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Abstract. We demonstrate that the performance of commodity parallel systems
significantly depends on low-level details, such as storage layout and iteration
space mapping, which motivates the need for tools and techniques that separate a
high-level algorithm description from low-level mapping and tuning. We propose
to build a tool based on the concept of decoupled Access/Execute metadata which
allow the programmer to specify both execution constraints and memory access
pattern of a computation kernel.

1 Introduction

We evaluate several implementations of simple image filters on x86 multicore systems
and a GPU-accelerated system. Our experimental results demonstrate that efficiently
implementing an algorithm to execute on commodity parallel hardware requires care-
ful tuning to match the hardware characteristics, as the performance depends signifi-
cantly on low-level details such as iteration space mapping and storage layout. While
such manual tuning is possible, it is not practical: the number of versions to write and
maintain grows with the number of target architectures. For applications consisting of
multiple kernels such development and maintenance becomes infeasible.

We believe that innovative tools and techniques that separate a high-level algorithm
description from low-level mapping and tuning will make software engineering for par-
allel systems more productive and disciplined. We propose to build such a tool based
on the concept of Access/Execute (Æcute) metadata which capture both execution con-
straints and memory access patterns [1].

2 Mean filter

Consider a one-dimensional mean filter, for which the output at t is given by the formula

Ot =
1
D

D−1∑
k=0

It+k, where (1)
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– I is an input array of N +D real elements;
– O is an output array of N real elements;
– D is the diameter of the filter, i.e. the number of input elements over which the

mean is computed (typically, D � N ).

A naı̈ve parallel algorithm can run N threads, each producing a single output ele-
ment, which requires Θ(ND) reads and arithmetic operations. A good parallel algo-
rithm, however, must be efficient and scalable [2].

2.1 Scalable algorithm

The algorithm in Listing 1 strips the computation, where up to T outputs in the same
strip are computed serially in two phases. The first phase in lines 2–6 computes Ot0

according to (1). The second phase in lines 8–14 computes Ot for t ≥ t0 + 1 as
Ot−1 +

(
It+D−1 − It−1

)
/D.

1for(int t0 = 0; t0 < N; t0 += T) {
2// first phase: convolution
3float sum = 0.0f;
4for(int k = 0; k < D; ++k)
5sum += I[t0+k];
6O[t0] = sum / (float)D;
7
8// second phase: rolling sum
9for(int dt = 1; dt < min(T,N-t0); ++dt) {
10int t = t0 + dt;
11sum -= I[t-1];
12sum += I[t-1+D];
13O[t] = sum / (float)D;
14}
15}

Listing 1: Scalable mean filter algorithm in C.

This algorithm performs Θ(N + ND/T ) reads and arithmetic operations, consid-
erably reducing memory bandwidth and compute requirements for T � D. Since the
t0 loop carries no dependences, up to dN/T e threads can run in parallel. Thus, this
algorithm trades off parallelism against work efficienty.

Note that since the order of arithmetic operations is undefined in (1), both the naı̈ve
and scalable algorithms are functionally, if not arithmetically, equivalent.

2.2 Vertical and horizontal mean image filters

Mean filtering is a simple technique for reducing noise in digital images.
The vertical mean image filter is the one-dimensional mean filter applied to columns

of a two-dimensional image of W ×H pixels:

Ox,y =
1
D

D−1∑
k=0

Ix,y+k, where 0 ≤ x < W, 0 ≤ y < H −D. (2)



Similarly, the horizontal mean image filter is the mean filter applied to rows of an image:

Ox,y =
1
D

D−1∑
k=0

Ix+k,y, where 0 ≤ x < W −D, 0 ≤ y < H. (3)

Using the algorithm of §2.1, the mean image filters perform Θ(N +ND/T ) reads
and arithmetic operations, and can run up to dN/T e parallel threads, where N is the
number of output pixels and T is the number of output pixels per strip.

Clearly, the optimal value of T depends on problem parametersW ,H andD, and on
hardware parameters such as the number of supported threads and memory bandwidth.
In our evaluation (§4), we find the optimum by iteratively compiling the kernels for a
range of values of T and evaluating the performance.

3 Implementation

We describe efficient implementations of the mean image filter kernels for a GPU, with
the NVIDIA Compute Unified Device Architecture (CUDA) [3], and for a multicore
CPU, with Intel Streaming SIMD Extensions (SSE) [4]. We assume that the image
pixels are represented as single-precision floating-point numbers, and that the images
are stored in row-major order.

