
A domain-theoretic approach to computabilityon the real line 1Abbas Edalat and Philipp S�underhaufDepartment of Computing, Imperial College180 Queen's Gate, London SW7 2BZUnited Kingdomfae,ps15g@doc.ic.ac.ukAbstractIn recent years, there has been a considerable amount of work on using continu-ous domains in real analysis. Most notably are the development of the generalizedRiemann integral with applications in fractal geometry, several extensions of theprogramming language PCF with a real number data type, and a framework andan implementation of a package for exact real number arithmetic.Based on recursion theory we present here a precise and direct formulation ofe�ective representation of real numbers by continuous domains, which is equiva-lent to the representation of real numbers by algebraic domains as in the work ofStoltenberg-Hansen and Tucker.We use basic ingredients of an e�ective theory of continuous domains to spell outnotions of computability for the reals and for functions on the real line. We provedirectly that our approach is equivalent to the established Turing-machine basedapproach which dates back to Grzegorczyk and Lacombe, is used by Pour-El &Richards in their foundational work on computable analysis, and, moreover, is thestandard notion of computability among physicists as in the work of Penrose. Ourframework makes it possible to capture partial functions in an elegant way and itextends to the complex numbers and the n-dimensional Euclidean space.1 IntroductionComputable analysis is traditionally approached from two di�erent directions.On the one hand, we have the machine-oriented work, where computations are1 Work supported by the EPSRC project Foundational Structures for ComputerScience at Imperial College.To appear in Theoretical Computer Science 21 October 1997



performed on a certain kind of abstract machine. Type 2 Theory of E�ectivity(TTE) [20,40,41] falls into this class. In TTE, Turing machines operate onin�nite tapes, the inscription of the tapes represent real numbers or otherobjects from analysis, for example subsets, functions or measures. The so-called Russian approach [5] is also of this type. The main di�erence with TTElies in the restriction of input and output to computable elements. Althoughdi�erent in spirit, the recursive functions in the Blum-Shub-Smale model [4]can also be considered as machine-oriented. Real numbers are regarded asentities, but the computable functions are constructed from building blocks ina recursion-theoretic manner.On the other hand, we have the analysis-oriented approach. Here conceptsfrom classical analysis are e�ectively presented and used to develop a com-putability theory for real numbers. This approach to computable analysis orig-inated from the work of Grzegorczyk [19] who classi�ed Turing-machine com-putable real functions as those that map computable sequences to computablesequences and are e�ectively uniformly continuous. The work of Pour-El &Richards [29] is based on this de�nition and is now well-established and fre-quently cited in various communities including by physicists like Penrose [25].The present paper is part of a programme to establish domain theory as anew approach to computable analysis. Domain theory was introduced inde-pendently by Dana Scott [32] for providing denotational semantics to func-tional programming languages and by Yuri Ershov [15] as a means to inves-tigate partial computable functionals of �nite type. The use of the so-calledalgebraic domains to model functional programming languages has become awell-established paradigm in computer science.Various attempts have been made to use algebraic domains to represent clas-sical spaces in mathematics. Weihrauch & Schreiber [43] constructed embed-dings of Polish spaces (topologically complete separable metrizable spaces)into algebraic domains. Stoltenberg-Hansen and Tucker have shown how torepresent complete local rings [35] and topological algebras, including locallycompact Hausdor� spaces and the real line, by algebraic domains [36]. DiGianantonio [6,7] has given an algebraic domain to model the real numbers.Blanck [3] has more recently shown how to embed complete metric spaces intoalgebraic domains.In [36, Section 5.3], Stoltenberg-Hansen & Tucker use an algebraic domain torepresent the real line and prove that the resulting notion of computable realfunction coincides with a slight strengthening of the approach by Pour-El &Richards. Also, the work in [36] allows them to generalise this result to Rnand C which is explicitly done by Blanck in [3, Theorem 2.27].However, a more general class, that of so-called continuous domains, is more2



suitable to represent classical spaces. A continuous domain is a partially or-dered set equipped with notions of completeness and approximation. The com-pleteness axiom requires existence of least upper bounds for all directed sub-sets, approximation means that all elements arise as directed suprema of theiressential parts or approximants. (All de�nitions are formally given in Sec-tion 2.) The particular case of continuous lattices [17] arises in many otherbranches of mathematics. The approximation axiom provides the link to themachine-based level of recursion theory or Turing machines: We will enumer-ate a convenient set of approximants and let the machine operate on thisset.The link to computable analysis on the real line is provided by the intervaldomain, the set of compact intervals of R, partially ordered with reversed setinclusion. Already in [32], Scott suggested the idea of using the interval domainto construct a real number data type. The real line embeds as set of maximalelements in this continuous domain. Thus the above mentioned approximationby partial elements corresponds to describing a real number as the intersectionof a sequence of shrinking nested intervals which is a standard way of de�ninga real number in computable analysis [31]. Thus domain theory also providesa link to the well-established �eld of interval analysis [23] and can lead to newinsights in this subject.There has recently been a considerable amount of work in domain theorywhich could be classi�ed as part of the programme \Continuous domains incomputable analysis". Most notably are the development of a domain theo-retic framework for classical measure theory [11,9], the generalization of Rie-mann theory of integration [10] with applications in fractal geometry [12], sev-eral extensions of the programming language PCF with a real number datatype [6,16,28], and a framework and an implementation of a package for exactreal number computation [27,13]. This latter work is based on the one handon continued fractions and linear fractional transformations as in [38,24] andon the other hand on the domain of intervals. These promising results sug-gest that a marriage of domain theory and computable analysis will indeedbe fruitful for both subjects. The recent survey paper [8] gives an overview ofthese applications of continuous domains.In this paper, we start a systematic exploration of the use of continuous do-mains for computable analysis. Here, we are concerned with analysis on thereal line, the complex plane, and Rn. A forthcoming paper [14] will deal withmetric spaces and Banach spaces. The main results in the present paper arethe following: The domain-theoretic notions for computable real numbers andfor computable functions coincide with the well-established so-called Polishapproach which dates back to Grzegorczyk and Lacombe [18,21] and is equiv-alent to the above mentioned TTE-approach and to the de�nitions of Pour-El& Richards. 3



