself from future operations
identified byt.
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Statement Translated form Notes

program start assume ¬valid ; Initially no DMA is tracked
get(l, h, s, t) assert 0 ≤ s ≤ M ∧ 0 ≤ t < T ; Check size/tag within range

assert ¬valid∨ Check either: a) tracked DMA
(protected ∧ tag = t) ∨ protected by barrier and
(disjoint(l, s, local , size) ∧ shares tag with new DMA, or (b)
(is get ∨ disjoint(h, s, host , size))); no race between new/tracked DMAs

goto track , after ; Nondeterministically choose
track: whether to track new DMA
valid := 1; is get := 1; local := l; Log details of new DMA
host := h; size := s; tag := t;
protected := 0; DMA not initially protected by a

after: . . . barrier
put(l, h, s, t) assert 0 ≤ s ≤ M ∧ 0 ≤ t < T ;

assert ¬valid∨ Similar toget(l, h, s, t)
(protected ∧ tag = t) ∨
(disjoint(h, s, host , size) ∧ Roles of local/host regions
(¬is get ∨ disjoint(l, s, local , size))); reversed in race check

goto track , after ;
track:
valid := 1; is get := 1; local := l;
host := h; size := s; tag := t;
protected := 0;

after: . . .

getf(l, h, s, t) assert 0 ≤ s ≤ M ∧ 0 ≤ t < T ; Similar toget(l, h, s, t), but fence
assert ¬valid ∨ tag = t ∨ allows new DMA and tracked
(disjoint(l, s, local , size) ∧ DMA memory regions to overlap
(is get ∨ disjoint(h, s, host , size))); if both DMAs use the same tag

goto track , after ; Nondeterministically choose
track: whether to track new DMA
valid := 1; is get := 1; local := l; Log details of new DMA
host := h; size := s; tag := t;
protected := 0; DMA not initially protected by a

after: . . . barrier
putf(l, h, s, t) assert 0 ≤ s ≤ M ∧ 0 ≤ t < T ; Similar togetf(l, h, s, t)

assert ¬valid ∨ tag = t ∨

(disjoint(h, s, host , size) ∧ Roles of local/host regions
(¬is get ∨ disjoint(l, s, local , size))); reversed in race check

goto track , after ;
track:
valid := 1; is get := 1; local := l;
host := h; size := s; tag := t;
protected := 0;

after: . . .

getb(l, h, s, t) protected := (tag = t ? 1 : protected); Barrier protects tracked DMA
translation forget(l, h, s, t) if tags match

putb(l, h, s, t) protected := (tag = t ? 1 : protected); Similar
translation forput(l, h, s, t)

wait(t) assert 0 ≤ t < T ; Check tag within range, and assume
assume ¬(tag = t); no DMA with this tag was tracked

Fig. 9 Rules to translate DMA operations into assertions and assignments to tracker arrays, with support for
fences and barriers
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Note that the operationputb/getb(l, h, s, t) is notequivalent to the sequencewait(t); put/
get(l, h, s, t). In the latter case, thewait(t) operation causes execution to block until the
DMA operation on tagt has completed. In the former case, the DMA barrier is a non-
blocking operation.

To extend our existing encodings to handle fences we weaken the DMA race check
condition to allow a new DMA to overlap with an existing DMA ifthe new DMA is a
fenced operation and both DMAs are identified by the same tag.

Adapting our encodings to support barriers requires an additional protected flag to be
associated with each tracked DMA. For any DMA (including a barrier),protected is initially
set to 0. When a barrier DMA is issued with identifying tagt, protected is set totrue for
every existing DMA identified byt. The DMA race check condition is then weakened (for
all types of DMA, not just barriers) to permit a new DMA to overlap with an existing DMA
if both DMAs are identified by the same tag andprotected holds for the existing DMA.

In Figure 9, we show how the implicit encoding of Figure 5 can be extended with support
for fence and barrier operations. The explicit encoding of Figure 4 is extended in a similar
manner. In Figure 9, to avoid redundancy in our presentationof the translation for barrier
operations, we write “translation forget/put(l, h, s, t)” to denote the statements obtained by
applying the translation forget/put(l, h, s, t) verbatim.

Note thatprotected is set to 0 for all newly issued DMA operations, including barriers.
This is because, as discussed above, a barrier identified by tagt protects all prior operations
identified byt, but not itself, from future operations identified byt.

6 k-Induction for goto programs

Our encodings of DMA programs are directly amenable to analysis via bounded model
checking [BCC+03] as an effective method to discover DMA races. However, BMC alone
cannot be used to verify the (unbounded)absenceof DMA races in programs with loops.

Thek-induction procedure [SSS00], proposed as a method to allowverification of hard-
ware designs (represented as finite state machines) using a SAT solver, is a stronger version
of the standard invariant approach to verify safety properties. Using normal invariants, prov-
ing that a system satisfies a safety propertyφ requires showing that

(i) some formulaI (possibly identical toφ) holds in all initial states,
(ii) I is preserved by all state transitions of the system (I is inductive), and
(iii) I impliesφ.

The main difficulty of this method is the construction of inductive formulaeI. Thek-
induction principle addresses this difficulty by weakening(ii) to the property thatI has to
be preserved only if it held in the previousk states of execution. In return, (i) has to be
strengthened appropriately.

