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Abstract. Predicate abstraction is a key enabling technology for applying finite-
state model checkers to programs written in mainstream languages. It has been
used very successfully for debugging sequential system-level C code. Although
model checking was originally designed for analyzing concurrent systems, there
is little evidence of fruitful applications of predicate abstraction to shared-variable
concurrent software. The goal of this paper is to close this gap. We have de-
veloped a symmetry-aware predicate abstraction strategy: it takes into account
the replicated structure of C programs that consist of many threads executing
the same procedure, and generates a Boolean program template whose multi-
threaded execution soundly overapproximates the concurrent C program. State
explosion during model checking parallel instantiations of this template can now
be absorbed by exploiting symmetry. We have implemented our method in the
SATABS predicate abstraction framework, and demonstrate its superior perfor-
mance over alternative approaches on a large range of synchronization programs.

1 Introduction

Concurrent software model checking is one of the most challenging problems facing
the verification community today. Not only does software generally suffer from data
state explosion. Concurrent software in particular is susceptible to state explosion due
to the need to track arbitrary thread interleavings, whose number grows exponentially
with the number of executing threads.

Predicate abstraction [12] was introduced as a way of dealing with data state ex-
plosion: the program state is approximated via the values of a finite number of pred-
icates over the program variables. Predicate abstraction turns C programs into finite-
state Boolean programs [4], which can be model checked. Since insufficiently many
predicates can cause spurious verification results, predicate abstraction is typically em-
bedded into a counterexample-guided abstraction refinement (CEGAR) framework [9].
The feasibility of the overall approach was convincingly demonstrated for sequential
software by the success of the SLAM project at Microsoft, which was able to discover
numerous control-dominated errors in low-level operating system code [5].

The majority of concurrent software is written using mainstream APIs such as POSIX
threads (pthreads) in C/C++, or using a combination of language and library support,
such as the Thread class, Runnable interface and synchronized construct in Java.
Typically, multiple threads are spawned — up front or dynamically, in response to
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varying system load levels — to execute a given procedure in parallel, communicating
via shared global variables. For such shared-variable concurrent programs, predicate
abstraction success stories similar to that of SLAM are few and far between. The bot-
tleneck is the exponential dependence of the generated state space on the number of
running threads, which, if not addressed, permits exhaustive exploration of such pro-
grams only for trivial thread counts.

The key to obtaining scalability is to exploit the symmetry naturally exhibited by
these programs, namely their invariance under permutations of the involved threads.
Fortunately, much progress has recently been made on analyzing emphreplicated non-
recursive Boolean programs executed concurrently by many threads [6]. In this paper,
we present an approach to predicate-abstracting concurrent programs that leverages this
recent progress. More precisely, our goal is a scheme that

– translates a non-recursive C program � with global-scope and procedure-scope
variables into a Boolean program � such that the n-thread Boolean program, de-
noted�n, soundly overapproximates the n-thread C program, denoted�n. We call
such an abstraction method symmetry-aware.

– permits predicates over arbitrary C program variables, local or global.

In the remainder of the Introduction, we illustrate why approaching this goal naı̈vely
can render the abstraction unsound, creating the danger of missing bugs. In the main
part of this paper, we present a sound abstraction method satisfying both of the above
objectives. We go on to show how our approach can be implemented for C-like lan-
guages, complete with pointers and aliasing, and discuss the issues of spurious error
detection and predicate refinement.

In the sequel, we present “programs” as code fragments that declare shared and local
variables. Such code is to be understood as a procedure to be executed by any number
of threads. The code can declare shared variables, assumed to be declared at the global
scope of a (complete) program that contains this procedure. Code can also declare local
variables, assumed to be declared locally within the procedure. We refer to such code
fragments with shared and local variables as “programs”. In program listings, we use ==
for the comparison operator, while = denotes assignment (as in C). Concurrent threads
are assumed to interleave with statement-level granularity; see the discussion in the
Conclusion on this subject.

1.1 Predicate Abstraction Using Mixed Predicates

The Boolean program � to be built from the C program � will consist of Boolean
variables, one per predicate as usual. Since � is to be executed by parallel threads,
its variables have to be partitioned into “shared” and “local”. As these variables track
the values of various predicates over C program variables, the “shared” and “local”
attributes clearly depend on the attributes of the C variables a predicate is formulated
over. We therefore classify predicates as follows.

Definition 1. A local predicate refers solely to local C program variables. A shared
predicate refers solely to shared variables. A mixed predicate is neither local nor
shared.
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We reasonably assume that each predicate refers to at least one program variable.
A mixed predicate thus refers to both local and shared variables.

Given this classification, consider a local predicate φ, which can change only as a
result of a thread changing one of its local C variables; a change that is not visible to
any other thread. This locality is inherited by the Boolean program if predicate φ is
tracked by a local Boolean variable. Similarly, shared predicates are naturally tracked
by shared Boolean variables.

