A domain-theoretic approach to computability
on the real line'

Abbas Edalat and Philipp Stinderhauf

Department of Computing, Imperial College
180 Queen’s Gate, London SW7 2BZ
United Kingdom

{ae,ps15}@doc.ic.ac.uk

Abstract

In recent years, there has been a considerable amount of work on using continu-
ous domains in real analysis. Most notably are the development of the generalized
Riemann integral with applications in fractal geometry, several extensions of the
programming language PCFEF with a real number data type, and a framework and
an implementation of a package for exact real number arithmetic.

Based on recursion theory we present here a precise and direct formulation of
effective representation of real numbers by continuous domains, which is equiva-
lent to the representation of real numbers by algebraic domains as in the work of
Stoltenberg-Hansen and Tucker.

We use basic ingredients of an effective theory of continuous domains to spell out
notions of computability for the reals and for functions on the real line. We prove
directly that our approach is equivalent to the established Turing-machine based
approach which dates back to Grzegorczyk and Lacombe, is used by Pour-El &
Richards in their foundational work on computable analysis, and, moreover, is the
standard notion of computability among physicists as in the work of Penrose. Our
framework makes it possible to capture partial functions in an elegant way and it
extends to the complex numbers and the n-dimensional Euclidean space.

1 Introduction

Computable analysis is traditionally approached from two different directions.
On the one hand, we have the machine-oriented work, where computations are

1 Work supported by the EPSRC project Foundational Structures for Computer
Science at Imperial College.

To appear in Theoretical Computer Science 21 October 1997

performed on a certain kind of abstract machine. Type 2 Theory of Effectivity
(TTE) [20,40,41] falls into this class. In TTE, Turing machines operate on
infinite tapes, the inscription of the tapes represent real numbers or other
objects from analysis, for example subsets, functions or measures. The so-
called Russian approach [5] is also of this type. The main difference with TTE
lies in the restriction of input and output to computable elements. Although
different in spirit, the recursive functions in the Blum-Shub-Smale model [4]
can also be considered as machine-oriented. Real numbers are regarded as
entities, but the computable functions are constructed from building blocks in
a recursion-theoretic manner.

On the other hand, we have the analysis-oriented approach. Here concepts
from classical analysis are effectively presented and used to develop a com-
putability theory for real numbers. This approach to computable analysis orig-
inated from the work of Grzegorczyk [19] who classified Turing-machine com-
putable real functions as those that map computable sequences to computable
sequences and are effectively uniformly continuous. The work of Pour-El &
Richards [29] is based on this definition and is now well-established and fre-
quently cited in various communities including by physicists like Penrose [25].

The present paper is part of a programme to establish domain theory as a
new approach to computable analysis. Domain theory was introduced inde-
pendently by Dana Scott [32] for providing denotational semantics to func-
tional programming languages and by Yuri Ershov [15] as a means to inves-
tigate partial computable functionals of finite type. The use of the so-called
algebraic domains to model functional programming languages has become a
well-established paradigm in computer science.

Various attempts have been made to use algebraic domains to represent clas-
sical spaces in mathematics. Weihrauch & Schreiber [43] constructed embed-
dings of Polish spaces (topologically complete separable metrizable spaces)
into algebraic domains. Stoltenberg-Hansen and Tucker have shown how to
represent complete local rings [35] and topological algebras, including locally
compact Hausdorfl spaces and the real line, by algebraic domains [36]. Di
Gianantonio [6,7] has given an algebraic domain to model the real numbers.
Blanck [3] has more recently shown how to embed complete metric spaces into
algebraic domains.

In [36, Section 5.3], Stoltenberg-Hansen & Tucker use an algebraic domain to
represent the real line and prove that the resulting notion of computable real
function coincides with a slight strengthening of the approach by Pour-El &
Richards. Also, the work in [36] allows them to generalise this result to R"
and C which is explicitly done by Blanck in [3, Theorem 2.27].

However, a more general class, that of so-called continuous domains, is more

suitable to represent classical spaces. A continuous domain is a partially or-
dered set equipped with notions of completeness and approximation. The com-
pleteness axiom requires existence of least upper bounds for all directed sub-
sets, approximation means that all elements arise as directed suprema of their
essential parts or approximants. (All definitions are formally given in Sec-
tion 2.) The particular case of continuous lattices [17] arises in many other
branches of mathematics. The approximation axiom provides the link to the
machine-based level of recursion theory or Turing machines: We will enumer-
ate a convenient set of approximants and let the machine operate on this
set.

The link to computable analysis on the real line is provided by the interval
domain, the set of compact intervals of R, partially ordered with reversed set
inclusion. Already in [32], Scott suggested the idea of using the interval domain
to construct a real number data type. The real line embeds as set of maximal
elements in this continuous domain. Thus the above mentioned approximation
by partial elements corresponds to describing a real number as the intersection
of a sequence of shrinking nested intervals which is a standard way of defining
a real number in computable analysis [31]. Thus domain theory also provides
a link to the well-established field of interval analysis [23] and can lead to new
insights in this subject.

There has recently been a considerable amount of work in domain theory
which could be classified as part of the programme “Continuous domains in
computable analysis”. Most notably are the development of a domain theo-
retic framework for classical measure theory [11,9], the generalization of Rie-
mann theory of integration [10] with applications in fractal geometry [12], sev-
eral extensions of the programming language PCF with a real number data
type [6,16,28], and a framework and an implementation of a package for exact
real number computation [27,13]. This latter work is based on the one hand
on continued fractions and linear fractional transformations as in [38,24] and
on the other hand on the domain of intervals. These promising results sug-
gest that a marriage of domain theory and computable analysis will indeed
be fruitful for both subjects. The recent survey paper [8] gives an overview of
these applications of continuous domains.

In this paper, we start a systematic exploration of the use of continuous do-
mains for computable analysis. Here, we are concerned with analysis on the
real line, the complex plane, and R”. A forthcoming paper [14] will deal with
metric spaces and Banach spaces. The main results in the present paper are
the following: The domain-theoretic notions for computable real numbers and
for computable functions coincide with the well-established so-called Polish
approach which dates back to Grzegorczyk and Lacombe [18,21] and is equiv-
alent to the above mentioned TTE-approach and to the definitions of Pour-El
& Richards.

It can be shown using some general properties of algebraic and continuous do-
mains that computability on the reals in our sense coincides with computabil-
ity via the algebraic approach. Hence, apart from the slight strengthening of
Pour-El & Richards’ definition in [36], our results can be obtained from those
in loc.cit. and vice versa.

Compared to the continuous domain approach, however, any representation
of the real line by an algebraic domain is much more involved for topological
reasons. The domain considered in [36] is the ideal completion of the set of all
intervals with rational endpoints, and the real line is recovered as a quotient of
the set of so-called total elements. In contrast, the continuous domain for the
real line considered in the present paper is based on quite familiar and well-
established notions in elementary analysis and the real line is simply embedded
as its set of maximal elements.

In the present paper, we intend to promote domain theory as a means of
investigating computability aspects in traditional mathematics. Therefore, we
choose the more accessible continuous domain approach to computability and
present the framework and the proofs directly in a self-contained way.

