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Abstract—We present a framework to compute the visual
hull of a polyhedral scene, in which the vertices of the polyhe-
dra are given with some imprecision. Two kinds of visual event
surfaces, namely VE and EEE surfaces are modelled under
the geometric framework to derive their counterpart object,
namely partial VE and partial EEE surfaces, which contain
the exact information of all possible visual event surfaces given
the imprecision in the input. Correspondingly, a new definition
of visual number is proposed to label the cells of Euclidean
space partitioned by partial VE and partial EEE surfaces. The
overall algorithm maintains the same computational complexity
as the classical method and generates a partial visual hull which
converges to the classical visual hull as the input converges to
an exact value.

Keywords-visual hull; shape from silhouettes; imprecise in-
put; solid domain; quadratic surface

I. INTRODUCTION

The visual hull is the shape approximation of a geometric
object from its silhouettes and captures all the geometric
information that we can gain from the silhouettes of the
target object(s). The visual hull concept was introduced by
Laurentini [1] and is used in many image-based reconstruc-
tion methods [2], [3], [4], [5]. Since the visual hull contains
the target object and it is a better approximation than the
convex hull, it has great advantage in obstacle avoidance,
robotic navigation [6], 3D model acquisition and human
motion tracking [7]. Since it is straightforward to extract
silhouettes of an object from its pictures, the visual hull
reconstruction is widely used in applications.

We address here the issue of robustness of the visual hull
in 3D, which is far more involved than the 2D case as treated
in [8]. Imprecision in the silhouette capturing process may
vary the shape and size of the visual hull. Understanding
the geometric changes of the visual hull with respect to
a polyhedral scene given the imprecision in its vertices is
the motivation of our research. We formulate the visual
hull and its generating method under the partial geometric
scheme, which robustly captures the visual geometric infor-
mation with given imprecision in the input but maintains the
same computational complexity as the classical method. The
overview of our method is given in Fig. 1.

The geometric (solid) domain is a framework designed to
capture imprecision in the input of geometric methods. The

basic building blocks including partial points, lines, planes,
polygons and polyhedra are properly defined [9], [8]. Also,
several geometric methods are re-designed or extended to
the geometric domain, including convex hull [10], Delau-
nay Triangulation [11], [12] and Voronoi Diagram [11]. In
visual hull reconstruction or any multi-view image-based
reconstruction, data are captured in digital images. When the
imprecision of the images (e.g. imprecision from capturing
a point with a square pixel) is projected back to 3D, a half-
infinite-polyhedral visual cone is obtained. The intersection
of visual cones from different viewing points is a polyhedron
in the space which is the best approximation to a tiny piece
of the 3D object. In the geometric domain, a point is rep-
resented as a sequence of nested convex polyhedra approxi-
mating the classical point at different precision levels, which
makes it a suitable framework for analysing imprecision
in the visual hull and other image-based computer vision
methods.

II. PARTIAL GEOMETRIC OBJECTS

We review the concept of partial geometric objects includ-
ing partial points, partial line segments, partial lines, partial
faces, partial surfaces and partial polyhedron, which are the
building blocks of the partial visual hull concept.

A partial geometric object is defined by 3 disjoint set-
s whose union is R3: interior, exterior and partial thick
boundary. The interior (respectively, exterior) is an open
set that contains all the points definitely known to be
inside (respectively, outside) the object. The partial thick
boundary is a closed set that contains the non-determinate
points. Partial objects, ordered with subset inclusion, form
a partial order and provide a domain in which each object
approximates the target object, which is a maximal element,
at a certain level of precision. These notions are formalized
in [9] and used in representing the geometric computational
results from input with imprecision. When we talk about a
partial geometric object in this paper, we usually refer to
its partial thick boundary. It is quite similar to the classical
cases: when we consider a polyhedron, we usually refer to
its boundary rather than its interior or exterior.