We describe the principle using the notation of [ES03]. LetI(s) andT(s, s′) be formu-
lae encoding the initial states and transition relation fora finite state system over sets of
propositional state variabless ands′, andP(s) a formula representing states satisfying a
safety property. Fork ≥ 0, to proveP by k-induction it is required first to show thatP holds
in all states reachable from an initial state withink steps,i.e. that the following formula (the
base case) is unsatisfiable:

I(s1) ∧ T(s1, s2) ∧ · · · ∧ T(sk−1, sk) ∧ (P(s1) ∨ · · · ∨ P(sk)) .
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Secondly, it is required to show that wheneverP holds ink consecutive statess1, . . . , sk,
P also holds in the next statesk+1 of the system. This is established by checking that the
following formula (the step case) is unsatisfiable:

P(s1) ∧ T(s1, s2) ∧ · · · ∧ P(sk) ∧ T(sk, sk+1) ∧ P(sk+1) .

In principle,k-induction can be used for SAT-based software model checking “out-of-
the-box”. A program can be encoded as a monolithic transition function, where the program
counter is an explicit variable. Assertions appearing in the original program can be gathered
together into a single invariant. The encoded program and invariant can be represented as a
SAT formula, to whichk-induction can be applied.

This naı̈ve encoding has not shown success in practice due tothe loss of structure asso-
ciated with the translation process. Furthermore, an important refinement which boost the
applicability ofk-induction to hardware designs is the restriction to loop-free paths [SSS00].
This refinement is not useful when dealing with software, where the state-vector is very
large, leading to extremely long loop-free paths. To see this, consider a program consisting
of a simple loop, which increments a counter until some statically unknown maximum value
is reached:

void f(unsigned int x) {
unsigned int i;
i = 0;
while(i <= x) {
i++;

}
}

For a fixed word sized, the length of the longest loop-free path in the program’s state-
space exceeds2d, the number of possible integer values for this word size. Because realistic
programs involve many loops, frequently with unknown bounds, applyingk-induction with
a value ofk as large as the longest loop-free path in the state space is not feasible.

To verify absence of DMA races in goto programs, we present a novel formulation
of k-induction, which operates at the loop level, and prove its correctness (§6.1). We then
give some intuition as to whyk-induction is effective in proving absence of DMA races
in example programs written for the Cell processor (§6.2); this intuition is backed up by
experimental results in§7.

6.1 A proof rule fork-induction with loops

To present our proof rule fork-induction we require some additional machinery and nota-
tion. Given programsα = 1: α1; . . . ; m: αm andβ = 1: β1; . . . ; n: βn, thesizeof α, denoted
|α|, is m, and we define the sequential composition ofα andβ as follows:

α # β =def 1: α1; . . . ; m: αm; m + 1: β1; . . . ; m + n: βn .

For i > 0, we useαi to denote the sequential composition ofi copies ofα, andα0 to
denote the empty program. For a single-statement program ofthe form1: α1, we drop the
leading1:, writing simplyα1.

Definition 2 A programα is self-contained, denotedcontained(α), if, for each goto state-
menti: goto . . . , l, . . . appearing inα, we have(i + l) ∈ {1, . . . , |α| + 1}.
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In other words, goto statements can only change the instruction pointer to the locations
of statements insideα, or to the location immediately followingα. The traces of programs
formed using concatenation of self-contained components can be derived from the traces of
the components (this is formalized in Lemma 1 below).

In our version ofk-induction, assertions contained in a program are used as invariants.
To turn assertions into induction hypotheses in this setting, we define a function that re-
places all assertions in a program with assumptions. Given aprogramα = 1: α1; . . . ; n: αn,
the corresponding programαassume = 1: α′

1; . . . ; n: α′
n is defined by:α′

i = assume φ if
αi = assert φ, andα′

i = αi otherwise.
Finally, we presentk-induction as a proof rule operating on distinguished loopsin a goto

program of the following form:

α # goto 1, (|β| + 2) # β # goto (−|β| − 1) # γ

whereα, β andγ are self-contained. The program consists of a preludeα, a loop with bodyβ
and a tailγ. Other than self-containedness, we do not make any assumptions about the shape
of componentsα, β andγ, which may contain further (nested) loops and arbitrary control
structure. We do not demand the presence of an explicit loop condition: loop conditionb can
be simulated by choosingassume b as the first statement of the loop body, andassume ¬b as
the first statement of the tail. Note that the restriction to self-contained components is mild,
e.g.early exit from the loop via a break statement can be simulated by a flag together with
an appropriate loop condition. Our implementation ofk-induction (see§7) can be applied to
C programs with arbitrary loop structures, provided the control-flow-graph associated with
a given program is reducible [ALSU06].

Proof rule for k-induction

contained(α) contained(β) contained(γ) k ≥ 0

α # γ is correct {αassume # βi−1
assume # β # γ is correct}i∈{1,...,k}

βk
assume # β is correct βk

assume # γ is correct

α # goto 1, (|β| + 2) # β # goto (−|β| − 1) # γ is correct

In this rule, the assertions present in the program (e.g. the formulae in Figures 4, 5
and 9) take the role of the inductive invariant needed for verification. The premises include
base cases requiring the program to be shown correct when theprelude, followed by be-
tween zero andk loop iterations, are executed. The premisesβk

assume # β is correctand
βk
assume # γ is correctform the induction step, establishing that if it is possibleto execute

k loop iterations from an arbitrary state without violating any assertions then it is possible
to successfully execute a further loop iteration, or the loop tail.