1.1 Plan of the paper

This paper is divided in two parts. Part I deals with the mathematical tools
and Part IT investigates the computability structure for the real line and briefly
covers the n-dimensional Euclidean space and the complex plane.

To be self-contained, Part I starts in Section 2 with a short introduction to
continuous domains in general and the interval domain in particular. The link
to actual computations is provided by effective domain theory. Although it
dates back to the origins of domain theory, we have included a section on this
topic. The existing sources either consider algebraic domains only (e.g. [26,34]),
or, as [33], concentrate on certain subclasses of continuous domains which are
useful in denotational semantics but too special for our purpose. The only
exception is the unpublished set of lecture notes in German by Weihrauch
and Deil [42], where domains are considered as computational models very
much in the same spirit as in the present paper. Unfortunately, this source
is rather hard to access. There is a short published note [39] which contains
the most basic definitions but lacks the results we need for our work. So we
provide all the definitions and results needed and give proofs in Section 3 of
this paper.

Part II is the core of our work. In Section 4, we define the notions of com-
putable real numbers and sequences by effectively presenting the interval do-
main. These are shown to coincide with the corresponding standard notions

in classical computable analysis. Section 5 investigates the resulting notion
of computable function on the real line. Again, the notion coincides with the
standard one. As a corollary, we obtain a novel characterisation of computable
functions: A function is computable if and only if it maps computable se-
quences of intervals to computable sequences of intervals. We conclude the
paper by discussing real number representations within our framework.

1.2 Terminology

We will use the relevant notions from recursion theory as in the fairly standard
language of [31]. The set {0,1,2,...} of natural numbers is denoted by N. The
nth partial recursive function is denoted by ¢, , the nth recursively enumerable
(r.e.)set by W, so that W,, = dom(¢,,). We will make use of a standard pairing
function (-, -): NxN — N which could be defined as (n,m) = %(nz—l—Qnm—l—mz—l—
3n+m). The projections are denoted by 71, mq; they satisfy (mi(n),m(n)) =n
as well as m1({(n,m)) = n and m((n,m)) = m for all n,m € N. As usual, a
relation R C N x N is said to be r.e. if the set {(n,m) | (n,m) € R} is r.e. We
will conveniently say that R is r.e. in n,m. Similarly for relations of higher
arity.

Many of our results have the form “There is f with property A iff there is g
with property B”. Sometimes, we add the phrase “This equivalence is effec-
tive.” This means that there are partial recursive function ¥, ¢¥2: N — N such
that if ¢, has property A then ¢y(n) is defined and ¢y, (») has property B
and, conversely, if ¢, has property B then t(m) is defined and ¢y, has
property A. Similarly for r.e. sets in place of functions. This is referred to as
uniformity by Rogers in loc.cit.

We will employ the dovetailing principle in the form of the following construc-
tion: Every r.e. set A C N can be written as the union A = [,y A4, of an
increasing chain Ag C A; C A, --- such that the relation 1 € A,, is recursive
in z,n. To see that this is true, we take a Turing machine based approach to
recursion theory. If M is a machine which produces a list of the elements of A,
then define A, to contain those elements produced after n steps of computa-
tion by M. A consequence of effectiveness of this construction is the Selection
Theorem [31, Theorem 5-XVIII]. It says that there is a partial recursive func-
tion ¢»: N — N such that ¢(n) is defined iff the set W,, is not empty in which
case ¥(n) € W,.

Part I: Mathematical Tools

2 Continuous domains

Domain theory was introduced by Dana Scott in [32] as a mathematical theory
of computation. See [1] for a detailed treatment of domain theory, in particular
for topics which are not of interest here, but are important for denotational
semantics, e.g. cartesian closed categories and solution of recursive domain
equations. In this section, we give a short introduction to continuous domains
as computational models, a topic which has become an active area of research
in recent years.

2.1 Basic definitions

The first basic notion is that of a partially ordered set (poset) (D,). This is
a set D equipped with a binary relation C which is

reflexive: C x for all € D,
transitive: * C y and y C z implies « C z for all x,y,z € D,
antisymmetric: x C y and y C x implies v = y for all z,y € D.

The elements of D are thought of as descriptions of some objects. The order is
referred to as order of information. Indeed, x C y is understood as “y carries
more information than x”. From this it is apparent that the set of maximal
elements, denoted by max(D), will be of special interest. A non-empty sub-
set A C D is directed, if for all x,y € A there is z € A with C 2z and
y C z. Important examples of directed sets are increasing chains. These are
sets A = {ag,ay,as,...} such that ap C a3 C ay C ---. We think of such a
chain as a stepwise computation: in each step we gain more information about
the computed entity. What would this entity be? An element containing pre-
cisely all the information gained during the computation, which is exactly the
notion of supremum or least upper bound (lub): An element & € D is the lub
of the subset A C D if (1) it is an upper bound, i.e. ¢« C x for all ¢« € A
and if (2) whenever b € D is any other upper bound then x C b. We write
VT A = 2 to denote that the set A is directed and has lub z. The first axiom
for domains is closure under these computations: A directed complete partial
order (commonly abbreviated as depo) is a partially ordered set such that
suprema for all directed subsets exist. We call the dcpo pointed, if it contains
a least element L (pronounced “bottom”).

If (D,C) is a dcpo and x,y € D then we say that « approrimates y, and
write @ < y if for every directed subset A C D with y T VT A there is

some a € A with z C a. If 2/ C 2z, y C ¢/, and v < y then 2/ < y'. The
intuitive meaning of + < y is “the information content of z is essential for y”.
It is frequently referred to as “x is way-below y”.

We now arrive at the definition of a continuous domain: We require that every
element can be recovered from its essential ingredients.

Definition 1 A continuous domain is a depo (D,C) such that for every ele-
ment x € D the set

fr={yeDl|y <z}

is directed and has x as its supremum:
\/T -
b=

We often refer to a continuous domain simply as a domain. The single most
important property of the order of approximation < on a continuous domain
is the interpolation property: If + < y then there is z € D such that © < =z
and z < y. More generally: If z; < y for e = 1,...,n then there is z € D with
v, K zfore=1,....,nand z < y.

The unit interval [0, 1] in its usual order serves as an example of a continuous
domain. Here z < y iff + = 0 or x < y. Similarly, the extended non-negative
reals [0, 0o] with the usual ordering form a continuous domain.

The Seott-topology of a depo (D, C) consists of all subsets O of D which are up-
wards closed (z € O, # C y = y € O) and inaccessible by directed suprema,
ie. if VT A € O then O N A # (. This topology is always Ty but typically
not Ty. If D is a continuous domain, then, as a consequence of the interpo-
lation property, the sets T = {y € D | © < y} for + € D are Scott-open.
Moreover, they form a basis for the topology. A function f:(D,C) — (E,C)
between dcpo’s is continuous with respect to the Scott-topologies on D and £
if and only if it is monotone and preserves suprema of directed subsets: x C y
implies f(z) C f(y) and f(VTA) = VT f(A). A function f between pointed
depo’s is called strict if f(L) = L. The collection of all Scott-continuous func-
tions from D to E is denoted by [D — E]. It is endowed with the pointwise
order, i.e., f C g iff f(x) C g(x) for all @ € D, which makes [D — F] a dcpo.

