
Deriving Efficient Data Movement From

Decoupled Access/Execute Specifications

Lee W. Howes1, Anton Lokhmotov1, Alastair F. Donaldson2, and Paul H.J. Kelly1

1 Department of Computing, Imperial College London,

180 Queen’s Gate, London, SW7 2AZ, UK
2 Codeplay Software, 45 York Place, Edinburgh, EH1 3HP, UK

Abstract. On multi-core architectures with software-managed memories, effec-

tively orchestrating data movement is essential to performance, but is tedious

and error-prone. In this paper we show that when the programmer can explicitly

specify both the memory access pattern and the execution schedule of a computa-

tion kernel, the compiler or run-time system can derive efficient data movement,

even if analysis of kernel code is difficult or impossible. We have developed a

framework of C++ classes for decoupled Access/Execute specifications, allowing

for automatic communication optimisations such as software pipelining and data

reuse. We demonstrate the ease and efficiency of programming the Cell BE archi-

tecture using these classes by implementing a set of benchmarks, which exhibit

data reuse and non-affine access functions, and by comparing these implementa-

tions against alternative implementations, which use hand-written DMA transfers

and software-based caching.

1 Introduction

Architectures with software-managed memories can achieve higher performance and

power efficiency than traditional architectures with hardware-managed memories (e.g.

caches), but place additional burden on the programmer. For a traditional architecture,

the programmer typically designs a computation kernel and specifies the order in which

the kernel traverses the iteration space. To off-load the kernel to a co-processor equipped

with local memory, the programmer must additionally manage data movement, to en-

sure that data is smoothly streamed to and from local memory.

This additional step sounds easier than it actually is. The performance-conscious

programmer needs to consider issues such as the optimal data transfer sizes, alignment

constraints, exploiting data reuse, etc. Moreover, when the working set of a processor

is too large to fit in its local memory, the programmer has to use low-level optimisa-

tion techniques such as double buffering to overlap computation and communication.

Unfortunately, this harms code portability and maintainability.

In this paper, we introduce the decoupled Access/Execute (Æcute—pronounced

“acute”) programming model, which allows the programmer to express explicitly both

the memory access pattern and the execution schedule of a computation kernel, similar

to programming traditional architectures. We show that in many cases the compiler or

run-time system can derive efficient data movement even if analysis of kernel code is

difficult or impossible, thus removing from the programmer the additional complexity

of managing data movement.

In the remainder of this paper we argue that decoupling access and execute is natural

when programming architectures with software-managed memories (§2) and introduce
decoupled Access/Execute specifications (§3). We discuss the prototype Æcute frame-
work (§4) and use examples adapted from linear algebra and signal processing (§3.1 and
§5) to show the ease of programming using the specifications. We present experimen-
tal results for our examples (§6) obtained on a Cell Broadband Engine (BE) processor
and compare them against alternative implementations, which use hand-written DMA

transfers and software-based caching. We review related work (§7) and conclude with
an outline of future work (§8).

2 Background

Since the 1980s, microprocessor designers have worked hard to preserve the illusion of

fast memory by providing hardware-managed caches. Sadly, increasing the number of

transistors dedicated to caches has been found to achieve diminishing effects on per-

formance. Moreover, optimising software for the memory hierarchy has become the

principal activity of performance-conscious programmers and compiler writers, who

“spend much of their time reverse-engineering and defeating the sophisticated mecha-

nisms that automatically bring data on to and off the chip” [1].

Given this unsatisfactory situation, designers have turned their attention to software-

managed memory hierarchies, where data is copied between memories under explicit

software control. Examples include the Cell BE architecture from Sony/Toshiba/IBM [1],

the CSX SIMD array architecture from ClearSpeed [2], and massively parallel architec-

tures from NVIDIA and ATI (still habitually called graphics processing units, GPUs).

Local memory is typically cheap to access (e.g. 6 cycles on Cell), and thus is akin

to an extended register file. One some architectures (e.g. on Cell and CSX), process-

ing elements can only access local memory, and need to invoke expensive data transfer

mechanisms to access remote memory. On other architectures (e.g. on GPUs), exploit-

ing local memory is not obligatory but is essential to performance.

Efficient programs are naturally separated into two parts: remote memory access to

copy operands in and to copy results out (often asynchronously), and execution in local

memory to produce the results. The access and execute parts can be thought of as two

concurrent instruction streams. For example, on Cell the execute part runs on an SPE,

while the access part is serviced by its DMA engine (Memory Flow Controller).