Theorem 1 (Correctness)The above proof rule is sound.

Before we can prove the correctness of Theorem 1, we need to characterize the traces of
programs constructed by concatenation of self-contained programs. The next lemma follows
directly from the trace semantics of goto programs (§4) and the definition of self-contained
programs (Definition 2):

Lemma 1 Supposeα, β are self-contained programs such that|α| = n. Given the state
t = (σ, pc) ∈ S, we writetn = (σ, pc + n) for the state with instruction pointer shifted by
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n ∈ Z (with the special case n =  ). The traces ofα # β are:

traces(α # β) =

8

<

:

s1 s2 · · · sk−1 tn1 tn2 · · · |
s1 s2 · · · sk ∈ traces(α),

t1 t2 · · · ∈ traces(β),

∃σ, l. sk = (σ, l) ∧ t1 = (σ, 1)

9

=

;

∪ {s1 s2 · · · sk  | s1 s2 · · · sk  ∈ traces(α)}

∪ {s1 s2 · · · | s1 s2 · · · ∈ traces(α)}

In the first case,t1 t2 · · · denotes both finite and infinite traces ofβ, while s1 s2 · · · in the
last case is an infinite trace.

We also require the following simple result about the relationship between programsα
andαassume :

Lemma 2 The traces ofα andαassume are related as follows:

traces(αassume) = {s ∈ traces(α) | s does not contain }

Proof (Theorem 1)With the help of Lem. 1, it can be observed that the program

α # goto 1, (|β| + 2) # β # goto (−|β| − 1) # γ

is correct if and only if the programsα, α # βi, andα # βi # γ are correct for eachi ∈ N.
Furthermore, for any self-contained programsα1, α2 it is the case that:

α1 # α2 is correct ⇒ α1 is correct (1)

α1 andα1assume # α2 are correct⇒ α1 # α2 is correct (2)

We have:

– α is correct:by (1), this follows from the correctness ofα # γ.
– α# βi is correct fori ∈ {1, . . . , k}: this is proven by induction oni. We assume thatα# βi

is correct (fori ∈ {0, . . . , k − 1}) and show the correctness ofα # βi+1 = α # βi # β.
From the correctness ofαassume # βi

assume # β # γ and (1), we know that the program
αassume # βi

assume # β is correct. By the induction hypothesis and (2), this implies that
α # βi+1 is correct.

– α # βi is correct fori > k: again, we reason by induction overi and assume thatα # βi

is correct for somei ≥ k. Becauseβk
assume # β is correct, so isαassume # βi−k

assume #

βk
assume # β = αassume # βi

assume # β (by Lem. 1), which together with (2) and the
induction hypothesis entails the correctness ofα # βi+1.

– α # γ is correct:given as premise of the rule.
– α # βi # γ is correct fori ∈ {1, . . . , k}: follows from the correctness of the programs

αassume # βi−1
assume # β # γ andα # βi−1, and (2).

– α # βi # γ is correct for i > k: becauseβk
assume # γ is correct, so is the program

αassume # βi−k
assume # βk

assume # γ = αassume # βi
assume # γ. Together with (2) and the

correctness ofα # βi, this entails thatα # βi # γ is correct. ⊓⊔

By presentingk-induction using a general proof rule, we do not restrict themethod to
a SAT-based implementation. Although our practical implementation is SAT-based, the rule
could also be used in any (possibly interactive) deductive verification system.
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6.2 k-induction for DMA programs

Through our experiments in§7 we observe thatk-induction works extremely well for check-
ing assertions representing DMA race-freeness, generatedby the rules in Figures 4, 5 and 9.
For realistic example programs written for the Cell processor, the generated assertions are
mostly inductive already for smallk, with no further annotations required to verify correct-
ness. The result is a verification method that is fully automatic and efficient on a large range
of Cell programs. For a small number of benchmarks we find thatthe implicit encoding of
DMAs does not yield inductive assertions, while the explicit encoding does. We discuss this
in detail in§7.5.

Intuitively, k-induction works well in this application domain because DMA operations
in loops are typically designed to be pending for only a bounded number of loop itera-
tions, allowingk-induction to succeed with a value ofk proportional to the bound. This
is analogous to the intuition thatk-induction works well for sequential hardware circuits
with pipelines, where thek required for induction to succeed is proportional to the pipeline
depth [AFF+05].

7 Experimental evaluation

7.1 SCRATCH

We have implemented a prototype tool, SCRATCH3, built on top of the CBMC model checker
[CKL04]. SCRATCH accepts an arbitrary C program written for an SPE core of the Cell
BE processor, and checks for DMA races involving scratch-pad memory. The tool uses
the encodings described in§5 to transform the input program into a form where DMAs
are replaced with assertions and assignments over tracker variables. In the case of the ex-
plicit encoding, the sizeD of the tracker arrays is specified as a command-line argumentto
SCRATCH.

