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Abstract. We describe an approach to automatic parallelisation of programs
written in Sieve C++ (Codeplay’s C++ extension), using the Sieve compiler and
runtime system. In Sieve C++, the programmer encloses a performance-critical
region of code in asieve block, thereby instructing the compiler to delay side-
effects until the end of the block. The Sieve system partitions code inside a sieve
block into independent fragments and speculatively distributes them among mul-
tiple cores. We present implementation details and experimental results forthe
Sieve system on the Cell BE processor.

1 Introduction

Computer systems are increasingly parallel and heterogeneous, while programs are still
largely written in sequential languages assuming a single processor connected to uni-
form memory. The obvious suggestion that the compiler should automatically distribute
a sequential program across the system usually fails in practice because of the complex-
ity of dependence analysis in the presence ofaliasing.

In Codeplay’s Sieve C++ [1–3], the programmer can place a code fragment inside a
specialsieve block, thereby instructing the compiler todelay writes to memory locations
defined outside of the block (global memory) and apply themin order on exit from the
block. For example, by writing:

float * pa, * pb; ...
sieve { // sieve block

for( int i = 0; i < n; ++i) {
pb[i] = pa[i] + 42;

}
} // writes to pb[0:n-1] happen on exit from the block

the programmer requests to delay the writes to global memorylocations referenced by
pb[0] ,. . . , pb[n-1] until the end of the block. In this example, we can also say that
the programmer requests the semantics of the Fortran 90 vector notation

pb[0:n-1] = pa[0:n-1] + 42;

in which all the reads happen before all the writes [4]. (The vector notation semantics
departs from the conventional one if vectorspa[0:n-1] andpb[0:n-1] overlap.)
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It is easy to see that the sieve semantics is equivalent to theconventional seman-
tics if code within a sieve block doesnot write to and then subsequently read from a
global memory location (otherwise, delaying the write violates the true dependence).
The compiler preserves the order of writes to global memory by recording the writes in
a FIFO queue and applying the queue on exit from the sieve block.

The sieve construct is different from Software Transactional Memory: code within
an atomic block can immediately read new values of modified free variables; code
within a sieve block “commits” its side-effects without retrying [2].

Using sieve blocks is attractive for several reasons. First, in order to parallelise code
in a sieve block, the compiler needs to conduct dependence analysis only on memory
locations defined within the block (local memory). Second, global memory can be read
on entry to the sieve block and written to on exit from the block. This maps well to a
natural programming style for heterogeneous systems with hierarchical memory. Third,
the compiler can distribute the computation across the system speculatively (for exam-
ple, if the number of iterations is not known at compile time). Results from excessive
computation can simply be discarded when committing the side-effect queue to global
memory. Fourth, the sieve semantics is deterministic, hence program behaviour is pre-
dictable and repeatable.

In this paper, we describe the Sieve C++ iterator and accumulator classes (§2), spec-
ulation in the Sieve system (§3), and present implementation details and experimental
results for the IBM/Sony/Toshiba Cell BE processor (§4).

2 Syntax

2.1 Sieve and immediate functions

A function called from inside a sieve block must be explicitly specified as eithersieve
or immediate. Sieve functions canonly be called from inside sieve blocks or other sieve
functions (sievescopes), and have their writes to global memory delayed. Immediate
functions can be called from both sieve and non-sieve scopes, and mustnot update
global memory. The compiler enforces the correct usage of these function types.

2.2 Iterator classes

In C/C++, the induction variable and increment value for a loop can be changed within
the loop body [4]. Sieve C++ defines specialiterator classes to track changes to induc-
tion variables in order to facilitate speculation.

A simple iterator class has a privatestate variable and a method for updating this
variable with the value it should have after a given number ofloop iterations.3 For
convenience and efficiency, the class can also include a method for updating the state
with the value it should have at the next iteration. All methods updating the state must
be specified with theupdate keyword. All other methods must be specified asconst,
and other fields as private and immutable.