The separation is reminiscent of decoupled access/execute architectures [3], which

run (conceptually or physically) separate access and execute instruction streams. An-

other point of reference is data-prefetching in virtual shared memory, a shared memory

abstraction for computers with physically distributed memories [4]. A program runs

on two processors: the access processor prefetches remote data into local memory by

performing a partial evaluation of the program; the execute processor performs the full

evaluation. The scout-threads in Sun’s upcoming Rock processor [5] manifest the same

idea, by reading the instruction stream ahead during a memory access stall.

Ideally, to hide the memory latency the access stream runs well in advance of the

execute stream. Occasionally the streams need to synchronise, for example, when the

execute stream computes an address required by the access stream. Topham et al. [6]

describe special compiler techniques to minimise the frequence of such loss of decou-

pling events.

Decoupled architectures use either a single original program or two programs de-

rived (manually or automatically) from the original program. We observe, however, that

deriving access and execute instruction streams from programs written in mainstream

programming languages such as C/C++ is hard, in particular, because of the difficulty

of dependence analysis in the presence of aliasing.

3 Decoupled Access/Execute Specifications

We propose a declarative programming model that allows the programmer to annotate

a computation kernel with both the execute (§3.2) and access (§3.3) metadata.

3.1 Motivating Example: The Closest-to-Mean Image Filter

The Closest-to-Mean (CTM) filter [7] is an effective mechanism for reducing noise in

near Gaussian environments, preserving edges more effectively than linear filters whilst

offering better performance than computationally expensive median-based filters. For a

sample set of vectors V with distance metric δ, the output for the CTM filter is given
by the following formula:

CTM (V) = arg min
x∈V

δ(x, x),

where x denotes the sample average value, and arg minx∈V (expr) denotes a value of x
that minimises expr.

The CTM filter can be applied to a digitalW ×H image by mapping each pixel to a
CTM value for a (2K +1)× (2K +1) square sample of neighbouring pixels (for some
K > 0). Fig. 1 shows a CTM filter implementation in our prototype C++ framework.3

The class method kernel closely resembles the filter’s original kernel code, except that

accesses to arrays have been replaced with uses of Æcute access descriptors (§4.1).

3.2 Execute Metadata

Definition 1. Execute metadata for a kernel is a tuple E = (I,R, P), where:

– I ⊂ Z
n is a finite, n-dimensional iteration space, for some n > 0;

– R ⊆ I × I , is a precedence relation such that (i1, i2) ∈ R iff iteration i1 must be
executed before iteration i2.

– P is a partition of I into a set of non-empty, disjont iteration subspaces.

3 Note that in all our examples we have compacted construction of member fields into their

declarations, to save space.

class CTMFilter : public StreamKernel {

Neighbourhood2D_Read inputPointSet(iterationSpace, input, K);

Point2D_Write outputPointSet(iterationSpace, output);

CTMFilter(IterationSpace2D &iterationSpace,

int K, Array2D &input, Array2D &output) {...}

...

void kernel(const IterationSpace2D::element_iterator &eit) {

// compute mean

rgb mean(0.0f, 0.0f, 0.0f);

for(int w = -K; w <= K; ++w) {

for(int z = -K; z <= K; ++z) {

mean += inputPointSet(eit, w, z); // input[x+w][y+z]

}

}

mean /= (2*K + 1) * (2*K + 1);

// compute closest to mean

rgb closest = inputPointSet(eit, 0, 0); // input[x][y]

for(int w = -K; w <= K; ++w) {

for(int z = -K; z <= K; ++z) {

rgb curr = inputPointSet(eit, w, z); // input[x+w][y+z]

if(dist(curr, mean) < dist(closest, mean))

closest = curr;

}

}

outputPointSet(eit) = closest; // output[x][y]

}

}

Fig. 1.Æcute implementation code for the CTM filter.

const int K = 2; // 5x5 filter

// 2D iteration space is equivalent to a doubly nested loop:

// parallel for (int x = K; x < W-K; ++x)

// parallel for(int y = K; y < H-K; ++y)

IterationSpace2D iterationSpace(K, W-K, K, H-K);

// 2D array descriptors

Array2D < rgb > inputArray(W, H, &input[0][0]);

Array2D < rgb > outputArray(W, H, &output[0][0]);

// Filter class instantiation

CTMFilter filter(iterationSpace, K, inputArray, outputArray);

// Filter invocation

filter.execute();

Fig. 2.Æcute setup and invocation code for the CTM filter.