Basic partial geometric objects like partial points as
in Fig. 2 (b), partial line segments as in Fig. 2 (c), partial
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Figure 1. An overview of the partial visual hull generation. (a) A classical
polyhedral scene. (b) With classical visual hull method, we can generate
the classical visual hull. The face Q is a quadratic surface patch. (c) With
imprecise input, we generate the partial points corresponding with all the
vertices. (d) With the method presented in this paper, we give a partial
visual hull including: the exterior (points definitely outside the visual hull)
and the interior (points definitely inside the visual hull). (e) The boundary
of the exterior. (f) The boundary of the interior. Note that each boundary
face of the exterior or interior has a corresponding face on the classical
visual hull.

lines as in Fig. 3 (e), partial planar faces as in Fig. 2 (d)
and partial planar surfaces as in Fig. 3 (f) have partial
thick boundaries but empty interiors. The partial point is the
approximation of a point from several given directions. To
keep the presentation simple in this paper, we use partial
points approximated by the x, y and z coordinates, i.e.
hyper-rectangles with sides parallel to the axes. A hyper-
rectangular partial point has 8 vertices of different corner
types (e.g. top-left corner of the front face). The corner
types used in this paper are enumerated in Fig. 2 (b’).
All our results can be extended to more general partial
points in the shape of convex polyhedra as defined in [9].
Partial line segments and partial planar faces are convex

hulls of their partial vertices (points). Partial lines and partial
planer surfaces are the union of the possible lines and
planar surfaces restricted by their partial vertices. A partial
polyhedron as in Fig. 2 (e) is defined as the union of its
partial planar faces. Its interior as in Fig. 2 (f) and exterior
as in Fig. 2 (g) are derived thereafter. A more detailed
description can be found in [8].

For a partial object P , we denote by SELpP q the set
of object selections with respect to P . A selection is a
possible classical object given the partial object. In the case
of a partial polyhedron from partial points, a polyhedron
selection is a classical polyhedron constructed by selecting
exactly one point in each partial point and connecting them
according to the given topology.

In this paper, we assume that the target polyhedral scene
(i.e., a finite set of polyhedra) is given as a set of vertices
and their topological connection, i.e. the scene is formed by
connecting a given set of vertices in a given topological
order. Due to the limitation of measuring devices, the
vertices are assumed to be imprecisely given as partial points
(i.e., hyper-rectangles). Therefore, we model the scene as a
set of partial polyhedra that we call a partial scene (PSN ).
Our aim is to find a partial geometric object called a partial
visual hull (PV H) with its interior (PV HI ), respectively
exterior (PSNE), containing all the points that are definitely
inside, respectively outside, the visual hull of the scene.

III. COMPLEXITY OF THE CLASSICAL 3D VISUAL HULL

In this section, we briefly review the concepts in the visual
hull concept: the visual number and visual active surfaces.
We also describe the classical 3D visual hull construction
method, which is the basis of the method in constructing
the partial visual hull from input with imprecision.

A. Visual Number and Visual Active Surfaces

The 2D visual number is defined as the number of ways
visual lines can penetrate through the objects. However, the
3D case is defined in a different way. The visual number of
a point with respect to a set of polyhedra is defined as the
number of edges (or faces) of the visual cones [1], which will
give the 3D visual hull with a subtly different partitioning
method compared to the 2D method in [1].

Imagine a local sphere (circle) centred at the view point.
The visual lines are half lines emitted from the view point
and each of them has one intersection point with the local
sphere (circle). If the visual line is blocked by the polyhedral
scene, we paint the intersection point black. The non-
topological definition of visual number is the number of
disconnected black regions. However, the topological visual
number is defined as the number of edges of the black
regions.