3 The programmer is responsible for the correct behaviour of this method, as this is not checked
by the compiler.
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For example, an integer counter class can be defined as:

iteratorclass intitr {
int cnt; // state variable

public:
immediate intitr( const int cnt) { this->cnt = cnt; }
immediate operator int() const { return cnt; }
// update methods
update void operator +=( const int x) { cnt += x; }
update void operator ++() { ++cnt; }

}

and used in the vector addition example as follows:

for(intitr i(0); i < n; ++i) {
pb[i] = pa[i] + 42;

}

Iterator classes are not confined to basic induction. Consider another example:

double opt[n]; const double up = 1.1;
for ( int i = 0, double Si = 1000.0; i < n; ++i) {

opt[i] = Si;
Si * = up;

}

Here, the value of variableSi (in all iterations but the first) depends on its value at the
previous iteration. The programmer can re-write this loop in Sieve C++:

sieve {
powitr Si(1000.0, 1.1);
for (intitr i(0); i < n; ++i) {

opt[i] = Si;
Si.mulUp();

}
}

wherepowitr is defined as follows:

iteratorclass powitr {
double val; // state variable
const double up;

public:
immediate powitr( const double val, const double up)

{ this->val = val; this->up = up; }
immediate operator double() const { return val; }
// update methods
update void mulUp( const int x) { val * = pow(up, x); }
update void mulUp() { val * = up; }

}

The parameterisedmulUp method can be used to update the state variableval with the
value it should have afterx iterations.
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2.3 Accumulator classes

Reduction is the process of obtaining a single element by combining theelements of a
vector [4]. The following example computes the sum of the elements ofpa:

float sum = 0.0;
for( int i = 0; i < n; ++i) {

sum += pa[i];
}

If we assume that addition is associative, this reduction can be performed as a number
of partial sums the results of which are summed to give the final result.

This computational pattern is supported in Sieve C++ with special accumulator
classes, which have a distinguished parameterised method called themerge rule that is
specified with the> symbol (cf. using˜ for destructors in C++).

The floating point accumulator class:
accumulatorclass floatsum {

float acc;
public:

immediate floatsum() { this->acc = 0.0; }
>floatsum( float * res, const floatsum ** resv,

const unsigned int resc) {

* res = resv[0]->acc;
for( int i = 1; i < resc; ++i) { * res += resv[i]->acc; }

}
immediate void operator+= ( float x) { acc += x; }

}

can be used to re-write the summation reduction in Sieve C++:
sieve {

floatsum fsum() merges sum;
for(intitr i(0); i < n; ++i) {

fsum += pa[i];
}

} // the merge rule ’>’ is implicitly called here

Each partial sum is accumulated into a (private to each core)variableacc via the
+= operator. On exit from the block, the sieve runtime calls themerge rule>floatsum

to obtain the final result.
Accumulators can be defined for any associative operation. Practical examples in-

clude the sum, product, exclusive-or, min and max operators.

3 Speculative execution

3.1 Split points

The Sieve system uses the notion of asplit point to parallelise C++ code within a sieve
block. Split points are program points which delimit a sieveblock into fragments which
can be executed independently, and thus deployed across multiple cores. Split points
can either be inserted implicitly by the compiler or explicitly by the programmer via
thesplithere keyword. Every sieve block has two implicit split points: atthe start
and end of the block.
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Annotating the vector addition example with a split point inside the loop:
sieve { // implicit split point (1)

for(intitr i(0); i < n; ++i) {
splithere; // explicit split point (2)
pb[i] = pa[i] + 42;

}
} // implicit split point (3)

indicates to the compiler that it would be sensible to parallelise this loop.
We can view split pointsstatically or dynamically: there are three static split points

in the above example, as indicated in the comments. Dynamically there aren + 2 split
points: at the start and end of the sieve block, plus a split point for each iteration of
the loop. We can distinguish each dynamic split point in a loop nest by combining the
associated static split point with aniteration vector (IV) [4], comprised of the values of
iterators controlling the loop nest. Execution of a sieve block can then be organised as
a chain of dynamic split points. For the above example we havethe chain1〈 〉, 2〈0〉,
2〈1〉, . . ., 2〈n − 1〉, 3〈 〉 (where〈 〉 denotes an emptyIV).