For a mixed predicate, the decision whether it should be tracked in the shared or local
space of the Boolean program is non-obvious. Consider first the following program �

and the corresponding generated Boolean program�, which tracks the mixed predicate
s != l in a local Boolean variable b:

�:

0: shared int s = 0;
local int l = 1;

1: assert s != l;
2: ++s;

�:

0: local bool b = 1;

1: assert b;
2: b = b ? � : 1;

Consider the program�2, a two-thread instantiation of�. It is easy to see that execution
of �2 can lead to an assertion violation, while the corresponding concurrent Boolean
program �

2 is correct. (In fact, �n is correct for any n > 0.) As a result, �2 is an
unsound abstraction for �2. Consider now the following program �

′ and its abstrac-
tion �′, which tracks the mixed predicate s == l in a shared Boolean variable b:

�
′:

0: shared int s = 0;
shared bool t = 0;
local int l = 0;

1: if � then
2: if t then
3: assert s != l;
4: l = s + 1;
5: t = 1;

�
′:

0: shared bool b = 1;
shared bool t = 0;

1: if � then
2: if t then
3: assert !b;
4: b = 0;
5: t = 1;

Execution of (�′)2 leads to an assertion violation if the first thread passes the first
conditional, the second thread does not and sets t to 1, then the first thread passes the
guard t. At this point, s is still 0, as is the first thread’s local variable l. On the other hand,
(�′)2 is correct. We conclude that (�′)2 is unsound for (�′)2. The unsoundness can be
eliminated by making b local in �′; an analogous reasoning removes the unsoundness
in � as an abstraction for �. It is clear from these examples, however, that in general a
predicate of the form s == l that genuinely depends on s and l cannot be tracked by a
shared or a local variable without further amendments to the abstraction process.

At this point it may be useful to consider whether, instead of designing solutions that
deal with mixed predicates, we may not be better off by banning them, relying solely
on shared and local predicates. Such restrictions on the choice of predicates render
very simple bug-free programs unverifiable using predicate abstraction, including the
following program �

′′:



Symmetry-Aware Predicate Abstraction for Shared-Variable Concurrent Programs 359

�
′′:

0: shared int r = 0;
shared int s = 0;
local int l = 0;

1: ++r;
2: if (r == 1) then
3: f();

f():
4: ++s, ++l;
5: assert s == l;
6: goto 4;

The assertion in �′′ cannot be violated, no matter how many threads execute �, since
no thread but the first will manage to execute f . It is easy to prove that, over a set of
non-mixed predicates (i.e. no predicate refers to both l and one of {s, r}), no invariant
is computable that is strong enough to prove s == l. We have included such a proof in
the full version of this paper [11].

A technically simple solution to all these problems is to instantiate the template �
n times, once for each thread, into programs {�1, . . . ,�n}, in which indices 1, . . . , n
are attached to the local variables of the template, indicating the variable’s owner. Every
predicate that refers to local variables is similarly instantiated n times. The new program
has two features: (i) all its variables, having unambiguous names, can be declared at the
global scope and are thus shared, including the original global program variables, and
(ii) it is multi-threaded, but the threads no longer execute the same code. Feature (i)
allows the new program to be predicate-abstracted in the conventional fashion: each
predicate is stored in a shared Boolean variable. Feature (ii), however, entails that the
new program is no longer symmetric. Model checking it will therefore have to bear the
brunt of concurrency state explosion. Such an approach, which we refer to as symmetry-
oblivious, will not scale beyond a very small number of threads.

To summarize our findings: Mixed predicates are necessary to prove properties for
even very simple programs. They can, however, not be tracked using standard thread-
local or shared variables. Disambiguating local variables avoids mixed predicates, but
destroys symmetry. The goal of this paper is a solution without compromises.

2 Symmetry-Aware Predicate Abstraction

In order to illustrate our method, let � be a program defined over a set of variables V
that is partitioned in the form V = VS ∪VL into shared and local variables. The parallel
execution of � by n threads is a program defined over the shared variables and n copies
of the local variables, one copy for each thread. A thread is nondeterministically chosen
to be active, i.e. to execute a statement of �, potentially modifying the shared variables,
and its own local variables, but nothing else. In this section, we ignore the specific
syntax of statements, and we do not consider language features that introduce aliasing,
such as pointers (these are the subject of Section 3). Therefore, an assignment to a
variable v cannot modify a variable other than v, and an expression φ depends only on
the variables occurring in it, which we refer to as Loc(φ) = {v : v occurs in φ}.

2.1 Mixed Predicates and Notify-All Updates

Our goal is to translate the program � into a Boolean program � such that, for any n,
a suitably defined parallel execution of � by n threads overapproximates the parallel
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execution of � by n threads. Let E = {φ1, . . . , φm} be a set of predicates over�, i.e. a
set of Boolean expressions over variables in V . We say φi is

shared if Loc(φi) ⊆ VS ,
local if Loc(φi) ⊆ VL , and

mixed otherwise, i.e. Loc(φi) ∩ VL �= ∅ and Loc(φi) ∩ VS �= ∅.

We declare, in �, Boolean variables {b1, . . . , bm}; the intention is that bi tracks the
value of φi during abstract execution of �. We partition these Boolean variables into
shared and local by stipulating that bi is shared if φi is shared; otherwise bi is local.
In particular, mixed predicates are tracked in local variables. Intuitively, the value
of a mixed predicate φi depends on the thread it is evaluated over. Declaring bi shared
would thus necessarily lose information. Declaring it local does not lose information,
but, as the example in the Introduction has shown, is insufficient to guarantee a sound
abstraction. We will see shortly how to solve this problem.