The precedence relationship R specifies constraints on the execution schedule: if
iterations i1 and i2 are in the relationship, i1 must be executed before i2; otherwise, i1
and i2 can be executed in any order.
The partition P indicates sets of iterations that it is sensible to execute on the same

processing element (e.g. a set of iterations that exhibit data reuse). In this paper, we

assume that the working set of each p ∈ P fits into local memory, assuming a set
number of buffers (e.g. two for double buffering); the programmer either partitions the

iteration space manually or opts to use a simple automatic partitioning method which

computes the maximum iteration subspace size based on this constraint.

In the CTM filter example, the iteration space is a two-dimensional rectangle con-

gruous with the image dimensions; if the input and output images are disjoint, the exe-

cution schedule can be unconstrained, maximising parallelism; and the partition can be

tiling into rectangular w × h tiles, maximising locality:4

– I =
{

(x, y) : K ≤ x < W − K,K ≤ y < H − K
}

– R = ∅
– P =

{

{(x, y) ∈ I : w(i − 1) ≤ x − K < wi, h(j − 1) ≤ y − K < hj} :

1 ≤ i < (W − 2K)/w, 1 ≤ j < (H − 2K)/h
}

3.3 Access Metadata

LetM be a set of memory locations.

Definition 2. Access metadata for a kernel is a tuple A = (Mr,Mw), where:

– Mr : I → P(M) specifies the set of memory locationsMr(i) that may be read on
iteration i ∈ I;

– Mw : I → P(M) specifies the set of memory locationsMw(i) that may be written
on iteration i ∈ I .

Often, the set of memory locations accessed on a given iteration is a function of the

iteration vector (in which case we say that the set is indexed by the iteration vector);

the set can also include locations that are independent of the iteration vector such as

scalars.

In the CTM filter example, the input and output memory locations are indexed:

– Mr =
{

input[x][y] : (x, y) ∈ I
}

;

– Mw =
{

output[x + w][y + z] : (x, y) ∈ I,−K ≤ w, z ≤ K
}

.

3.4 Æcute Specifications

Definition 3. An Æcute specification for a kernel is a tuple S = (A,E), where A and
E are its access and execute metadata.

4 We assume, for simplicity, that the iteration space contains a whole number of tiles.

Access metadata ‘knows’ about memory locations that may be accessed on each

iteration, while execute metadata ‘knows’ about iteration subspaces that are to be exe-

cuted. Given an iteration subspace p ∈ P and access metadata, we can (over) approx-
imate the set of memory locations that the subspace may read and write: Mr(p) =
{Mr(i) : i ∈ P} ∈ P(L) and Mw(p) = {Mw(i) : i ∈ P} ∈ P(L). Combining
execute and access metadata in the form of Æcute specifications enables powerful opti-

misations such as software pipelining and exploiting data reuse.

In the CTM filter example, Æcute specifications can be used to trigger data prefetch-

ing of image rows into local memory, to ensure that the data is delivered in time for

processing.

4 Æcute C++ Framework

We have developed a prototype framework to support the Æcute concept, consisting of

a set of C++ descriptor classes (§4.1) and a run-time system (§4.2), which compile for
the Cell BE architecture.

4.1 The Æcute C++ Classes

The formal iteration space I is specified via an instance of an IterationSpace class,
which records the number of dimensions and size of each dimension, as in Fig. 2. Prac-

tically useful timestamp functions (T) are available in our prototype via the definition
of serialised dimensions on iteration spaces, e.g. using the COLUMN_SERIAL directive.

Partitioning of the iteration space is performed in the current prototype with a call to

the setBlockSize function, which is parameterised with the size of a partition in each

dimension of the iteration space.

A kernel class contains a main kernel method parameterised by an iterator to be

executed on each point in the iteration space (e.g. see Fig. 1). The iterator is used to

access indexed memory locations.

The memory mappings Mr and Mw are defined by access descriptor classes. An

access descriptor object is created for each input or output associated with a kernel,

and is invoked from the kernel code, parameterised by an iterator, to gain access to

data. The prototype implementation supports the following access descriptor classes.

For each member of the iteration space:

– Point: returns a single element of the data structure.
– Neighbourhood: returns a set of memory locations within a given radius of a

primary address.
– Buffer: returns a set of points with per point addressing into the data structure

based on a combination of the primary address and buffer offset.