The nontrivial Scott-open subsets in the above examples ([0, 1], <) and ([0, oo}, <)
are of the form (a,1] and («a, o], respectively. An endofunction on [0, o0] is
Scott-continuous iff it is monotone and lower semicontinuous in the traditional
sense. In general, a function f: X — [0, 00] from any topological space X is
continuous with respect to the Scott-topology on [0, ool iff it is lower semicon-
tinuous.

A subset B of a domain (D,C) is a basis if every element of D is the directed
supremum of all basis elements approximating it:

T = \/T@x N B).

Every domain D has a basis, namely D itself. A domain is w-continuous, if
it has a countable basis. In each of the above examples the set of all rational
numbers in the domain forms a basis; hence both [0,1] and [0, 00] are w-
continuous.

If D and D" are domains then so is their direct product, D x D’. The order
and order of approximation are coordinatewise, i.e.

(,2) E(y,y) = 2Ly &' Cy

and

(2,2 < (y,y) = s <y &’ <y

The Scott-topology on the product coincides with the product topology of
the Scott-topologies on the factors. Unlike the situation in general topology,
it is true that a function f: D x D' — F is Scott-continuous if and only if it
is Scott-continuous in both variables separately. This is due to the fact that
Scott-continuity can be characterised purely in order-theoretical terms.

2.2 The interval domain

The interval domain I gives the set R of real numbers a computational struc-
ture. It is the collection of all compact intervals, endowed with a least element:

T={[a,b)]CR|abeR, a<b}u{L}

The order is reversed subset inclusion, i.e. L C [for all [€ 7 and [a, b] C [¢, d]
iff a < cand b > d in the usual ordering of real numbers. One can think of
the least element L as the set R. Directed suprema are filtered intersections
of intervals. The way-below relation is given by I < J iff int(I) O J, where
int(/) denotes the interior of /. Thus L < [for all I € 7 and [a,b] < [e,d]
iff @ < ¢ and b > d. The maximal elements are the intervals [a,a], i.e. the
singleton sets.

The interval domain can be thought of as a triangle as depicted in Figure 1.
The upper edge of this triangle corresponds to the set of maximal elements,

O

N/

[a,]

L
Fig. 1. The interval domain.

i.e. to the real line. Points in the interior correspond to closed intervals of
non-zero length. As shown in the figure, the endpoints of such an interval can
be determined by drawing parallel lines to the side edges of the triangle and
intersecting these with the upper edge. The thick line segment in the picture
denotes the set {{z} | ¢« < 2 < b} of maximal elements above the element
[a,b] € Z, which is mapped by {z} + x to the interval [a, b].

What is the Scott-topology on Z? A base is given by the sets [a,b] = {I €
Z |1 C (a,b)}. So a base set for the relative Scott-topology on the set of
maximal elements is of the form f[a,b] N max(Z) = {{z} | = € (a,b)}. Under
the canonical map {z} — z:max(Z) — R this is mapped to the open inter-
val (a,b). Hence the set of maximal elements with the relative Scott-topology
is homeomorphic to the real line via {a} — .

Every continuous function f:R — R has a Scott-continuous extension to the
interval domain. This means that there is a Scott-continuous function ¢g €
[Z — Z] such that g({z}) = {f(x)} holds for all # € R. Moreover, among
those extensions which are strict in the sense that g(L) = L there is a largest
one. It is explicitly given by

g(I) ={f(@) | v e I}

for I # L. Since the non-bottom elements of the interval domain are exactly
the compact connected subsets of R and as the operation of taking the di-
rect image under a continuous function preserves both these properties, it is
immediate that the function ¢ is well-defined.

A convenient computational model for a compact interval A C R is defined in
the same manner. We denote with ZA the interval domain of A, consisting of
all compact intervals contained in A:

TA:={[a,b] C A|a<b}.

The order is reversed subset inclusion as before. Note that A itself is a compact
interval, so A € ZTA and we do not need to add a least element. The above
results for Z concerning the Scott-topology and extensions of continuous func-
tions do also hold for ZA. We can in addition consider continuous functions
f:A — B for A and B different compact intervals or the real line; those ex-
tend to the interval domains as before. If A is a compact interval rather than
the real line R, then we can drop the assumption of strictness to find a largest
extension.

3 An effective theory of continuous domains

The material covered in this section is rather well-known among domain theo-
rists with interest in recursion theory. Unfortunately, there is no simply avail-
able source on the subject as mentioned in the introduction. We develop the
theory along the lines of [42].

3.1 Effectively given domains

Definition 2 Suppose (D,C) is an w-continuous pointed domain with count-
able basis Do = {bg, b1, by, ---}. It is effectively given with respect to b if the
relation b, < b,, is r.e. in n,m. An element * € D is computable, if the set
{n € N|b, <z} is r.e. Without loss of generality, we will henceforth assume
that by = 1.

Remark. The reader might ask why we do not require the order of approx-
imation < or the predicate b, = L to be recursive (decidable). This is the
approach in most other accounts of effective domain theory, e.g. [33] and the
above mentioned Section 7 of [26]. These stronger assumptions (together with
a restriction of the class of continuous domains) are needed in connection with
the function space construction in order to yield a cartesian closed category
of effective domains. As we are not interested in this topic here, we keep the
definition as general as possible.

The computability structure on two effectively given domains induces an effec-
tive structure on their product as follows: If (D,C) and (D', C) are effectively
given with respect to (b,)ner and (8]),en, respectively, then the product D x D’
has the effective basis (b})nen with b7, v = (bs, 07,).

ny ¥m

10

Proposition 3 An element © € D is computable iff it is the lub of an effective
chain in Dq, i.e. iff there is f:N — N total recursive such that byoy C by) E
bpiay E -+ and v = V en byny. This equivalence is effective. Moreover, the
chain can be chosen to be a K-chain, i.e. such that byoy < by1y K by <K -+

PROOF. Suppose [x N Dy = {byy | n € N} for some total recursive g: N —
N. The function f: N — N is defined inductively. First we put f(0) = ¢(0). To
define f(n + 1) consider the set

A= {m € N[by < by & byn) < by }-

This set is r.e. as ¢ is recursive. Furthermore, it is non-empty by the interpola-
tion property of continuous domains. So we can apply the Selection Theorem
to get an element a, € A,. Then f(n + 1) := g(a,). The resulting func-
tion f gives an effective «-chain. We claim that its lub is z. To verify the
claim, observe that f(n) € g(N) for every n € N. Hence bs,y < 2 and so
\/TneN bi(n) E 2. On the other hand, we have b,(,) E by(n41) for every n € N,
Thus z = V',en byny C V en bf(n). This proves the claim, so the (only if)
part of the proposition holds.

For the (if) part, note that if z = \/T, o bs(ny then

b, < x < dn € N. b,, < byn).

