
Quantum Computing

Abbas Edalat

18 lectures + 9 tutorials

Lecture Notes and Exercise Sheets

available from:

http://www.doc.ic.ac.uk/˜ae

Department of Computing

Imperial College London

180 Queen’s Gate

London SW7 2BZ

Recommended Texts

• Textbooks:

– Jozef Gruska, Quantum Computing, (McGraw-Hill,

1999).

– Michael A. Nielsen and Issac L. Chuang, Quantum

Computation and Quantum Information, (Cambridge

University Press, 2000). Course textbook.

– N. David Mermin, Quantum Computer Science,

(Cambridge University Press, 2007)

• General Books:

– Colin P. Williams and Scott H. Clearwater, Explo-

rations in Quantum Computing, (Springer-Verlag,

1998).

– G. Berman, G. Doolen, R. Mainieri and V. Tsifrinovich,

An Introduction to Quantum Computers, (World

Scientific, 1998).

• Survey Papers: available on www, e.g. from

http://xxx.lanl.gov/find/quant-ph

http://www.qubit.org

– Dorit Aharonov, Quantum Computation, December

15, 1998.

– Arthur Ekert, Patrick Hayden and Hitoshi Inmori,

Basic Concepts in Quantum Computation, 16 January

2000.

– Eleanor Rieffel and Wolfgang Polak, An Introduction to

Quantum Computing for Non-Physicists, 19 January

2000.

Quantum Computing 1

Topics of the Course

• Introduction to Quantum Mechanics

• Quantum Bits and Complex Vector Spaces

• Quantum Evolution and Quantum Gates

• Quantum Registers, Universal Gates

• No-Cloning Theorem

• Quantum Entanglement and Teleportation

• Quantum Algorithms

• Quantum Search

• Quantum Fourier Transform

• Phase Estimation

• Quantum Counting

• Order Finding for Periodic Functions

• Quantum Factoring of Integers

• Physical Realization of Quantum Gates

• Quantum Error Correction

Quantum Computing 2

1 Introduction

A computer is a physical machine and any compu-

tation performed by such a machine is in essence

a physical process. This is a simple factual state-

ment but it has a profound consequence. It can be

logically argued from this premise that:

• the laws of computation depend on the

physical laws obeyed by the computer machine

under consideration, and,

• there are no absolute laws of computation

valid for all computational machines.

The prominent English logician/mathematician,

Alan Turing, formulated the classical theory of

computation in 1930’s. He assumed that compu-

tation is performed by an idealized mechanical

computer (with potentially infinite storage capac-

ity) obeying the classical laws of physics. This

model, now called the Turing model of computa-

tion, has proved to be adequate for describing the

computational process performed by mechanical

or the modern electronic computers.

Quantum Computing 3

However, with the current revolution in computer

technology a new phenomenon is likely to emerge.

In the past few decades, the miniaturization trend

in computer manufacturing has followed the so-

called Moore’s law: Gordon Moore, one of the

founders of Intel, observed in mid 1960’s that

the memory capacity of a typical chip doubles

roughly every eighteen months while its physical

size remains the same.

If this law, as it is expected, continues to hold

in the coming years, the size of the memory

component of a chip will, in less than 20 years, be

reduced to the size of an atom. This means that in

about 2020, a single atom will be sufficient to store

a bit (0 or 1) of computer memory. At such atomic

scales the laws of classical physics, which are the

basis of Turing Machines and the classical theory

of computation, collapse. Here, we will enter

the realm of quantum physics. Every aspect of

computing, including storing information, loading

and running of programs and reading the output

will be governed by laws of quantum physics which

are quite different from those of classical physics.

Quantum Computing 4

1.1 Electrons: Particles or Waves?

We consider the experiment depicted in Figure 1.

The gun in the bottom emits electrons which go

through the two slits (slit 1 and slit 2) on the

screen. A movable electron detector is placed on a

wall behind the screen which counts the number of

electrons arriving at the detector. The probability

distribution of the electron position on the wall,

when slit 2 is closed, is P1(x). When slit 1 is

covered, the probability distribution is P2(x). So

far the result of our experiment is as if we were

shooting ordinary particles or bullets.

If indeed we were dealing with normal particles,

then we would expect the distribution when both

slits are open to be 1
2 (P1(x) + P2(x)). However,

with electrons we get the distribution P12(x),

which shows an interference between the two

distributions P1(x) and P2(x). In fact, P12(x)

oscillates between zero (destructive interference)

and P1(x)+P2(x) (constructive interference). This

is the pattern one expects for waves (e.g. water

waves or electromagnetic radiation), not particles.