In each case the primary address is computed from the iteration space coordinates

provided by the Æcute iterator. To these coordinates we may apply a conversion func-

tion. In the examples of §5 we see Project, ReAddress, Identity and BitRev.
Project is an affine scaling function. ReAddress is a proxy for applying separate

conversions to each dimension: in our examples, the identity function Identity and a

custom bit-reversal function, BitRev. The prototype framework can be extended with

custom conversion functions for specific applications.

4.2 The Æcute Run-time System

The Æcute run-time system comprises two components: a PPE run-time and an SPE

run-time, an instance of which runs on each active SPE.

The PPE run-time spawns an SPE run-time process on each available SPE. Based

on an iteration space partitioning specified by the programmer, or via a partitioning ob-

tained automatically at run-time by querying access metadata, the PPE run-time gener-

ates a list of partition identifiers. Partition identifiers are farmed out to the SPEs, which

are responsible for executing the kernel iterations associated with each partition. Once

all partitions have been assigned, the PPE run-time waits for completion reports from

all SPEs before returning control to the main program.

On initialisation all access descriptors in the SPE instance create a series of buffers

based on the maximum partition size. At least one buffer will be present in each input

and output descriptor, and possibly more if the configuration specifies this.

An instance of the SPE run-time repeatedly receives a list of partition identifiers

from the PPE. The SPE instance takes each partition identifier in turn and converts that

into a set of iterations. The conversion is possible because the SPE code is constructed

using the same iteration space data as the PPE code. This information is partially static,

and partially based on parameters passed on construction from the PPE side.

The partition information is passed to the access descriptors assigned to the kernel,

which select available data buffers and construct appropriate DMA operations to copy

data in. When no buffer is available, a blocking call to wait on DMA writes is initiated

to allow buffers to be cleared and reused. The kernel checks that the data it needs for

a given partition identifier is available by querying the access objects, and will block

on the DMA reads if it is not. On completion of computation, partition completion

information is passed to the access objects which will perform DMA write backs and

free buffers as appropriate.

Double or triple buffering naturally occurs through this system, as a fixed buffer set

is automatically managed to ensure that data is always available, without additional pro-

grammer intervention. This multiple buffering enables dynamic software pipelining of

the execution to improve the efficiency of memory access. In addition, the run-time sys-

tem will maintain buffers without reloading, or without writing back early, if it detects

that it already had the appropriate data resident in an appropriate buffer.

5 Further Examples

5.1 Matrix-vector multiply

A matrix-vector multiply y = Ax can be implemented as a two-dimensional iteration
space of the dimensions of matrixA. Vectors x and y are one-dimensional, so we project
the iteration space to obtain the vector indices.

Æcute specification S = ((Mr,Mw), (I, T, P)):

– I = {(i, j) : 0 ≤ i < H, 0 ≤ j < W}
– R = {((i, j), (i, k)) : 0 ≤ i < H, 0 ≤ j < k < W}

– Mr(i, j) = {A[i][j], x[j]}
– Mw(i, j) = {y[i]}
– P =

{

{(i, j) ∈ I : h(k − 1) ≤ i < hk,w(l − 1) ≤ j < wl, } :

1 ≤ k < H/h, 1 ≤ l < W/w
}

(As before, we tile the iteration space, assuming local memory can hold the working set

for a rectangular tile of h × w iterations.)
The precedence relation indicates that the loop indexed by i is parallel and the loop

indexed by j is serial. This serialisation removes the requirement for PPE-side accumu-
lation of partial results. If the += operator could be guaranteed to be associative then the

j loop could also be specified as parallel, by setting R = ∅.

Æcute code The kernel operates over the input matrix and vector and the output vector.

Note that we specify that the column dimension is serial, which preserves the order of

multiply-accumulate operations.

IterationSpace2D iterationSpace(W, H, COLUMN_SERIAL);

Array2D < float > inMatrix(H, W, pInMatrix);

Array1D < float > inVector(W, pInVector);

Array1D < float > outVector(H, pOutVector);

MatrixVectorMul matvec(iterationSpace, inMatrix, inVector, outVector);

// Matrix-vector multiply invocation

matvec.execute();

The MatrixVectorMul kernel class is roughly as follows:

class MatrixVectorMul : public StreamKernel {

Point2D_Read inputMatrix(iterationSpace, inMatrix);

Point2D_Read < Project2D1D< 1, 0 > >

inputVector(iterationSpace, inVector);

Point2D_Write < Project2D1D< 0,1 > >

outputVector(iterationSpace, outVector);

MatrixVectorMul(IterationSpace 2D iterationSpace,

Array2D inMatrix, Array1D inVector, Array1D outVector){...}

void kernel(const IterationSpace2D::element_iterator &eit) {

outputVector(eit) += inputVector(eit) * inputMatrix(eit);

}

};

where Project2D1D projects a 2D-space point onto a 1D-space point. For example,

Project2D1D<0,1> projects (i, j) onto j.