Having translated the input program into an instrumented form, SCRATCH can apply
bounded model checking to check for DMA races up to a certain execution depth. To prove
absence of races, SCRATCH combines bounded model checking withk-induction, using the
loop-level formulation of§6. For a program consisting of a single, non-nested loop (with
prelude and tail),k-induction is applied starting withk = 0, and incrementingk by one until
either the base case fails (a DMA race has been detected), both the base case and step case
succeed (the program has been proved free of DMA races), ork exceeds 10. The starting
value, step size and upper limit fork can be configured via command-line arguments. For
such restricted loops, the combination ofk-induction and SAT-based bounded model check-
ing is sound: the base and step case programs generated by thek-induction proof rule are
loop-free, thus SAT-based bounded model checking can provide an exhaustive analysis.

Handling multiple loops.SCRATCH can be applied to arbitrary sequences of loop nests (as
long as the control-flow-graph associated with the input program is reducible [ALSU06]).
A sequence of loop nests is automatically transformed into asingle, monolithic loop sim-
ulating the nest, using the following well-known technique[Har80]. A positionvariable is
used to record which of the original loop bodies is due to be executed. The body of the

3 SCRATCH, together with source code for all benchmarks, is availableonline:
http://www.cprover.org/scratch/.
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monolithic loop consists of a case-split on this variable, where each case contains the body
of the corresponding loop, together with code to update the position variable appropriately.
Once this transformation has been applied,k-induction can be used to directly analyze the
monolithic loop, since unwinding this loop leads to a loop-free program.

We also experimented with handling sequences of loop nests by applying thek-induction
rule recursively as follows. Given a sequence of loop nests,k-induction is applied to the first
outer loop. Unwinding this loop to yield a base case and step case results in programs which
themselves contain loops. Thek-induction rule can then be applied again to each of these
programs, in an attempt to prove their correctness by induction. This process leads to a tree
of programs to be analyzed: an interior noden of this tree is a program containing loops;
the left and right children ofn are the base and step cases associated with akn-inductive
proof of correctness forn. (Note that the valueskn used for separate inductive proofs are
independent.) The leaf nodes of the tree are loop-free programs which can be analyzed using
SAT-based bounded model checking.

We have implemented both of the above approaches, In the absence of heuristics for
guessing effective starting and increment values fork, the transformation to a monolithic
loop leads to faster verification of our benchmark examples.This transformation is used in
our experimental evaluation.

7.2 Benchmarks and experimental platform

We evaluate SCRATCH using a set of 22 benchmarks adapted from examples supplied with
the IBM Cell SDK for Multicore Acceleration [IBM09], categorized as follows:

– x-buf (x ∈ {1, 2, 3}) Eleven data processing programs which use single-, double-or
triple-buffering for data-movement (cf. Figure 2). ‘I/O’ in the benchmark title indicates
that separate buffers are used for input and output. Some variants of these programs use
fences/barriers, indicated by ‘+ fence’/‘+ barrier’ in thebenchmark title

– race check, simple dmaExamples which illustrate data races and use of DMA
– sync atomic/mutex Programs illustrating the use of SDK synchronization primitives

for atomic operations and mutexes, in conjunction with DMA operations
– cpaudio, normalize Applications which copy one channel of a stereo audio file to the

other, and normalize the volume of a mono audio file, respectively
– checksum Computes a checksum on data in host memory. Multiple buffersare used to

coordinate data-movement efficiently
– Euler simple/complex Particle simulation using Euler integration. The simple version

uses separate individual buffers for position, velocity and mass data; the complex version
uses double-buffering

– Julia n Quaternion Julia set ray-tracing, where an SPE rendersn columns of output

As discussed in§3, manual program slicing has been applied to each benchmarkto
remove portions of code that do not affect DMA operations. This routine slicing could be
automated: the sliced code uses vector datatypes and intrinsic functions specific to the Cell
processor, which the slicer would need to understand. Afterslicing, most of the benchmark
examples consist of a single, non-nested loop. TheEuler simple, Euler complexandJulia
benchmarks each involve a loop containing a nested inner loop.

We apply SCRATCH to correct and buggy versions of the benchmarks. With the excep-
tion of 3-buf andcpaudio, bugs are injected into the examples, either by removing await

operation, changing the tag used to identify a DMA, or switching an operation fromget



23

to put (or vice-versa). The3-buf benchmark is the triple-buffering example discussed in
§2.3, in which SCRATCH uncovered an existing bug. A DMA race occurs when thecpaudio
benchmark is executed with zero frames of audio. This is arguably a bug since the precon-
dition that the number of frames should be positive is not specified.

We present results demonstrating the effectiveness of SCRATCH, equipped with either
the explicit or implicit encoding of§5, for bug-finding and proving correctness with respect
to DMA races. Experiments are performed on a 3GHz Intel Xeon quad-core machine with
48Gb RAM, running Ubuntu. MiniSat 2.0, compiled with full optimizations, is used as a
back-end SAT solver. It has been reported to perform comparatively to state-of-the-art SMT
solvers for SMT-BV [CFMS09] on this type of workload. All times reported are averaged
over 5 consecutive runs.