Each statement in � is now translated into a corresponding statement in �. State-
ments related to flow of control are handled using techniques from standard predicate
abstraction [4]; the distinction between shared, mixed and local predicates does not
matter here. Consider an assignment to a variable v in � and a Boolean variable b
of � with associated predicate φ. We first check whether variable v affects φ, written
affects(v, φ). Given that in this section we assume no aliasing, this is the case exactly
if v ∈ Loc(φ). If affects(v, φ) evaluates to false , b does not change. Otherwise, code
needs to be generated to update b. This code needs to take into account the “flavors” of
v and φ, which give rise to three different flavors of updates of b:

shared update: Suppose v and φ are both shared. An assignment to v is visible to all
threads, so the truth of φ is modified for all threads. This is reflected in �: by our
stipulation above, the shared predicate φ is tracked by the shared variable b. Thus,
we simply generate code to update b according to standard sequential predicate
abstraction rules; the new value of b is shared among all threads.

local update: Suppose v is local and φ is local or mixed. An assignment to v is visible
only by the active (executing) thread, so the truth of φ is modified only for the
active thread. This also is reflected in �: by our stipulation above, the local or
mixed predicate φ is tracked by the local variable b. Again, sequential predicate
abstraction rules suffice; the value of b changes only for the active thread.

notify-all update: Suppose v is shared and φ is mixed. An assignment to v is visible to
all threads, so the truth of φ is modified for all threads. This is not reflected in�: by
our stipulation above, the mixed predicate φ is tracked by the local variable b, which
will be updated only by the active thread. We solve this problem by (i) generating
code to update b locally according to standard sequential predicate abstraction rules,
and (ii) notifying all passive (non-active) threads of the modification of the shared
variable v, so as to allow them to update their local copy of b.

We write must notify(v, φ) if the shared variable v affects the mixed predicate φ:

must notify(v, φ) = affects(v, φ) ∧ v ∈ VS ∧ (Loc(φ) ∩ VL �= ∅) .
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This formula evaluates to true exactly when it is necessary to notify passive threads of
an update to v. What remains to be discussed in the rest of this section is how notifica-
tions are implemented in �.

2.2 Implementing Notify-All Updates

We pause to recap some terminology and notation from sequential predicate abstrac-
tion [4]. We present our approach in terms of the Cartesian abstraction as used in [4],
but our method in general is independent of the abstraction used. Given a set E =
{φ1, . . . , φm} of predicates tracked by variables {b1, . . . , bm}, an assignment statement
st is translated into the following code, in parallel for each i ∈ {1, . . . , m}:

if F(WP( φi, st)) then bi = 1
else if F(WP(¬φi, st)) then bi = 0
else bi = � .

(1)

Here, � is the nondeterministic choice expression, WP the weakest precondition op-
erator, and F the operator that strengthens an arbitrary predicate to a disjunction of
cubes over the bi. For example, with predicate φ :: (l < 10) tracked by variable b,
E = {φ} and statement st :: ++l, we obtain F(WP(φ, st)) = F(l < 9) = false and
F(WP(¬φ, st)) = F(l >= 9) = (l >= 10) = ¬φ, so that (1) reduces to

b = ( b ? � : 0 ).

In general, (1) is often abbreviated using the assignment

bi = choose(F(WP(φi, st)),F(WP(¬φi, st))) ,

where choose(x, y) returns 1 if x evaluates to true, 0 if (¬x) ∧ y evaluates to true,
and � otherwise. Abstraction of control flow guards uses the G operator, which is dual
to F : G(φ) = ¬F(¬(φ)).

Returning to symmetry-aware predicate abstraction, if must notify(v, φ) evaluates to
true for φ and v, predicate φ is mixed and thus tracked in � by some local Boolean
variable, say b. Predicate-abstracting an assignment of the form v = χ requires updat-
ing the active thread’s copy of b, as well as broadcasting an instruction to all passive
threads to update their copy of b, in view of the new value of v. This is implemented us-
ing two assignments, which are executed in parallel. The first assignment is as follows:

b=choose(F(WP(φ, v = χ)),F(WP (¬φ, v = χ))) . (2)

This assignment has standard predicate abstraction semantics. Note that, since expres-
sion χ involves only local variables of the active thread and shared variables, only pred-
icates over those variables are involved in the defining expression for b.

The second assignment looks similar, but introduces a new symbol:

[b]=choose(F(WP([φ], v = χ)),F(WP (¬[φ], v = χ))) . (3)
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The notation [b] stands for the copy of local variable b owned by some passive thread.
Similarly, [φ] stands for the expression defining predicate φ, but with every local vari-
able occurring in the expression replaced by the copy owned by the passive thread; this
is the predicate φ in the context of the passive thread. Weakest precondition compu-
tation is with respect to [φ], while the assignment v = χ, as an argument to WP , is
unchanged: v is shared, and local variables appearing in the defining expression χ must
be interpreted as local variables of the active thread. Assignment (3) has the effect of
updating variable b in every passive thread. We refer to Boolean programs involving
assignments of the form [b]=... as Boolean broadcast programs; a formal syntax and
semantics for such programs is given in [11].