A fragment is any contiguous portion of a chain of dynamic split points.A sieve
block can be efficiently executed by dividing its associatedchain of dynamic split points
into fragments and executing these fragments in parallel. Each fragment maintains a
queue of side-effects which are applied to global memory in order on exit from the
block. In addition, each fragment maintains a local accumulator variable for every ac-
cumulator declared within the sieve block. On exit from the block the values of these
accumulators are merged into appropriate global data structures via the accumulator
merge rules.

Note that a fragment typically spans multiple split points.The compiler and run-
time system decide how large each fragment should be for the given code and parallel
hardware.

3.2 Speculative execution

A fragment can be described by specifying a static split point, anIV giving the values
of iterator variables at the start of the fragment, and an integer specifying how many
split points should be traversed during the fragment. The result of executing a fragment
can be described by: a queue of side-effects to global memory, a set of values for ac-
cumulator variables, and anIV giving the values of iterator variables at the end of the
fragment.

Parallel execution of a loop in a sieve block can be achieved by guessing theIVs for
a sequence of contiguous fragments. Since the first fragmentalways begins at the start
of the sieve block, itsIV is empty and thus trivial to guess. The runtime system assigns
this fragment to one core for execution. The runtime then uses a strategy toguess the
value which theIV will have at the end of this fragment. This guessed vector is used to
generate a fragment for parallel execution by another core.If more cores are available,
then this guessing process is extended so that each core executes a fragment starting
with a guessedIV.

If the guessedIV for a fragment matches the actual finalIV of the previous fragment,
then the fragments are contiguous, and the guess is correct,or valid. Given a chain of
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correctly guessed fragments, applying the side-effects for each fragment to global mem-
ory in sequence has the same effect as executing the fragments in serial with the sieve
semantics. If theIV for a fragment is incorrectly guessed then its side-effect queue (and
the queues of its subsequent fragments) must be discarded. We refer to the execution of
fragments with guessedIVs asspeculative execution, since the execution results may
have to be discarded if guessing turns out to be wrong.

3.3 Examples

We illustrate the idea ofIV guessing and speculative execution using the vector addition
example. Suppose that at runtimen = 20, so that there are 22 dynamic split points:1〈 〉,
2〈0〉, 2〈1〉,. . ., 2〈19〉, 3〈 〉. Suppose further that the arrayspa andpb both have size 20
and that before execution of the looppa is set up so thatpa[ i]= i, for any0 ≤ i < 20.

The following table shows aperfect guessing chain for execution of the loop on a
quad-core machine:

core guessedIV guessed lengthactual length side-effects final IV
1 1〈 〉 6 6 pb[0:4]=[42..46] 2〈5〉

2 2〈5〉 5 5 pb[5:9]=[47..51] 2〈10〉

3 2〈10〉 5 5 pb[10:14]=[52..56] 2〈15〉

4 2〈15〉 5 5 pb[15:19]=[57..61] 3〈 〉

The guessing chain is perfect because, fori > 1, the guessedIV for corei matches the
final IV for corei − 1; the guessed length of each fragment matches the actual length
of the fragment execution; computation is balanced as evenly as possible between the
cores, and no unnecessary computation is performed.

On the other hand, the following table illustrates a poor guessing chain for the same
execution:

core guessedIV guessed lengthactual length side-effects final IV
1 1〈 〉 12 12 pb[0:10]=[42..52] 2〈11〉

2 2〈11〉 12 9 pb[11:19]=[53..61] 3〈 〉

3 2〈23〉 12 1 pb[23]= ⊥ 3〈 〉

4 2〈35〉 12 1 pb[35]= ⊥ 3〈 〉

In this example core 1 performs most of the computation, and acorrectIV guess
allows core 2 to do the rest of the computation in parallel. The fact that the guessed
fragment length for core 2 is too large does not affect correctness of execution: when
the loop condition becomes false, this core reaches the end of the sieve block as ex-
pected. However, the guessedIVs for cores 3 and 4 are based on the expected fragment
length for core 2. As a result, these cores attempt to read subscripts ofpa and write to
subscripts ofpb which are beyond the bounds of these arrays. The resulting side-effects
are marked grey in the above table, and the undefined values speculatively assigned to
pb[23] andpb[35] are denoted⊥.