7.3 Bug-finding

With both encodings, bounded model checking proves extremely effective for detecting
DMA races. For each benchmark and each encoding, we performed repeated bounded model
checking runs to find the minimum execution depth required toexhibit a DMA race. For the
explicit encoding, we also iteratively computed, for each benchmark, the smallest value ofD

(the size of the tracker arrays) necessary to allow race detection. We then measured the time
taken for verification (instrumentation + bounded model checking) using these minimum
values, averaged over multiple runs.

With the explicit encoding, the maximum verification time across all benchmarks is
1.32s; this is for one of therace checkexamples. For each benchmark, time taken for verifi-
cation with the implicit encoding is identical or marginally lower, with a maximum time of
0.87s for the samerace checkexample. This gap of 0.45s is the largest difference between
the two encodings exhibited for our benchmarks with respectto bug-finding—a speedup of
1.52× using the implicit encoding instead of the explicit encoding. The bugs in our bench-
marks are relatively shallow; all bugs are found within an execution depth of 523 and 320 C
program statements for the explicit and implicit encodings, respectively.

By reporting verification times for the explicit encoding when the optimal value ofD
is used, we have shown the explicit encoding in a favorable light. When using the explicit
encoding in practice, one would have to guess a suitable value for D. Guessing a larger
value than necessary would result in large BMC instances, while guessing too small a value
would result in failed verification attempts. The implicit encoding does not suffer from this
practical constraint.

7.4 Proving correctness.

Figure 10 presents experimental data obtained applying SCRATCH to correct versions of the
benchmarks, using both the explicit and implicit encodings. For each encoding, the time (in
seconds) taken for verification is shown, together with the smallest value ofk required to
prove correctness. Assuming that the requiredk is m (for somem ≥ 0), verification time is
the sum of the times for program instrumentation, construction of base/step case programs
for 0 ≤ k ≤ m, successful bounded model checking of base case programs for 0 ≤ k ≤ m,
unsuccessful bounded model checking of step case programs for 0 ≤ k < m, and successful
bounded model checking of the final step case program fork = m.
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Benchmark Explicit encoding Implicit encoding
D time k vars clauses time k vars clauses

1 race check 1 2 0.15 0 1409 3518 0.15 0 794 1625
2 race check 2 4 0.17 0 3893 11550 0.15 0 1669 4616
3 sync atomic op 1 0.19 1 8212 22552 0.22 1 7074 19628
4 sync mutex 1 0.22 1 7517 21301 0.23 1 6465 19599
5 simple dma 1 0.15 0 3585 9857 0.14 0 3441 9453
6 1-buf 1 0.31 1 7968 21994 0.34 1 6861 19163
7 1-buf I/O 1 0.40 1 7973 22011 0.43 1 6866 19180
8 2-buf 2 0.56 1 28524 84783 1.04 2 23591 70828
9 2-buf + fence 4 1.75 3 65566 202220 1.02 2 18038 54268
10 2-buf + barrier 4 1.86 3 66322 205724 1.03 2 18187 54964
11 2-buf I/0 4 2.20 3 65064 199696 1.23 2 17950 53807
12 3-buf 3 5.89 3 76835 236073 2.90 3 35335 108929
13 3-buf + fence 5 11.81 3 86578 269935 2.63 3 27931 86849
14 3-buf I/O 2 4.17 4 70445 216902 - - - -

strengthened 2 1.94 3 57772 177478 2.60 3 35475 109597
15 3-buf I/O + fence 4 5.71 4 87727 274294 - - - -

strengthened 4 2.42 3 72519 226087 2.41 3 28071 87517
16 3-buf I/O + barrier 4 8.03 4 88779 279190 - - - -

strengthened 4 2.54 3 73415 230263 2.43 3 28294 88561
17 cpaudio 4 2.93 3 108418 327857 1.69 2 25886 76796
18 normalize 8 13.85 3 262822 812394 12.32 4 54889 163873
19 checksum 4 2.07 4 64328 195350 - - - -

strengthened 4 1.91 4 64339 195413 1.24 4 23543 71356
20 Euler simple 5 1.60 2 79057 253441 - - - -

strengthened 5 1.75 2 74262 239056 1.21 2 17467 54451
21 Euler complex 10 38.75 3 495504 1596834 3.89 2 50855 161300
22 Julia 2 3 72.08 8 337622 981717 43.80 7 207616 590011

Fig. 10 Benchmark results for proving correctness usingk-induction, with explicit and implicit encodings of
DMA operations

As with the results for bug-finding, we iteratively computedthe smallest value ofD
required to prove correctness using the explicit encoding,and report results for the explicit
encoding when optimum values forD are used; the optimum value forD is shown, for
each benchmark, in Figure 10. Again, this shows the explicitencoding in a favorable light:
in practice one would have to guess a suitable value forD; this is not necessary when the
implicit encoding is used.

Figure 10 also shows the size (number of variables and numberof clauses) of the largest
SAT instance solved for each benchmark duringk-induction. In all cases, this corresponds
to the SAT instance associated with verification of the final step-case program.

In five cases, we found that DMA race freedom could be proved automatically using
k-induction, for a small value ofk, with the explicit encoding butnot with the implicit
encoding. This scenario is indicated by ‘-’ entries in Figure 10, and indicates thatk-induction
did not succeed fork ≤ 10. We discuss reasons for this in detail in§7.5. In each case, it is
possible to manually add a simple strengthening assertion to allow k-induction to succeed
with the implicit encoding; we give an example of this in§7.5. In Figure 10, rows marked
‘strengthened’ show results for variants of benchmarks with strengthening assertions.