This enables us to effectively obtain an index for [a N Dy from f. O

We now define an enumeration £ of the set D. of all computable elements.
This is done in the following manner:

(1) Start with a natural number n.
(2) This describes a partial recursive function ¢,: N — N.
(3) Effectively construct an index n’ of a total recursive function ¢, such
that range(¢,/) = range(,) U {0}. (Recall that by = L.)
(4) Effectively get an index n” of the total function ¢,» which is recursively
defined by putting ¢,»(0) = ¢,,(0) and the following procedure.
(a) Start with ¢ =0 and k = 1.
(b) The set A= {l>k|by, i) <bs 0} € Nisre.
(c) Write A = U,,cn A, where the test £ € A,, is recursive in ¢, m and
where Ag C A, C A, C .-
(d) Now, starting with m = 1, each of these sets is tested for the existence
of £ < m with / € A,,. Whenever no such element is found, we put
Gan (1 +m) = ppn(1) and check for the next value of m.

11

(e) If, at some stage, there is £ < m with ¢ € A,, then let ¢, (i + m) =
&n (), increment ¢ by m, set k = ¢ + 1, and go to step (4b).
Note that ¢, defines an effective chain in range(¢,/): for each m € N
we have either by) < by, (mt1) O Ppn(m) = ¢pn(m + 1). Moreover, if
range(¢,s) happened to be a chain already, then for each i € N there is
J € N such that by) < by ,(;) so that V¥ien b, (i) = VT range(d,).
(5) Now define £(n) := V' ien b, (i)

Remark. Although the chain given by ¢, as constructed is not a <-chain,
it is possible to effectively obtain an effective <-chain from this by Proposi-
tion 3.

Proposition 4 Every element from Dg is computable. Moreover, there is a
total recursive function k: N — N such that £ ok =1 0b, where ¢: Dy — D, is
the inclusion map.

PROOF. Clearly, for each n € N the set {m € N|b,, < b,} is r.e. and an
index for it is effectively obtainable from n. As the equivalence in Proposition 3
is effective, we can construct the function £ from this. O

Lemma 5 The relation b, < £(m) is r.e. in n and m.

PROOF. This is an immediate consequence of the fact that b, < \/TieN by
iff there is 1 € N with b, < by;). O

Proposition 6 Least upper bounds of effective chains of computable elements
are computable with effectively obtainable index.

PROOF. The set of basis elements way-below the supremum is the union of
the sets of elements way-below the individual elements. This can be obtained
effectively. O

Remark. It is evident that Proposition 6 holds for effective directed sets
in place of chains, too. Enumerations of D. satisfying Lemma 5 and Proposi-
tion 6 are called admissible in [42]. In loc.cit., it is shown that all admissible
enumerations are isomorphic, i.e. if £, &N — D_. are both admissible then
there is a recursive bijection f:N — N with £ o f = ¢'.

12

3.2 Computable functions

Definition 7 Suppose that the domains (D,C) and (D',C) are effectively
given with respect to b and b, respectively. A continuous function f: D — D’
is computable, if the relation

b, < f(by)

s r.e. tnn,m.

Proposition 8 If f: D — D' between effectively given domains is computable
then the relation

b, < f(ép(n))

s r.e. tnn,m.
PROOF. Note that

F€n(n) = (V' {y |y < ép(n)})
=\ {f(W) |y < ép(n)}
—\/"{&' € D | 3y < &p(n). &' < [(y)}
VT 3 € N b < En(n) & B, < f(b))

by continuity of f. Hence

B < f(Ep(n)) = JieN. (b, < f(b;) & b; < Ep(n)).

This is r.e. in n and m by Lemma 5 and the fact that f is computable. O

Theorem 9 A continuous function f: D — D' between effectively given do-
mains is computable tff there is a total recursive function ¢»: N — N such that

Jotn=tmov.
N v N
£ £
D / D'

13

PROOF. (only if) Suppose that {p(ng) = x. By Proposition 8, the relation
bl < f(ép(n)) is r.e. in n,m. So an index for

{m e N[, < f(ép(no))}

is effectively obtainable from ng. This gives the function .

(if) Suppose f o ép = Epsr o . With &k from Proposition 4 we have

b, < f(by) <= b, < f(€p(k(n)))
= b, < Ep(Y(k(n))).

This set is r.e. by Lemma 5 and recursiveness of ¥ o k. O

Remark. Theorem 9 is part of the Myhill-Shepherdson-Theorem in this set-
ting. What 1s missing is the fact that, roughly speaking, computability implies
continuity. This means that if a recursive function ¥: N — N defines a func-
tion f: D. — D’ on the computable elements via {pr 0 ¢p = f o £p, then this
function f is necessarily Scott-continuous in the sense that it preserves all
existing suprema of directed subsets. As we do not need this result here, we
refer the reader to Satz 7 in [42] for the proof. Alternatively, the proof of
Theorem 3.6.16 of [40]) which contains the result for the algebraic case can be
translated to the continuous setting.

Using the concept of computable sequences, Theorem 9 can be put in a very
appealing form.

Definition 10 A sequence (x,)nen in D is computable, if there is a recursive

function h: N — N such that x, = Ep(h(n)).

Corollary 11 A continuous function f: D — D’ between effectively given do-
mains is computable iff it maps computable sequences to computable sequences.

PROOF. (if) As the identity on N is recursive, the sequence ({p(n))nen is
computable. Computability of the image sequence (f(£p(n)))nen ensures com-
putability of f by Theorem 9.

(only if) Assume that f is computable and pick ¢»: N — N with folp = éprow)
(Theorem 9). If (x,)nen is a computable sequence then there is A: N — N re-
cursive such that «,, = {p(h(n)). Then f(x,) = f(Ep(h(n))) = Ep(P(h(n))) so

the sequence (f(x,))nen is computable since the function 1 oh is recursive. O

14

Remark. It is possible to have a unified framework for effectively presenting
domains as suggested to us by Dana Scott. If one restricts to w-continuous
bounded-complete domains, i.e. domains where every subset which is bounded
above has a supremum, then there is a universal domain U. It has the property
that every such domain is isomorphic to the image of a retraction on U. Thus
an effective structure on U, which can be concretely constructed as the set
of all non-empty closed subsets of the Cantor space under reverse inclusion,
gives rise to effective structures on all domains which are computable retracts
of U. Computable functions between such domains can be treated in a similar
fashion. However, we do not take this approach here, firstly because it requires
significantly more domain theory and secondly because, in the sequel [14] to
this paper, we will apply the framework to Banach spaces and employ domains
which are not bounded-complete.

Part 1I: Computability via Domain Theory
4 Computability on the real line
4.1 The effective interval domain

The interval domain Z is w-continuous. An example for a countable basis is
the collection Zy of all intervals with rational endpoints together with the
least element L. We will use this domain to endow the real numbers with a
computable structure.

In order to proceed we first have to say how to deal with the set Q of rational
numbers. We denote by ¢o, ¢1, ¢z, ... a standard numeration of the rationals,
€.8. q(n,(m k) = G711 Lhe arithmetic operations +, —, -,/ as well as the com-
parisons <, <, = and the absolute value function |- | on rationals are recursive
in their indices.

