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Abstract. We describe an approach to automatic parallelisation of programs
written in Sieve C++ (Codeplay’s C++ extension), using the Sieve compilér a
runtime system. In Sieve C++, the programmer encloses a perfoevaitical
region of code in aieve block, thereby instructing the compiler to delay side-
effects until the end of the block. The Sieve system partitions code insidgea s
block into independent fragments and speculatively distributes themgmaoh

tiple cores. We present implementation details and experimental resulisefor
Sieve system on the Cell BE processor.

1 Introduction

Computer systems are increasingly parallel and heterayenevhile programs are still
largely written in sequential languages assuming a singlegssor connected to uni-
form memory. The obvious suggestion that the compiler shautomatically distribute
a sequential program across the system usually fails irtipedsecause of the complex-
ity of dependence analysis in the presencaliasing.

In Codeplay’s Sieve C++ [1-3], the programmer can place & é@dyment inside a
speciakieve block, thereby instructing the compilerdel ay writes to memory locations
defined outside of the block (global memory) and apply therder on exit from the
block. For example, by writing:

float *pa, =*pb; ..

si eve { /| sieve block

for(int i =0; i < n; ++) {
pbli] = pali] + 42;
}
} /I writes to pb[0:n-1] happen on exit from the block

the programmer requests to delay the writes to global menoagtions referenced by
pb[0] ,...,pb[n-1] until the end of the block. In this example, we can also say tha
the programmer requests the semantics of the Fortran 96rveatation

pb[0:n-1] = pa[0:n-1] + 42;
in which all the reads happen before all the writes [4]. (Tketor notation semantics
departs from the conventional one if vectpegO:n-1]  andpb[0:n-1]  overlap.)

* This author gratefully acknowledges the financial support providea B){K-BP Cambridge
Kapitza Scholarship and by an Overseas Research Students Award.



It is easy to see that the sieve semantics is equivalent todheentional seman-
tics if code within a sieve block doe®t write to and then subsequently read from a
global memory location (otherwise, delaying the write atels the true dependence).
The compiler preserves the order of writes to global memgrielsording the writes in
a FIFO queue and applying the queue on exit from the sievébloc

The sieve construct is different from Software Transa&ldviemory: code within
an atomic block can immediately read new values of modifieg frariables; code
within a sieve block “commits” its side-effects withoutmghg [2].

Using sieve blocks is attractive for several reasons. firgirder to parallelise code
in a sieve block, the compiler needs to conduct dependeralgsis only on memory
locations defined within the block (local memory). Secoridbgl memory can be read
on entry to the sieve block and written to on exit from the kloEhis maps well to a
natural programming style for heterogeneous systems wétiarchical memory. Third,
the compiler can distribute the computation across theegysipeculatively (for exam-
ple, if the number of iterations is not known at compile timRgsults from excessive
computation can simply be discarded when committing the-sitect queue to global
memory. Fourth, the sieve semantics is deterministic, @@mogram behaviour is pre-
dictable and repeatable.

In this paper, we describe the Sieve C++ iterator and accatmutlasses;@), spec-
ulation in the Sieve systen§g), and present implementation details and experimental
results for the IBM/Sony/Toshiba Cell BE processg#)(

2 Syntax

2.1 Sieve and immediate functions

A function called from inside a sieve block must be explici&pecified as eithesieve
orimmediate. Sieve functions caanly be called from inside sieve blocks or other sieve
functions (sievescopes), and have their writes to global memory delayed. Immediate
functions can be called from both sieve and non-sieve s¢capebs mustnot update
global memory. The compiler enforces the correct usageeasfdtiunction types.

2.2 lterator classes

In C/C++, the induction variable and increment value for@d@an be changed within
the loop body [4]. Sieve C++ defines spediatator classes to track changes to induc-
tion variables in order to facilitate speculation.

A simple iterator class has a privaste variable and a method for updating this
variable with the value it should have after a given numbetoop iterations® For
convenience and efficiency, the class can also include aouédtn updating the state
with the value it should have at the next iteration. All methapdating the state must
be specified with thepdat e keyword. All other methods must be specifieccasst,
and other fields as private and immutable.