5.2 Bit-reversal

Many radix-2 FFT algorithms start or end their processing with data permuted in bit-

reversed order. The reordering is typically done by a special subroutine, called bit-

reversed data copy (often abbreviated, if inaccurately, to bit-reversal). We assume that

the subroutine reads an array x[] of N = 2n elements and writes these elements into

an array y[] of N elements, such that x and y do not overlap, in bit-reversed order.

That is, an element of the source array at the index written in binary as b0 . . . bn−1,

is copied to the target array at the index with reversed digits bn−1 . . . b0. The function

σn(i) reversing bits of index i having n bits can be implemented as [8]:

unsigned int reverse_bits(unsigned int n, unsigned int i) {

i = (i & 0x55555555) << 1 | (i >> 1) & 0x55555555;

i = (i & 0x33333333) << 2 | (i >> 2) & 0x33333333;

i = (i & 0x0f0f0f0f) << 4 | (i >> 4) & 0x0f0f0f0f;

i = (i<<24) | ((i & 0xff00)<<8) | ((i>>8) & 0xff00) | (i>>24);

return (i >> (32 - n));

}

Few programmers will recognise that this sequence of bit-wise operations and shifts im-

plies that y[]will contain a permutation of x[] and hence assignments can be performed
in any order. One cannot expect that a compiler will recognise this either.

In addition to obscuring parallelism, bit-reversed indexing is unfriendly to hardware-

managed caches: starting from a certain array size N = 2n, each access to y[] results
in a cache miss. To avoid cache associativity problems inherent in bit-reversals of large

arrays, the best approach, used by Carter and Gatlin in the so-called Cache Optimal

BitReverse Algorithm (COBRA) [9], introduces a cache-resident buffer.

If the buffer holds B2 elements, the iteration space is partitioned into N/B2 inde-

pendent subspaces. For each subspace, B source blocks of B elements each are copied
into the buffer, permuted in place, and then copied out from the buffer into B target
blocks of B elements each.

The permute kernel of COBRA can be off-loaded to a co-processor having local

memory. The challenge is to implement the copy in and copy out loops, where the copy

out loop uses a non-affine access function σn(i).

Somewhat surprisingly, implementing data movement code can take longer than

implementing the kernel proper (according to the experience of one of the authors).

Again, a desired alternative is to derive data movement from Æcute specifications.

Æcute specification S =
(

(Mr,Mw), (I,R, P)
)

:

– I = {t : 0 ≤ t < N/B2}
– R = ∅;
– P =

{

{t} : t ∈ I
}

– Mr(t) = {x[u.t.v] : t ∈ I, 0 ≤ u < B, 0 ≤ v < B}
– Mw(t) = {y[u.σn(t).v] : t ∈ I, 0 ≤ u < B, 0 ≤ v < B}.

The precedence function indicates that the one-dimensional iteration space is un-

ordered. In this case each partition is a single element of the iteration space, because

the blocks are disjoint and fairly large. In the Æcute code below we see that the pro-

grammer can manually set the partition size.

Æcute code As a result of the B × B blocking, it is natural to think of the input and
output arrays ofN elements as two-dimensional, havingN/B rows ofB elements each.

IterationSpace1D iterationSpace(N/(B*B));

Array2D <float> inputData(B, N/B, pInputData);

Array2D <float> outputData(B, N/B, pOutputData);

BitReversal bitrev(iterationSpace, inputData, outputData);

bitrev.iterationSpace.setBlockSize(1);

// Bit-reversal invocation

bitrev.execute();

We iterate over independent subspaces t ∈ I , copying rows numbered as u.t, 0 ≤
u < B, into the local buffer, applying the kernel, and copying rows numbered as
u.σn(t), 0 ≤ u < B, from the local buffer.

class BitReversal : public StreamKernel< BitReversal > {

Buffer2D_Read

input(iterationSpace, inputData, B);

Buffer2D_Write < ReAddress2D< Identity, BitRev > >

output(iterationSpace, outputData, B);

BitReversal(IterationSpace 2D iterationSpace,

Array2D input, Array2D output) {...}

// Do in place permutation

void kernel(const IterationSpace2D::element_iterator &eit) {

...