Let us illustrate the above technique using a canonical example: consider the as-
signment s = l, for shared and local variables s and l, and define the mixed predicate
φ :: (s == l). The first part of the above parallel assignment simplifies to b = true.
For the second part, we obtain:

[b] = choose(F(WP(s==[l], s=l)),F(WP(¬(s==[l]), s=l))) .

Computing weakest preconditions, this reduces to:

[b] = choose(F(l==[l]),F(¬(l==[l]))) .

Precision of the Abstraction. To evaluate this expression further, we have to decide on
the set of predicates available to the F operator to express the preconditions. If this set
includes only predicates over the shared variables and the local variables of the passive
thread that owns [b], the predicate l == [l] is not expressible and must be strength-
ened to false . The above assignment then simplifies to [b] = choose(false, false),
i.e. [b] = �. The mixed predicates owned by passive threads are essentially invalidated
when the active thread modifies a shared variable occurring in such predicates, resulting
in a very imprecise abstraction.

We can exploit information stored in predicates local to other threads, to increase the
precision of the abstraction. For maximum precision one could make all other threads’
predicates available to the strengthening operator F . This happens in the symmetry-
oblivious approach sketched in the Introduction, where local and mixed predicates are
physically replicated and declared at the global scope and can thus be made available
to F . Not surprisingly, in practice, replicating predicates in this way renders the ab-
straction prohibitively expensive. We analyze this experimentally in Section 5.

A compromise which we have found to work well in practice (again, demonstrated
in Section 5) is to equip operator F with all shared predicates, all predicates of the
passive thread owning [b], and also predicates of the active thread. This arrangement is
intuitive since the update of a passive thread’s local variable [b] is due to an assignment
performed by some active thread. Applying this compromise to our canonical example:
if both s == [l] and s == l evaluate to true before the assignment s=l, we can con-
clude that [l] == l before the assignment, and hence s == [l] after the assignment.
Using ⊕ to denote exclusive-or, the assignment to [b] becomes:

[b] = choose([b] ∧ b, [b] ⊕ b) .
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Algorithm 1. Predicate abstraction
Input: Program template �, set of predicates {φ1, . . . , φm}
Output: Boolean program � over variables b1, . . . , bm

1: for each statement d: stmt of � do
2: if stmt is goto d1, . . . , dm then
3: output “d: goto d1, . . . , dm”
4: else if stmt is assume φ then
5: output “d: assume G(φ)”
6: else if stmt is v = χ then
7: {i1, . . . , if} ← {i | 1 ≤ i ≤ m ∧ affects(v, φi)}
8: {j1, . . . , jg} ← {j | 1 ≤ j ≤ m ∧must notify(v, φj)}

9: output “d:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

bi1 , choose(F(WP( φi1 , v=χ)),F(WP(¬ φi1 , v=χ))),
...

...
bif , choose(F(WP( φif , v=χ)),F(WP(¬ φif , v=χ))),
[bj1 ],

=
choose(F(WP([φj1 ], v=χ)),F(WP(¬[φj1 ], v=χ))),

...
...

[bjg ] choose(F(WP([φjg ], v=χ)),F(WP(¬[φjg ], v=χ)))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

”

2.3 The Predicate Abstraction Algorithm

We now show how our technique for soundly handling mixed predicates is used in an al-
gorithm for predicate abstracting C-like programs. To present the algorithm compactly,
we assume a language with three types of statement: assignments, nondeterministic go-
tos, and assumptions. Control-flow can be modelled via a combination of gotos and
assumes, in the standard way.

Algorithm 1 processes an input program template of this form and outputs a corre-
sponding Boolean broadcast program template. Statements goto and assume are han-
dled as in standard predicate abstraction: the former are left unchanged, while the latter
are translated directly except that the guard of an assume statement is expressed over
Boolean program variables using the G operator (see Section 2.2).

The interesting part of the algorithm for us is the translation of assignment state-
ments. For each assignment, a corresponding parallel assignment to Boolean program
variables is generated. The affects and must notify predicates are used to decide for
which Boolean variables regular and broadcast assignments are required, respectively.

3 Symmetry-Aware Predicate Abstraction with Aliasing

So far, we have ignored complications introduced by pointers and aliasing. We now
explain how symmetry-aware predicate abstraction is realized in practice, for C pro-
grams that manipulate pointers. We impose one restriction: we do not consider pro-
grams where a shared pointer variable, or a pointer variable local to thread i, can point
to a variable local to thread j (with j �= i). This arises only when a thread copies the ad-
dress of a stack or thread-local variable to the shared state. This unusual programming
style allows thread i to directly modify the local state of thread j at the C program level,
breaking the asynchronous model of computation assumed by our method.
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For ease of presentation we consider the scenario where program variables either
have a base type (e.g. int or float), or pointer type (e.g. int* or float**). Our method
can be extended to handle records, arrays and heap-allocated memory. As in [4], we
assume that input programs have been processed so that l-values involve at most one
pointer dereference.