3 The programmer is responsible for the correct behaviour of this met®this is not checked
by the compiler.



For example, an integer counter class can be defined as:

i teratorclass intitr {
i nt cnt; // state variable

publi c:
i mredi at e intitr( const int cnt) { this->cnt = cnt; }
i mredi ate operator int) const { return cnt; }
/I update methods
updat e void operator +=(const int x) { cnt += x; }
updat e voi d operator ++() { ++cnt; }

}

and used in the vector addition example as follows:

for(intitr i(0); i < n; ++) {
pbli] = pali] + 42;

Iterator classes are not confined to basic induction. Censidother example:
doubl e opt[n]; const doubleup = 1.1;

for (int i =0, double Si = 1000.0; i < n; ++) {
opt[i] = Si;
Si *= up;

}

Here, the value of variablgi (in all iterations but the first) depends on its value at the
previous iteration. The programmer can re-write this loogieve C++:

sieve {
powitr Si(1000.0, 1.1);
for (intitr i(0); i < n; ++i) {
opt[i] = Si;
Si.mulUp();
}
}

wherepowitr  is defined as follows:

i teratorclass powitr {
doubl e val; // state variable
const doubl e up;
publi c:
i mmedi at e powitr( const doubl e val, const doubl e up)
{ this->val = val thi s->up = up; }
i mredi at e operator doubl ¢ const { return val; }
/I update methods
updat e void mulUp(const int x) { val *= pow(up, X); }
updat e voi d mulUp() { val *= up; }
}

The parameterisedulUp method can be used to update the state varialewith the
value it should have afteriterations.



2.3 Accumulator classes

Reduction is the process of obtaining a single element by combiningtements of a
vector [4]. The following example computes the sum of therelets ofpa:
fl oat sum = 0.0;
for(int i =0; i < n; ++) {
sum += pali];

If we assume that addition is associative, this reductionbmperformed as a number
of partial sums the results of which are summed to give thé fesalt.

This computational pattern is supported in Sieve C++ witbcgd accumulator
classes, which have a distinguished parameterised metiied ¢hemerge rule that is
specified with the- symbol €f. using™ for destructors in C++).

The floating point accumulator class:

accunul at or cl ass floatsum {

fl oat acc;
publi c:
i mredi at e floatsum() { t hi s->acc = 0.0; }
>floatsum( fl oat * res, const floatsum *  resy,
const unsigned int resc) {

xres = resv[0]->acc;

for(int i = 1; i < resc; ++) { *res += resv[i]->acc; }
}
i medi ate void operator += (float x) { acc += Xx; }

}
can be used to re-write the summation reduction in Sieve C++:

sieve {

floatsum fsum() ner ges sum;
for(intitr i(0); i < n; ++i) {

fsum += pali];
}

} /I the merge rule '>' is implicitly called here

Each partial sum is accumulated into a (private to each a@e@bleacc via the
+= operator. On exit from the block, the sieve runtime callsrtierge rule>floatsum
to obtain the final result.

Accumulators can be defined for any associative operati@attieal examples in-
clude the sum, product, exclusive-or, min and max operators

3 Speculative execution

3.1 Split points

The Sieve system uses the notion @pht point to parallelise C++ code within a sieve
block. Split points are program points which delimit a sibleck into fragments which
can be executed independently, and thus deployed acrosiplegbres. Split points
can either be inserted implicitly by the compiler or exgliciby the programmer via
thespl it her e keyword. Every sieve block has two implicit split points:the start
and end of the block.



Annotating the vector addition example with a split poirgide the loop:

si eve { /[ implicit split point (1)

for(intitr i(0); i < n; ++i) {
splithere /I explicit split point (2)
pbli] = pali] + 42;

}

} /I implicit split point (3)
indicates to the compiler that it would be sensible to paliak this loop.

We can view split pointstatically or dynamically: there are three static split points
in the above example, as indicated in the comments. Dyndlyntbare aren + 2 split
points: at the start and end of the sieve block, plus a splittdor each iteration of
the loop. We can distinguish each dynamic split point in gloest by combining the
associated static split point with @eration vector (1V) [4], comprised of the values of
iterators controlling the loop nest. Execution of a sievacklcan then be organised as
a chain of dynamic split points. For the above example we liaechainl( ), 2(0),
2(1),...,2(n — 1), 3() (where( ) denotes an empty/).