In the classical 3D visual hull configuration, the visual
active surfaces are defined as planar or quadratic surfaces
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Figure 2. An overview of the basic partial geometric objects: (a) A classical geometric object (tetrahedron) with a normal-colour reference sphere. (b)
Four partial points corresponding to the vertices in the classical tetrahedron. Two of them are presented in wireframes; (b’) The partial point E is enlarged
with 8 corner types. (c) Two partial edges respectively formed by partial points tA,Bu and tE,Du. The partial edge formed by tE,Du is sketched in
wireframe to show the structure at the back. (d) A partial face formed by partial points tA,B,Du. The internal structure is revealed with a transparent
face. (e) A partial polyhedron (tetrahedron). The partial face tB,E,Du is lifted so that the interior can be observed. (f) The boundaries of the exterior of
the partial tetrahedron. (g) The boundaries of the interior of the partial tetrahedron. The skeletons of partial points are used to indicate the relative position
of the interior.

consisting of patches serve as the boundaries between re-
gions of different visual numbers. There are two kinds of
visual active surfaces. A vertex-edge (VE) surface is the
plane formed by a vertex and an edge of the polyhedral
scene. A triple edge (EEE) surface is the quadratic surface
formed by 3 straight lines, each of which coincides with an
edge of the scene.

B. Construction of the Classical 3D Visual Hull

In [1], Laurentini presents a method that generates the
exact visual hull of a polyhedral scene mainly in two steps:
partitioning and labelling.

In the partitioning phase, a set of visual active surfaces
are constructed, which are potential boundaries of regions
with different visual numbers. They interweave with each
other and the R3 space is divided into a number of cells.
Due to the property of visual active surfaces, the space is
over-partitioned, i.e. a cell may have the same visual number
with its neighbouring cells. However all points inside a cell
are of the same visual number. The visual active surfaces can
be planes, hyperboloids of one sheet and, in some unlikely
cases, hyperbolic paraboloids.

By definition, the visual hull is the set of points with
visual number 0. In the labelling phase, each cell is given a
visual number. Since the visual number is constant in each
cell, we randomly pick a point inside a given cell and find its
visual number which will be the visual number of the whole
cell. The detailed algorithm can be found in the original
paper [1].

Finally, all cells with visual number 0 are merged together
to give the visual hull.

IV. PARTIAL VISUAL EVENT SURFACES

A classical 3D surface S (e.g. a plane) partitions the
R3 space into 2 disjoint open regions. If the surface has
a canonical form, we can further distinguish the 2 regions
as a positive region pS and a negative region qS. For example,
assume the plane pln is given by:

plnpa, b, c, dq � tpx, y, zq|ax� by � cz � d � 0u.

Then, the induced positive and negative regions are:

xplnpa, b, c, dq � tpx, y, zq|ax� by � cz � d ¡ 0u,

|plnpa, b, c, dq � tpx, y, zq|ax� by � cz � d   0u.

Note that the positions of xplnpa, b, c, dq and |plnpa, b, c, dq
in R3, given by the normal (in two different directions)
of plnpa, b, c, dq and the distance from the origin to pln,
depend continuously on pa, b, c, dq. As explained in [13],
there is also a continuously parameter-dependant scheme
in generating a quadratic surface with an ordered triple of
skewed lines (see [14] for the scheme). The positive regionpQ and the negative region qQ with respect to a quadratic
surface Q can be defined in the same way.

A partial surface PS is a partial object partitioning the R3

space into 3 disjoint parts: a positive regionyPS, a negative
region}PS and a partial thick boundary BPPS. The 3 parts
are separated by 2 classical surfaces: the positive surface s�
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Figure 3. Generating a partial line and a partial planar surface. (a) The
skeleton of a partial line segment and a normal-colour reference sphere.
(b) A partial face. (c) The skeleton of the rest of the partial line. (d) The
skeleton of the rest of the partial planar surface. (e) By combining (a) and
(c), we generate a partial line. (f) By combining (b) and (d), we generate
a partial planar surface. The red and blue surfaces are respectively positive
(s�) and negative (s�) surfaces. The silver and black arrows respectively
represent the positive (yPS) and negative (}PS) regions.

and the negative surface s�. We have i)yPS � xs�; ii)}PS �|s�; iii) BPPS � |s� X xs�. The following relationship is
implied when using positive and negative surfaces 1:

s� � p|s�qc and s� � pxs�qc
The partial surface PS is uniquely defined if we derive any
of the following 3 sets of geometrical shapes, (i) BPPS, (ii)yPS and}PS, and (iii) s� and s�.