Alias information is important in deciding, once and for all, whether predicates
should be classed as local, mixed or shared. For example, let p be a local variable of type
int*, and consider predicate φ :: (*p == 1). Clearly φ is not shared since it depends
on local variable p. Whether φ should be regarded as a local or mixed predicate depends
on whether p may point to the shared state: we regard φ as local if p can never point to
a shared variable, otherwise φ is classed as mixed. Alias information also lets us deter-
mine whether a variable update may affect the truth of a given predicate, and whether
it is necessary to notify other threads of this update. We now show how these intuitions
can be formally integrated with our predicate abstraction technique. This involves suit-
ably refining the notions of local, shared and mixed predicates, and the definitions of
affects and must notify introduced in Section 2.

3.1 Aliasing, Locations of Expressions, and Targets of L-Values

We assume the existence of a sound pointer alias analysis for concurrent programs,
e.g. [21], which we treat as a black box. This procedure conservatively tells us whether
a shared variable with pointer type may point to a local variable. As discussed at the
start of Section 3, we reject programs where this is the case.1 Otherwise, for a program
template � over variables V , alias analysis yields a relation 
→d ⊆ V × V for each
program location d. For v, w ∈ V , if v �
→d w then v provably does not point to w at d.

For an expression φ and program point d, we write loc(φ, d) for the set of variables
that it may be necessary to access in order to evaluate φ at d, during an arbitrary program
run. We have loc(z, d) = ∅ for a constant value z, loc(v, d) = {v}, and loc(&v, d) = ∅
for v ∈ V : evaluating an “address-of” expression requires no variable access, as ad-
dresses of variables are fixed at compile time. Finally, for any k > 0:

loc(* . . .*︸ ︷︷ ︸
k

v, d) = {v} ∪
⋃

w∈V

{loc(* . . .*︸ ︷︷ ︸
k−1

w, d) | v 
→d w} .

Evaluating a pointer dereference *v involves reading both v and the variable to which v
points. For other compound expressions, loc(φ, d) is defined recursively in the obvious
way. The precision of loc(φ, d) is directly related to the precision of alias analysis.

For an expression φ, we define Loc(φ) = ∪1≤d≤kloc(φ, d) as the set of variables that
may need to be accessed to evaluate φ at an arbitrary program point during an arbitrary
program run. Note how this definition of Loc generalizes that used in Section 2.

We finally write targets(x, d) for the set of variables that may be modified by
writing to l-value x at program point d. Formally, we have targets(v, d) = {v} and
targets(*v, d) = {w ∈ V | v 
→d w}. Note that targets(*v, d) �= loc(*v, d): Writing

1 This also eliminates the possibility of thread i pointing to variables in thread j �= i: the address
of a variable in thread j would have to be communicated to thread i via a shared variable.
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through *v modifies only the variable to which v points, while reading the value of *v
involves reading the value of v, to determine which variable w is pointed to by v, and
then reading the value of w.

3.2 Shared, Local and Mixed Predicates in the Presence of Aliasing

In the presence of pointers, we define the notion of a predicate φ being shared, local,
or mixed exactly as in Section 2.1, but with the generalization of Loc presented in
Section 3.1. In Section 2.1, without pointers, we could classify φ purely syntactically,
based on whether any shared variables appear in φ. In the presence of pointers, we must
classify φ with respect to alias information; our definition of Loc takes care of this.

Recall from Section 2.1 that we defined affects(v, φ) = (v ∈ Loc(φ)) to indicate
that updating variable v may affect the truth of predicate φ. In the presence of pointers,
this definition no longer suffices. The truth of φ may be affected by assigning to l-value
x if x may alias some variable on which φ depends. Whether this is the case depends on
the program point at which the update occurs. Our definitions of loc and targets allow
us to express this:

affects(x, φ, d) = (targets(x, d) ∩ loc(φ, d) �= ∅).
We also need to determine whether an update affects the truth of a predicate only

for the thread executing the update, or for all threads. The definition of must notify
presented in Section 2.1 needs to be adapted to take aliasing into account. At first sight,
it seems that we must simply parameterise affects according to program location, and
replace the conjunct v ∈ VS with the condition that x may target some shared variable:

must notify(x, φ, d) = affects(x, φ, d) ∧ (Loc(φ) ∩ VL �= ∅)
∧ (targets(x, d) ∩ VS �= ∅) .

However, this is unnecessarily strict. We can refine the above definition to minimise the
extent to which notifications are required, as follows:

must notify(x, φ, d) = (targets(x, d) ∩ Loc(φ) ∩ VS �= ∅) ∧ (Loc(φ) ∩ VL �= ∅) .

The refined definition avoids the need for thread notification in the following sce-
nario. Suppose we have shared variables s and t, local variable l, local pointer vari-
able p, and predicate φ :: (s > l). Consider an assignment to *p at program point d.
Suppose that alias analysis tells us exactly p 
→d t and p 
→d l. The only shared variable
that can be modified by assigning through *p at program point d is t, and the truth of
φ does not depend on t. Thus the assignment does not require a “notify-all” with re-
spect to φ. Working through the definitions, we find that our refinement of must notify
correctly determines this, while the naı̈ve extension of must notify from Section 2.1
would lead to an unnecessary “notify-all”.