Now we are ready to define an effective structure for the interval domain. We
set

[OZJ_

and

15

Clearly, this enumerates the basis Zy. Let us check that the way-below relation

is r.e. We have [, < [, iff I, Cint([,) iff

n=0or (mvn > (and |Q7r1(n—1) - Q7r1(m—1)| + |Q7r2(m—1)| < |Q7r2(n—1)|)7

so this relation is even recursive. It should be remarked that the particular
choice of the basis and the enumeration for the basis is not essential for the
theory as long as one can pass effectively back and forth between the bases.
We picked the given enumeration as it makes the characterization of < par-
ticularly easy. The resulting enumeration of the computable elements of 7 is

denoted by &1 N — 7.
4.2 Computable numbers and sequences

A real number x € R is called left computable, if the set {n € N | ¢, < x} is
r.e. Right computability is defined in an analogous way.

Proposition 12 An interval [x,y] € T is computable iff x is left-computable
and y s right-computable.

PROOF. The interval is computable iff {n | I, < [z,y]|} isr.e. Now ¢, < z iff
there are m, k € N such that ¢, = ¢, — |qi| and I, py41 < [2,y]. The relation
¢ > y can be characterised similarly, hence the proposition follows. O

One possible definition of computability for a real number is “x is both left-
and right-computable.” From this it is an immediate consequence that a real
number z is computable iff the set {z} is a computable element of the inter-
val domain. We will obtain an effective version of this result in Corollary 19
below, using the approach via fast converging Cauchy-sequences of rationals
to formulate computability for real numbers.

Definition 13 A real number v is computable, if there is a total recursive
function h: N — N such that

1

for all n € N.

Computable real numbers were first investigated by Turing [37]. Our defini-
tion is used by many authors (for early sources see e.g. [30,18]), is widely

16

accepted, and has many different equivalent characterizations. It is also used
for constructive analysis in [2]. Before we proceed to the above mentioned re-
sult, we first turn our attention to the width of intervals. For I = [a, b] we set

|[I| =b—a,for I = L =R we define |I| = oc.

Lemma 14 1) The relation |I,,| < g, is recursive in n,m.
2) The relation |£z(n)| < gm is r.e. in n,m.

PROOF. 1) We have |I,| = oo for n = 0 and [[,,| = 2|¢n,(n—1)| otherwise.
So (1) clearly holds.

2) As &r(n) = {1k | Ir < &2(n)} it is true that [é7(n)| < g, holds iff there is
k€ Nwith I} < &(n) and |Ii| < ¢n. These two relations are r.e. by Lemma 5
and part (1), respectively. O

It is well-known that it is not possible to effectively enumerate all computable
real numbers (see, e.g. [40, Lemma 3.8.9]). The set of computable intervals,
i.e. computable elements of the interval domain, however, can be enumerated
with 7. This gives rise to a partial enumeration of the set of computable real
numbers.

Theorem 15 There is a partial recursive function h: N — N such that h(n)
is defined whenever £7(n) is maximal in T and such that in this case ¢py)
is a total function which defines a fast converging sequence of rationals with
limit x,,, where é2(n) = {x,}.

PROOF. The relation R with

1
(n ki) € B o= [< r(n) & |1 < o (1)

is r.e. in n,k,i by Lemmata 5 and 14(1). Moreover, it is true that if &z(n)
is maximal and k € N there is ¢+ € N with (n,k,7) € R. By the Selection
Theorem, there exists a partial recursive function g: NxN — N such that

(n,k,g(n,k)) € R (2)

holds for all k& whenever £{7(n) is maximal. Define j:N* — N by j(n,k) =
mi(g(n, k) — 1). Then g¢;(,) is the middle point of the interval I,). Now
(¢j(n,k))ken 1s a fast converging sequence with limit 2,: By (2) and (1) we
have in particular @, € Iymr). Now @iy € Iympy and [Lymp| < 27% so
1T — G| < 27% as required. Finally, we define the function A to assign to
a number n € N the derived index for the function sending k to j(n,k). O

17

The converse of this is also true: If a sequence of rationals effectively converges,
then an index for the limit is effectively obtainable from an index for the
sequence. As we are going to prove this result for sequences of reals, we need
some preparatory definitions.

Definition 16 A sequence (x,)nen of real numbers is computable, if the se-
quence ({x,})nen s computable in Z. (In other words, if there exists a a total

recursive function f:N — N such that {x,} = &(f(n)).)

We say that the sequence converges effectively to x € R, if there is g: N — N
recursive (the modulus of convergence) such that k > g(n) implies |1y — x| <
27",

Lemma 17 The function (q, [a,b]) — [a—|q|, b+]|¢|): QX T — T is computable.

Now we are able to prove the second half of the characterization of computable
real numbers as promised above: limits of effectively convergent sequences are
computable.

Theorem 18 If (x,)nen is an effectively convergent computable sequence,
then its limit x is computable. Moreover, an index for {x} can be obtained
effectively from the indices for the sequence and the modulus of convergence.

PROOF. Assume ¢:N — N is such that & > g(n) implies |z — x| < 27"
Using Lemma 17 and effectiveness of the sequence (@,)nen, we see that there
is h: N — N recursive such that

1
E(h(n)) = [ty = 5omps Tm) + g - (3)

Then z € int({z(h(n))) and {z} = N,enéz(h(n)). The interval sequence
(&2(h(n)))nen need not be shrinking, but the sequence (éz(h(2n)))nen is. To
see this, suppose y € &r(h(2n + 2)). Then |y — zy2n42)] < 2-(27+1) But
[T g(2n+2) — 2| < 2-(742) and |¢ — Loany| < 2777 S0 |y — 2y < 2-(2nt1) 4
2-(n+2) 4 9=2n < 9=~ Thus y € int(é7(h(2n))).

Hence, via Proposition 6, an index for the function sending n to h(2n) is an
index for {z}. O

In particular, this result allows us to conclude that our notion of computable
number coincides with the classical one.

Corollary 19 A real number x is computable if and only if the set {x} is a
computable element of the interval domain.

18

PROOF. Theorem 15 yields one direction and Theorem 18 together with
the fact that every computable sequence of rational numbers is a computable
sequence of real numbers the other. O

The effectivity of Theorems 15 and 18 enables us to show that our notion of
computable sequence coincides with the notion introduced in [29].

Theorem 20 A sequence (,)nen is computable if and only if there is a re-
cursive function r: NN — N such that |q.(o) — vn| < 27% for all n,k € N.

PROOF. Assume that (2,)en is a sequence of reals and that r: NxN — N
is recursive such that |g,(,p — 2a| < 27% for all n,k € N. This means that
(Gr(n,k) Jken is a computable sequence effectively convergent to x, with the
identity function as modulus of convergence. So we can apply Theorem 18 to
effectively get an index for x,, from r and n. This means that the sequence x,,
is computable.

Now assume that there is f: N — N with {7(f(n)) = {z,}. By Theorem 15
there is a recursive function fi: Nx N — N such that the sequence (Qh(f(n),k))keN
is fast converging with limit x,. Thus we have a double sequence as re-
quired. O

It is another immediate consequence of effectivity of Theorem 18 that The-
orem 20 generalizes to double sequences of real numbers. A double sequence

(Zn.k)nken of real numbers is said to be computable, if there is h: N x N — N
recursive such that {z,;} = & (h(n, k)) for all n, k € N.

