Tackling online game development problems with a novel
network scripting language

George Russell
Codeplay Software Ltd.
45 York Place
Edinburgh, Scotland

george@codeplay.com

ABSTRACT

We describe a novel scripting language for writing bandwidth-efficient
online game logic. The language facilitates the development of de-
terministic, concurrent, distributed games, with assurances of con-
sistency maintenance between clients and server. Our approach
allows for increased simulation accuracy when compared to dead
reckoning, and removes the need to write code to repair distributed
state inconsistencies, or to explicitly transfer data over a network.

Categories and Subject Descriptors

C.2.4 [Computer Communication Networks]: Distributed Sys-
tems; D.1.3 [Programming Techniques]: Distributed systems; D.3.3
[Language Classifications]: Concurrent, distributed, and parallel
languages

General Terms

Experimentation, Performance, Algorithms, Measurement

Keywords

Computer games, Concurrency, Distributed games

1. INTRODUCTION

An online game is a concurrent, distributed application. As a
result, programmers of online games face new complexities re-
lated to network latency, out-of-order delivery, and partial failure.
Relatively few programmers are experts in distributed and concur-
rent programming, which introduce new classes of nondeterminis-
tic bugs such as deadlocks and race conditions, that are hard to re-
produce in a test or development environment. Problems of nonde-
terminism are complicated in heterogeneous networks, where iden-
tical program logic executed on different architectures may produce
subtly different results.

These issues concern correctness. For a game to be responsive,
careful consideration must be given to issues of bandwidth and net-
work latency. The state of an online game is typically large, while
the bandwidth available between client and server is limited. This

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Netgames *08 Worcester, MA, USA

Copyright 2008 ACM 978-1-60558-132-3-10/21/2008 ...$5.00.

Alastair F. Donaldson
Codeplay Software Ltd.
45 York Place
Edinburgh, Scotland

ally@codeplay.com

Paul Sheppard
ITI Techmedia
Glasgow, Scotland

paul.sheppard@
ititechmedia.com

restricts the frequency with which state updates can be issued to
clients, and renders it impractical to send updates for the entire
game state [4]. Although interest management [3], delta encoding
[9] or dead reckoning [1, 10] can often be used to achieve an ac-
ceptable frame rate, for game scenarios with a large population of
dynamic objects on a client, the quantity of data to be transmitted
can be excessive. According to [14], “If you have more updating
data than you can move on the network, the only real option is
to generate the data on each client.” Network latency can lead to
significant delays between a user initiating an action and perceiv-
ing the result of that action. This may render a game frustrating
or unplayable. Techniques for masking latency work by allowing
clients to simulate game entities up to a certain level of inaccuracy,
computing future attributes of game entities via prediction or ex-
trapolation based on recent history. Due to limitations in prediction
algorithms and the unpredictability of user input, latency masking
techniques result in inconsistent views of the game world between
clients. Brief periods of inconsistency can be allowed, but must be
recognised and corrected, e.g. by a timewarp algorithm [11].

As well as being correct and efficient, an online game should
scale to support a large population of game objects and players.

In this paper we present the network scripting language (NSL), a
scalable, bandwith-efficient programming language for online game
logic which hides issues of concurrency, distribution and latency
from the programmer. We provide an overview of the language, a
theoretical discussion of the reduced bandwidth offered by NSL,
and promising experimental results for a prototype.

2. THE NETWORK SCRIPTING LANGUAGE

We have identified two major problems in the implementation of
online games: the bandwidth requirements for transmission of state
updates, and inaccuracies resulting from the use of dead reckoning
and latency compensation techniques. Our solution is as follows:
the initial state of a given object is issued to all interested clients.
In addition, the clients are issued with deterministic code to sim-
ulate the object over time. Replicating code with objects allows
clients to independently update their area of interest consistently
with updates computed by the server.