It can be shown using some general properties of algebraic and continuous do-mains that computability on the reals in our sense coincides with computabil-ity via the algebraic approach. Hence, apart from the slight strengthening ofPour-El & Richards' de�nition in [36], our results can be obtained from thosein loc.cit. and vice versa.Compared to the continuous domain approach, however, any representationof the real line by an algebraic domain is much more involved for topologicalreasons. The domain considered in [36] is the ideal completion of the set of allintervals with rational endpoints, and the real line is recovered as a quotient ofthe set of so-called total elements. In contrast, the continuous domain for thereal line considered in the present paper is based on quite familiar and well-established notions in elementary analysis and the real line is simply embeddedas its set of maximal elements.In the present paper, we intend to promote domain theory as a means ofinvestigating computability aspects in traditional mathematics. Therefore, wechoose the more accessible continuous domain approach to computability andpresent the framework and the proofs directly in a self-contained way.1.1 Plan of the paperThis paper is divided in two parts. Part I deals with the mathematical toolsand Part II investigates the computability structure for the real line and brie
ycovers the n-dimensional Euclidean space and the complex plane.To be self-contained, Part I starts in Section 2 with a short introduction tocontinuous domains in general and the interval domain in particular. The linkto actual computations is provided by e�ective domain theory. Although itdates back to the origins of domain theory, we have included a section on thistopic. The existing sources either consider algebraic domains only (e.g. [26,34]),or, as [33], concentrate on certain subclasses of continuous domains which areuseful in denotational semantics but too special for our purpose. The onlyexception is the unpublished set of lecture notes in German by Weihrauchand Deil [42], where domains are considered as computational models verymuch in the same spirit as in the present paper. Unfortunately, this sourceis rather hard to access. There is a short published note [39] which containsthe most basic de�nitions but lacks the results we need for our work. So weprovide all the de�nitions and results needed and give proofs in Section 3 ofthis paper.Part II is the core of our work. In Section 4, we de�ne the notions of com-putable real numbers and sequences by e�ectively presenting the interval do-main. These are shown to coincide with the corresponding standard notions4



in classical computable analysis. Section 5 investigates the resulting notionof computable function on the real line. Again, the notion coincides with thestandard one. As a corollary, we obtain a novel characterisation of computablefunctions: A function is computable if and only if it maps computable se-quences of intervals to computable sequences of intervals. We conclude thepaper by discussing real number representations within our framework.1.2 TerminologyWe will use the relevant notions from recursion theory as in the fairly standardlanguage of [31]. The set f0; 1; 2; : : :g of natural numbers is denoted by N. Thenth partial recursive function is denoted by �n, the nth recursively enumerable(r.e.) set byWn, so thatWn = dom(�n). We will make use of a standard pairingfunction h�; �i:N�N ! N which could be de�ned as hn;mi = 12(n2+2nm+m2+3n+m). The projections are denoted by �1; �2; they satisfy h�1(n); �2(n)i = nas well as �1(hn;mi) = n and �2(hn;mi) = m for all n;m 2 N. As usual, arelation R � N�N is said to be r.e. if the set fhn;mi j (n;m) 2 Rg is r.e. Wewill conveniently say that R is r.e. in n;m. Similarly for relations of higherarity.Many of our results have the form \There is f with property A i� there is gwith property B". Sometimes, we add the phrase \This equivalence is e�ec-tive." This means that there are partial recursive function  1;  2:N! N suchthat if �n has property A then  1(n) is de�ned and � 1(n) has property Band, conversely, if �m has property B then  2(m) is de�ned and � 2(m) hasproperty A. Similarly for r.e. sets in place of functions. This is referred to asuniformity by Rogers in loc.cit.We will employ the dovetailing principle in the form of the following construc-tion: Every r.e. set A � N can be written as the union A = Sn2NAn of anincreasing chain A0 � A1 � A2 � � � such that the relation i 2 An is recursivein i; n. To see that this is true, we take a Turing machine based approach torecursion theory. IfM is a machine which produces a list of the elements of A,then de�ne An to contain those elements produced after n steps of computa-tion byM . A consequence of e�ectiveness of this construction is the SelectionTheorem [31, Theorem 5-XVIII]. It says that there is a partial recursive func-tion  :N! N such that  (n) is de�ned i� the set Wn is not empty in whichcase  (n) 2 Wn. 5



Part I: Mathematical Tools2 Continuous domainsDomain theory was introduced by Dana Scott in [32] as a mathematical theoryof computation. See [1] for a detailed treatment of domain theory, in particularfor topics which are not of interest here, but are important for denotationalsemantics, e.g. cartesian closed categories and solution of recursive domainequations. In this section, we give a short introduction to continuous domainsas computational models, a topic which has become an active area of researchin recent years.2.1 Basic de�nitionsThe �rst basic notion is that of a partially ordered set (poset) (D;v). This isa set D equipped with a binary relation v which isre
exive: x v x for all x 2 D,transitive: x v y and y v z implies x v z for all x; y; z 2 D,antisymmetric: x v y and y v x implies x = y for all x; y 2 D.The elements of D are thought of as descriptions of some objects. The order isreferred to as order of information. Indeed, x v y is understood as \y carriesmore information than x". From this it is apparent that the set of maximalelements, denoted by max(D), will be of special interest. A non-empty sub-set A � D is directed, if for all x; y 2 A there is z 2 A with x v z andy v z. Important examples of directed sets are increasing chains. These aresets A = fa0; a1; a2; : : :g such that a0 v a1 v a2 v � � � : We think of such achain as a stepwise computation: in each step we gain more information aboutthe computed entity. What would this entity be? An element containing pre-cisely all the information gained during the computation, which is exactly thenotion of supremum or least upper bound (lub): An element x 2 D is the lubof the subset A � D if (1) it is an upper bound, i.e. a v x for all a 2 Aand if (2) whenever b 2 D is any other upper bound then x v b. We writeW"A = x to denote that the set A is directed and has lub x. The �rst axiomfor domains is closure under these computations: A directed complete partialorder (commonly abbreviated as dcpo) is a partially ordered set such thatsuprema for all directed subsets exist. We call the dcpo pointed, if it containsa least element ? (pronounced \bottom").If (D;v) is a dcpo and x; y 2 D then we say that x approximates y, andwrite x � y if for every directed subset A � D with y v W"A there is6