Corollary 21 (Proposition 0-1 of [29]) Suppose (yn)nen s a sequence of

real numbers. If there is a computable double sequence (¥, k)nken such that
[Tk — yn| <27 for all n,k € N, then the sequence (y,)nen is computable.

4.3 Computability on R"™ and C

It is clear that the nth power Z" of the interval domain may serve as compu-
tational model for the Euclidean space R”. The elements of Z" are n-tuples of
intervals. The function

(Al,...,An)HA1><"'><An

19

gives an isomorphism between 7" and the set

{A; x - x A, | A €T}

containing all n-dimensional rectangles whose edges are either compact inter-
vals or the entire real line R. In this setting, again, the order C is reversed sub-
set inclusion and < is reversed inclusion-in-the-interior. The set of rectangles
with rational corner points serves as a basis for the domain. The enumeration
Jo, J1, J2, ... of this basis is defined via the n-tupling function

(i, in) = (i, yin i NP = N

with corresponding projections 77: N — N. We set

St oiny = iy X oo X L

in*

All the results from Section 4.2 readily generalize to the n-dimensional case.
Occurrences of the absolute value || have to be replaced (where appropriate)
by, for example, the oco-norm

(@1, .., 2,)|| = max(xy,...,2,)
which is equivalent to the Euclidean norm. Width of intervals has to be re-
placed by the maximum width of the sides of the rectangles.

Having dealt with R™ we of course get immediately a computability theory for
the complex plane C, via the identification C = R2

5 Computable real functions

The domain theoretic notion of computable function gives rise to a natural
definition of computable function on the reals.

Definition 22 A function f:R — R is computable iff there is an extension
I — T (ie. g{z}) = {f(x)} for all € R) which is computable in the

sense of Section 3.

Employing Corollary 11 and the fact that the restriction of the Scott-topology
on 7 to the set of maximal elements coincides with the usual topology of R,
we immediately get:

20

Proposition 23 Fvery computable function R — R is continuous. A contin-
wous function is computable if and only if it maps computable sequences of
intervals to computable sequences of intervals.

We will show that this notion of computable function coincides with the clas-
sical notion of Grzegorczyk and Lacombe [18,21].

5.1 Equivalence with the classical notion

For the classical definition of computable real function, we use the re-formulation
of [19] which Pour-El and Richards employ as a starting point for a detailed
treatment of computable analysis [29].

Definition 24 A function f:R — R is PR-computable iff (1) it maps com-
putable sequences to computable sequences and (2) it is effectively uniformly
continuous on intervals [—n,n], i.e. there is a recursive function h: N* — N
such that |z — y| < 2h(+k) & x,y € [—n,n] implies |f(z) — f(y)] < 3% for all
n.k € N and z,y € R.

Proposition 25 Suppose A C R is a compact interval and f: A — R is
continuous. Then every Scott-continuous extension g:TA — T of f satisfies
the following property: For every e > 0 there is 6 > 0 such that |B| < § implies

lg(B)| < & for all compact intervals B C A. Moreover, |x — y| < & implies
|f(z) — f(y)] < e with ¢ and § as above.

PROOF. Suppose ¢ > 0. For each @ € A, the function ¢ is continuous at
{z}. This means that there is d, > 0 such that B C (x — d,,x +) implies
g(B) C (f(x) =5, f(x) + 5) for all B € TA. Now the interval A is entirely
contained in the infinite union U ¢4 (2 — %7 x4+ %) So, by compactness, there

is a finite set {1, 22,...,2,} such that
Oy Oy s, s, Os,) Os,)
Ag($1—7,$1+7)U($2—7,$2+7)UU(l’n— 2,$n+ 2)

Let § := min(%, %, el San) Suppose |B| < 6. Then thereisi € {1,2,...,n}
with B C (2; — 0y, i + 0y,). Hence g(B) C (f(x:) — 5, f(2:)+35). In particular
lg(B)| < &, so the first part of the proposition is proved. For the second part,
it suffices to remark that f([a,b]) C g([a,b]) holds for all ¢,b € A. O

Theorem 26 Fuvery computable function is PR-computable.

21

PROOF. Suppose f:R — R is computable with witnessing continuous com-
putable extension g: 7 — Z. By Proposition 23 and Theorem 20, the function f
maps computable sequences to computable sequences. We will obtain an ef-
fective modulus of continuity for f by using Proposition 25. Suppose n € N.
Effectively construct a recursive function j,: N — N such that

2n

Try(jn (2K 40)—1) = —T + 210 " and qr,(j,(2k+0)-1) = o

i.e. such that

l— C+1
L 2kg0y = |—1 4 2n - o ,—n+2n - o

forall k € Nand £ =1,...,2F — 1. Then define the relation R to consist of all
triples (n, k,1) such that
i 1
M= {1, ... ,2 — 1}3[€ N. [gl < g([jn(2i+5)) & |[gl| < Q_k (4)

This relation is r.e. as the set over which ¢ ranges is finite. We now claim that

(n,k,i) € R
= (ve.ye [l o -yl < o = lo(le.)] < 57) g
— (n,k,i+1) € R. (6)

To see the first implication, assume (n,k,1) € R and x,y € [—n,n] with
|z — y| < 2% The intervals I} (yiyy for £ = 1,---,2° cover [-n,n] and have
an overlap of width . Thus there is £ with x,y € I; (2i4s. By definition
of R, there is {' such that Iy < g(I;,2i4¢)) and [Ip] < . In particular, this
implies |g([z,y])| < 3= as required. For the second implication, assume that
the formula in (5) holds. The interval [; (3i+114 has width 22—7} hence its image
under ¢ has width smaller than 2% This implies that there is ¢/ € N with
1| < 35 and such that g(I;,(2i+11¢) is contained in the interior of I,. Hence

(n.k,i+1) € R.

By the implication in (6), continuity of f on intervals [—n,n], and Proposi-
tion 25, for all n, k € N there is ¢ € N such that (n,k,7) € R. Hence, by the Se-
lection Theorem, there is h: N* — N total recursive such that (n, k, h(n,k)) €
R for all n, & € N. This function is an effective modulus of continuity for f by
the implication in (5) and Proposition 25. O

22

We now consider maxima of PR-computable functions. Pour-Fl and Richards
show that the sequence of maxima of a computable sequence of functions on
a fixed interval is a computable sequence of real numbers [29, Theorem 0.7].
Their proof can be adopted to a similar situation: the sequence of maxima of
a fixed function on a sequence of intervals.

Proposition 27 If f:R — R is PR-computable and h:N — N\ {0} is re-
cursive, then the sequence (max(f(Ipn))))nen s a computable sequence of real
numbers.