Our approach promises a potential reduction in bandwidth re-
quirements: instead of transmitting a sequence of state updates
from the server to a client, data transfer between server and clients
is now only required to communicate user actions, remote inputs,
and to handle objects moving in or out of a client’s area of interest.
Replicating the computation of state updates provides accuracy and
consistency, as state updates for game entities are computed consis-
tently, not extrapolated and subsequently corrected. Our approach
to masking latency in the propagation of user inputs between clients
is similar to timewarp [11]: computation proceeds optimistically

Graphical Display of the Game's Objects

File Run Conbrol View

Figure 1: An aerial view of PointWorld.

on the assumption of no input, and the state of client-side entities
is corrected by re-execution as inputs are received.

To achieve the desired features of determinism, replication, and
self-correcting timewarp execution of game logic, together with
ease of development we have designed and implemented a novel
domain-specific language. The network scripting language (NSL)
is an object-oriented language with support for message passing,
deterministic concurrency and distribution, to be embedded within
game clients and to act as a server for game logic. A language can
provide and enforce guarantees that would be difficult to obtain and
maintain with existing programming languages and middleware.

We now introduce NSL and discuss the novelties of the language
which lead to the desirable properties discussed above.

2.1 An Overview of NSL

NSL programs are written in a Java-like syntax, which we il-
lustrate throughout the paper via a simple distributed world called
PointWorld. The screenshot of Figure 1 shows this world viewed
from above. A population of game entities, or points, shown as
white circles, are initialised with a position and velocity. Points in
the world interact via collision response: upon colliding, points re-
coil from one another with some degree of randomness in the angle
of departure. The world is divided into cells, indicated by the grey
lines in Figure 1.

An NSL object is an active object [13], a lightweight process
with its own independent thread of control. The PointWorld ex-
ample contains an object per point and per cell, with an additional
object to bootstrap and manage the world and its population.

Figure 2 shows how the Point class is defined in NSL. Control
flow for an object starts in the constructor, allowing the object to
perform initialisation, optionally with parameters from its creating
environment. Control then passes to the object’s execute method
(Line 15 of Figure 2). This method conventionally iterates to com-
pute a state update for a single frame. The actions performed by
a point per frame are as follows: the point updates its position to
move within the world, then checks for collision with other points
in the same and neighbouring cells. Movement may cause the point
to leave one cell and enter another, in which case the point notifies
the associated cells. Finally, the point either terminates (in response
to a message from another object), or suspends execution until the
next frame.

The receive statement at Line 21 in Figure 2 shows a test for
receipt. Messages are matched by type, e.g. Exit, and appear as a
local variable in the receive block scope (e in our example). If the
point receives an Exit message it terminates via quit. If there
is no message, execution jumps to the end of the receive block.

1 class Point {

21

23

27

29

31

33

35

37

39

41

43

45

47

49

51

53

57

65

public var vec2 pos, vec2 vel;
public var Cell cell;

Point constructor (Cell container
, vec2 position
, vec2 velocity) {

pos = position;
cell = container;
vel = velocity;

/+ Points are inside a Cell =/
send(cell, NewContent (previous));
}
/% Methods */
void execute () {
var float dt = 1.0/FPS;
loop {
move (dt) ;
checkCollision (dt) ;
checkForChangeOfCell () ;
receive Exit as e {
quit;
}
yield;

}

void move (float dt) {
pos += velxdt;
pos = checkAgainstBounds (pos) ;

}

void checkCollision(float dt) {
/% Checks only within 1 cell for brevity =*/
const int N = len(cell.contents);
for var int j = 0; j < N; Jj++ {
var Point2D p = cell.contents[]j];
if p == previous {
/#* No self collision! #*/
continue;
}
if collidesWith(p, dt) {
/+* Respond to one collision by moving */
var float angle
= -1.0 » angleTo(pos, p.pos);
angle += (rand(HALF_PIx100.)/100.)
- HALF_PI/2.;
var float vellen = len(vel);
vel.x = sin(angle) xvellen;
vel.y = cos(angle) xvelLen;
move (dt) ;
return;

}

void checkForChangeOfCell () {
if not cell.isInCellBoundary (pos) {
var Cell old = cell;
cell = cell.findCelllLocation (pos);
send (old , RemoveContent (previous)) ;
send(cell, NewContent (previous));

Figure 2: Class declaration for a point.

The yield statement at line 24 asserts that execution should be
suspended for this frame, and resumed for the next frame after the
yield statement.