For positive and negative regions, we obtain:
Proposition 4.1: For any classical surface T ,

pp pT qcq� � qT and pp qT qcq� � pT (1)

For a set of classical surfaces, ts0, s1, ..., stu,

pp
t£

k�0

qskqcq� �
t¤

k�0

psk; pp
t¤

k�0

qskqcq� �
t£

k�0

psk;

pp
t£

k�0

pskqcq� �
t¤

k�0

qsk; pp
t¤

k�0

pskqcq� �
t£

k�0

qsk.
For convenience, in the rest of the paper, the index i takes
values i � 0, 1, 2, and addition of indices in subscripts
is mod 3, i.e. li�k means li�kpmod 3q. Another convenient
symbol we often use is rpes which denotes the classical
straight line generated by extending an edge (line segment
or half line) pe.

1Ac and A� denote the complement and interior of a set A.

A. Partial VE Visual Event

A partial VE visual event contains the information of
all classical visual events it represents. Formally, we give
a definition as follows.

We denote by plnpp, eq the plane containing the point
p and the line segment (edge) e with p R e. Similarly
plnpp0, p1, p2q denote the plane that contains the three non-
collinear points p0, p1 and p2.

Definition 4.2: Suppose PP is a partial point and PE a
partial edge with PP X PE � H. The partial VE visual
event surface, partial VE for short, PV EpPP, PEq is:

PV EpPP, PEq :�
¤

plnppp, peq

where pp P SELpPP q and pe P SELpPEq.
Essentially, a partial VE visual event surface is a par-

tial surface constructed from a partial point and a partial
edge. Assume we have a partial point PP with vertices
tp0, p1, ..., p7u and a partial edge PE constructed by 2
partial vertices (points) PV0 with vertices tpv00 , pv

1
0 , ..., pv

7
0u

and PV1 with vertices tpv01 , pv
1
1 , ..., pv

7
1u. Consider the

16 extremal planes sj � plnppj , pvj0, pv
j
1q and tj �

plnppj , pv7�j
0 , pv7�j

1 q where j � t0, 1, ..., 7u.
Proposition 4.3: In the non-degenerate case, there are

four extremal planes, s0, s1, t0 and t1 that bound the partial
VE surface generated by PP and PE and satisfy:

BPPP � ps0 & BPPE � ps0 BPPP � qs1 & BPPE � qs1
BPPP � pt0 & BPPE � qt0 BPPP � qt1 & BPPE � pt1.

These planes are the characteristic planes of the partial VE
visual event surface, which can be constructed as:

{PV EpPP, PEq � ps1 X pt0 X pt1
�PV EpPP, PEq � qs0 X qt0 X qt1

B. Partial Quadratic Surface

Recall the classical situation where an EEE visual event
surface is a quadratic surface Qpl0, l1, l2q generated from 3
skewed lines l0, l1, l2 as the union of all straight lines, each
of which intersects the three skewed lines (see [15], [14]). A
partial quadratic surface is a partial object generated from
3 partial lines. Here we assume those 3 partial lines are
pairwise disjoint. Note that Qpl0, l1, l2q � H if exactly two
of li’s are coplanar.