PROOF. As h(n) > 0 we have [,y # R for all n € N; so the sequence is
well-defined. We assume that g: N* — N is the recursive modulus of continuity
for f, i.e. that

oy < s & my € lnnl = @ - fpl < ()

for all n,k € N. There is 7: N — N total recursive such that

Ly € [=7(n),5(n)] (8)

for all n € N. Define a: N> — N total recursive such that

a(n, k) > 29008 91g -1,

then

e 1
a(n, k) = O0TR ®)

Now set

st = max{ o0 + o) |17 < afn)}

=Tk

Then ($nk)nken is a computable double sequence of real numbers. Suppose f
attends its maximum on Iy, at & € Ip(,. There is 7 € {1,...,a(n,k)} such

that | — @54 < lalh)| Hence

1
29(](”)7k)

(10)

|# — @n k| <

23

by (9). Combining (7) with (8) and (10) yields |f(A) f(@npi)] < 5. But
f(:z;nkz) < spk < f(2) by definition of s, and . Thus |max(f([h(n))) —
Sni| < Qk and the sequence is computable by Corollary 21. O

Lemma 28 [f(x,)nen is a computable sequence of real numbers then the pred-
icate

Ty < Gm

s r.e. inn and m.

PROOF. There is a recursive function ¢: N> — N such that

1
[Geniy = | < 57 forall i € N. (11)

Now x, < ¢,, holds iff there is ¢ € N with

1

Using (11), we see that (12) implies ge(iq1) + 3057 < ¢m. On the other hand,
Ge(ni) T % < @ certainly implies z,, < g,,. So we have

Ty < @ == N EN qui+ 5 < qn

2
and the latter predicate is r.e. O

Theorem 29 Fvery PR-computable function is computable.

PROOF. Suppose f:R — R is PR-computable. Denote by f:T — T the

largest strict extension of f to the interval domain, i.e. f(L) = L and f(J) =
f(J) is the forward image of J under f for all J € Z. Now

I, < f(I,) <= m=0or (n>0& [min f(1,), max f(1,)] Cint(1,))
<= m=20or (n,m>0 &
min (1) > ey (m-1) = |G-l &
max f (1) < ¢ry(m-1) + |q7r2(m_1)|).

This relation is r.e. by Proposition 27 and Lemma 28. Hence f is computable. O

24

Theorems 26 and 29 show that our approach is equivalent to the one by Pour-

El & Richards and therefore to that of TTE and Grzegorczyk’s definition:
Corollary 30 A function is computable if and only if it is PR-computable.

In conjunction with Proposition 23, this yields a novel characterisation of PR-
computability which sheds new light on the difference with the computability
notion of Banach-Mazur [22], also known as sequential computability (A func-
tion is computable in this sense iff it preserves computability of sequences of
real numbers.)

Corollary 31 A continuous function ts PR-computable if and only if it maps
computable sequences of intervals to computable sequences of intervals.

Corollary 32 If a function f:T — T is computable, strict, and maps mazxi-
mal elements to maximal elements then the largest strict continuous function
above f is computable.

5.2 Partial functions

For f:7 — T we let

Dy ={z e R| f({z}) € max(T)}

be the domain of the associated partial function on the real line. Our aim is
to characterize the partial computable functions of reals in the spirit of [29].
As a starting point, we derive from Corollary 11

Proposition 33 If f:7 — T is computable and (x,)nen is a computable se-
quence of reals in Dy then the sequence (f(x,,))nen is computable.

Proposition 34 Suppose f:T — T is computable. Then there is a recursive
function b such that p(n), for n > 1, is the index for a modulus of continuity
on I, if and only tf I, C Dy.

PROOF. This is essentially the same as the second part of the proof of
Theorem 26. It is a little harder as the boundaries are more complicated. With
the abbreviations a, = ¢r, (n)=1 — |@m(n)=1] (€. Iy = [an, an + 2|qry(n)-1]]), We
define j,: N — N for n > 0 in such a way that

R £ B 1]
Grey (jn (254+0)—1) = G T > and Gry (i, (2540)—1) =

25

i.e. such that

|2, |2,
UNVES {Gn HU =15 an+ (0 1)27}

forall k € Nand ¢ = 1,...,2¥ — 1. The resulting function h(n, k) will be total
for fixed n if and only if I, C D;. O

Almost the same is possible for computable intervals. We only have to take
care to exclude all indices for the least element of 7.

Proposition 35 Suppose f:T — T is computable, Then there is a recursive
function ¢ such that whenever £z(n) # L the number (n) is the index for a
modulus of continuity on &(n) if and only if £2(n) C Dy.

PROOF. Again, the proof is essentially the same as before. We employ
Proposition 8 to prove that the relation in (4) is re. O

This treatment of partial functions leaves a number of open problems, e.g. the
following:

o Is the domain of a partial computable real function a union of computable
intervals? Is this union effective?

e The converse: Suppose f is a partial real function with an effective union of
computable intervals as domain, effectively uniformly continuous on these
intervals and such that f maps computable sequences to computable se-
quences. Is there a computable extension of f to the interval domain? Is
there a largest strict extension? Is this extension computable?

5.3 Computable functions on R”

A characterization of computable functions R® — R similar to Corollary 30
holds. In particular this implies that the notion coincides with Pour-El &
Richards’ definition [29]. The proof becomes slightly more complicated: In
Theorem 26 we constructed an effective modulus of continuity by covering the
interval [—m, m] with several “layers” of intervals. The kth layer consisted of
21 _ 1 intervals which had width 22—71? and overlap 7. In n dimensions, we
have to cover [—m,m]™ by layers of n-dimensional rectangles. The edges are
taken from the set of intervals from the 1-dimensional case, so there will be
(21 —1)" rectangles. Width and overlap are the same as in the 1-dimensional

26

case. In this way, we obtain an effective construction which is more involved
than for the real line.

Likewise, functions C — R can be dealt with. Functions C — C are split into
real and imaginary part which are investigated separately.

6 Real number representations

By Corollary 19, a real number x is computable iff the set {«} is the lub of an
effective ascending chain in Z, that is iff it is the intersection of an effective
chain of shrinking nested intervals. We now give an example of how to obtain
such shrinking interval sequences.

Let us, for simplicity, consider a computable interval A. An iterated function
system (IFS) on A is a finite set of computable functions fi: A — A, 1 €
K, where K is some finite indexing set. We will assume the functions to be
contracting (so that the IFS is hyperbolic) and computable. Then for every
total recursive function h: N — K the sequence

Jol:A
Ji:= fro)(A)
Jy = fro)(fra)(4))

In = Fuo) (Fay (- Sy (A) -++))

is a shrinking sequence of intervals and defines a computable element z;, of A
with {z,} = NpexJn- The interval J, contains x;, and is regarded as an
approximation to this point.

If we further specialise this example to the IFS with A = [0, 1], K = {0,...,9}
and

then the sequence h(0),h(1),... is exactly the decimal expansion of the real
number x, in the intersection of intervals. As a concrete example, take h such
that h(7) is the ith decimal place of the number 7. Then

Jo:=10,1]

27

Iy = £5([0,1]) = [0.3,0.4]
Jy = f3(f1([0,1])) = f5([0.1,0.2]) = [0.31,0.32]
Js = F5(A(0.11)) = f(£1(104,0.5])) = f5([0.14,0.15]) = [0.314,0.315)

Note that J,41 is not obtained by applying fi,(n) to J,.

Similarly, expansions with respect to bases different from 10 can be expressed
via [FS’s. Also, one can choose the f; to have overlapping ranges, yielding
various signed digit representations. For example K = {—1,0,1} and

)= = —1,0,1

for the interval A = [—1, 1] gives the signed binary expansion, where h(i) = k
corresponds to digit k at the ith place.