The move method for a point computes a new position from the
current position, time step and velocity, as shown on line 28 of Fig-
ure 2. After moving, a point checks for and responds to collisions
with other points in its cell via the checkCollision method.
This requires access to the state of the points and the containing
cell. The NSL semantics (described in Section 2.2) ensure that this
access is safe in a concurrent environment. To move from cell to
cell within the game world, a point must communicate with both
cells concerned by message passing, via the send operation.

Our example illustrates NSL code for an actor within a simple
game world. In summary, an NSL actor may:

e Read and mutate local state, e.g. to update position

e Suspend execution for k > 0 frames, or until an input mes-
sage is received

e Send a message to another object, e.g. a command or request
e Read another object’s state from the previous frame

e Invoke a non mutating method upon another object

o Test for receipt of a message or messages

e Terminate

e Spawn a new parameterised object.

An object terminates by a quit command or by returning from
the execute method. Abnormal termination via assert or un-
handled exceptions is also possible.

2.2 Language Semantics

In this section we summarise important aspects of the NSL se-
mantics which guarantee deterministic execution in a concurrent,
distributed environment.

Guaranteeing determinism in the presence of concurrency is a
complex problem. Our solution is to delay the visibility of state
updates. Given distinct objects 01 and o2, if 01 reads a public field
x of o2 during execution of frame n then o1 receives the value for
z in frame n — 1. The language guarantees that values of variables
in frame n — 1 are not modified once execution of frame n — 1
has completed, thus o1 can read the variable x at any point during
frame n and always get the same result.

Without this restriction, concurrently executing objects would be
able to read the changing state of other objects, leading to nonde-
terministic behaviour dependent on the exact timing of reads. The
programmer would be required to write complex, error-prone lock-
ing code to synchronise object actions. Restricting access to non-
local data to refer to the preceding frame avoids these problems:
this data is immutable, and can thus safely be accessed concur-
rently without locks. This eases programming of game logic, and
allows objects within a frame to be safely and deterministically ex-
ecuted in any order. Furthermore, execution of multiple objects can
be easily distributed over multiple cores.

As discussed in Section 2.1, communication between objects is
achieved by message passing rather than by direct manipulation
of state. Messages are strongly typed records which may contain
references to other objects. The ability to pass object references via
messages leads to a dynamic interconnection topology: an object
can hold references to other objects, these references can be passed
around, and two objects are able to interact if one holds a reference
to the other.

Each object has a mailbox per frame for incoming messages sent
during previous frames. This allows determinism under concur-
rency: if point p leaves cell ¢; for cell ¢z in frame n then appro-
priate messages are sent to c¢1 and c2 during execution of frame n.
However, these messages are not received and processed by the re-
spective cells until frame n+ 1. This avoids nondeterminism which
could arise due to precise message delivery times if messages were
sent and received within the space of a single frame. The order of
messages is also deterministic, and is not necessarily the order in
which messages are sent: multiple messages from a single sender
are received in order; messages from two or more senders are re-
ceived in a fixed, relative order.

Delaying the visibility of state changes means that an unmodified
copy of the game state for frame n must be available during execu-
tion of frame n + 1. Therefore, NSL object state is copied between
frames for non-terminated objects. It is possible for a reference to
an object to persist after the object referred to has terminated. If
object o terminates in frame n then the state of o can still be ac-
cessed via references in frame n + 1, but in subsequent frames an
access to o will raise an exception.

We require serial program determinism as a basis for concurrent
determinism. In particular, we require that floating point arithmetic
and integer overflow semantics do not vary between NSL imple-
mentations on distinct platforms.

An NSL program is executed by the NSL runtime system. An
object constructor invoked in the global scope of the program cre-
ates an object to bootstrap the initial frame of objects. The game
state for a frame is comprised of the states for all objects active in
the frame, and the state of an object includes its last point of execu-
tion. Running the game logic for a frame involves executing code
from the point of suspension in the previous frame until the object
suspends itself, or terminates. The result of this execution forms
the game state for the next frame.