The predicate abstraction algorithm (Alg. 1) can now be adapted to handle point-
ers: parameter d is simply added to the uses of affects and must notify . Handling of
pointers in weakest preconditions works as in standard predicate abstraction [4], using
Morris’s general axiom of assignment [19].
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4 Closing the CEGAR Loop

We have integrated our novel technique for predicate-abstracting symmetric concurrent
programs with the SATABS CEGAR-based verifier [10], using the Cartesian abstrac-
tion method and the maximum cube length approximation [4]. We now sketch how we
have adapted the other phases of the CEGAR loop: model checking, simulation and
refinement, to accurately handle concurrency.

Model checking Boolean broadcast programs. Our predicate abstraction technique
generates a concurrent Boolean broadcast program. The extended syntax and seman-
tics for broadcasts mean that we cannot simply use existing concurrent Boolean pro-
gram model checkers such as BOOM [6] for the model checking phase of the CEGAR
loop. We have implemented a prototype extension of BOOM, which we call B-BOOM.
B-BOOM extends the counter abstraction-based symmetry reduction capabilities of
BOOM to support broadcast operations. Symbolic image computation for broadcast as-
signments is significantly more expensive than image computation for standard assign-
ments. In the context of BOOM it involves 1) converting states from counter representa-
tion to a form where the individual local states of threads are stored using distinct BDD
variables, 2) computing the intersection of n − 1 successor states, one for each passive
thread paired with the active thread, and 3) transforming the resulting state representa-
tion back to counter form using Shannon expansion. The expense of image computation
for broadcasts motivates the careful analysis we have presented in Sections 2 and 3 for
determining tight conditions under which broadcasts are required.

Simulation. To determine the authenticity of abstract error traces reported by B-BOOM

we have extended the SATABS simulator. The existing simulator extracts the control
flow from the trace. This is mapped back to the original C program and translated into
a propositional formula (using standard techniques such as single static assignment
conversion and bitvector interpretation of variables). The error is spurious exactly if
this formula is unsatisfiable. In the concurrent case, the control flow information of an
abstract trace includes which thread executes actively in each step. We have extended
the simulator so that each local variable involved in a step is replaced by a fresh indexed
version, indicating the executing thread that owns the variable. The result is a trace over
the replicated C program �

n, which can be directly checked using a SAT/SMT solver.

Refinement. Our implementation performs refinement by extracting new predicates
from counterexamples via weakest precondition calculations. This standard method re-
quires a small modification in our context: weakest precondition calculations generate
predicates over shared variables, and local variables of specific threads. For example, if
thread 1 branches according to a condition such as l < s, where l and s are local and
shared, respectively, weakest precondition calculations generate the predicate l1 < s,
where l1 is thread 1’s copy of l. Because our predicate abstraction technique works at
the template program level, we cannot add this predicate directly. Instead, we generalize
such predicates by removing thread indices. Hence in the above example, we add the
mixed predicate l < s, for all threads.

An alternative approach is to refine the abstract transition relation associated with
the Cartesian abstraction based on infeasible steps in the abstract counterexample [3].
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We do not currently perform such refinement, as correctly refining abstract transitions
involving broadcast assignments is challenging and requires further research.

5 Experimental Results

We evaluate the SATABS-based implementation of our techniques using a set of 14
concurrent C programs. We consider benchmarks where threads synchronize via locks
(lock-based), or in a lock-free manner via atomic compare-and-swap (cas) or test-and-
set (tas) instructions. The benchmarks are as follows:2

Increment, Inc./Dec. (lock-based and cas-based): a counter, concurrently incremen-
ted, or incremented and decremented, by multiple threads [20]

Prng (lock-based and cas-based) concurrent pseudorandom number generator [20]
Stack (lock-based and cas-based) thread-safe stack implementation, supporting con-

current pushes and pops, adapted from an Open Source IBM implementation3 of
an algorithm described in [20]

Tas Lock, Ticket Lock (tas-based) concurrent lock implementations [18]
FindMax, FindMaxOpt (lock-based and cas-based) implementations of parallel

reduction operation [2] to find maximum element in array. FindMax is a basic
implementation, and FindMaxOpt an optimized version where threads reduce
communication by computing a partial maximum value locally.

Mixed predicates were required for verification to succeed in all but two benchmarks:
lock-based Prng, and lock-based Stack. For each benchmark, we consider verification
of a safety property, specified via an assertion. We have also prepared a buggy version
of each benchmark, where an error is injected into the source code to make it possible
for this assertion to fail. We refer to correct and buggy versions of our benchmarks as
safe and unsafe, respectively.

All experiments are performed on a 3GHz Intel Xeon machine with 40 GB RAM,
running 64-bit Linux, with separate timeouts of 1h for the abstraction and model check-
ing phases of the CEGAR loop. Predicate abstraction uses a maximum cube length of 3
for all examples, and MiniSat 2 (compiled with full optimizations) is used for predicate
abstraction and counterexample simulation.