This IFS framework can be used to represent more sophisticated number sys-
tems such as the redundant base 2 fixed-point digit-serial numbers [24], where
real numbers are generated by three functions, and exact floating point [27,13]
where extended real numbers are generated by the composition of one of four
sign functions followed by an infinite product of digit functions chosen from
a finite set of maps.

Acknowledgement

We are grateful to Martin Hotzel Escardé for many fruitful discussions. Thanks
to Achim Jung for helpful commentsin an early stage of this work, in particular
for drawing our attention to [42]. We are indebted to Viggo Stoltenberg-Hansen
for making us aware of [35] and [36] after reading a previous version of this

paper.

References

[1] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D.M. Gabbay, and
T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 3,
pages 1-168. Clarendon Press, 1994.

[2] E.A. Bishop and D.S. Bridges. Constructive Analysis, volume 279 of
Grundlagen der mathematischen Wissenschaften. Springer Verlag, 1985.

28

[3] J. Blanck. Domain representability of metric spaces. Annals of Pure and
Applied Logic, 83:225-247, 1997.

[4] L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity
over the real numbers. Bulletin of the American Mathematical Society, 21:1-46,
1989.

[5] G.S. Ceitin. Algorithmic operators in constructive metric spaces. Translations

of the AMS, 64:1-80, 1967.

[6] P. Di Gianantonio. A Functional Approach to Computability on Real Numbers.
PhD thesis No. TD-6/93, University of Pisa-Genova-Udine, 1993.

[7] P. Di Gianantonio. Real number computability and domain theory. Information
and Computation, 127(1):12-25, 1996.

[8] A. Edalat. Domains for computation in mathematics, physics and exact real
arithmetic. Bulletin of Symbolic Logic. To appear.

[9] A. Edalat. When Scott is weak on the top. Math. Struct. in Comp. Science.
To appear.

[10] A. Edalat. Domain theory and integration. Theoretical Computer Science,
151:163-193, 1995.

[11] A. Edalat. Dynamical systems, measures and fractals via domain theory.
Information and Computation, 120(1):32-48, 1995.

[12] A. Edalat. Power domains and iterated function systems. Information and
Computation, 124:182-197, 1996.

[13] A. Edalat and P. J. Potts. A new representation for exact real
numbers. FElectronic Notes in Theoretical Computrer Science, 6, 1997. URL:
http://www.elsevier.nl/locate/entcs/volume6.html.

[14] A. Edalat and Ph. Siinderhauf. Computable Banach spaces via domain theory.
Manuscript in preparation.

[15] Y.L. Ershov. Computable functionals of finite type. Algebra and Logic,
11(4):203-242, 1972.

[16] M.H. Escardé. PCF extended with real numbers. Theoretical Computer
Science, 162(1):79-115, 1996.

[17] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove, and D. S.
Scott. A Compendium of Continuous Lattices. Springer Verlag, Berlin, 1980.

[18] A. Grzegorczyk. Computable functionals. Fundamenta Mathematica, 42:168—
202, 1955.

[19] A. Grzegorczyk. On the definition of computable real continuous functions.
Fundamenta Mathematica, 44:61-71, 1957.

[20] Chr. Kreitz and K. Weihrauch. Theory of representaions. Theoretical Computer
Science, 38:35-53, 1985.

29

[21] D. Lacombe. Extension de la notion de fonction récursive aux fonctions d’une
ou plusieurs variables réelles. C. R. Acad. Sci. Paris, 240:2478-2480, 241:13-14,
241:151-153, 1955.

[22] S. Mazur. Computable Analysis. PWN, Warsaw, 1963.

[23] R.E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, 1966.

[24] A. Nielsen and P. Kornerup. Msb-first digit serial arithmetic. JUCS, 1(7), 1995.
[25] R. Penrose. The Emperor’s New Mind. Oxford University Press, 1989.

[26] G.D. Plotkin. Post-graduate lecture notes in advanced domain theory
incorporating the “Pisa Notes”). Dept. of Computer Science, Univ. of
g
Edinburgh, 1981.

[27] P. J. Potts and A. Edalat. Exact Real Computer Arithmetic, March 1997.
Department of Computing Technical Report DOC 97/9, Imperial College,
available from http://www-tfm.doc.ic.ac.uk/ pjp.

[28] P. J. Potts, A. Edalat, and M. H. Escardé. Semantics of exact real arithmetic.
In Proceedings of the Twelveth Annual IEEE Symposium on Logic In Computer
Science, pages 248-257, Warsaw, Poland, 1997.

[29] M.B. Pour-El and J.I. Richards. Computability in Analysis and Physics.
Springer Verlag, 1988.

[30] H.G. Rice. Recursive real numbers. Proceedings of the AMS, 5:784-791, 1954.

[31] H. Rogers. Theory of Recursive Functions and Effective Computability. Mc-
Graw Hill, New York, 1967.

[32] D. S. Scott. Outline of a mathematical theory of computation. In Jth Annual
Princeton Conference on Information Sciences and Systems, pages 169-176,
1970.

[33] M. B. Smyth. Effectively given domains. Theoretical Computer Science, 5:257—
274, 1977.

[34] V. Stoltenberg-Hansen, I. Lindstrém, and E. R. Griffor. Mathematical Theory
of Domains, volume 22 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1994.

[35] V. Stoltenberg-Hansen and J.V. Tucker. Complete local rings as domains.
Journal of Symbolic Logic, 53:603-624, 1988.

[36] V. Stoltenberg-Hansen and J.V. Tucker. Effective algebras. In S. Abramsky,
D.M. Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in Computer
Science, volume 4, pages 357-526. Clarendon Press, 1995.

[37] AM. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
42:230-265, 1937.

30

[38] J. E. Vuillemin. Exact real computer arithmetic with continued fractions. IEFEFE
Transactions on Computers, 39(8):1087-1105, 1990.

[39] K. Weihrauch. Recursion and complexity theory on cpo-s. In P. Deussen, editor,
Theoretical Computer Science, 5th GI-Conference, Karlsruhe, March 1981,
volume 104 of Lecture Notes in Computer Science, pages 195-202. Springer
Verlag, 1981.

[40] K. Weihrauch. Computability, volume 9 of EATCS Monographs on Theoretical
Computer Science. Springer Verlag, 1987.

[41] K. Weihrauch. A foundation for computable analysis. In D.S. Bridges,
C.5. Calude, J. Gibbons, S. Reeves, and I.H. Witten, editors, Combinatorics,
Complexity, and Logic, Discrete Mathematics and Theoretical Computer
Science, pages 66-89, Singapore, 1997. Springer Verlag. Proceedings of
DMTCS’96.

[42] K. Weihrauch and Th. Deil. Berechenbarkeit auf cpo-s. Technical Report 63,
RWTH Aachen, 1980. Schriften zur Informatik und Angewandten Mathematik.

[43] K. Weihrauch and U. Schreiber. Embedding metric spaces into cpo’s.
Theoretical Computer Science, 16:5-24, 1981.

31