The semantic restrictions required by NSL can be summarised
as follows:

e Global shared state is never mutated

e Reads from non-local state refer to data in the preceding
frame, which are immutable in the current frame

e Non-local method invocations operate on data in the preced-
ing frame, and may not mutate this data

e Messages sent in a given frame are received in the subsequent
frame

e Mailbox messages for an object are ordered in a consistent
manner

e Mutating an NSL object state in execution of frame n must
not mutate the state of the object in any frame m # n

e An NSL implementation must ensure the consistency of ba-
sic language operations across all supported platforms

e NSL calls into native libraries must observe the restrictions
required for determinism.

Adbhering to these restrictions makes concurrent, distributed soft-
ware easier to write, debug, maintain and reason about, since many
large classes of potential bugs are immediately precluded from man-
ifesting during program execution. The restrictions on mutation of
non-local data ensures independence of computation for distinct
objects in a single frame, thus execution of an NSL frame is readily
broken down into small, independent pieces. This allows relevant
subsets of game logic execution to execute on clients, interacting
with logic on the server only in specific, well-defined manners.

Server

Client 1

O 0O O

Client 2 Client 3

Figure 3: Replicating subsets of server computation on clients.

3. DISTRIBUTED NSL

A naive distributed NSL implementation would replicate the en-
tire game state on to each client and execute the clients in lock step
with the server, ensuring that user inputs between frames n and
n + 1 reach all participants before execution of frame n + 1 pro-
ceeds. A client could then track the evolving state of every game
object by resuming execution from its suspension point for frame
n + 1. Such a naive approach is simple, but flawed. While it pre-
vents inconsistent views of game state, it decouples synchronisa-
tion from wall clock time, and couples simulation frame rate with
network delay. This would reduce the speed to that of the slowest
player. Also, the entire game state could be too large or computa-
tionally intensive for replication on a typical client, and forwarding
all client inputs to all other clients would scale poorly for large
client populations.

Instead, our NSL implementation uses a more sophisticated ap-
proach based on a combination of optimistic synchronisation and
interest management techniques, which we now describe.

3.1 Interest Management of Computation

Interest management logic in a script permits the server to dy-
namically select, for each client, a subset of objects to be replicated
to each client. This subset should represent the area of interest of
a client — the view of the game world for a player. Figure 3 shows
a Venn diagram illustrating an NSL program of 13 objects. All ob-
jects execute on the server, indicated by the enclosing rectangle.
Three subsets are identified, representing subsets of the population
replicated on clients. An object in a given subset executes both on
the server and the associated client. Subsets may overlap, in which
case the object executes on the server and multiple clients. Some
objects do not belong to any client subset — these objects are tracked
by the server only.

Subsets replicated on a given client are dynamic. An object can
enter the subset for one of three reasons: the server determines
that the object is now relevant to the client (e.g. when the object
enters the area of interest); an object currently in the subset requires
the new object to perform a computation, or the object is created
by an object in the subset. An object leaves the subset when the
server determines it should do so. The programmer implements a
distinguished server-side object to deal with player connections and
handle game-specific area of interest management.

Interactions between local and remote objects are treated iden-
tically at the program level, and consist either of message trans-
mission, non-mutating field accesses or method calls. If object o1
sends a message to object o2 then the server sends this message
transparently across the network to any clients which replicate o2
but not o1. If a client replicates both 01 and o2 then the transmis-
sion of the message between objects can be handled locally. Note

that the server tracks all game objects, so it is not necessary for
clients to forward messages between objects to the server. A field
access or method call requires the accessed object to be fetched if
not already present locally.

Messages representing user input from the players of the online
game are created outside the NSL system. A user input message
is injected into NSL on the associated client, addressed to an NSL
object (e.g. the player’s avatar) in a specific frame. These messages
are forwarded on to the server. In order to maintain determinism,
the server forwards the messages to any other clients which repli-
cate the associated object. The forwarding of input messages only
to interested clients limits the quantity of input events retransmitted
from the server, thus reducing network bandwidth.

3.2 Optimistic Synchronisation and NSL

Network latency may result in the late delivery of input mes-
sages. Optimistic synchronisation [6, 11] is used to correct this, to
ensure consistency of state across clients and server. An important
novelty of our approach is to embed support for optimistic synchro-
nisation into the language itself; the frame based semantics permit
self correcting speculative execution of client-side NSL.