some a 2 A with x v a. If x0 v x, y v y0, and x � y then x0 � y0. Theintuitive meaning of x� y is \the information content of x is essential for y".It is frequently referred to as \x is way-below y".We now arrive at the de�nition of a continuous domain: We require that everyelement can be recovered from its essential ingredients.De�nition 1 A continuous domain is a dcpo (D;v) such that for every ele-ment x 2 D the set ##x = fy 2 D j y � xgis directed and has x as its supremum:_" ##x = x:We often refer to a continuous domain simply as a domain. The single mostimportant property of the order of approximation� on a continuous domainis the interpolation property: If x � y then there is z 2 D such that x � zand z � y. More generally: If xi � y for i = 1; : : : ; n then there is z 2 D withxi � z for i = 1; : : : ; n and z � y.The unit interval [0; 1] in its usual order serves as an example of a continuousdomain. Here x� y i� x = 0 or x < y. Similarly, the extended non-negativereals [0;1] with the usual ordering form a continuous domain.The Scott-topology of a dcpo (D;v) consists of all subsets O ofD which are up-wards closed (x 2 O; x v y =) y 2 O) and inaccessible by directed suprema,i.e. if W"A 2 O then O \ A 6= ;. This topology is always T0 but typicallynot T1. If D is a continuous domain, then, as a consequence of the interpo-lation property, the sets ""x = fy 2 D j x � yg for x 2 D are Scott-open.Moreover, they form a basis for the topology. A function f : (D;v) ! (E;v)between dcpo's is continuous with respect to the Scott-topologies on D and Eif and only if it is monotone and preserves suprema of directed subsets: x v yimplies f(x) v f(y) and f(W"A) = W" f(A). A function f between pointeddcpo's is called strict if f(?) = ?. The collection of all Scott-continuous func-tions from D to E is denoted by [D ! E]. It is endowed with the pointwiseorder, i.e., f v g i� f(x) v g(x) for all x 2 D, which makes [D ! E] a dcpo.The nontrivial Scott-open subsets in the above examples ([0; 1];�) and ([0;1];�)are of the form (a; 1] and (a;1], respectively. An endofunction on [0;1] isScott-continuous i� it is monotone and lower semicontinuous in the traditionalsense. In general, a function f :X ! [0;1] from any topological space X iscontinuous with respect to the Scott-topology on [0;1] i� it is lower semicon-tinuous. 7



A subset B of a domain (D;v) is a basis if every element of D is the directedsupremum of all basis elements approximating it:x = _"(##x \ B):Every domain D has a basis, namely D itself. A domain is !-continuous, ifit has a countable basis. In each of the above examples the set of all rationalnumbers in the domain forms a basis; hence both [0; 1] and [0;1] are !-continuous.If D and D0 are domains then so is their direct product, D �D0. The orderand order of approximation are coordinatewise, i.e.(x; x0) v (y; y0) () x v y & x0 v y0and (x; x0)� (y; y0) () x� y & x0 � y0:The Scott-topology on the product coincides with the product topology ofthe Scott-topologies on the factors. Unlike the situation in general topology,it is true that a function f :D �D0 ! E is Scott-continuous if and only if itis Scott-continuous in both variables separately. This is due to the fact thatScott-continuity can be characterised purely in order-theoretical terms.2.2 The interval domainThe interval domain I gives the set R of real numbers a computational struc-ture. It is the collection of all compact intervals, endowed with a least element:I = f[a; b] � R j a; b 2 R; a � bg [ f?gThe order is reversed subset inclusion, i.e.? v I for all I 2 I and [a; b] v [c; d]i� a � c and b � d in the usual ordering of real numbers. One can think ofthe least element ? as the set R. Directed suprema are �ltered intersectionsof intervals. The way-below relation is given by I � J i� int(I) � J , whereint(I) denotes the interior of I. Thus ? � I for all I 2 I and [a; b] � [c; d]i� a < c and b > d. The maximal elements are the intervals [a; a], i.e. thesingleton sets.The interval domain can be thought of as a triangle as depicted in Figure 1.The upper edge of this triangle corresponds to the set of maximal elements,8
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JJJJrfag rfbgr[a; b]r?Fig. 1. The interval domain.i.e. to the real line. Points in the interior correspond to closed intervals ofnon-zero length. As shown in the �gure, the endpoints of such an interval canbe determined by drawing parallel lines to the side edges of the triangle andintersecting these with the upper edge. The thick line segment in the picturedenotes the set ffxg j a � x � bg of maximal elements above the element[a; b] 2 I, which is mapped by fxg 7! x to the interval [a; b].What is the Scott-topology on I? A base is given by the sets ""[a; b] = fI 2I j I � (a; b)g. So a base set for the relative Scott-topology on the set ofmaximal elements is of the form ""[a; b] \ max(I) = ffxg j x 2 (a; b)g. Underthe canonical map fxg 7! x:max(I) ! R this is mapped to the open inter-val (a; b). Hence the set of maximal elements with the relative Scott-topologyis homeomorphic to the real line via fxg 7! x.Every continuous function f :R! R has a Scott-continuous extension to theinterval domain. This means that there is a Scott-continuous function g 2[I ! I] such that g(fxg) = ff(x)g holds for all x 2 R. Moreover, amongthose extensions which are strict in the sense that g(?) = ? there is a largestone. It is explicitly given by g(I) = ff(x) j x 2 Igfor I 6= ?. Since the non-bottom elements of the interval domain are exactlythe compact connected subsets of R and as the operation of taking the di-rect image under a continuous function preserves both these properties, it isimmediate that the function g is well-de�ned.A convenient computational model for a compact interval A � R is de�ned inthe same manner. We denote with IA the interval domain of A, consisting ofall compact intervals contained in A:IA := f[a; b] � A j a � bg:9



The order is reversed subset inclusion as before. Note that A itself is a compactinterval, so A 2 IA and we do not need to add a least element. The aboveresults for I concerning the Scott-topology and extensions of continuous func-tions do also hold for IA. We can in addition consider continuous functionsf :A ! B for A and B di�erent compact intervals or the real line; those ex-tend to the interval domains as before. If A is a compact interval rather thanthe real line R, then we can drop the assumption of strictness to �nd a largestextension.3 An e�ective theory of continuous domainsThe material covered in this section is rather well-known among domain theo-rists with interest in recursion theory. Unfortunately, there is no simply avail-able source on the subject as mentioned in the introduction. We develop thetheory along the lines of [42].3.1 E�ectively given domainsDe�nition 2 Suppose (D;v) is an !-continuous pointed domain with count-able basis D0 = fb0; b1; b2; � � �g. It is e�ectively given with respect to b if therelation bn � bm is r.e. in n;m. An element x 2 D is computable, if the setfn 2 N j bn � xg is r.e. Without loss of generality, we will henceforth assumethat b0 = ?.Remark. The reader might ask why we do not require the order of approx-imation � or the predicate bn = ? to be recursive (decidable). This is theapproach in most other accounts of e�ective domain theory, e.g. [33] and theabove mentioned Section 7 of [26]. These stronger assumptions (together witha restriction of the class of continuous domains) are needed in connection withthe function space construction in order to yield a cartesian closed categoryof e�ective domains. As we are not interested in this topic here, we keep thede�nition as general as possible.The computability structure on two e�ectively given domains induces an e�ec-tive structure on their product as follows: If (D;v) and (D0;v) are e�ectivelygiven with respect to (bn)n2N and (b0n)n2N, respectively, then the product D�D0has the e�ective basis (b�n)n2N with b�hn;mi = (bn; b0m).10