Whenk-induction succeeds for both encodings, the values ofk required are identical, or
differ by one due to benchmark-specific differences in the strength of the induction hypoth-
esis yielded by assertions associated with each encoding.
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Fig. 11 Comparison of explicit and implicit encodings of DMA operations when proving correctness usingk-
induction, using a logarithmic scale. Numbers are used to identify benchmarks according to the row numbers
of Figure 10

The results of Figure 10 indicate thatk-induction provides a tractable method for prov-
ing correctness for this set of benchmarks: for both encodings (excepting cases wherek-
induction does not succeed for the implicit encoding), the maximum time taken for verifi-
cation is less than 73 seconds. Restricting our attention tobenchmarks wherek-induction
succeeds for both encodings (17 of the standard benchmarks,plus 5 strengthened bench-
marks), we see that the implicit encoding outperforms the explicit encoding in the majority
of cases. This is highlighted by the scatter plot of Figure 11, which plots (using a logarithmic
scale) the relationship between verification times with both encodings for each benchmark;
benchmarks are identified by their row number in Figure 10. Insome cases, the implicit
encoding significantly outperforms the explicit encoding:verification with the implicit en-
coding is 10 times faster for theEuler complexbenchmark. This is due to the dependence of
the explicit encoding onD, the maximum number of operations that may be simultaneously
pending. For theEuler complexbenchmark,D is relatively large, which necessitates the
solving of large SAT instances, as shown in Figure 10. By comparison, the largest SAT in-
stance associated with the implicit encoding for this benchmark is almost ten times smaller,
since the implicit encoding is independent of the parameterD.

TheJulia benchmark contains a loop for which the number of iterationsis a fixed pa-
rametern, the columns of a raytraced image to be computed by one SPE. For this example,
k-induction succeeds withk = n+6 for the explicit encoding, andk = n+5 for the implicit
encoding. The results in Figure 10 are for the case wheren = 2. In Figure 12, we illustrate
the scalability ofk-induction by plotting the time taken for verification of theJulia bench-
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Fig. 12 Verification time for theJulia benchmark increases cubically withk. The values ofk required to
prove correctness with the explicit and implicit encodingsarek = n + 6 andk = n + 5 respectively, where
n is the number of image columns processed by an SPE

mark when we vary parametern between 2 and 18. Growth is less than cubic, showing that
our k-induction method scales well.

7.5 Examples where the implicit encoding is too weak fork-induction

As mentioned above, and as indicated in Figure 10, our benchmarks reveal examples where
k-induction succeeds with the explicit encoding of DMA operations, but not with the im-
plicit encoding. We discuss the reasons for this by considering one of the examples, the
checksumbenchmark, in detail.

The checksumbenchmark uses four local buffers, numbered 0, 1, 2 and 3, to receive
data from host memory via DMA. Each buffer has size212 bytes, and the collection of
four buffers is implemented as a4 × 212 array of typechar, calledbuf. At the start of
the program, the value212 is written to a variable,size. There follows a data processing
loop with induction variablei such that, on iterationi (i = 0, 1, . . . ), a get operation is
issued to copy212 bytes of data from host memory into bufferi%4, i.e. into the region
[(i%4) × 212, (i%4 + 1) × 212) of buf. However, the variablesize, rather than the explicit
constant212, is specified as the size argument to theget command. The loop is structured
so that DMA operations targeting all four buffers may be simultaneously pending.

When proving the step case fork-induction, the value ofsize is havocked: the model
checker considers paths from the start of the loop from states wheresize is arbitrary. In
particular, states wheresize is larger than212 are considered. Such states can clearly lead
to DMA races,e.g.a get operation requesting that more than212 bytes are transferred into
buffer 0 will result in buffer overflow: theget operation will target memory locations that
form part of buffer 1. This will lead to a DMA race during the next loop iteration, when a
get is issued targeting buffer 1. Such states are, of course, unreachable, sincesize is set to
212 before the loop and is never modified further. The assertionsize ≤ 212 is part of the
invariant required to show correctness of the program.

With the explicit encoding, this assertion is computed indirectly viak-induction. A his-
tory of four DMA operations is tracked (D = 4). Thus, when proving the step case fork = 4

the model checker assumes that, on loop iterationi ≥ 4, the DMA operations issued in pre-
vious loop iterations did not race. This assumption is clearly false in states wheresize is
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Benchmark iterations time SCRATCH speedup

1-buf correct 15 4.49 14.48×
2-buf correct >100 >1025.27 >1830.83×
3-buf correct >100 >2646.87 >449.38×
1-buf buggy 3 0.39 2.07×
2-buf buggy 20 24.21 93.11×
3-buf buggy >100 >5226.91 >14934.02×

Fig. 13 Results applying CEGAR-based verification to three of the Cell SDK examples using SATABS in
comparison to SCRATCH. The explicit encoding of DMA operations is used

greater than212, thus states which do not satisfy the invariantsize ≤ 212 are not considered
by the model checker as initial states when checking the stepcase.