Quantum Computing 5

A quantum phenomenon

(a)

(b)

(c)

wall

wall
detector

electron
gun

S1 S2

P1(x) P2(x)

P12(x)

Figure 1: The two slit experiment

Quantum Computing 6

How can we understand our experimental results?

Probabilities are always nonnegative and cannot

cancel each other. This experiment proves there-

fore that ordinary probabilities are inadequate to

describe the position of electrons. It is as if we

also require negative probabilities. In quantum

mechanics the distribution of electrons when slit

2 (respectively, slit 1) is closed is given by the

probability amplitude ψ1(x) (respectively, ψ2(x)),

where ψi(x) (for i = 1, 2) is a complex number a

with Pi(x) = |ψi(x)|2.
The distribution of electrons when both slits are

open is given by ψ12(x) = c(ψ1(x) +ψ2(x)), where

c is the normalization constant. From this it

follows that

P12(x) ∝ |ψ1(x) + ψ2(x)|2

= |ψ1(x)|2 + |ψ2(x)|2 + 2 Re(ψ∗
1(x)ψ2(x))

= P1(x) + P2(x) + 2 Re(ψ∗
1(x)ψ2(x)).

aRecall that a complex number is of the form z = a + ib

where i =
√
−1 and a = Re(z), the real part of z and b =

Im(z), the imaginary part of z, are real numbers. The norm

of z is |z| =
√

a2 + b2. The conjugate of z is z
∗ = a − ib.

The set of complex numbers is denoted by C.

Quantum Computing 7

We see that the interference, and hence the oscil-

lation, is due to the last term 2 Re(ψ∗
1(x)ψ2(x)).

But there are yet more surprising facts.

Suppose, by placing a light source between the

two slits, we try to observe through which slit

any electron passes. Then, as expected, the

probability distribution of the electron position,

when slit 2 (respectively, slit 1), is closed, is P1(x)

(respectively, P2(x)). However, if both slits are

open the distribution will be 1
2 (P1(x) + P2(x))

i.e. the electrons behave like particles again.

Therefore, when we observe the electrons, the

interference is completely lost. A quantum system

behaves differently when it is observed from when

it is not observed!

This is certainly against our intuition. In everyday

life, we consider particles and waves as distinct

entities. Furthermore, we always assume that the

result of an experiment is independent of whether

or not we observe how it takes place. Yet, the

above experiment shows that electrons behave

sometimes like particles and sometimes like waves.

This is called particle-wave duality.

Quantum Computing 8

Furthermore, as we have seen, it does matter to

the result of the experiment whether we observe

the electrons in the process of experiment or not.

Nobody knows why electrons, or for that matter

any quantum phenomenon, behaves like that.

Quantum mechanics is a very accurate description

of nature as it predicts quantum effects up to an

astonishing precision of 14 decimal places. But we

do not know why nature works like that and why

quantum mechanics gives such a good description

of nature. In other words, quantum mechanics

tells us how things work but cannot tell us why

they work that way.

The conceptual issues concerning quantum me-

chanics have been intensely debated by physicists

as well as philosophers for over seventy years now

and there is still no resolution of the controversies

in sight. In this course, however, we will not

be concerned with quantum mechanics or the

philosophical issues surrounding it. We will rather

accept the central principles of quantum physics

to see how the quantum world and the quantum

paradigm can be used for computation.

Quantum Computing 9

First Principles of Quantum Mechanics

(i) The probability P of a quantum event is given

by the square |ψ|2 of the absolute value of

a complex number ψ called the probability

amplitude of the event.

(ii) When an event can take place in n different

ways, the probability amplitude is propor-

tional to the sum or superposition of the

probability amplitudes of each way considered

separately: ψ = c(ψ1 + ψ2 + ψ3 + · · · + ψn),

where c is the normalization constant.

(iii) If an experiment is carried out which can

determine which of the alternative ways has

actually taken place, the interference is lost,

i.e. the probability will be proportional to the

sum of the probabilities for each alternative

way: P = 1
n (P1 + P2 + P3 + · · · + Pn).

A quantum state is thus specified by its probability

amplitude. We will now find out how information

can be represented by a quantum state.

Quantum Computing 10

2 Quantum Bits

Consider a two-state quantum system, such as

• the first two energy levels of the Hydrogen

atom (n = 0 or the ground state and n = 1 or

the first excited state) as in Figure 2,

• the spin (internal angular momentum) of an

electron (s = 1/2 or s = −1/2), or,

• the vertical or horizontal polarization of light.