After this speculative execution the runtime assesses the correctness of its guessing
effort. It determines that cores 1 and 2 have performed the required loop execution, and
applies their side effects to global memory (filling the array pb). The runtime also de-
tects that the guesses for cores 3 and 4 were incorrect and therefore doesnot apply their
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side-effect queues. As a result, although this poor guessing effort does not lead to opti-
mal exploitation of parallel hardware, it still results in correct, deterministic execution
of the sieve block.

3.4 Coping with invalid guesses

In the above example, attempting to read frompb[23] or pb[35] may result in an
access exception. In more complicated examples, speculative execution could result in
other exceptions (e.g. division by zero). These exceptionsare caught by the runtime
system and hidden until the runtime can determine whether the guess which caused a
given exception is valid (i.e. whether this guess simulatesserial behaviour). If a guess
turns out to be invalid (as in the above example) then, in addition to discarding the side-
effect queue, any exceptions arising from the speculated execution are also ignored. If
the guess is valid, the runtime system will re-run the fragment and this time expose the
exception so that the user can debug the program as usual.

3.5 Advanced techniques for guessing

As discussed in§2.2, theupdatemethods provide a way to set up the state of iterator
variables as if a given number of loop iterations had alreadybeen executed. Neverthe-
less, sometimes it is impossible to determine the number of iterations a given loop will
execute: the loop may exit early viabreak statements; the loop bounds may change
dynamically,etc. Thus, good guessing is a challenge.

A simple guesser can operate by running small fragments (e.g. with a length of
one) to check for updates to iterator variables in the loop body. Once the pattern of
these updates is discovered, the runtime can make larger guesses to ensure that the
computation within each fragment is sufficient to outweigh the runtime overhead of
managing the fragments.

More advanced speculation techniques could be employed by having the compiler
communicate extra sieve block meta-data to the runtime. Forexample, the compiler
could identify the split points which a given iterator spans, and mark split points across
which no iterators are live, allowing speculation before and after these points to be
independent. This would ease the task of checking guess-chain correctness, and increase
the likelihood of valid guesses.

4 Implementation on the Cell BE

Experimental results showing the effectiveness of parallelisation via the Sieve system
for multi-core x86 systems are presented in [2]. We focus here on implementation and
experimental results for the Cell Broadband Engine (BE) processor [5]. Fig. 1 illustrates
the Cell BE architecture, which consists of a “power processing element” (PPE) and
eight4 “synergistic processing elements” (SPEs). Each SPE has 256KB local memory,
and accesses main memory using DMA transfers.

4 Our implementation is for the Sony PlayStation 3 console, on which only six of the SPEs are
available to the programmer.
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Fig. 1.Architecture overview of the Cell BE processor. (Only the six SPEs whichare available to
the PlayStation 3 programmer are shown.)

4.1 The Cell runtime

The Codeplay Sieve system is designed to be easily ported to new processor architec-
tures. The Sieve compiler has an ANSI C backend which can be used to enable support
for architectures where a C compiler already exists. In particular, the IBM Cell SDK
2.0 (which we used for our experiments) includes the GCC and xlC compilers.

In addition to C source files, the Sieve compiler also outputsdetails of which source
files should be compiled for which processing elements. Thisallows auto-generation of
a makefile for direct compilation of Sieve compiler’s outputto a parallelised binary.

A runtime for the Cell BE took only two weeks of time for one developer to create;
this runtime incorporates simple loop-level speculation,support of iterator and accu-
mulator classes, an SPE software-managed cache, side-effect queue management, and
streaming DMA optimisations.

The runtime manages the SPEs as a pool. The SPEs boot into a tight runtime loop
which checks for fragments which are waiting to be executed.The side-effect queue
for each SPE is implemented using a ping-pong double-buffered streaming technique to
achieve constant memory usage, yet to allow efficient use of SPE-initiated non-blocking
DMA operations. Each SPE requires a certain amount of its 256KB local store to be
reserved for runtime use. Reserving too small an amount can lead to communication
bottlenecks, as large side-effect queues must be streamed back in smaller chunks.

The PPE produces guesses, which are consumed by the SPEs, andwrites SPE side-
effect queues to main memory on exit from a sieve block. When anaccumulator is used
within a sieve block, the PPE is also responsible for collecting accumulated values from
the SPEs and merging these values using the accumulator merge rule.