Symmetry-aware vs. symmetry-oblivious method. We evaluate the scalability of our
symmetry-aware predicate abstraction technique (SAPA) by comparing it against the
symmetry-oblivious predicate abstraction (SOPA) approach sketched near the end of
Section 1, for verification of correct versions of our benchmarks. Recall that in SOPA,
an n-thread symmetric concurrent program is expanded so that variables for all threads
are explicitly duplicated, and n copies of all non-shared predicate are generated. The
expanded program is then abstracted over the expanded set of predicates, using stan-
dard predicate abstraction. This yields a Boolean program for each thread; the parallel
composition of these n Boolean programs is explored by a model checker. Because
symmetry is not exploited, and no broadcasts are required, any Boolean program model

2 All benchmarks and tools are available online: http://www.cprover.org/SAPA
3 http://amino-cbbs.sourceforge.net
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Table 1. Comparison of symmetry-aware and symmetry-oblivious predicate abstraction over our
benchmarks. For each configuration, the fastest abstraction and model checking times are in bold.

Pred. SOPA SAPA Pred. SOPA SAPA
Benchmark n S L M Abs MC #Its Abs MC Benchmark n S L M Abs MC #Its Abs MC

Increment 6 2 1 1 13 5 2 1 <1 Prng 1 1 5 0 <1 <1 2 <1 <1
(lock-based) 8 29 152 1 (lock-based) 6 1 12 0 69 21 5 26 <1

9 40 789 1 7 83 191 1
10 56 T.O. 2 8 96 T.O. 2
12 7 16 142
14 24 26 3023
16 100 Prng 1 1 5 0 <1 <1 2 <1 <1
18 559 (cas-based) 3 1 14 2 29 <1 5 48 1
20 2882 4 40 12 48 38

Increment 4 2 4 2 50 12 3 6 1 5 57 1049 48 1832
(cas-based) 5 94 358 13 FindMax 6 0 0 1 5 30 1 <1 <1

6 159 T.O. 116 (lock-based) 7 9 244 1
7 997 8 14 T.O. 1

Inc./Dec. 4 6 3 2 71 6 3 11 2 16 125
(lock-based) 5 132 656 50 25 3005

6 231 T.O. 1422 FindMax 3 0 5 1 4 7 3 1 2
Inc./Dec. 2 6 10 4 125 <1 5 78 <1 (cas-based) 4 8 407 368
(cas-based) 3 372 6 3 FindMaxOpt 4 0 1 1 3 40 1 <1 3

4 872 4043 252 (lock-based) 5 6 1356 33
Tas Lock 3 4 2 2 3 2 3 1 <1 6 11 T.O. 269
(tas-based) 4 9 114 4 7 1773

5 14 T.O. 72 FindMaxOpt 3 0 6 1 9 11 3 3 2
6 725 (cas-based) 4 15 1097 61

Ticket Lock 2 12 3 4 554 1 2 251 1 5 22 T.O. 1240
(tas-based) 3 1319 3 1 Stack 3 1 4 0 <1 14 2 <1 8

4 T.O. – 2 (lock-based) 4 <1 945 374
6 62 Stack 3 1 4 1 2 29 2 <1 14
8 2839 (cas-based) 4 8 3408 813

checker can be used. We have tried both standard BOOM [6] (without symmetry reduc-
tion) and Cadence SMV [17] to model check expanded Boolean programs. In all cases,
we found BOOM to be faster than SMV, thus we present results only for BOOM.

Table 1 presents the results of the comparison. For each benchmark and each ap-
proach we show, for interesting thread counts (including the largest thread count that
could be verified with each approach), the number of local, mixed, and shared pred-
icates (L, M , S) over the template program that were needed to prove the program
safe (which varies slightly with n), and the elapsed time for predicate abstraction and
model checking. For each configuration, the fastest abstraction and model checking
times are shown in bold. Model checking uses standard BOOM, without symmetry re-
duction (SOPA) and B-BOOM, our extension to BOOM discussed in Section 4 (SAPA),
respectively. T.O. indicates a timeout; succeeding cells are then marked ‘–’.

The results show that in the vast majority of cases our novel SAPA technique sig-
nificantly outperforms SOPA, both in terms of abstraction and model checking time.
The former can be attributed to the fact that, with SOPA, the number of predicates
grows according to the number of threads considered, while with SAPA, this is thread
count-independent. The latter is due to the exploitation of template-level symmetry by
B-BOOM. The exception to this is the cas-based Prng benchmark, for which SAPA
yields slower verification. Profiling with respect to this benchmark shows that the
inferior performance of the model checker with SAPA comes from the expense of
performing broadcast operations. Note, however, that the ratio between model checking
times for SOPA and SAPA on this benchmark decreases as the thread counts go up.
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Table 2. Comparison of sound and unsound approaches; incorrect results in bold

Symmetry-Aware Mixed as local Mixed as shared
Benchmark Safe n Unsafe n Safe n Unsafe n Safe n Unsafe n