Proposition 3 An element x 2 D is computable i� it is the lub of an e�ectivechain in D0, i.e. i� there is f :N! N total recursive such that bf(0) v bf(1) vbf(2) v � � � and x = W"n2Nbf(n). This equivalence is e�ective. Moreover, thechain can be chosen to be a�-chain, i.e. such that bf(0) � bf(1) � bf(2) � � � �.PROOF. Suppose ##x\D0 = fbg(n) j n 2 Ng for some total recursive g:N!N. The function f :N! N is de�ned inductively. First we put f(0) = g(0). Tode�ne f(n+ 1) consider the setAn := fm 2 N j bf(n) � bg(m) & bg(n) � bg(m)g:This set is r.e. as g is recursive. Furthermore, it is non-empty by the interpola-tion property of continuous domains. So we can apply the Selection Theoremto get an element an 2 An. Then f(n + 1) := g(an). The resulting func-tion f gives an e�ective �-chain. We claim that its lub is x. To verify theclaim, observe that f(n) 2 g(N) for every n 2 N. Hence bf(n) � x and soW"n2Nbf(n) v x. On the other hand, we have bg(n) v bf(n+1) for every n 2 N.Thus x = W"n2Nbg(n) v W"n2Nbf(n). This proves the claim, so the (only if)part of the proposition holds.For the (if) part, note that if x = W"n2Nbf(n) thenbm � x () 9n 2 N: bm � bf(n):This enables us to e�ectively obtain an index for ##x \D0 from f . 2We now de�ne an enumeration � of the set Dc of all computable elements.This is done in the following manner:(1) Start with a natural number n.(2) This describes a partial recursive function �n:N! N.(3) E�ectively construct an index n0 of a total recursive function �n0 suchthat range(�n0) = range(�n) [ f0g. (Recall that b0 = ?.)(4) E�ectively get an index n00 of the total function �n00 which is recursivelyde�ned by putting �n00(0) = �n0(0) and the following procedure.(a) Start with i = 0 and k = 1.(b) The set A = f` � k j b�n00 (i) � b�n0(`)g � N is r.e.(c) Write A = Sm2NAm, where the test ` 2 Am is recursive in `;m andwhere A0 � A1 � A2 � � � �.(d) Now, starting withm = 1, each of these sets is tested for the existenceof ` � m with ` 2 Am. Whenever no such element is found, we put�n00(i+m) = �n00(i) and check for the next value of m.11



(e) If, at some stage, there is ` � m with ` 2 Am then let �n00(i+m) =�n0(`), increment i by m, set k = ` + 1, and go to step (4b).Note that �n00 de�nes an e�ective chain in range(�n0): for each m 2 Nwe have either b�n00(m) � b�n00(m+1) or �n00(m) = �n00(m+ 1). Moreover, ifrange(�n0) happened to be a chain already, then for each i 2 N there isj 2 N such that b�n0(i) � b�n00(j) so that W"i2Nb�n00(i) = W" range(�n0).(5) Now de�ne �(n) := W"i2Nb�n00(i).Remark. Although the chain given by �n00 as constructed is not a �-chain,it is possible to e�ectively obtain an e�ective �-chain from this by Proposi-tion 3.Proposition 4 Every element from D0 is computable. Moreover, there is atotal recursive function k:N! N such that � � k = � � b, where �:D0 ,! Dc isthe inclusion map.PROOF. Clearly, for each n 2 N the set fm 2 N j bm � bng is r.e. and anindex for it is e�ectively obtainable from n. As the equivalence in Proposition 3is e�ective, we can construct the function k from this. 2Lemma 5 The relation bn � �(m) is r.e. in n and m.PROOF. This is an immediate consequence of the fact that bn � W"i2Nbf(i)i� there is i 2 N with bn � bf(i). 2Proposition 6 Least upper bounds of e�ective chains of computable elementsare computable with e�ectively obtainable index.PROOF. The set of basis elements way-below the supremum is the union ofthe sets of elements way-below the individual elements. This can be obtainede�ectively. 2Remark. It is evident that Proposition 6 holds for e�ective directed setsin place of chains, too. Enumerations of Dc satisfying Lemma 5 and Proposi-tion 6 are called admissible in [42]. In loc.cit., it is shown that all admissibleenumerations are isomorphic, i.e. if �; �0:N ! Dc are both admissible thenthere is a recursive bijection f :N! N with � � f = �0.12



3.2 Computable functionsDe�nition 7 Suppose that the domains (D;v) and (D0;v) are e�ectivelygiven with respect to b and b0, respectively. A continuous function f :D ! D0is computable, if the relation b0m � f(bn)is r.e. in n;m.Proposition 8 If f :D ! D0 between e�ectively given domains is computablethen the relation b0m � f(�D(n))is r.e. in n;m.PROOF. Note thatf(�D(n)) = f�_" fy j y � �D(n)g�=_" ff(y) j y � �D(n)g=_" fx0 2 D j 9y � �D(n): x0 � f(y)g=_" fb0m j 9i 2 N: bi � �D(n) & b0m � f(bi)gby continuity of f . Henceb0m � f(�D(n)) () 9i 2 N: (b0m � f(bi) & bi � �D(n)):This is r.e. in n and m by Lemma 5 and the fact that f is computable. 2Theorem 9 A continuous function f :D ! D0 between e�ectively given do-mains is computable i� there is a total recursive function  :N! N such thatf � �D = �D0 �  . N  - ND�D? f - D0?�D013