.

Ground State First Excited State

n=1

.
n=1

n=0 n=0|0 > |1 >

Figure 2: Hydrogen atom: a two-state system

It is convenient to denote the two basic states of

the system by |0〉, denoting e.g. the ground state

of the Hydrogen atom and |1〉, denoting e.g. the

first excited state of the Hydrogen atom.

Quantum Computing 11

The notation |.〉 is called a ket and was invented

by Dirac, the famous English physicist who was a

pioneer in quantum theory. Later we will introduce

the dual notion of a bra 〈.| which can be used to

denote expressions such as 〈0|0〉 and 〈0|1〉, called

brackets.

Recall that in the two-slit experiment, the proba-

bility amplitude of the position of the electron was

given by the sum of the probability amplitudes for

the position of the electron when each of the slits

was covered in turn.

In the same way, the probability amplitude ψ of

the Hydrogen atom (or the spin of the electron,

etc.) is given by a superposition |ψ〉 = α|0〉 + β|1〉
of the two basic states |0〉 and |1〉. Here, α and

β are complex numbers with |α|2 + |β|2 = 1 such

that |α|2 and |β|2 give the probabilities that the

Hydrogen atom is in its ground and first excited

state respectively. It is as if the Hydrogen atom

has not yet decided to be in the ground or the first

excited state and it is therefore in a superposition

of these two states each with a given probability,

i.e. it exists partially in both states!

Quantum Computing 12

Definition 2.1 A qubit (quantum bit) is a quan-

tum state of the form |ψ〉 = α|0〉 + β|1〉 where α

and β are complex numbers with |α|2 + |β|2 = 1.

Qubits live in a two-dimensional complex vector

space which we will now study.

2.1 Complex Vector Spaces

Recall that the two dimensional real vector space

R
2 is the collection of column vectors of the form

v =
(a

b

)

where a and b are real numbers. The norm of v

is given by ‖v‖ =
√
a2 + b2. The transpose of v is

the row vector vT = (a, b). The scalar product of

two vectors

v1 =

(
a1

b1

)

and v2 =

(
a2

b2

)

is given by v1 · v2 def
= vT1 v2 = (a1, b1)

(
a2

b2

)

=

a1a2 + b1b2 = ‖v1‖ ‖v2‖ cos θ, where θ is the angle

between v1 and v2. If v1 · v2 = 0 then the two

vectors v1 and v2 are called orthogonal.

Quantum Computing 13

A map L : R2 → R is linear if L(a1v1 + a2v2) =

a1L(v1) + a2L(v2) for all ai ∈ R and vi ∈ R2

(i = 1, 2). For example, projection to the x-

axis (i.e. (x, y) 7→ x) is a linear map whereas a

constant map (i.e. v 7→ c) is not linear. For any

u =
(
u1

u2

)

∈ R
2, the dual of u is the linear map

Lu : R
2 → R given by Lu(v) = u · v. We can

identify Lu with the row vector uT = (u1, u2).

Then Lu(v) = uT v is obtained by the usual matrix

multiplication.

If u ∈ R
2 is a unit vector, then

Lu(v) = u · v = ‖v‖ cos θ

gives the projection of v on the unit vector u as in

Figure 3.

v

u
||u||=1

 u.v

Figure 3: Projection of a vector on a unit vector

Quantum Computing 14

We say that the vectors

{vi ∈ R
2|i = 1, 2, · · · k}

are linearly independent if whenever

a1v1 + a2v2 + · · · + akvk = 0

for ai ∈ R (i = 1, · · · , k) then ai = 0 for all

i = 1, · · · , k. Otherwise they are called linearly

dependent. Any three vectors in R2 are linearly

dependent. A basis of R
2 is any set of linearly

independent vectors in R2 such that any vector

in R
2 can be expressed as a linear combination of

vectors in the set. Any two linearly independent

vectors v1 and v2 form a basis for R
2. We say

v1 and v2 form an orthonormal basis for R2 if

‖v1‖ = ‖v2‖ = 1 and v1 · v2 = 0. The two vectors

r1 =

(
1

0

)

r2 =

(
0

1

)

form an orthonormal basis for R
2, called the

standard basis of R2.

Exercise 2.2 Extend all the above definitions and

properties to R
d. �

Quantum Computing 15

Similarly, the two dimensional complex vector

space C
2 is the collection of column vectors of the

form

w =

(
α

β

)

where α and β are complex numbers.