A fragment is any contiguous portion of a chain of dynamic split poifssieve
block can be efficiently executed by dividing its associategin of dynamic split points
into fragments and executing these fragments in parallthEBragment maintains a
queue of side-effects which are applied to global memoryrdeoon exit from the
block. In addition, each fragment maintains a local accataoulvariable for every ac-
cumulator declared within the sieve block. On exit from theck the values of these
accumulators are merged into appropriate global datatstes via the accumulator
merge rules.

Note that a fragment typically spans multiple split pointee compiler and run-
time system decide how large each fragment should be foritles gode and parallel
hardware.

3.2 Speculative execution

A fragment can be described by specifying a static splitfp@nlV giving the values
of iterator variables at the start of the fragment, and aeget specifying how many
split points should be traversed during the fragment. Thalt®f executing a fragment
can be described by: a queue of side-effects to global meramgt of values for ac-
cumulator variables, and di giving the values of iterator variables at the end of the
fragment.

Parallel execution of a loop in a sieve block can be achieyeglibssing thelVs for
a sequence of contiguous fragments. Since the first fragateal/s begins at the start
of the sieve block, it$V is empty and thus trivial to guess. The runtime system assign
this fragment to one core for execution. The runtime thers asstrategy t@uess the
value which thdV will have at the end of this fragment. This guessed vectosé&luo
generate a fragment for parallel execution by another dbreore cores are available,
then this guessing process is extended so that each coretesecfragment starting
with a guessetv.

If the guessetl for a fragment matches the actual fihglof the previous fragment,
then the fragments are contiguous, and the guess is cooraedlid. Given a chain of



correctly guessed fragments, applying the side-effectsdoh fragment to global mem-
ory in sequence has the same effect as executing the fragmeserial with the sieve
semantics. If theéV for a fragment is incorrectly guessed then its side-effeetug (and
the queues of its subsequent fragments) must be discardekféy to the execution of
fragments with guessed/s asspeculative execution, since the execution results may
have to be discarded if guessing turns out to be wrong.

3.3 Examples

We illustrate the idea diV guessing and speculative execution using the vector additi
example. Suppose that at runtime 20, so that there are 22 dynamic split poirits),
2(0), 2(1),. .., 2(19), 3( ). Suppose further that the arrays andpb both have size 20
and that before execution of the lopa is set up so thata[ i]= ¢, for any0 < ¢ < 20.

The following table shows perfect guessing chain for execution of the loop on a
quad-core machine:

corelguessed V|guessed lengthactual length side-effects final IV
1 1() 6 6 pb[0:4]=[42..46] 2(5)
2 2(5) 5 5 pb[5:9]=[47..51] 2(10)
3| 2(10) 5 5 pb[10:14]=[52..56] 2(15)
4 2(15) 5 5 pb[15:19]=[57..61] 3()

The guessing chain is perfect because;for1, the guessetlV for corei matches the
final 1V for corei — 1; the guessed length of each fragment matches the actuahleng
of the fragment execution; computation is balanced as gw&npossible between the
cores, and no unnecessary computation is performed.

On the other hand, the following table illustrates a poorsgirgy chain for the same
execution:

corelguessed V|guessed lengthactual length side-effects final IV
1 1) 12 12 pb[0:10]=[42..52] 2(11)
2 | 2(11) 12 9 pb[11:19]=[53..61] 3()
3 2(23) 12 1 pb[23]= L 3()
4| 2(35) 12 1 pb[35]= L 3()

In this example core 1 performs most of the computation, andreectlV guess
allows core 2 to do the rest of the computation in parallele Tact that the guessed
fragment length for core 2 is too large does not affect coness of execution: when
the loop condition becomes false, this core reaches the etitesieve block as ex-
pected. However, the guessi&ts for cores 3 and 4 are based on the expected fragment
length for core 2. As a result, these cores attempt to reasicsiplis ofpa and write to
subscripts opb which are beyond the bounds of these arrays. The resuliilegeffects
are marked grey in the above table, and the undefined valeesilspively assigned to
pb[23] andpb[35] are denoted..