With the implicit encoding, increasingk does not yield this invariant. This is because the
implicit encoding tracks asingle, arbitrary DMA operation. Consider a state wheresize =

212 +1 and i%4 = 3. Executing four iterations of the loop results inget operations targeting
buffers 3, 0, 1 and 2, in that order. Call these operationsget3, get0, get1 andget2. Since
size = 212 + 1, operationgetj targets the regionrj = [j × 212, (j + 1) × 212] of buf.
Consider a trace whereget3 is nondeterministically chosen for tracking. Whenget0, get1
andget2 are issued, they are checked with respect toget3. No race is detected forget0 and
get1, sincer3 ∩ r0 = ∅ andr3 ∩ r1 = ∅. However,r3 ∩ r2 = {3 × 212}, thus there is a
DMA race betweenget3 andget2. For anyk, we can construct a path consisting ofk loop
iterations, ending in a state wheresize = 212 + 1 and i%4 = 3, along which no DMA is
tracked. We can correctly assume that no DMA race is detectedalong such a path. However,
as demonstrated above, the path can be extended so that a DMA race occurs. Thus, for any
k, we have a counterexample tok-induction.

The essential point here is that with the explicit encoding,the combination of multiple
DMA operations yields the invariantsize ≤ 212, whereas the implicit encoding considers
operations in isolation, and does not derive this invariant.

The implicit encoding withk-induction fails on four further benchmarks, as indicated
in Figure 10, for similar reasons. In all cases, the induction hypothesis can be strengthened
so thatk-induction succeeds for the implicit encoding, by adding a simple assertion to the
body of the loop. For example, for thechecksumbenchmark, addingassert size == 212 to
the loop body suffices. Experimental results for strengthened benchmarks are presented in
rows marked ‘strengthened’ in Figure 10.

7.6 Comparison with predicate abstraction

The translation implemented by SCRATCH operates at the level of control flow graphs. In
order to compare with other tools, we have hand-translated three of our benchmarks,1-buf,
2-buf and3-buf, into C programs that track DMA operations as described in§5. We aimed to
compare with BLAST [BHJM07] and SATABS [CKSY05] but were unable to obtain results
using BLAST due to a bug in the tool, which we have reported to the BLAST developers.

Figure 13 shows results for proving correctness and finding bugs using SATABS (version
2.5), with Cadence SMV as a back-end model checker. For each example, we show the
number of refinement iterations required (iterations), the time taken for verification (time),
and the speed-up factor obtained by using SCRATCH over SATABS (obtained by comparing
with the results of Figure 10). The explicit encoding is usedin all cases. For buggy versions
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of 1-buf and2-buf, SATABS is able to find the bug within 100 iterations, but is two ordersof
magnitude slower than SCRATCHwhen applied to2-buf. The abstraction-refinement process
leads to a conclusive verification result when applied to thecorrect version of1-buf, but is
almost five times slower than ourk-induction technique. SATABS was not able to find the
bug in the buggy version of3-buf, or prove correctness of correct versions of2-buf or 3-buf
within 100 refinement iterations.

7.7 Comparison with IBM Race Check library

The IBM Cell SDK [IBM09] comes with a library for detecting DMA races [IBM08] at
runtime. The library maintains a log of pending operations,checking each new operation
against entries in the log in a manner similar to our explicitencoding. If a DMA race is
detected, then an error message is written to the console.

Using a Sony PlayStation 3 console, which is equipped with a Cell processor, we tested
the Race Check library on each of our buggy examples. DMA races are detected for all but
two benchmarks, and race detection takes less than0.1 s in each case. The bug incpaudio
was not detected since the example runs on a specific input filethat does not expose the
bug. Although the buggy version of1-buf I/Ocrashes when executed on the Cell hardware,
the Race Check library does not detect the DMA race responsible for this crash. This false
negative appears to be a bug in the Race Check library rather than a fundamental limitation,
since1-buf I/O is similar to examples where the Race Check library successfully detects
DMA races.

Note that runtime race detection cannot be used to proveabsenceof DMA races, unlike
our k-induction method.

8 Related work

The concept ofk-induction was first published in [SSS00,BC00], targeting the verification
of hardware designs represented by transition relations (although the basic idea had already
been used in earlier implementations [LS99] and a version ofone-induction used for BDD-
based model checking [DM97]). A major emphasis of these two papers is on the restric-
tion to loop-free or shortest paths, which we do not considerin our k-induction rule due
to the size of state vectors and the high degree of determinism in software programs. Sev-
eral optimizations and extensions to the technique have been proposed, including property
strengthening to reduce induction depth [VH07], improvingperformance via incremental
SAT solving [ES03], and supporting verification of temporalproperties [AFF+05]. Appli-
cations ofk-induction have focused exclusively on hardware designs [SSS00,BC00,LS99],
synchronous programs [HT08,Fra06] and, recently, SystemCdesigns [GLD10]. A princi-
ple related tok-induction has also been used for circular reasoning about liveness proper-
ties [McM99].

To the best of our knowledge, there has been no previous work on applyingk-induction
to imperative programs comparable to our procedure in§6. Our formulation ofk-induction,
and the explicit encoding of DMA operations, were first presented in [DKR10]. A technique
for strengtheningk-induction in the context of DMA race analysis, using staticanalysis
techniques, has been proposed [DHK11]; this work sketches the implicit encoding of DMA
operations presented in full in this paper. As discussed in§7.5, the implicit encoding of
DMA operations may lead to assertions that are notk-inductive, where the explicit encoding
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would yieldk-inductive assertions. The strengthening techniques of [DHK11] can be used
to overcome this weakness of the implicit encoding, automatically inferring the kinds of
strengthening assertions discussed in§7.5. The SCRATCH tool is also described in [DKR11].