Definition 4.4: Given 3 partial lines PL0, PL1 and PL2,
the partial quadratic surface PQpPL0, PL1, PL2q is defined
by its positive and negative regions as:

yPQpPL0, PL1, PL2q �
£ pQppl0, pl1, pl2q;

}PQpPL0, PL1, PL2q �
£ qQppl0, pl1, pl2q;

where pli P SELpPLiq, i � 0, 1, 2. (See the remark
before Prop. 4.1).
In fact, the quadratic surface Qppl0, pl1, pl2q is a se-
lection of PQpPL0, PL1, PL2q, i.e., Qppl0, pl1, pl2q P
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Figure 4. The four characteristic planes and the partial wedge (W ) generated from a partial edge (PE) and an infinite tube (T ). (a) A normal-colour
reference sphere and an s0 type plane: PE and T are both in xs0, i.e. PE and T are both above s0. (b) An s1 type plane: PE and T are both in |s1,
i.e. PE and T are both beneath s1. (c) A t0 type plane: PE is in pt0 and T is in qt0, i.e. PE is above t0 and T is beneath t0. (d) A t1 type plane: PE
is in qt1 and T is in pt1, i.e. PE is beneath t1 and T is above t1. (e) The partial wedge generated from these 4 types of planes. The red surface is the
positive surface (w�) while the blue one is the negative surface (w�). The silver and black arrows respectively represent the positive (xW ) and negative
(|W ) regions.

SELpPQpPL0, PL1, PL2qq. However, there are infinitely
many classical quadratic surface selections. The following
theorem, whose proof is given in [14], reduces the problem
to a finite number.

Theorem 4.5: Given 3 partial lines PL0, PL1 and PL2:

yPQpPL0, PL1, PL2q �
£ pQprpe0s, rpe1s, rpe2sq; (2)

}PQpPL0, PL1, PL2q �
£ qQprpe0s, rpe1s, rpe2sq; (3)

where the two intersections above are taken over all edges
pei of PLi, i � 0, 1, 2.

V. CONSERVATIVE APPROXIMATION

The partial quadratic surface generation method presented
in the previous section is an exact derivation of the visual
event surfaces with the given imprecision, which means
that the generated partial quadratic surface represents all
the possible classical visual event surfaces given by the 3
skewed partial lines. However, it requires the consideration
of all possible quadratic surfaces generated by the edges of
3 partial lines, one from each. A partial line generated by
2 partial points in the shape of hyper-rectangles has at least
12 non-collinear edges. The number of quadric surfaces we
would need to consider is therefore 123 � 1728. The number
of intersections between these surfaces is C2

1728 � 1492128.
This is quite expensive since we need to apply the same
algorithm to each of the EEE event.

To balance the computational burden and exactness of our
algorithm, we propose a conservative approximation of an
EEE event, which only considers 6 quadratic surfaces whose
spatial relationship is known.

Given three skewed edges, a classical EEE visual event
surface (EEE surface for short) is defined as the quadratic
surface swept by straight lines each of which intersects
all the three edges or their extensions [1]. The classical
EEE visual active patch (EEE patch for short) is defined
as a patch of the quadratic surface, which is the union
of all line segments, each intersecting all three edges. It

is called the active patch since in the visual hull, only an
EEE patch or part of it can actively participate in forming
the boundary of the visual hull. Other parts of the EEE
surface do not separate R3 regions with different visual
numbers, and therefore do not contribute in forming the
visual hull boundary. However, since the 3D visual hull
algorithm requires the partition of the 3d space, we need
to keep the whole quadratic surface.

Definition 5.1: A partial EEE surface of three finite par-
tial edges is a partial surface whose partial (thick) boundary
contains all straight lines that intersect all 3 partial edges.
However, there are infinitely many partial EEE surfaces
according to the definition, including the partial quadratic
surface given in Section IV-B. Our target in this section is to
find a partial EEE surface that is easy to compute, reasonably
approximates the given scene with known imprecision and
converges to the classical scene with exact input.

Given a partial edge PLpA,Bq with partial end points A
and B, we can generate an infinite polygonal tube T pA,Bq
with the following method:


 extend the 2 partial end points A and B to the smallest
partial points A1 and B1, such that A1 and B1 are of
the same size with A � A1 and B � B1;


 connect the corresponding corner types to form 8
mutually parallel corner lines;


 construct the infinite tube as the convex hull of the
corner lines generated.

Below, we extend the definition of the function “rs” so that
rPEs is the infinite tube extended from a partial edge PE.