Each frame is repeatedly executed as new network inputs for
that frame are received, starting from the frame with the oldest un-
applied input, proceeding up to the most recent frame, until the
client’s state for a frame is consistent with the server, and there-
fore correct. Unlike timewarp, we aggregate roll backs as a result
of messages being addressed to frames, and can repair multiple in-
consistencies in performing a single roll back. Further, NSL objects
may update their state without external events, and so our notion of
virtual time and order of events is based on frame order and mes-
sage ordering within frames, in contrast to the event driven execu-
tion of timewarp.

Notably, the script does not need to contain explicit code to han-
dle roll back, reversal of actions or correction of state. The se-
mantics of NSL allow the runtime system to perform the necessary
actions to achieve consistency and correctness, whilst hiding the
complexity of these actions from the programmer.

The client informs the server when execution of a frame and
input sequence is complete. The server maintains a history of k
frames for some £ > 0 (specified by the server administrator),
while the client maintains a history of frames from the most re-
cently confirmed consistent to the most recently executed frame
on the client. The server disconnects clients which fall behind by
more than k£ frames. Given a player input, the server confirms to
which frame this input should be applied. Clients execute specula-
tively, applying player inputs without waiting for the server, and re-
executing these frames if speculation turns out to be incorrect due
to latency in message transfer. Eagerly applying input can result in
re-execution of many frames when latency is high; a local lag on
application of player inputs reduces this problem, trading accuracy
of client execution and reduced processing against responsiveness
to user input.

4. EXPERIMENTAL EVALUATION

We have written an interpreter for NSL, to be used by C++ appli-
cations for loading scripts. An application using an NSL script may
act as a server, client, or standalone component, and is able to con-
trol, interact with, and query objects. Our prototype uses TCP/IP
for reliable network transport. A graphical replay debugger acts
as an embedding application. We now present experimental results
for bandwidth, server traffic, and multi-core acceleration for an ex-
ample game world.

=
=]

~ 40 FPS
|30 FPS
| =20 FPS
~ 10 FPS
| NSL at 20 FPS
| NSL at 40 FPS

S
2

(9
3

&

o
D

0 50 100 150 200
number of game objects

e}
8

bandwidgl (KB/sec)

Figure 4: Comparing bandwidth requirements for theoretical
state transfer and NSL for object replication.

4.1 Methodology

In order to measure bandwidth requirements, we have written a
set of distributed programs in NSL, based on a 2D game world con-
taining moving and interacting players and NPCs. A 2D world is
both simple to use for our experiments, and a reasonable simplifi-
cation of many online games. We divide the world into equal-sized
grid cells, to allow for scalable interactions.

We measure the bandwidth usage of the NSL programs and com-
pare against the theoretical network bandwidth required for an im-
plementation based on state transfers. Bandwidth measurements
are obtained using a 3rd party bandwidth monitoring tool [12] which
records, for a given machine, the maximum, and average incoming
and outgoing bandwidth usage over a fixed time period. Average
bandwidth is measured after initial connection handling traffic has
passed out of the history range, and with unrelated network traffic
eliminated where possible. We report data for a network of x86
PCs, running Windows XP. The server has a dual core 2.8 GHz
Pentium D processor, and 1.5 GB RAM. Network clients are “bot”
programs connecting via a LAN and sending sequences of input
events read from files.

4.2 Results and Comparison

The screenshot of Figure 1 shows a simple NSL game world,
divided into 20x20 cells, wrapping at the edges. 100 game actors
move within this world, colliding with one another as they do so.

Figure 4 shows the bandwidth required to replicate a server game
world on to a single client, with a varying world population and
frame rate. The outgoing bandwidth required by the server for
a state transferring implementation of our scenarios can be deter-
mined in bytes/sec using the following formula [4]: n * s * f * ¢,
where n is the number of objects in play, s the average size (in
bytes) of game objects, f the networked simulation frame rate for
the game (in FPS), and ¢ the number of clients. For our single-client
scenario, this becomes n * 8 * f x 1, since 8 bytes are required to
represent the coordinate pair required to render a point. For NSL,
in the absence of client user inputs, network traffic consists of the
client and server exchanging notifications of successfully executed
game frames, and confirmation of absence of inputs for frames.
Consequently, the per-client bandwidth is not proportional to the
number of game world entities replicated, but rather to the FPS
of the game. In contrast, a state transfer based system transmits a
quantity of data proportional to the number of game objects and the
frame rate of the game, leading to higher bandwidth requirements.