}

};

ReAddress takes the (i, j) coordinate formed from the iteration space point and
the buffer coordinates and applies the specified pair of functions to i and j respectively.
BitRev reverses bits of the j value to correctly address the destination for the row by
calling the reverse_bits function shown earlier.

6 Experimental Evaluation

We use a 3.2GHz Cell processor on a Sony PlayStation 3 console, running Fedora Linux

(2.6.23.17-88.fc7), with IBM Cell SDK 2.1. We compiled the benchmark programs

using the highest optimisation settings, and executed them on all six SPEs that are

available to the programmer on a PlayStation 3.

6.1 Implementation

We evaluate our prototypeÆcute framework against alternative implementations, which

use hand-written DMA transfers and a software-based SPE cache. The cache allows re-

mote data to be accessed in a familiar way, so that code can be quickly ported to run on

an SPE. In our experiments, we use the standard cache implementation provided with

SDK 2.1 [10]. We use a 4-way set associative cache with default “write-back” write

policy and “round-robin” replacement policy, and vary the number of cache sets and

line size on an application-specific basis.

The kernel code is essentially the same, with minor changes to support the use of

Æcute framework classes and software cache functions.

D=256, N=15 D=256, N=63 D=1024, N=15 D=1024, N=63
0

0.5

1

1.5

2

2.5

3

3.5

Image dimension D, pixel neighbourhood diameter N

E
x
e

c
u

ti
o

n
 t

im
e

 n
o

rm
a

lis
e

d
 t

o
 h

a
n

d
−

w
ri
tt

e
n

 c
o

d
e

Hand−written

Software cache

AEcute 20x20

AEcute 5x40

AEcute 40x5

5.7 5.1 9.6

Fig. 3. Closest-to-mean filter.

6.2 Benchmark Details

We evaluate the benchmarks described in §3 and §5.

Closest-to-mean filter (§3.1) Fig. 3 shows execution time normalised to code with hand-
written DMA transfers. We consider two neighbourhood diameters N : 15 and 63, and
two image sizes D × D where D is: 256 and 1024. These represent increasing com-
putation workload. We also consider three different iteration space tile sizes: 20 × 20
(default square size, which is calculated automatically under the constraint that the tile

footprint must fit into local memory); 5 × 40; and 40 × 5.
For D = 256 and N = 15, the best Æcute code performs within 40% of hand-

written code; for N = 63, within 15%: the increased workload amortises the overhead
of interpreting Æcute specifications. In contrast, the overhead of using the software

cache grows with increasing neighbourhood size (which perhaps can be remedied by

tuning the cache parameters). For D = 1024 and N = 63, the overhead drops to 12%.
We observe that no tile size was universally best. Given the simplicity of varying

tile sizes, the best tile size could be found by iterative search. In contrast, it is usually

more difficult to adapt code with hard-coded tile sizes.

Blocked DMA transfers, which are supported naturally by the partitioning and au-

tomated buffering in the Æcute system, and implemented in the hand written code,

improve the efficiency of memory traffic and enable both hand-written and Æcute code

perform far better than code using the software cache.

Matrix-vector multiply (§5.1) For this example we hand-vectorised the entire block
computation for efficiency. The hand written and software cache based code are simi-

larly vectorised for fair comparison. While the Æcute model looks promising for auto-

matic vectorisation, it is important that the programmer retains full control over kernel

optimisations should automatic optimisations fail.

2048x2048 2048x4096 4096x4096 4096x8192
0

1

2

3

4

5

6

7

8

9

10

Matrix size

E
x
e

c
u

ti
o

n
 t

im
e

 n
o

rm
a

lis
e

d
 t

o
 h

a
n

d
−

w
ri
tt

e
n

 c
o

d
e

Hand−written

Software cache

AEcute 4x1024

AEcute 4x512

AEcute 4x256

Fig. 4.Matrix-vector multiply normalised to execution time of hand written code.

Fig. 4 shows normalised execution time for various matrix sizes. The best tile size

is 2–3 slower than hand-written code, but considerably faster than the software cache

implementation. The run-time overhead associated with the Æcute framework is signif-

icant for this example due to the low arithmetic density of the matrix-vector multiply

operation. The hand-written implementation requires less SPE-PPE communication:

the SPEs are able to compute results entirely independently.