A quadratic surface Qpl0, l1, l2q is generated by three
straight lines l0, l1 and l2. It can be partitioned into 3 disjoint
parts Qpl0, l1, l2q|lili�1

. Each is a surface patch on Qpl0, l1, l2q
that lies in between i) li and li�1, and ii) does not contain
li�2.

Here, we need a method that generates a partial plane
from a partial point and an infinite tube. The partial point
PP is a hyper-rectangle with 8 vertices namely p0, p1, ..., p7



and the infinite tube T has 8 mutually parallel straight lines
namely l0, l1, ..., l7 (some of which are in the interior of the
tube and thus are not boundary edges), each corresponding
to a corner type. There are 16 extremal planes namely the
planes sj though vertex pj and line lj and the planes tj

through vertex p7�j and line lj (j � 0, 1, ..., 7). Note that
pj and p7�j are two corners of opposite types, e.g. if pj is
the top-left corner on the front face, p7�j is the bottom-left
corner on the back face. See [8] for the definition of the
corner types for general partial points.

Proposition 5.2: In the non-degenerate cases there are 4
extremal planes, say, s0, s1, t0 and t1 that bound the partial
surface (plane) PSpPP, T q generated by PP and T , and
satisfy:

PP � ps0 & T � ps0; PP � qs1 & T � qs1;
PP � pt0 & T � qt0; PP � qt1 & T � pt1.

These four planes are the characteristic planes of PP and
T , which defined the the partial plane as follows:

yPSpPP, T q � pt0 X pt1 X ps1;
}PSpPP, T q � qs0 X qt0 X qt1.

Actually, in the above proposition, if we replace the partial
point PP with a partial edge PE, we can still find 4 classical
planes, namely s0, s1, t0 and t1, that bound a partial object
called a partial wedge; see also Fig. 4.

Definition 5.3: A partial wedge W pPE, T q generated by
an infinite tube T pP0, P1q and a partial edge PEpQ0, Q1q,
where Pk and Qk are partial points (k � 0, 1), is given by

BPW pPE, T q :�
¤
tplnpl, tq|l P SELpT q, t P BPPEu.

Note that any selection of an infinite tube is a straight line
that goes through the two partial points and is parallel to the
edges of the infinite tube. Note also that a selection of the
partial wedge is thus given by plnpl, tq with l P SELpT q
and t P BPPE.

By Prop. 5.2, we assume skm and tkm are the characteristic
planes corresponding to T and Qk, with k,m � 0, 1.

xW pPE, T q �
£

k�0,1

ptk0 X ptk1 X psk1 (4)

|W pPE, T q �
£

k�0,1

qsk0 X qtk0 X qtk1 (5)

Using the three partial edges PE0, PE1 and PE2

we can construct 2 partial wedges W pPEi�1, rPEisq and
W pPEi�2, rPEisq for each PEi. For a classical straight
line l intersecting all three partial edges, we have:

l � BPW pPEi�1, rPEisq X BPW pPEi�2, rPEisq.

Let skm,pi�n,iq and tkm,pi�n,iq with k,m � 0, 1 be the char-
acteristic planes defined in Def. 5.3 of W pPEi�n, rPEisq

with n � 1, 2. Their intersection with each other are straight
lines which are mutually parallel.

Definition 5.4: The positive line lpi and negative line lni
are given by:

lpi :� w�pPEi�1, rPEisq X w�pPEi�2, rPEisq;

lni :� w�pPEi�1, rPEisq X w�pPEi�2, rPEisq;

where the surfaces w�pPEi�r, rPEisq and
w�pPEi�r, rPEisq are respectively the positive and
negative surfaces of the partial wedge W pPEi�r, rPEisq,
r � 1, 2.