Increment (lock-based) safe >10 unsafe 2 safe >10 error 2 safe 10 error 2
Incr. (cas-based) safe 7 unsafe 2 safe 8 safe 5 error 2 error 2
Incr./Dec. (lock-based) safe 6 unsafe 3 safe >10 safe >10 safe >10 unsafe 3
Incr./Dec. (cas-based) safe 4 unsafe 3 safe 6 safe 8 error 2 error 3
Tas Lock (tas-based) safe 7 unsafe 2 safe 8 error 2 error 2 error 2
Ticket Lock (tas-based) safe 8 unsafe 3 safe >10 unsafe 3 safe 5 unsafe 3
Prng (lock-based) safe >10 unsafe 2 safe >10 unsafe 2 safe >10 unsafe 2
Prng (cas-based) safe 5 unsafe 3 safe 7 unsafe 3 safe 6 unsafe 3
FindMax (lock-based) safe >10 unsafe 2 safe >10 safe >10 safe 2 error 2
FindMax (cas-based) safe 4 unsafe 2 safe 5 safe 4 safe 2 safe 1
FindMaxOpt (lock-based) safe 7 unsafe 2 safe 7 safe 6 error 2 error 2
FindMaxOpt (cas-based) safe 5 unsafe 1 safe 5 unsafe 1 error 2 unsafe 1
Stack (lock-based) safe 4 unsafe 4 safe 4 unsafe 4 safe 4 unsafe 4
Stack (cas) safe 4 unsafe 2 safe 4 safe 6 safe 4 error 2

Comparison with Unsound Methods. In Section 1, we described two naı̈ve solutions
to the mixed predicate problem: uniformly using local or shared Boolean variables to
represent mixed predicates, and then performing standard predicate abstraction. We
denote these approaches mixed as local and mixed as shared, respectively. Although
we demonstrated theoretically in Section 1 that both methods are unsound, it is in-
teresting to see how they perform in practice. Table 2 shows the results of applying
CEGAR-based model checking to safe and unsafe versions of our benchmarks, using
our sound technique, and the unsound mixed as local and mixed as shared approaches.
In all cases, B-BOOM is used for model checking. For the sound technique, we show
the largest thread count for which we could prove correctness of each safe benchmark,
and the smallest thread count for which a bug was revealed in each unsafe benchmark.
The other columns illustrate how the unsound techniques differ from this, where “er-
ror” indicates a refinement failure: it was not possible to extract further predicates from
spurious counterexamples. Bold entries indicate cases where the unsound approaches
produce incorrect, or inconclusive results.4 The number of cases where the unsound ap-
proaches produce false negatives, or lead to refinement failure, suggest that little confi-
dence can be placed in these techniques, even for purposes of falsification. This justifies
the more sophisticated and, crucially, sound techniques developed in this paper.

6 Related Work and Conclusion

There exists a large body of work on the different stages of CEGAR-based program
analysis. We focus here on the abstraction stage, which is at the heart of this paper.

Predicate abstraction goes back to the foundational work by Graf and Saı̈di [12].
It was first presented for sequential programs in a mainstream language (C) by Ball,

4 We never expect the unsound techniques to report conclusively that a safe benchmark is un-
safe: this would require demonstrating a concrete error trace in the original, safe, program.
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Majumdar, Millstein, Rajamani [4] and implemented as part of the SLAM project. We
have found many of the optimizations suggested by [4] to be useful in our implementa-
tion as well. Although SLAM has had great success in finding real bugs in system-level
code, we are not aware of any extensions of it to concurrent programs (although this
option is mentioned by the authors of [4]). We attribute this to a large part to the infea-
sibility, at the time, to handle realistic multi-threaded Boolean programs. We believe our
own work on BOOM [6] has made progress in this direction that has made it attractive
again to address concurrent predicate abstraction.

We are not aware of other work that presents precise solutions to the problem of
“mixed predicates”. Some approaches avoid it by syntactically disallowing such pred-
icates, e.g. [22], whose authors don’t discuss, however, the reasons for (or, indeed,
the consequences of) doing so. Another approach havocks (assigns nondeterministi-
cally) global variables that may be affected by an operation [8], thus taking away the
mixed flavor from certain predicates. In yet other work, “algorithmic circumstances”
may make the treatment of such predicates unnecessary. The authors of [15], for ex-
ample, use predicate abstraction to finitely represent the environment of a thread in
multi-threaded programs. The “environment” consists of assumptions on how threads
may manipulate the shared state of the program, irrespective of their local state. Our
case of replicated threads, in which mixed predicates would constitute a problem, is
only briefly mentioned in [15]. In [7], an approach is presented that handles recursive
concurrent C programs. The abstract transition system of a thread (a pushdown system)
is formed over predicates that are projected to the global or the local program variables
and thus cannot compare “global against local” directly. As we have discussed, some
reachability problems cannot be solved using such restricted predicates. We conjecture
this problem is one of the potential causes of non-termination in the algorithm of [7].

Other model checkers with some support for concurrency include BLAST, which
does not allow general assertion checking [14], and MAGIC [7], which does not support
shared variable communication, making a comparison to our work little meaningful.

In conclusion, we mention that building a CEGAR-based verification strategy is a
tremendous effort, and our work so far can only be the beginning of such effort. We have
assumed a very strict (and unrealistic) memory model that guarantees atomicity at the
statement level. One can work soundly with the former assumption by pre-processing
input programs so that the shared state is accessed only via word-length reads and
writes, ensuring that all computation is performed using local variables. Extending our
approach to weaker memory models, building on existing work in this area [16,1], is
future work. Our plans also include a more sophisticated refinement strategy, drawing
upon recent results on abstraction refinement for concurrent programs [13], and a more
detailed comparison with existing approaches that circumvent the mixed-predicates
problem using other means.

Acknowledgments. We are grateful to Gérard Basler for assistance with BOOM, and
Michael Tautschnig for his insightful comments on an earlier draft of this work.
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