3.1 Architecture overview

Roughly, a CUDA thread corresponds to an individual SSE vector lane, whilst a CUDA
thread block corresponds to a full SSE vector. A GPU core (streaming multiprocessor)
executes blocks of multiple threads in SIMD groups of 32 threads (warps) using the
8-lane SIMD unit; a CPU core operates on 4-element vectors using the 4-lane SIMD
unit. As a rule of thumb, a GPU runs thousands of threads, whilst a CPU only tens of
threads (counting vector lanes).

SSE only supports coalesced access to off-chip memory, e.g. storing a vector regis-
ter into a contiguous (and preferably aligned) 128-bit memory region; CUDA supports
uncoalesced access to off-chip memory, albeit at a lower memory bandwidth.3 To re-
duce off-chip memory access, SSE provides a family of instructions for shuffling data
in vector registers, whilst CUDA provides on-chip memory shared between threads in
a block. Effectively, these mechanisms enable fast inter-thread cooperation.

3.2 Vectorisation

Vertical mean filter Conceptually, the vertical mean filter has a parallel outer loop
iterating over each column and a parallel inner loop iterating over strips of rows:
parfor(x = 0; x < W; ++x) // for each column
parfor(y0 = 0; y0 < H-D; y0 += T) // for each strip of rows
// two-phase computation here

3 Rules for coalescing vary between different architecture generations.



To enable memory coalescing, threads in a thread block (lanes in a vector) must
access a contiguous (and preferably aligned) memory region, which is achieved by as-
signing adjacent columns to adjacent threads: technically, the loop x is interchanged
with the loop y0, and then stripmined into vectors.

Horizontal mean filter The horizontal mean filter has a parallel outer loop iterating
over each row and a parallel inner loop iterating over strips of columns:
parfor(y = 0; y < H; ++y) // for each row
parfor(x0 = 0; x0 < W-D; x0 += T) // for each strip of columns
// two-phase computation here

Serialisation within strips of columns, however, results in no memory coalescing:
adjacent threads access adjacent rows with a stride of W . One option, illustrated in
Fig. 1, is to transpose the W ×H input image I to an H ×W intermediate image T′,
run the vertical mean filter on T′ to produce an H × (W −D) intermediate image T′′,
and then transpose T′′ to produce the (W −D)×H output image O. Another option
is to effectively fuse transposition and computation into one optimised kernel, by using
on-chip memory on a GPU or shuffle instructions on a CPU.

Fig. 1: The horizontal mean filter kernel implemented as a pipeline of the forward transpose,
vertical mean filter and the backward transpose kernels. Shadows represent the padding that may
be necessary to improve the bandwidth of the transpose kernels (§4.1).

3.3 Parallelisation

Given a low thread count on a CPU, the inner loop computation can be completely se-
rialised, resulting in maximum work efficiency: the CPU out-of-order issue logic can
extract adequate instruction level parallelism from the serial instruction stream. In con-
trast, a GPU exploits limited instruction level parallelism and relies on thread level
parallelism to cover memory latency.

On a GPU, thread blocks are located in a grid. For two-dimensional iteration spaces
over images, a two-dimensional grid is most natural, with each block producing a rect-
angular section of the output image. As Fig. 2a illustrates for the vertical mean filter,
significant portions of thread blocks covering the right edge of the image may be idle if
the image width is not a multiple of the number of columns per thread block.
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(a) A 2D grid mapping loses efficiency from idle threads off the right image edge.
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(b) A 1D grid mapping has fewer idle threads by wrapping around the right image edge.
Taking into account alignment for efficiency reasons complicates addressing and iteration.

Fig. 2: Different mapping strategies result in different utilisation of threads. Light and dark re-
gions of blocks denote busy and idle threads, respectively. WPBX and WPBY stand for work per
block in the x and y dimensions, respectively. For 128 × 1 thread blocks used in our evaluation
(§4), WPBX = 128 and WPBY = T .

This issue can be alleviated by mapping the iteration space onto a one-dimensional
grid that covers the image by wrapping around its right edge, as illustrated by Fig. 2b.
As we show in §4.1, a mapping that maximises thread utilisation suffers from misalign-
ment, if the image width is not a multiple of the warp size; a better mapping takes
alignment into account by wasting a small number of threads on the right of the image,
thus ensuring that the first pixel of each row is handled by the first thread in a warp.