After this speculative execution the runtime assessesdireatness of its guessing
effort. It determines that cores 1 and 2 have performed theired loop execution, and
applies their side effects to global memory (filling the srpd). The runtime also de-
tects that the guesses for cores 3 and 4 were incorrect arefdhedoesiot apply their



side-effect queues. As a result, although this poor gugssiort does not lead to opti-
mal exploitation of parallel hardware, it still results inreect, deterministic execution
of the sieve block.

3.4 Coping with invalid guesses

In the above example, attempting to read frphf23] or pb[35] may result in an
access exception. In more complicated examples, spa@iatecution could result in
other exceptions (e.g. division by zero). These exceptayescaught by the runtime
system and hidden until the runtime can determine whetlegtless which caused a
given exception is valid (i.e. whether this guess simulatgal behaviour). If a guess
turns out to be invalid (as in the above example) then, intamtio discarding the side-
effect queue, any exceptions arising from the speculatedution are also ignored. If
the guess is valid, the runtime system will re-run the fragh@end this time expose the
exception so that the user can debug the program as usual.

3.5 Advanced techniques for guessing

As discussed i§2.2, theupdat e methods provide a way to set up the state of iterator
variables as if a given number of loop iterations had alrdaelyn executed. Neverthe-
less, sometimes it is impossible to determine the numbeerdtions a given loop will
execute: the loop may exit early via eak statements; the loop bounds may change
dynamically,etc. Thus, good guessing is a challenge.

A simple guesser can operate by running small fragments \@tg a length of
one) to check for updates to iterator variables in the loogyb®nce the pattern of
these updates is discovered, the runtime can make largesgsi¢o ensure that the
computation within each fragment is sufficient to outweigk tuntime overhead of
managing the fragments.

More advanced speculation techniques could be employe@wndithe compiler
communicate extra sieve block meta-data to the runtime.ekample, the compiler
could identify the split points which a given iterator spagisd mark split points across
which no iterators are live, allowing speculation beforel after these points to be
independent. This would ease the task of checking guess-chigectness, and increase
the likelihood of valid guesses.

4 Implementation on the Cell BE

Experimental results showing the effectiveness of pdrsdigon via the Sieve system
for multi-core x86 systems are presented in [2]. We focug loerimplementation and
experimental results for the Cell Broadband Engine (BEtessor [5]. Fig. 1 illustrates
the Cell BE architecture, which consists of a “power protgselement” (PPE) and
eight* “synergistic processing elements” (SPEs). Each SPE hasR&écal memory,
and accesses main memory using DMA transfers.

4 Our implementation is for the Sony PlayStation 3 console, on which only sixecSBEs are
available to the programmer.
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Fig. 1. Architecture overview of the Cell BE processor. (Only the six SPEs waieravailable to
the PlayStation 3 programmer are shown.)

4.1 The Cell runtime

The Codeplay Sieve system is designed to be easily porteeMigqorocessor architec-
tures. The Sieve compiler has an ANSI C backend which candxetesenable support
for architectures where a C compiler already exists. Inipaldr, the IBM Cell SDK
2.0 (which we used for our experiments) includes the GCC #@datgmpilers.

In addition to C source files, the Sieve compiler also outpetsils of which source
files should be compiled for which processing elements. &lhdsvs auto-generation of
a makefile for direct compilation of Sieve compiler’s outpuia parallelised binary.

A runtime for the Cell BE took only two weeks of time for one é&per to create;
this runtime incorporates simple loop-level speculatisupport of iterator and accu-
mulator classes, an SPE software-managed cache, sid¢-gfieue management, and
streaming DMA optimisations.

The runtime manages the SPEs as a pool. The SPEs boot intat autigime loop
which checks for fragments which are waiting to be execuldr side-effect queue
for each SPE is implemented using a ping-pong double-tadfstreaming technique to
achieve constant memory usage, yet to allow efficient us@&fitiated non-blocking
DMA operations. Each SPE requires a certain amount of itskiB6ocal store to be
reserved for runtime use. Reserving too small an amount eath o communication
bottlenecks, as large side-effect queues must be streaac&drbsmaller chunks.