Figure 5 shows input and output bandwidth for an NSL server
with between 2 and 100 connected clients, each generating an in-

500 }]
450 4----- —o-Traffic Out with Visibility
-~ Traffic Out without Visibiltiy

] - Traffic In with Visibility <
@07 < Traffic In without Visibility
300
gzso
=
2200
El
® 150
=

0 10 20 30 40 50 60 70 80 90 100
number of clients

Figure 5: Server network traffic for frequent user input, with
and without visibility management.

450

400 4-oe M 2 threads
04 threads
350 - -
18 threads
300 A N

250 A

200 -

150 4

100 -

% performance improvement

50 4

oML M| Wl
144 196 256 324 400 441 484 529 576 625 676
number of cells

Figure 6: Performance scaling for multi-threaded byte code in-
terpretation on an 8-core machine.

put event every second. Results are shown with and without re-
strictions on the server’s forwarding of user inputs. When visibil-
ity management techniques are not employed, server input scales
linearly with the number of clients, but outgoing traffic increases
super-linearly. Scalability here is unproblematic for relatively small
numbers of clients, but bandwidth requirements would clearly be-
come prohibitive for many clients. Figure 5 shows that when in-
terest management is enabled and clients are not visible to one an-
other, outgoing server traffic grows linearly with increased client
connections while input remains linear. With interest management,
the server will relay inputs from client c only to clients for whom c
is visible. The rate of outgoing traffic is still higher than for incom-
ing traffic, since objects are pushed to clients as players migrate
across the game world and the visible area changes. Provided that
player objects do not congregate into a single area of interest, the
scalability with respect to input events is improved.

We have also investigated the impact of concurrency on perfor-
mance for a PointWorld program with 676 actors and varying num-
bers of cells, executed for 250 frames in isolation without an FPS
cap, and using 1, 2, 4 or 8 byte code interpreter threads on a system
with two 1.6GHz quad-core Intel Xeon E5S310 processors and 2 GB
RAM. Figure 6 shows the performance of our prototype interpreter
in this multi-core environment. Performance scales as more cores
are added, but not linearly as we would ideally like. While ob-
jects execute in parallel, runtime inter-frame actions are serial, and
therefore not all computation exploits concurrency.

Scalability with the number of cores is best when objects per-
form significant work per frame. In PointWorld this corresponds to

a scenario with a high population density, and a consequently high
rate of interactions. Without interactions, the points perform rela-
tively little computation to benefit from concurrent execution. Note
that concurrent execution of NSL code is automatic, only requiring
the user to set an environment variable specifying the maximum
number of byte code interpreter threads to be spawned.

S. RELATED WORK

Dead reckoning [1, 10] or delta encoding [9] are well known
means of improving bandwidth efficiency of state transfers. Ex-
isting interest management techniques [5] could manage the set of
computations replicated on clients. The timewarp algorithm [11], a
variant of which is incorporated in NSL, for correction of inconsis-
tent client state is a known means of resolving inconsistent client
views. Trailing state synchronisation [6] is another. .

Existing concurrent and distributed languages such as Erlang [2]
and Stackless Python [15] lack the determinism of the NSL, but
give credence to languages for highly concurrent distributed pro-
grams.

6. CONCLUSIONS & FUTURE RESEARCH

We have presented NSL, a novel scripting language which aims
to ease programming of online game logic. To the best of our
knowledge, ours is the first approach which works by replicating
deterministic computations from the server to clients within a se-
mantics enforcing consistency maintenance. Promising initial ex-
perimental results show that NSL can result in efficient use of net-
work bandwidth, and can effectively exploit the power of multi-
core processors for frame execution.