Bit-reversal (§5.2) Fig. 5 plots execution time in milliseconds against n = log
2
N ,

the bitwidth of the array index. We see smooth scaling of performance with the size

of the dataset. In addition, the performance of the Æcute implementation tracks that

of the hand-written implementation with a near-constant scaling. In this case, while

remote memory accesses are inherently non-contiguous due to bit-reversed indexing

in the algorithm, the system can construct efficient DMA list transfers from Æcute

specifications.

7 Related work

Recent work by Solar-Lezama et al. on sketching [11] aims to automate the optimisation

of simple computation kernels. Where the Æcute model defines iteration spaces and

memory access patterns declaratively to localise memory access, sketching supports a

rough definition of an optimised implementation and attempts to search for a series of

transformations to convert one to the other.

Saltz et al. [12] propose run-time parallelisation of loop nests that defy compile-time

dependence analysis. At run-time, inspector procedures identify parallel wavefronts of

loop iterations, which executor procedures then distribute among processors. In con-

trast, our approach relies on the programmer to supply information that the compiler

may fail to extract from the program.

14 16 18 20 22 24
10

0

10
1

10
2

10
3

Dataset size

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

ill
is

e
c
o

n
d

s
)

Hand−written

AEcute

Software cache

Fig. 5. Bit-reversal.

The emergence of architectures having software-managed memories (in particular,

of Cell) has spurred the development of high-level programming abstractions, address-

ing the issue of copying data between distributed memories.

Sequoia The Sequoia language [13] from Stanford University abstracts parallelism and

communication by introducing tasks: side-effect free methods using the call-by-value-

result (CBVR) argument passing mechanism. The abstract machine model of Sequoia

is a tree of (physical or virtual) memory modules. Each task runs at a single node of the

tree and can directly access memory only at this node. Tasks can spawn subtasks on the

same node or child nodes. Upon calling a subtask, input data from the caller’s address

space is copied into the callee’s address space, output data is computed and then copied

out into the caller’s address space on return.

CellSs CellSs [14] is a programming model for the Cell architecture from Barcelona

Supercomputing Centre. Similar to Sequoia, CellSs annotations to C programs specify

a task for execution on the SPEs and its arguments.

Sieve C++ In Sieve C++ [15][16], a C++ extension from Codeplay Software, the pro-

grammer can place a code fragment inside a sieve scope—a new lexical scope prefixed

with the sieve keyword—thereby instructing the compiler to delay writes to memory

locations defined outside of the scope (global memory), and apply them in order on

exit from the scope. The semantics of sieve scopes can be considered as generalising

to composite statements the semantics of the Fortran 90 single-statement vector as-

signments [17]. This semantics, named call-by-value-delay-result (CBVDR) [15], dis-

allows flow dependences and preserves name dependences on data in global memory,

and by restricting dependence analysis to data in local memory makes C++ code more

amenable to automatic parallelisation.

8 Conclusion and Future Work

We have presented the concept of decoupled Access/Execute specifications and demon-

trated their convenience, flexibility and efficiency on three benchmark examples. Our

Æcute implementation automates the data movement element of the accelerator pro-

gramming task. The blocking of DMA transfers and construction of DMA lists enabled

by separating the memory access from computation results in more efficient memory

traffic.

We are looking into extending this work in several ways.

First, Æcute specifications may be thought of at a level of compiler intermediate

representation rather than a high level programming language. Thus, we plan to inves-

tigate ‘front-ends’ that will derive Æcute specifications from higher-level abstractions,

in particular, from the polyhedral model [18]. In addition, we wish to investigate ‘back-

ends’ for other accelerator architectures, such as GPUs.

Second, we plan to integrate Æcute specifications into a compiler, to reduce both the

overhead of interpreting Æcute specifications at run-time and the size of generated data-

movement code, which must be minimised to conserve precious local memory. As in

Gaster’s streaming extension to OpenMP [19], compiler support can be layered on top

of an extention and streamlining of the current Æcute classes, allowing the application

to work correctly with or without compiler support.

Adding compiler support is related to our work on metadata-enhanced component

programming [20], which uses Æcute-like metadata, describing the input-output inter-

faces of components, such that combining the components can optimise data flow at

run-time. We aim to achieve similar optimisations by applying fusion optimisations to

Æcute kernels.