The PPE produces guesses, which are consumed by the SPEgjtasSPE side-
effect queues to main memory on exit from a sieve block. Whescanmulator is used
within a sieve block, the PPE is also responsible for caltechiccumulated values from
the SPEs and merging these values using the accumulatoe meeg

4.2 Experimental results

Fig. 2 shows the speedup (over a single SPE) for five examplee &i++ applications: a
cyclic redundancy check of a randomly generated 8MB meq$z8€); generation of a
ray-traced00 x 500 image representing a 3D intersection of a 4D Julia set, wifllec-
tion and phong shaded lighting (Julia); a noise reductiderfdver a512 x 512 image,
using a20 x 20 neighbourhood per pixel (Noise); generation dba0 x 1500 fragment
of the Mandelbrot set (Mandelbrot); a 4M-point Fast Foufinsform (FFT).
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Fig. 2. Scalability results on Sony PlayStation 3.

The results show that all Sieve C++ benchmarks, with themiae of FFT, scale
well over multiple cores (similar to our results for muline x86 systems [2]), with
77%, 86.7%, 89.3% and 92.9% efficiency on 6 SPEs for the CRI&, Nbise, and
Mandelbrot benchmarks, respectively. Of these scalabietiaarks, the CRC is least
efficient because it uses accumulator variables which regumodest amount of serial
computation on the PPE to execute the accumulator mergeTia&eJulia, Noise and
Mandelbrot do not use accumulators, and hence are moreeefficthe experiments
were performed using the delayed-write combining techaidjgcussed next.

4.3 Combining writes

Managing the side-effect queue incurs space and time cagshé\ side-effect queue
element is written as a tripl@ddress,size,data) , Whereaddress is the destina-
tion memory address anize is the data size (in bytes). In the currentimplementation,
the combination of the address and size is 8 bytes long ardisigadded to a mini-
mum of 4 bytes. Thus, a delayed write of a single byte resultgriting 12 bytes to the
gueue.

An easy way to reduce this space overhead is to combine & sérénall consec-
utive writes into a single, larger write. This can be achieby comparing each write
with the last entry in the queue, merging the data and upglétie data size information
if the data items turn out to be contiguous in memory.

Consider the following sieve block which writes characteran array:

char *p = Oxfeed;

si eve {

} p[o] = 'b%; p[1] = ‘e’ p[2] = ‘e’ p[3] = 'f;



Without delayed-write combining, the side-effect queueng significantly with each
delayed write:

sieve {
p[0] = 'b’; /I queue: [(Oxfeed,1,'b)]
p[l] = ’'e’; /I queue: [(Oxfeed,1,'b’), (Oxfeee,l,’e’)]
p[2] = ’e’; /I queue: [(Oxfeed,1,'b’), (Oxfeee,l,’e’),
1l (Oxfeef,1,’e")]
p[3] = 'f; /Il queue: [(Oxfeed,1,’b’), (Oxfeee,l1,’e’),
1 (Oxfeef,1,’e”), (0Oxfef0,1,'f)]
}
Applying delayed-write combining results in a smaller geieu
sieve {
p[0] = 'b’; /I queue: [(Oxfeed,1,'b)]
p[l] = 'e’; /I queue: [(Oxfeed,2,"be")]
p[2] = ’e’; /I queue: [(Oxfeed,3,"bee")]
p[3] = 'f; /I queue: [(Oxfeed,4,"beef")]
}

This optimisation is particularly beneficial for the Mankedt benchmark which writes
pixels into a contiguousnsi gned char array. Computing &00 x 600 Mandelbrot
image across 6 SPEs (working on 100 rows each) means thatragofent has 60,000
twelve-byte queue entries. Using the optimal transfer siz€6KB implies 44 DMA
operations per fragment [5]. Applying delayed-write combg results in only 4 DMA
operations per fragment (three 16KB transfers followed lnaasfer of 10,872 bytes).
The total number of DMA operations is thus reduced from 26240 The benefit is
in having less of a bus-bottleneck and less blocking whilsgponging buffers (as
the queues now take longer to fill). In our experiments, usielgyed-write combining
resulted in 21.4% faster execution time when computing x 1500 pixel image.

5 Conclusion

We have presented the Sieve compiler and runtime systenuforparallelising Sieve
C++ programs. Our future work will focus on advanced impletagion techniques of
Sieve C++ programs for performance and scalability on thié B and other multi-

core architectures.
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