Under certain conditions, an NSL program may not scale well
to a large number of clients. Potential causes of poor scaling in-
clude: passing large data volumes via messages from server-only
objects to objects replicated on clients; repeatedly culling and re-
populating a client object set (e.g. due poor interest management),
and replicating large portions of the game world on clients due to
complex dependency chains through the object population. In addi-
tion, transmission of a resumable computation has a size overhead
relative to pure data for a one-off transfer: if an object’s tenure on a
client is too brief, the object will not earn back the cost of its initial
transmission.

The frame-based semantics permit potential optimisations for
sharing of state between copies of frames maintained by a client,
via a “copy on write” approach. This would reduce the amount of
data which must be copied for each frame, reducing per-frame stor-
age and processing requirements for large, fast-paced games. Ex-
isting work addressing issues of fairness and cheating in distributed
games such as cheat proof event ordering could be integrated with
NSL [7, 8].

This research is a step towards easing development of online
games by abstracting over challenging programming areas of con-
currency and distribution for game object simulation. Addition-
ally, lowering bandwidth requirements can potentially increase the
number of concurrent clients which can be supported in a game, or
reduce the operating costs related to bandwidth usage.

The NSL implementation used for experiments in this paper is
a prototype. We are keen to work with commercial partners on
developing a highly performant, robust implementation, and using
this implementation to develop an industrial scale online game.

Acknowledgments

This research was funded by ITI Techmedia as part of their online
games development programme, which seeks to create novel intel-

lectual property for commercial license.
Special thanks to Rich Rowan and Verena Achenbach for their
work on this project.

PROJECT PART-FINANCED
BY THE EUROPEAN UNION

* X %
*

*
*
* p K

Europe and Scotland
Making it work together

7. REFERENCES

[1] S. Aggarwal, H. Banavar, A. Khandelwal, S. Mukherjee, and
S. Rangarajan. Accuracy in dead-reckoning based distributed
multi-player games. In NETGAMES’04, pages 161-165.
ACM, 2004.

[2] J. Armstrong, R. Virding, C. Wikstrom, and M. Williams.
Concurrent Programming in Erlang. Prentice Hall, 1996.

[3] M. A. Bassiouni, M.-H. Chiu, M. L. Loper, M. Garnsey, and
J. Williams. Performance and reliability analysis of relevance
filtering for scalable distributed interactive simulation. ACM
Trans. Model. Comput. Simul., 7(3):293-331, 1997.

[4] A.R.Bharambe, J. Pang, and S. Seshan. Colyseus: A
distributed architecture for online multiplayer games. In
NSDI’06. USENIX, 2006.

[5] J.-S. Boulanger, J. Kienzle, and C. Verbrugge. Comparing
interest management algorithms for massively multiplayer
games. In NETGAMES’06, page 6. ACM, 2006.

[6] E. Cronin, B. Filstrup, A. Kurc, and S. Jamin. An efficient
synchronization mechanism for mirrored game architectures.
In NETGAMES’02, pages 67-73. ACM, 2002.

[7] C. GauthierDickey, D. Zappala, V. M. Lo, and J. Marr. Low
latency and cheat-proof event ordering for peer-to-peer
games. In NOSSDAV’04, pages 134-139. ACM, 2004.

[8] K. Guo, S. Mukherjee, S. Rangarajan, and S. Paul. A fair
message exchange framework for distributed multi-player
games. In NETGAMES’03, pages 29-41. ACM, 2003.

[9] C. Gutwin, C. Fedak, M. Watson, J. Dyck, and T. Bell.
Improving network efficiency in real-time groupware with
general message compression. In CSCW’06, pages 119-128.
ACM, 2006.

[10] M. Macedonia, M. Zyda, D. Pratt, P. Barham, and S. Zeswitz.
NPSNET: A network software architecture for large-scale
virtual environment. Presence, 3(4):265-287, 1994.

[11] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg. Local-lag
and timewarp: providing consistency for replicated
continuous applications. IEEE Transactions on Multimedia,
6(1):47-57, 2004.

[12] Netstat Live. http://www.analogx.com/.

[13] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Patterns for Concurrent and Networked Objects. John Wiley
& Sons, 2000.

[14] J. Smed and H. Hakonen. Algorithms and Networking for
Computer Games. John Wiley & Sons, 2006.

[15] Stackless Python. http://www.stackless.com/.