PROOF. (only if) Suppose that �D(n0) = x. By Proposition 8, the relationb0m � f(�D(n)) is r.e. in n;m. So an index forfm 2 N j b0m � f(�D(n0))gis e�ectively obtainable from n0. This gives the function  .(if) Suppose f � �D = �D0 �  . With k from Proposition 4 we haveb0m � f(bn) () b0m � f(�D(k(n)))() b0m � �D0( (k(n))):This set is r.e. by Lemma 5 and recursiveness of  � k. 2Remark. Theorem 9 is part of the Myhill-Shepherdson-Theorem in this set-ting. What is missing is the fact that, roughly speaking, computability impliescontinuity. This means that if a recursive function  :N ! N de�nes a func-tion f :Dc ! D0c on the computable elements via �D0 �  = f � �D, then thisfunction f is necessarily Scott-continuous in the sense that it preserves allexisting suprema of directed subsets. As we do not need this result here, werefer the reader to Satz 7 in [42] for the proof. Alternatively, the proof ofTheorem 3.6.16 of [40]) which contains the result for the algebraic case can betranslated to the continuous setting.Using the concept of computable sequences, Theorem 9 can be put in a veryappealing form.De�nition 10 A sequence (xn)n2N in D is computable, if there is a recursivefunction h:N! N such that xn = �D(h(n)).Corollary 11 A continuous function f :D ! D0 between e�ectively given do-mains is computable i� it maps computable sequences to computable sequences.PROOF. (if) As the identity on N is recursive, the sequence (�D(n))n2N iscomputable. Computability of the image sequence (f(�D(n)))n2N ensures com-putability of f by Theorem 9.(only if) Assume that f is computable and pick  :N! N with f ��D = �D0 � (Theorem 9). If (xn)n2N is a computable sequence then there is h:N ! N re-cursive such that xn = �D(h(n)). Then f(xn) = f(�D(h(n))) = �D0( (h(n))) sothe sequence (f(xn))n2N is computable since the function  �h is recursive. 214



Remark. It is possible to have a uni�ed framework for e�ectively presentingdomains as suggested to us by Dana Scott. If one restricts to !-continuousbounded-complete domains, i.e. domains where every subset which is boundedabove has a supremum, then there is a universal domain U . It has the propertythat every such domain is isomorphic to the image of a retraction on U . Thusan e�ective structure on U , which can be concretely constructed as the setof all non-empty closed subsets of the Cantor space under reverse inclusion,gives rise to e�ective structures on all domains which are computable retractsof U . Computable functions between such domains can be treated in a similarfashion. However, we do not take this approach here, �rstly because it requiressigni�cantly more domain theory and secondly because, in the sequel [14] tothis paper, we will apply the framework to Banach spaces and employ domainswhich are not bounded-complete.Part II: Computability via Domain Theory4 Computability on the real line4.1 The e�ective interval domainThe interval domain I is !-continuous. An example for a countable basis isthe collection I0 of all intervals with rational endpoints together with theleast element ?. We will use this domain to endow the real numbers with acomputable structure.In order to proceed we �rst have to say how to deal with the set Q of rationalnumbers. We denote by q0; q1; q2; : : : a standard numeration of the rationals,e.g. qhn;hm;kii = n�mk+1 . The arithmetic operations +;�; �; = as well as the com-parisons <;�;= and the absolute value function j � j on rationals are recursivein their indices.Now we are ready to de�ne an e�ective structure for the interval domain. Weset I0 = ?and Ihn;mi+1 = [qn � jqmj; qn + jqmj]:15



Clearly, this enumerates the basis I0. Let us check that the way-below relationis r.e. We have In � Im i� Im � int(In) i�n = 0 or �m;n > 0 and jq�1(n�1) � q�1(m�1)j+ jq�2(m�1)j < jq�2(n�1)j�;so this relation is even recursive. It should be remarked that the particularchoice of the basis and the enumeration for the basis is not essential for thetheory as long as one can pass e�ectively back and forth between the bases.We picked the given enumeration as it makes the characterization of � par-ticularly easy. The resulting enumeration of the computable elements of I isdenoted by �I :N! I.4.2 Computable numbers and sequencesA real number x 2 R is called left computable, if the set fn 2 N j qn < xg isr.e. Right computability is de�ned in an analogous way.Proposition 12 An interval [x; y] 2 I is computable i� x is left-computableand y is right-computable.PROOF. The interval is computable i� fn j In � [x; y]g is r.e. Now qn < x i�there are m;k 2 N such that qn = qm� jqkj and Ihm;ki+1 � [x; y]. The relationqn > y can be characterised similarly, hence the proposition follows. 2One possible de�nition of computability for a real number x is \x is both left-and right-computable." From this it is an immediate consequence that a realnumber x is computable i� the set fxg is a computable element of the inter-val domain. We will obtain an e�ective version of this result in Corollary 19below, using the approach via fast converging Cauchy-sequences of rationalsto formulate computability for real numbers.De�nition 13 A real number x is computable, if there is a total recursivefunction h:N! N such that jqh(n) � xj � 12nfor all n 2 N.Computable real numbers were �rst investigated by Turing [37]. Our de�ni-tion is used by many authors (for early sources see e.g. [30,18]), is widely16



accepted, and has many di�erent equivalent characterizations. It is also usedfor constructive analysis in [2]. Before we proceed to the above mentioned re-sult, we �rst turn our attention to the width of intervals. For I = [a; b] we setjIj = b� a, for I = ? = R we de�ne jIj =1.Lemma 14 1) The relation jInj � qm is recursive in n;m.2) The relation j�I(n)j < qm is r.e. in n;m.PROOF. 1) We have jInj = 1 for n = 0 and jInj = 2jq�2(n�1)j otherwise.So (1) clearly holds.2) As �I(n) = TfIk j Ik � �I(n)g it is true that j�I(n)j < qm holds i� there isk 2 N with Ik � �I(n) and jIkj < qm. These two relations are r.e. by Lemma 5and part (1), respectively. 2It is well-known that it is not possible to e�ectively enumerate all computablereal numbers (see, e.g. [40, Lemma 3.8.9]). The set of computable intervals,i.e. computable elements of the interval domain, however, can be enumeratedwith �I . This gives rise to a partial enumeration of the set of computable realnumbers.Theorem 15 There is a partial recursive function h:N ! N such that h(n)is de�ned whenever �I(n) is maximal in I and such that in this case �h(n)is a total function which de�nes a fast converging sequence of rationals withlimit xn, where �I(n) = fxng.PROOF. The relation R withhn; k; ii 2 R () Ii � �I(n) & jIij � 12k (1)is r.e. in n; k; i by Lemmata 5 and 14(1). Moreover, it is true that if �I(n)is maximal and k 2 N there is i 2 N with hn; k; ii 2 R. By the SelectionTheorem, there exists a partial recursive function g:N�N! N such thathn; k; g(n; k)i 2 R (2)holds for all k whenever �I(n) is maximal. De�ne j:N2 ! N by j(n; k) =�1(g(n; k) � 1). Then qj(n;k) is the middle point of the interval Ig(n;k). Now(qj(n;k))k2N is a fast converging sequence with limit xn: By (2) and (1) wehave in particular xn 2 Ig(n;k). Now qj(n;k) 2 Ig(n;k) and jIg(n;k)j � 2�k , sojxn � qj(n;k)j � 2�k as required. Finally, we de�ne the function h to assign toa number n 2 N the derived index for the function sending k to j(n; k). 217