4 Experimental results

4.1 GPU

We present results obtained on a dual-core 3GHz Intel Core 2 Duo E8400 system with
2 GiB RAM, equipped with an NVIDIA GTX 280 card, running 64-bit Linux Ubuntu
8.04. Code is compiled using CUDA SDK 2.2 and GCC 4.2.4 with the “-O3” optimisa-
tion setting. We measure the kernel execution time only and report the best throughput
out of 50 runs. In all the experiments, we fix the number of threads per block at 128
(128 × 1), as we nearly achieve the peak memory efficiency with this setting: ≈ 10
Gpixel/s × 4 bytes/pixel × (2 reads + 1 write) = 120 GB/s (close to the bandwidth of
aligned copy on this card).

Vertical mean filter Fig. 3a shows that the 1D and 2D grid versions of the vertical
mean filter (Fig. 2) are similar in throughput when applied to a 5120 × 3200 image,
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(a) 5120× 3200 image. 2D grid; 1D grid.
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(b) 5121× 3200 image. 2D grid. Data padded to multiples of 16, 32, 64, and 128 pixels.
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Fig. 3: CUDA implementations for the vertical mean filter on a 5120× 3200 image (a) and on a
5121× 3200 image (b & c), with different iteration space mapping and storage layout.
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Fig. 4: CUDA implementations for the horizontal mean filter on a 5120× 3200 image.

where 5120 is a multiple of 128 pixels. The throughput is below 0.8 Gpixel/s (not
shown) when each thread produces a single pixel (T = 1), climbs fast with increasing
serial efficiency, achieving the peak throughput of 9.9 Gpixel/s at several points, and
then declines with decreasing parallelism.

When applied to a 5121× 3200 image, however, the 2D grid version only achieves
7.0 Gpixel/s, as shown by the bottom line in Fig. 3b. Whilst we allocate memory using
the cudaMallocPitch function, which pads the image to a multiple of 16 pixels to
enable memory coalescing (5136 pixels in this case), such allocation leads to DRAM
partition conflicts. We remedy the conflicts by manually padding the image to a multiple
of 32, 64 and 128. Since the results of padding to a multiple of 64 and 128 are very
close, we fix the image padding at a multiple of 64 (5184 pixels) for all subsequent
experiments.

Fig. 3c shows that the 1D grid mapping that maximises thread utilisation by wrap-
ping on 5121 pixels hardly achieves 6.0 Gpixel/s, whilst wrapping on the image padding
of 5184 pixels performs worse than wrapping on the warp size multiple of 5152 pixels.

To summarise, for the misaligned image padded to 5184 pixels, the 1D grid version
wrapped on 5152 pixels achieves 9.6 Gpixel/s, whilst the 2D grid version achieves only
9.1 Gpixel/s; thus, the 1D grid version is 6% faster than the 2D grid version.

Horizontal mean filter Fig. 4 shows that the vanilla horizontal mean filter version on
a 5120 × 3200 image achieves only 230 Mpixel/s, for most values of T . The version
that uses on-chip memory to effectively fuse transposition and computation into one
optimised kernel, achieves 2.4 Gpixel/s and 3.7 Gpixel/s when using 64 and 32 threads.

The composite version that uses separate transpose and vertical mean kernels (Fig. 1)
achieves 3.0 Gpixel/s. Note, however, that this performance is only achieved when the
intermediate images T′ and T′′ are both padded by 64 pixels, resulting in the bandwidth
of 80.1 GiB/s and 63.3 GiB/s for the forward and backward transposes, respectively.
Without the padding, the bandwidth is only 60.2 GiB/s and 19.1 GiB/s.
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Fig. 5: Comparison of different CPU implementations on a 5120 × 3200 image. The large sur-
rounding boxes represent the peak memory copy throughput for each of the systems, as obtained
by running the STREAM benchmark [5].

We estimate that assembling the composite version from the already available com-
ponents took half a day versus five days for the on-chip memory version. Tuning the
kernels and finding the optimal padding parameters to improve the bandwidth, however,
took another half a day.

4.2 CPU

We present results on a 2.3 GHz quad-core AMD Phenom 9650 system with 8 GiB
RAM (AMD) and on a 3 GHz dual-core Intel Core 2 Duo E8400 system with 2 GiB
RAM (Intel), both running 64-bit Linux Ubuntu 8.04. Code is parallelised using OpenMP
pragmas and compiled using Intel C Compiler 11.0 with the “-xHost -fast” setting.

Vertical mean filter In the worst performing version in Fig. 5a (“XY”), the loop over
columns x and the loop over strips of rows y0 have not been interchanged, which re-
sults in strided memory accesses. Applying loop interchange (“YX”) results in a vast
performance increase. Performance on the AMD system increases with enabling more
cores, whilst the Intel system achieves the peak performance with a single core, which
can be attributed either to the compiler better optimising for Intel’s own architecture or
to lower performance of a single core on the AMD system. On both systems, it is al-
ways more beneficial to parallelise across multiple cores the x loop (“parallel X”) than
the y0 loop (“parallel Y”).