Proposition 5.5: For i � 0, 1, 2, the lines lpi and lni satisfy
the following properties:

Du, v P tsk1,pi�r,iq, t
k
m,pi�r,iq|k,m � 0, 1; r � 1, 2u.

lpi � uX v & lpi � pquqc & lpi � pqvqc;
Du, v P tsk0,pi�r,iq, t

k
m,pi�r,iq|k,m � 0, 1; r � 1, 2u.

lni � uX v & lni � ppuqc & lni � ppvqc.
For any plane pl that is a selection of W pPEi�1, rPEisq

and W pPEi�2, rPEisq, we have:

lpi �
ppl and lni � qpl.

Theorem 5.6: A conservative partial EEE surface
PEEEc from 3 partial edges PEi can be constructed as
follows:

PEEE�
c |

lpi
lpi�1

� Qplpi , l
p
i�1, l

n
i�2q|

lpi
lpi�1

;

PEEE�
c |

lni
lni�1

� Qplni , l
n
i�1, l

p
i�2q|

lni
lni�1

.

See [14] for the proof; the generation procedure is visualized
in Fig. 5.

VI. 3D VISUAL NUMBER LABELLING

In the classical case, after establishing the partition of the
space, we label each cell with an appropriate visual number.
Given a polygonal scene S and a view point p, the classical
3D visual number V N3Dpp, Sq was defined in [1]:

Definition 6.1: The 3D visual number V N3Dpp, Sq is
the number of edges or faces of the visual cone of p relative
to S.

This definition is not a natural extension from the 2D
visual number. The definition of V N3D depends too rigidly
on the geometry of the scene [16]. Therefore, V N3D is not
suitable for our framework since the interior and exterior of
an object contain only limited information about the scene
geometry.

Definition 6.2: The reduced visual number V N3Dpp, Sq
is the number of families of visual numbers viewed from p
with respect to S, i.e., if we consider a unit sphere centre
at p and project S onto the sphere as silhouettes, then the
visual number V N3Dpp, Sq is the number of disconnected
regions of the non-shadowed area.
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Figure 5. An overview of generating a conservative partial EEE surface. (a) Three partial edges (PEi) and their positive (lpi ) and negative (lni ) lines,
respectively coloured in yellow and cyan. (b) The positive surface (PEEE�c ) consists of 3 regions coloured in red, magenta and orange and labeled as
in Theorem 5.6. (c) Similarly the negative surface (PEEE�c ) consists of 3 regions, which are respectively coloured in blue, purple and gray. (d) The
side view of the partial EEE visual surface. The red surface is the positive surface and the blue one is the negative surface. The silver and black arrows
respectively represent the positive ( {PEEEc) and negative ( �PEEEc) regions.

The number V N3Dpp, Sq does not rigidly depend
on the topology of the scene. The relationship between
V N3Dpp, Sq and V N3Dpp, Sq is as follows.

Proposition 6.3: Given a polygonal scene S and a view
point p,

(i) V N3Dpp, Sq � 0 iff V N3Dpp, Sq � 0.
(ii) V N3Dpp, Sq ¥ V N3Dpp, Sq.

We now define the partial visual hull PV HpPSNq for
a given partial scene PSN . For convenience, in the rest of
this section we put S :� SELpPSNq.

PV HIpPSNq �
�
tp|V N3Dpp, psnq � 0, psn P Su

PV HEpPSNq �
�
tp|V N3Dpp, psnq � 0, psn P Su.

According to Prop. 6.3 (i), we have

PV HIpPSNq �
�
tp|V N3Dpp, psnq � 0, psn P Su

PV HEpPSNq �
�
tp|V N3Dpp, psnq � 0, psn P Su.

For the partial polygonal scene PSN , we now obtain
two different notions, (i) the partial visual number set
PV N3Dpp, PSNq, and, (ii) the reduced partial visual
number set PV N3Dpp, PSNq:

Definition 6.4:

PV N3Dpp, PSNq :�
�
tV N3Dpp, psnq|psn P Su

PV N3Dpp, PSNq :�
�
tV N3Dpp, psnq|psn P Su.

Therefore, we have:

PV HIpPSNq �
¤
tp|PV N3Dpp, PSNq � t0uu;

PV HEpPSNq �
¤
tp|0 R PV N3Dpp, PSNqu.