Techniques for detecting data races in shared memory multithreaded applications have
been extensively studied. Notable static methods are basedon formal type systems [FF00],
or use classic pointer-analysis techniques; the latter approach is used by tools such as RAC-
ERX [EA03] and CHORD [NAW06]. The ERASER tool [SBN+97] uses binary rewriting
to monitor shared variables and to find failures of the locking discipline at runtime. Other
dynamic techniques include [FG05], which is based on state-less search with partial-order
reduction, and [HMMCM06], which is based on a partial-orderreduction technique for Sys-
temC similar to the method of Flanagan and Godefroid [FG05].None of these race detection
techniques are applicable to software for heterogeneous multicore processors with multiple
memory spaces. The only race detection tool we are aware of which is geared towards het-
erogeneous multicore is the IBM Race Check library [IBM08],which we compare with in
§7. The speed of runtime race detection with this library is attractive, but the library requires
access to commodity hardware and can only be used to find bugs which are revealed by a
particular set of inputs. In contrast, ourk-induction technique can proveabsenceof DMA
races, and allows analysis to be carried out on any standard PC platform. Furthermore, BMC
is able to detect potential races by assuming that input parameters may takeanyvalue.

Our focus in this paper has been on the use of formal analysis to aid programmers in
writing correct DMA-based programs. An alternative approach is to relieve programmers
of the need to write DMA operations by providing a higher-level programming formal-
ism, where data-movement between memory spaces is not explicit. Low level, DMA-based
code can then be automatically generated from high-level programs. High-level program-
ming models for the Cell processor which avoid explicit DMA programming include Se-
quoia [FHK+06], CellSs [BPBL06], CellFS [INM09], Sieve C++ [DKL09] andOffload
C++ [CDD+10,DDRR10]. A formal approach along these lines involves using session types
to specify communication [YVPH08,HVY09]. Given a communications protocol expressed
using session types, subtyping rules allow send/receive operations to be automatically re-
ordered so that independent communications may be efficiently overlapped. We regard these
high-level approaches as complimentary to our techniques.While higher-level programming
formalisms are clearly desirable, there is always an associated performance trade-off: to
achieve optimal performance on architectures like the CellBE, it is typically necessary to
write low-level code with explicit DMA operations, which our techniques can be used to
analyze. Furthermore, our methods could be used to analyze the correctness of code gen-
erated from higher-level formalisms. Finally, the higher-level approaches discussed above
come equipped with runtime libraries, which are written using low-level C, and could clearly
benefit from formal verification using the techniques we havedeveloped.

Our novel encoding of DMA races resembles the concept of prophecy variables [AL91].
Similar techniques have found application in other areas offormal verification, including
liveness-to-safety rewriting for bounded model checking [SB06], reducing concurrent anal-
ysis to sequential analysis under a context bound [LR09,EQR11], and proving LTL proper-
ties of infinite-state programs [CK11].

9 Summary and Future Work

We have contributed an automatic technique for analyzing DMA races in heterogeneous
multicore programs which manage scratch-pad memory. At theheart of our method is a
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novel formulation ofk-induction. We have demonstrated the effectiveness of thistechnique
experimentally via a prototype tool, SCRATCH. SCRATCH is able to detect or prove absence
of DMA races in a wide range of example programs for the Cell BEprocessor, handling
examples which cannot be verified using current predicate abstraction tools, and finding
bugs which go undiscovered by a runtime race checking library.

We plan to extend this work in the following ways.
We intend to generalize and make precise our intuitions as towhy k-induction works

well for DMA-based programs. Our vision is a set of conditions for identifying classes of
programs amenable to verification byk-induction, thus making the technique more broadly
applicable for software analysis.

SCRATCH focuses on analyzing DMA races for accelerator memory by analyzing ac-
celerator source code in isolation. It is not possible to check meaningful properties of host
memory without some knowledge of how this memory is structured. To check DMA races
for host memory we plan to design a method which analyses hostand accelerator source
code side-by-side. A further challenge is the problem of DMArace checking between con-
currently executing accelerator cores in a heterogeneous system. A starting point towards
this goal could involve combining our methods with adapted versions of race checking tech-
niques for shared memory concurrent software (cf. §8).

Our technique is currently limited to sequential analysis:we check memory safety for a
singleaccelerator thread. This restriction allows us to check useful properties of DMA-based
programs in a scalable manner. However, we would ideally like an analysis capable of han-
dling concurrent threads, to detect or prove absence of DMA races between threads running
on distinct accelerator cores. Naı̈vely applying a BMC-based approach in the concurrent
setting is not a scalable solution, due to the exponential number of thread interleavings that
must be considered. We plan to investigate the use of BMC techniques specifically tailored
towards concurrent analysis, as proposed in [Cor10]. Preliminary results for a recent, com-
plementary approach to race analysis for concurrent programs using asynchronous memory
operations using separation logic also show promise [BDDP11].
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