4.2 Experimental results

Fig. 2 shows the speedup (over a single SPE) for five example Sieve C++ applications: a
cyclic redundancy check of a randomly generated 8MB message(CRC); generation of a
ray-traced500×500 image representing a 3D intersection of a 4D Julia set, with reflec-
tion and phong shaded lighting (Julia); a noise reduction filter over a512× 512 image,
using a20×20 neighbourhood per pixel (Noise); generation of a1500×1500 fragment
of the Mandelbrot set (Mandelbrot); a 4M-point Fast FourierTransform (FFT).
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Fig. 2.Scalability results on Sony PlayStation 3.

The results show that all Sieve C++ benchmarks, with the exception of FFT, scale
well over multiple cores (similar to our results for multi-core x86 systems [2]), with
77%, 86.7%, 89.3% and 92.9% efficiency on 6 SPEs for the CRC, Julia, Noise, and
Mandelbrot benchmarks, respectively. Of these scalable benchmarks, the CRC is least
efficient because it uses accumulator variables which require a modest amount of serial
computation on the PPE to execute the accumulator merge rule. The Julia, Noise and
Mandelbrot do not use accumulators, and hence are more efficient. The experiments
were performed using the delayed-write combining technique discussed next.

4.3 Combining writes

Managing the side-effect queue incurs space and time overheads. A side-effect queue
element is written as a triple(address,size,data) , whereaddress is the destina-
tion memory address andsize is the data size (in bytes). In the current implementation,
the combination of the address and size is 8 bytes long and data is padded to a mini-
mum of 4 bytes. Thus, a delayed write of a single byte results in writing 12 bytes to the
queue.

An easy way to reduce this space overhead is to combine a series of small consec-
utive writes into a single, larger write. This can be achieved by comparing each write
with the last entry in the queue, merging the data and updating the data size information
if the data items turn out to be contiguous in memory.

Consider the following sieve block which writes charactersto an array:
char * p = 0xfeed;
sieve {

p[0] = ’b’; p[1] = ’e’; p[2] = ’e’; p[3] = ’f’;
}
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Without delayed-write combining, the side-effect queue grows significantly with each
delayed write:

sieve {
p[0] = ’b’; // queue: [(0xfeed,1,’b’)]
p[1] = ’e’; // queue: [(0xfeed,1,’b’), (0xfeee,1,’e’)]
p[2] = ’e’; // queue: [(0xfeed,1,’b’), (0xfeee,1,’e’),

// (0xfeef,1,’e’)]
p[3] = ’f’; // queue: [(0xfeed,1,’b’), (0xfeee,1,’e’),

// (0xfeef,1,’e’), (0xfef0,1,’f’)]
}

Applying delayed-write combining results in a smaller queue:
sieve {

p[0] = ’b’; // queue: [(0xfeed,1,’b’)]
p[1] = ’e’; // queue: [(0xfeed,2,"be")]
p[2] = ’e’; // queue: [(0xfeed,3,"bee")]
p[3] = ’f’; // queue: [(0xfeed,4,"beef")]

}

This optimisation is particularly beneficial for the Mandelbrot benchmark which writes
pixels into a contiguousunsigned chararray. Computing a600 × 600 Mandelbrot
image across 6 SPEs (working on 100 rows each) means that eachfragment has 60,000
twelve-byte queue entries. Using the optimal transfer sizeof 16KB implies 44 DMA
operations per fragment [5]. Applying delayed-write combining results in only 4 DMA
operations per fragment (three 16KB transfers followed by atransfer of 10,872 bytes).
The total number of DMA operations is thus reduced from 264 to24. The benefit is
in having less of a bus-bottleneck and less blocking whilst ping-ponging buffers (as
the queues now take longer to fill). In our experiments, usingdelayed-write combining
resulted in 21.4% faster execution time when computing a1500 × 1500 pixel image.

5 Conclusion

We have presented the Sieve compiler and runtime system for auto-parallelising Sieve
C++ programs. Our future work will focus on advanced implementation techniques of
Sieve C++ programs for performance and scalability on the Cell BE and other multi-
core architectures.
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