The converse of this is also true: If a sequence of rationals e�ectively converges,then an index for the limit is e�ectively obtainable from an index for thesequence. As we are going to prove this result for sequences of reals, we needsome preparatory de�nitions.De�nition 16 A sequence (xn)n2N of real numbers is computable, if the se-quence (fxng)n2N is computable in I. (In other words, if there exists a a totalrecursive function f :N! N such that fxng = �I(f(n)).)We say that the sequence converges e�ectively to x 2 R, if there is g:N ! Nrecursive (the modulus of convergence) such that k � g(n) implies jxk � xj �2�n.Lemma 17 The function (q; [a; b]) 7! [a�jqj; b+jqj]:Q�I ! I is computable.Now we are able to prove the second half of the characterization of computablereal numbers as promised above: limits of e�ectively convergent sequences arecomputable.Theorem 18 If (xn)n2N is an e�ectively convergent computable sequence,then its limit x is computable. Moreover, an index for fxg can be obtainede�ectively from the indices for the sequence and the modulus of convergence.PROOF. Assume g:N ! N is such that k � g(n) implies jxk � xj � 2�n.Using Lemma 17 and e�ectiveness of the sequence (xn)n2N, we see that thereis h:N! N recursive such that�I(h(n)) = [xg(n) � 12n�1 ; xg(n) + 12n�1 ]: (3)Then x 2 int(�I(h(n))) and fxg = Tn2N�I(h(n)). The interval sequence(�I(h(n)))n2N need not be shrinking, but the sequence (�I(h(2n)))n2N is. Tosee this, suppose y 2 �I(h(2n + 2)). Then jy � xg(2n+2)j � 2�(2n+1). Butjxg(2n+2) � xj � 2�(2n+2) and jx� xg(2n)j � 2�2n. So jy � xg(2n)j � 2�(2n+1) +2�(2n+2) + 2�2n < 2�(2n�1). Thus y 2 int(�I(h(2n))).Hence, via Proposition 6, an index for the function sending n to h(2n) is anindex for fxg. 2In particular, this result allows us to conclude that our notion of computablenumber coincides with the classical one.Corollary 19 A real number x is computable if and only if the set fxg is acomputable element of the interval domain.18



PROOF. Theorem 15 yields one direction and Theorem 18 together withthe fact that every computable sequence of rational numbers is a computablesequence of real numbers the other. 2The e�ectivity of Theorems 15 and 18 enables us to show that our notion ofcomputable sequence coincides with the notion introduced in [29].Theorem 20 A sequence (xn)n2N is computable if and only if there is a re-cursive function r:N�N! N such that jqr(n;k) � xnj � 2�k for all n; k 2 N.PROOF. Assume that (xn)n2N is a sequence of reals and that r:N�N ! Nis recursive such that jqr(n;k) � xnj � 2�k for all n; k 2 N. This means that(qr(n;k))k2N is a computable sequence e�ectively convergent to xn with theidentity function as modulus of convergence. So we can apply Theorem 18 toe�ectively get an index for xn from r and n. This means that the sequence xnis computable.Now assume that there is f :N ! N with �I(f(n)) = fxng. By Theorem 15there is a recursive function h:N�N! N such that the sequence (qh(f(n);k))k2Nis fast converging with limit xn. Thus we have a double sequence as re-quired. 2It is another immediate consequence of e�ectivity of Theorem 18 that The-orem 20 generalizes to double sequences of real numbers. A double sequence(xn;k)n;k2N of real numbers is said to be computable, if there is h:N�N! Nrecursive such that fxn;kg = �I(h(n; k)) for all n; k 2 N.Corollary 21 (Proposition 0-1 of [29]) Suppose (yn)n2N is a sequence ofreal numbers. If there is a computable double sequence (xn;k)n;k2N such thatjxn;k � ynj � 2�k for all n; k 2 N, then the sequence (yn)n2N is computable.4.3 Computability on Rn and CIt is clear that the nth power In of the interval domain may serve as compu-tational model for the Euclidean space Rn. The elements of In are n-tuples ofintervals. The function (A1; : : : ; An) 7! A1 � � � � �An19



gives an isomorphism between In and the setfA1 � � � � �An j Ai 2 Igcontaining all n-dimensional rectangles whose edges are either compact inter-vals or the entire real line R. In this setting, again, the order v is reversed sub-set inclusion and � is reversed inclusion-in-the-interior. The set of rectangleswith rational corner points serves as a basis for the domain. The enumerationJ0; J1; J2; : : : of this basis is de�ned via the n-tupling function(i1; � � � ; in) 7! hi1; : : : ; ini:Nn ! Nwith corresponding projections �ni :N! N. We setJhi1;:::;ini = Ii1 � � � � � Iin:All the results from Section 4.2 readily generalize to the n-dimensional case.Occurrences of the absolute value jxj have to be replaced (where appropriate)by, for example, the 1-normk(x1; : : : ; xn)k = max(x1; : : : ; xn)which is equivalent to the Euclidean norm. Width of intervals has to be re-placed by the maximum width of the sides of the rectangles.Having dealt with Rn we of course get immediately a computability theory forthe complex plane C , via the identi�cation C = R2.5 Computable real functionsThe domain theoretic notion of computable function gives rise to a naturalde�nition of computable function on the reals.De�nition 22 A function f :R! R is computable i� there is an extensiong:I ! I (i.e. g(fxg) = ff(x)g for all x 2 R) which is computable in thesense of Section 3.Employing Corollary 11 and the fact that the restriction of the Scott-topologyon I to the set of maximal elements coincides with the usual topology of R,we immediately get: 20