Horizontal mean filter The best performing version in Fig. 5b is obtained by the Intel
compiler optimising a naı̈ve C implementation that runs through memory sequentially
in the horizontal dimension (“horizontal”), thus triggering the CPU cache prefetching
mechanism. On the CPUs, the forward and backward transposes are too costly even
when using the highly optimised Intel MKL library (“transpose only”), and adding a



best performing version of the vertical mean filter (“vertical + transpose”) makes little
difference. Indeed, the naı̈ve implementation is so fast that there is nothing to gain from
vectorisation but a lot to lose from transposition.

5 Towards Metaprogramming

5.1 Decoupled Access/Execute Metadata

To ease the programmer’s burden of mapping and tuning computation kernels to par-
allel systems on a chip, we propose extending a kernel’s description with decoupled
Access/Execute (Æcute) metadata [1]. Execute metadata for a kernel describe its iter-
ation space ordering and partitioning; access metadata describe locations in uniform
memory that the kernel may access on each iteration.

1// Array descriptors (C array wrappers)
2Array2D<float> arrayI(&I[0][0], W, H);
3Array2D<float> arrayO(&O[0][0], W, H-D);
4
5// Execute metadata: parallel iteration space
6IterationSpace1D x(0,W);
7IterationSpace1D y(0,H-D);
8IterationSpace2D iterXY(x,y);
9
10// Access metadata: iteration space -> memory
11VerticalStrip2D_R accessI(iterXY, arrayI, D);
12Point2D_W accessO(iterXY, arrayO);

Listing 2: Æcute metadata for the vertical mean image filter.

Listing 2 gives an example of Æcute metadata for the vertical mean image filter.
Accesses to plain C arrays I[W][H] and O[W][H-D] are wrapped using Æcute ar-
ray descriptors arrayI and arrayO to cleanse the kernel of uncontrolled side-effects
(lines 1–3). A 2D iteration space descriptor iterXY is constructed from 1D descrip-
tors x and y, having the same bounds as the output image dimensions (lines 5–8). By
default, an iteration space is parallel in every dimension. Finally, we specify that on
each iteration the kernel reads a vertical strip of D pixels from arrayI and writes a
single pixel to arrayO (lines 10–12).

5.2 Related work and discussion

Effectively orchestrating data movement in software-managed memory hierarchies is
paramount to achieving high performance but is tedious and error-prone. The CUDA-
lite [6] tool seeks to automate data movement between on-off chip and on-chip GPU
memories by generating appropriate code from ad-hoc source code annotations. We
have addressed the problem of generating data movement code between two levels of
memory hierarchy on the Cell BE architecture in our previous work [1]. We now aim
to address a broader problem of generating code for both data movement across the full
memory hierarchy (including the host memory) and the iteration space traversal.



Similar to the Sequoia language [7], we seek to separate a high-level algorithm
representation from a system-specific mapping. Unlike Sequoia, we base our mapping
on partitioning (manually or automatically) an iteration space into disjoint subspaces
and infer memory access of subspaces from Æcute metadata. For a GPU-accelerated
system, a hierarchy of iteration space partitions can specify subspaces to be executed:
at the lowest level, by individual threads; at the middle level, by blocks of possibly
cooperating threads; at the highest level, by possibly cooperating compute devices:
iterXY.partitionThreads(1,T); // 1xT outputs/thread
iterXY.partitionBlocks(128,T); // 128xT outputs/block
iterXY.partitionDevices(W/2,H-D); // (W/2)x(H-D) outputs/device

Ryoo et al. [8] also highlight the need for design space exploration, which they call
optimization carving, but leave out the question of automatically generating different
code versions from a high-level representation.

6 Future work

OpenCL [9], a new low-level standard API, aims to provide software portability across
heterogeneous systems. Thus, instead of writing, for example, separate CUDA and
SSE kernels, the programmer will be able to write an OpenCL kernel and run it on
any standard-compliant implementation. However, OpenCL per se does not address the
problem of performance portability, since low-level code optimised for one device may
perform dismally on another, as we have demonstrated in this paper.

We aim to tackle this problem by designing and implementing a framework that will
take a device-independent algorithm representation with Æcute metadata and generate
efficient device-specific OpenCL code to be processed by vendor compilers.
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