For polyhedral scenes psn, psn1 P S, if every polyhedron
in psn is contained in some polyhedron in psn1, then:

V N3Dpp, psnq ¥ V N3Dpp, psn1q.

From this, by considering the classical boundaries BPSNI

and BPSNE as polyhedral scenes, we obtain:

Proposition 6.5: For any psn P S,

V N3Dpp, BPSNIq ¥ V N3Dpp, psnq;

V N3Dpp, BPSNEq ¤ V N3Dpp, psnq.

Therefore, we can use V N3Dpp, BPSNIq and
V N3Dpp, BPSNEq to obtain an upper and a lower bound
for PV N3Dpp, PSNq and thus generate a conservative
partial visual hull CPV HpPSNq with respect to the partial
scene PSN :

Definition 6.6:

CPV HIpPSNq :�
¤
tp|V N3Dpp, BPSNIq � 0u;

CPV HEpPSNq :�
¤
tp|V N3Dpp, BPSNEq � 0u.

We now deduce the following result.
Theorem 6.7:

CPV HIpPSNq � PV HIpPSNq;

CPV HEpPSNq � PV HEpPSNq.

In fact, if V N3Dpp, BPSNIq � 0, then by Prop. 6.3,
we have V N3Dpp, BPSNIq � 0. By Prop. 6.5,
V N3Dpp, psnq � 0 for all psn P S. Therefore, p P
PV HIpPSNq. The exterior case follows in a similar way.

VII. OVERALL ALGORITHM

The overall algorithm for generating the 3D conservative
partial visual hull resembles the classical algorithm. From
a given polyhedral scene with imprecision information, we
can construct its conservative partial visual hull as follows:

1) Construct a partial polyhedral scene PSN , i.e. a set of
partial polyhedra, according to the given information
and imprecision. This provides the interior PSNI and
exterior PSNE of the scene;

2) Compute all potential visual event surfaces, including
partial VE surfaces and conservative partial EEE sur-
faces;



3) Construct the partition of the whole R3 space interwo-
ven by positive and negative surfaces of partial visual
event surfaces into disjoint cells;

4) Calculate the upper and lower bounds of the partial
visual number set for each cell;
a) Pick a point p inside a cell c.
b) Calculate the two bounds for the partial visual

number set of c given by:

V N3Dpc, BPSNIq :� V N3Dpp, BPSNIq
V N3Dpc, BPSNEq :� V N3Dpp, BPSNEq.

c) Merge all cells c with V N3Dpc, BPSNIq � 0 to
obtain the interior CPV HIpPSNq. Similarly, merge
all cells c with V N3Dpc, BPSNEq � 0, to obtain
the exterior CPV HEpPSNq .

Since the partial visual number set, and therefore its two
upper and lower bounds, are constant in each cell, the above
algorithm correctly computes CPV HpPSNq by the results
of Section VI.

In the above algorithm, the computational complexity of
each step is the same as the corresponding classical algo-
rithm. For example, to generate an classical EEE surface,
we consider one quadratic surface going through 3 lines.
Similarly, to generate a conservative partial EEE surface,
we consider 6 (constant) quadratic surfaces. Therefore, the
overall computational complexity, which is Opn12q, remains
unchanged. We finally note that the algorithm generates a
partial visual hull which can be shown to converge to the
classical visual hull as the input converges to an exact value.

VIII. CONCLUSION

In this paper, we provided an algorithm to construct a
partial visual hull for a polyhedral scene with imprecise
input. It has the same computational complexity as the
classical visual hull construction algorithm. Many of the
visibility related problems (e.g. antipenumbra [17]) require
the generation of quadratic surfaces from skewed lines. As
part of the solution, we were able to provide a method to
approximate the partial quadratic surface generated from 3
edges with imprecision, whose application is not limited to
the visual hull problem. See [14] for further work on the
partial visual hull using the notion of the visibility complex.
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