Proposition 23 Every computable function R! R is continuous. A contin-uous function is computable if and only if it maps computable sequences ofintervals to computable sequences of intervals.We will show that this notion of computable function coincides with the clas-sical notion of Grzegorczyk and Lacombe [18,21].5.1 Equivalence with the classical notionFor the classical de�nition of computable real function, we use the re-formulationof [19] which Pour-El and Richards employ as a starting point for a detailedtreatment of computable analysis [29].De�nition 24 A function f :R! R is PR-computable i� (1) it maps com-putable sequences to computable sequences and (2) it is e�ectively uniformlycontinuous on intervals [�n; n], i.e. there is a recursive function h:N2 ! Nsuch that jx � yj � 12h(n;k) & x; y 2 [�n; n] implies jf(x) � f(y)j � 12k for alln; k 2 N and x; y 2 R.Proposition 25 Suppose A � R is a compact interval and f :A ! R iscontinuous. Then every Scott-continuous extension g:IA ! I of f satis�esthe following property: For every " > 0 there is � > 0 such that jBj < � impliesjg(B)j < " for all compact intervals B � A. Moreover, jx � yj < � impliesjf(x)� f(y)j < " with " and � as above.PROOF. Suppose " > 0. For each x 2 A, the function g is continuous atfxg. This means that there is �x > 0 such that B � (x � �x; x + �x) impliesg(B) � (f(x) � "2 ; f(x) + "2) for all B 2 IA. Now the interval A is entirelycontained in the in�nite union Sx2A(x� �x2 ; x+ �x2 ). So, by compactness, thereis a �nite set fx1; x2; : : : ; xng such thatA � (x1 � �x12 ; x1 + �x12 ) [ (x2 � �x22 ; x2 + �x22 ) [ � � � [ (xn � �xn2 ; xn + �xn2 ):Let � := min( �x12 ; �x22 ; : : : ; �xn2 ). Suppose jBj < �. Then there is i 2 f1; 2; : : : ; ngwith B � (xi��xi; xi+�xi). Hence g(B) � (f(xi)� "2 ; f(xi)+ "2). In particularjg(B)j < ", so the �rst part of the proposition is proved. For the second part,it su�ces to remark that f([a; b]) � g([a; b]) holds for all a; b 2 A. 2Theorem 26 Every computable function is PR-computable.21



PROOF. Suppose f :R! R is computable with witnessing continuous com-putable extension g:I ! I. By Proposition 23 and Theorem 20, the function fmaps computable sequences to computable sequences. We will obtain an ef-fective modulus of continuity for f by using Proposition 25. Suppose n 2 N.E�ectively construct a recursive function jn:N! N such thatq�1(jn(2k+`)�1) = �n+ 2n � 2̀k and q�2(jn(2k+`)�1) = 2n2k ;i.e. such that Ijn(2k+`) = h�n+ 2n � `� 12k ;�n+ 2n � `+ 12k ifor all k 2 N and ` = 1; : : : ; 2k � 1. Then de�ne the relation R to consist of alltriples hn; k; ii such that8` 2 f1; : : : ; 2i � 1g9`0 2 N: I`0 � g(Ijn(2i+`)) & jI`0j < 12k : (4)This relation is r.e. as the set over which ` ranges is �nite. We now claim thathn; k; ii 2 R=) �8x; y 2 [�n; n]: jx� yj � 2n2i =) jg([x; y])j < 12k � (5)=)hn; k; i+ 1i 2 R: (6)To see the �rst implication, assume hn; k; ii 2 R and x; y 2 [�n; n] withjx � yj � 2n2i . The intervals Ijn(2i+`) for ` = 1; � � � ; 2i cover [�n; n] and havean overlap of width n2i�1 . Thus there is ` with x; y 2 Ijn(2i+`). By de�nitionof R, there is `0 such that I`0 � g(Ijn(2i+`)) and jI`0j < 12k . In particular, thisimplies jg([x; y])j < 12k as required. For the second implication, assume thatthe formula in (5) holds. The interval Ijn(2i+1+`) has width 2n2i hence its imageunder g has width smaller than 12k . This implies that there is `0 2 N withjI`0j < 12k and such that g(Ijn(2i+1+`)) is contained in the interior of I`0. Hencehn; k; i+ 1i 2 R.By the implication in (6), continuity of f on intervals [�n; n], and Proposi-tion 25, for all n; k 2 N there is i 2 N such that hn; k; ii 2 R. Hence, by the Se-lection Theorem, there is h:N2 ! N total recursive such that hn; k; h(n; k)i 2R for all n; k 2 N. This function is an e�ective modulus of continuity for f bythe implication in (5) and Proposition 25. 222



We now consider maxima of PR-computable functions. Pour-El and Richardsshow that the sequence of maxima of a computable sequence of functions ona �xed interval is a computable sequence of real numbers [29, Theorem 0.7].Their proof can be adopted to a similar situation: the sequence of maxima ofa �xed function on a sequence of intervals.Proposition 27 If f :R ! R is PR-computable and h:N ! N n f0g is re-cursive, then the sequence (max(f(Ih(n))))n2N is a computable sequence of realnumbers.PROOF. As h(n) > 0 we have Ih(n) 6= R for all n 2 N; so the sequence iswell-de�ned. We assume that g:N2 ! N is the recursive modulus of continuityfor f , i.e. thatjx� yj � 12g(n;k) & x; y 2 [�n; n] =) jf(x)� f(y)j � 12k (7)for all n; k 2 N. There is j:N! N total recursive such thatIh(n) � [�j(n); j(n)] (8)for all n 2 N. De�ne �:N2 ! N total recursive such that�(n; k) � 2g(j(n);k) � 2jq�2(h(n)�1)j;then jIh(n)j�(n; k) � 12g(j(n);k) : (9)Now set sn;k = maxff(q�1(h(n)�1)) + i�(n; k) jIh(n)j| {z }:=xn;k;i ) j 1 � i � �(n; k)g:Then (sn;k)n;k2N is a computable double sequence of real numbers. Suppose fattends its maximum on Ih(n) at x̂ 2 Ih(n). There is i 2 f1; : : : ; �(n; k)g suchthat jx̂� xn;k;ij � jIh(n)j�(n;k) . Hencejx̂� xn;k;ij � 12g(j(n);k) (10)23



by (9). Combining (7) with (8) and (10) yields jf(x̂) � f(xn;k;i)j � 12k . Butf(xn;k;i) � sn;k � f(x̂) by de�nition of sn;k and x̂. Thus jmax(f(Ih(n))) �sn;kj � 12k and the sequence is computable by Corollary 21. 2Lemma 28 If (xn)n2N is a computable sequence of real numbers then the pred-icate xn < qmis r.e. in n and m.PROOF. There is a recursive function c:N2 ! N such thatjqc(n;i) � xnj � 12i for all i 2 N: (11)Now xn < qm holds i� there is i 2 N withxn + 12i < qm: (12)Using (11), we see that (12) implies qc(n;i+1) + 12i+1 < qm. On the other hand,qc(n;i) + 12i < qm certainly implies xn < qm. So we havexn < qm () 9i 2 N: qc(n;i) + 12i < qmand the latter predicate is r.e. 2Theorem 29 Every PR-computable function is computable.PROOF. Suppose f :R ! R is PR-computable. Denote by �f :I ! I thelargest strict extension of f to the interval domain, i.e. �f (?) = ? and �f (J) =f(J) is the forward image of J under f for all J 2 I. NowIm � �f(In) () m = 0 or (n > 0 & [minf(In);maxf(In)] � int(Im))() m = 0 or �n;m > 0 &minf(In) > q�1(m�1) � jq�2(m�1)j &maxf(In) < q�1(m�1) + jq�2(m�1)j�:This relation is r.e. by Proposition 27 and Lemma 28. Hence f is computable. 224