Third, we plan to extend the expressivity of Æcute metadata to handle a larger set

of kernels, associated with full scale applications. The current Æcute implementation

supports only a limited range of partitioning options and mappings to data. We can

extend this by using a hierarchical partitioning and improving the search options, e.g.

for locality. In addition, we wish to support unstructured mesh based computations,

such as fluid flow. For unstructured data we need to extend the memory read and write

sets to support indirection while maintaining decoupling of access and execute.

Acknowledgements We thank Mike Gist for his implementation of matrix-vector multi-

ply, the anonymous reviewers and Alec-Angus Macdonald for their helpful comments,

and the EPSRC for funding this work through grant number EP/E002412/1.

References

1. Hofstee, H.P.: Power efficient processor architecture and the Cell processor. In: Proceedings

of the 11th International Conference on High-Performance Computer Architecture (HPCA),

IEEE Computer Society (2005) 258–262

2. ClearSpeed Technology: The CSX architecture. http://www.clearspeed.com/

(2001-2008)

3. Smith, J.E.: Decoupled access/execute computer architectures. ACM Trans. Comput. Syst.

2(4) (1984) 289–308

4. Watson, I., Rawsthorne, A.: Decoupled pre-fetching for distributed shared memory. In: Pro-

ceedings of the 28th Hawaii International Conference on System Sciences (HICSS), Wash-

ington, DC, USA, IEEE Computer Society (1995) 252–261

5. Tremblay, M., Chaudhry, S.: A third-generation 65nm 16-core 32-thread plus 32-scout-

thread CMT SPARC processor. In: Proceedings of the IEEE International Solid-State Cir-

cuits Conference (ISSCC). (2008)

6. Topham, N., Rawsthorne, A., McLean, C., Mewissen, M., Bird, P.: Compiling and optimizing

for decoupled architectures. In: Proceedings of Supercomputing (SC). (1995) 40

7. Lau, D.L., Gonzalez, J.G.: The closest-to-mean filter: an edge preserving smoother for Gaus-

sian environments. In: Proceedings of the IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), IEEE Press (1997) 2593–2596

8. Warren, H.S.: Hacker’s Delight. Addison-Wesley (2002)

9. Carter, L., Gatlin, K.S.: Towards an optimal bit-reversal permutation program. In: Proceed-

ings of Foundations of Computer Science (FOCS). (1998) 544–555

10. Wright, C.: IBM software development kit for multicore acceleration. Roadrunner tutorial

LA-UR-08-2819. http://www.lanl.gov/orgs/hpc/roadrunner (2008)

11. Solar-Lezama, A., Arnold, G., Tancau, L., Bodik, R., Saraswat, V., Seshia, S.: Sketching

stencils. In: Proceedings of the 2007 ACM SIGPLAN conference on Programming language

design and implementation (PLDI), New York, NY, USA, ACM (2007) 167–178

12. Saltz, J.H., Mirchandaney, R., Crowley, K.: Run-time parallelization and scheduling of loops.

IEEE Trans. Comput. (5) (1991) 603–612

13. Fatahalian, K., et al.: Sequoia: programming the memory hierarchy. In: Proceedings of

Supercomputing (SC). (2006) 83–92

14. Bellens, P., Perez, J.M., Badia, R.M., Labarta, J.: CellSs: a programming model for the Cell

BE architecture. In: Proceedings of Supercomputing (SC). (2006) 86–96

15. Lokhmotov, A., Mycroft, A., Richards, A.: Delayed side-effects ease multi-core program-

ming. In: Proceedings of the 13th European Conference on Parallel and Distributed Com-

puting (Euro-Par). Volume 4641 of Lecture Notes in Computer Science., Springer (2007)

16. Codeplay Software: Portable high-performance compilers. http://www.codeplay.

com/ (2008)

17. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures. Morgan Kauf-

mann, San Francisco, CA, USA (2002)

18. Griebl, M.: Automatic Parallelization of Loop Programs for Distributed Memory Architec-

tures. University of Passau (2004) Habilitation Thesis.

19. Gaster, B.R.: Streams: Emerging from a shared memory model. In Eigenmann, R., de Supin-

ski, B.R., eds.: Proceedings of the 4th International Workshop on OpenMP (IWOMP). Lec-

ture Notes in Computer Science, Springer (2008) 134–145

20. Howes, L.W., Lokhmotov, A., Kelly, P.H., Field, A.J.: Optimising component composition

using indexed dependence metadata. In: Proceedings of the 1st International Workshop on

New Frontiers in High-performance and Hardware-aware Computing. (2008)