Theorems 26 and 29 show that our approach is equivalent to the one by Pour-El & Richards and therefore to that of TTE and Grzegorczyk's de�nition:Corollary 30 A function is computable if and only if it is PR-computable.In conjunction with Proposition 23, this yields a novel characterisation of PR-computability which sheds new light on the di�erence with the computabilitynotion of Banach-Mazur [22], also known as sequential computability (A func-tion is computable in this sense i� it preserves computability of sequences ofreal numbers.)Corollary 31 A continuous function is PR-computable if and only if it mapscomputable sequences of intervals to computable sequences of intervals.Corollary 32 If a function f :I ! I is computable, strict, and maps maxi-mal elements to maximal elements then the largest strict continuous functionabove f is computable.5.2 Partial functionsFor f :I ! I we let Df = fx 2 R j f(fxg) 2 max(I)gbe the domain of the associated partial function on the real line. Our aim isto characterize the partial computable functions of reals in the spirit of [29].As a starting point, we derive from Corollary 11Proposition 33 If f :I ! I is computable and (xn)n2N is a computable se-quence of reals in Df then the sequence (f(xn))n2N is computable.Proposition 34 Suppose f :I ! I is computable. Then there is a recursivefunction  such that  (n), for n � 1, is the index for a modulus of continuityon In if and only if In � Df .PROOF. This is essentially the same as the second part of the proof ofTheorem 26. It is a little harder as the boundaries are more complicated.Withthe abbreviations an = q�1(n)�1 � jq�2(n)�1j (i.e. In = [an; an + 2jq�2(n)�1j]), wede�ne jn:N! N for n > 0 in such a way thatq�1(jn(2k+`)�1) = an + ` jInj2k and q�2(jn(2k+`)�1) = jInj2k ;25



i.e. such that Ijn(2k+`) = han + (` � 1) jInj2k ; an + (`+ 1) jInj2k ifor all k 2 N and ` = 1; : : : ; 2k � 1. The resulting function h(n; k) will be totalfor �xed n if and only if In � Df . 2Almost the same is possible for computable intervals. We only have to takecare to exclude all indices for the least element of I.Proposition 35 Suppose f :I ! I is computable, Then there is a recursivefunction  such that whenever �I(n) 6= ? the number  (n) is the index for amodulus of continuity on �I (n) if and only if �I(n) � Df .PROOF. Again, the proof is essentially the same as before. We employProposition 8 to prove that the relation in (4) is r.e. 2This treatment of partial functions leaves a number of open problems, e.g. thefollowing:� Is the domain of a partial computable real function a union of computableintervals? Is this union e�ective?� The converse: Suppose f is a partial real function with an e�ective union ofcomputable intervals as domain, e�ectively uniformly continuous on theseintervals and such that f maps computable sequences to computable se-quences. Is there a computable extension of f to the interval domain? Isthere a largest strict extension? Is this extension computable?5.3 Computable functions on RnA characterization of computable functions Rn ! R similar to Corollary 30holds. In particular this implies that the notion coincides with Pour-El &Richards' de�nition [29]. The proof becomes slightly more complicated: InTheorem 26 we constructed an e�ective modulus of continuity by covering theinterval [�m;m] with several \layers" of intervals. The kth layer consisted of2k+1 � 1 intervals which had width 2m2k and overlap m2k . In n dimensions, wehave to cover [�m;m]n by layers of n-dimensional rectangles. The edges aretaken from the set of intervals from the 1-dimensional case, so there will be(2k+1�1)n rectangles. Width and overlap are the same as in the 1-dimensional26



case. In this way, we obtain an e�ective construction which is more involvedthan for the real line.Likewise, functions C ! R can be dealt with. Functions C ! C are split intoreal and imaginary part which are investigated separately.6 Real number representationsBy Corollary 19, a real number x is computable i� the set fxg is the lub of ane�ective ascending chain in I, that is i� it is the intersection of an e�ectivechain of shrinking nested intervals. We now give an example of how to obtainsuch shrinking interval sequences.Let us, for simplicity, consider a computable interval A. An iterated functionsystem (IFS) on A is a �nite set of computable functions fi:A ! A, i 2K, where K is some �nite indexing set. We will assume the functions to becontracting (so that the IFS is hyperbolic) and computable. Then for everytotal recursive function h:N! K the sequenceJ0 :=AJ1 := fh(0)(A)J2 := fh(0)(fh(1)(A))...Jn := fh(0)(fh(1)(� � � fh(n)(A) � � �))...is a shrinking sequence of intervals and de�nes a computable element xh of Awith fxhg = Tn2NJn. The interval Jn contains xh and is regarded as anapproximation to this point.If we further specialise this example to the IFS with A = [0; 1],K = f0; : : : ; 9gand fi(x) = x+ i10 ; i = 0; : : : ; 9;then the sequence h(0); h(1); : : : is exactly the decimal expansion of the realnumber xh in the intersection of intervals. As a concrete example, take h suchthat h(i) is the ith decimal place of the number �. ThenJ0 := [0; 1] 27



J1 :=f3([0; 1]) = [0:3; 0:4]J2 :=f3(f1([0; 1])) = f3([0:1; 0:2]) = [0:31; 0:32]J3 :=f3(f1(f4([0; 1]))) = f3(f1([0:4; 0:5])) = f3([0:14; 0:15]) = [0:314; 0:315]...Note that Jn+1 is not obtained by applying fh(n) to Jn.Similarly, expansions with respect to bases di�erent from 10 can be expressedvia IFS's. Also, one can choose the fi to have overlapping ranges, yieldingvarious signed digit representations. For example K = f�1; 0; 1g andfi(x) = x+ i2 ; i = �1; 0; 1for the interval A = [�1; 1] gives the signed binary expansion, where h(i) = kcorresponds to digit k at the ith place.This IFS framework can be used to represent more sophisticated number sys-tems such as the redundant base 2 �xed-point digit-serial numbers [24], wherereal numbers are generated by three functions, and exact 
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