The norm of w is given by ‖w‖ =
√

|α|2 + |β|2,
where |α| is as before the norm of α.

The linear structure of C
2 is similar to that of

R
2. Vector addition and scalar multiplication by a

complex number are given by:

(
α1

β1

)

+

(
α2

β2

)

=

(
α1 + α2

β1 + β2

)

c

(
α

β

)

=

(
cα

cβ

)

.

The adjoint of w is defined as the row vector

w† = (α∗, β∗). In analogy with the scalar product

of two real vectors, we define the scalar product or

inner product of two complex vectors

w1 =

(
α1

β1

)

w2 =

(
α2

β2

)

as

(w1, w2)
def
= w†

1w2 = (α∗
1, β

∗
1)

(
α2

β2

)

= α∗
1α2+β

∗
1β2.

Quantum Computing 16

The vector space C2 with its inner product is

called the two-dimensional Hilbert Space.

For any u ∈ C2, the dual of u =
(
u1

u2

)

is the linear

map Lu : C2 → C defined by Lu(w) = (u,w). We

can identify Lu with u†. Then Lu(w) = (u,w) =

u†w. In the more abstract language, the dual of

|ψ〉 is denoted by 〈ψ|, and the inner product of

|ψ〉 and |φ〉 by 〈ψ|φ〉. The notation 〈.| is called

a bra and 〈.|.〉 a bracket. If u ∈ C2 has ‖u‖ = 1,

then Lu(w) = 〈u|w〉 is the projection of w in the

direction of u.

We say that the vectors {wi ∈ C2|i = 1, 2, · · · k}
are linearly independent if whenever

a1w1 + a2w2 + · · · + akwk = 0

for ai ∈ C (i = 1, · · · , k) then ai = 0 for all

i = 1, · · · , k. Otherwise they are called linearly

dependent. Any three vectors in C
2 are linearly

dependent. A basis of C
2 is a set of linearly

independent vectors in C
2 such that any vector in

C2 can be expressed as a linear combination of the

vectors in the set. Any two linearly independent

vectors w1 and w2 form a basis for C2.

Quantum Computing 17

We say w1 and w2 form an orthonormal basis for

C2 if ‖w1‖ = ‖w2‖ = 1 and (w1, w2) = 0.

The two vectors

s1 =

(
1

0

)

s2 =

(
0

1

)

form an orthonormal basis for C
2.

Exercise 2.3 Extend all the above definitions and

properties to C
d. �

2.2 Qubits as Complex Unit Vectors

The qubit α|0〉 + β|1〉 can also be written in the

vector notation,

α|0〉 + β|1〉 = α

(
1

0

)

+ β

(
0

1

)

=

(
α

β

)

,

where we have identified |0〉 and |1〉 respectively

with the orthonormal basis vectors,
(

1
0

)
and

(
0
1

)
.

In quantum computing, the basis consisting of |0〉
and |1〉 is called the computational basis. Since

|α|2 + |β|2 = 1, a qubit can therefore be identified

with a normalized vector in C2.

Quantum Computing 18

Exercise 2.4 Show that up to multiplication by

a complex number with norm one, a qubit can be

written in the form cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉 where

θ and φ are real numbers. �

Note a fundamental difference with the two slit

experiment, where the position x of the electron

hitting the wall behind the screen is a continuous

variable and hence the probability amplitudes φi

are functions of a continuous variable.

In a two-state quantum system, however, there are

only two basic states namely |0〉 and |1〉.
Of course, by Exercise 2.4 we know that a qubit

has two continuous degrees of freedom provided

by the real numbers θ and φ. It may seem

therefore that we can store an infinite amount of

information, in fact the entire human knowledge,

in a qubit cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉 by using

the continuum range of θ.

But the following quantum principle of mea-

surement and observation shows that this is an

illusion.

Quantum Computing 19

2.3 Basic Measurement Principle

Whenever a qubit α|0〉 + β|1〉 is measured in

the computational basis {|0〉, |1〉}, the result

of the observation is either the state |0〉 with

probability |α|2 or the state |1〉 with probability

|β|2. Furthermore, the measurement process

changes the state of the system, which collapses

from the superposition α|0〉+β|1〉 into the observed

state (i.e. |0〉 or |1〉).
This means that as soon as we make a measure-

ment, the quantum system will decide, with the

appropriate probability, which state of the com-

putational basis it wishes to turn to and it will

immediately collapse into that basis state.

Hence from a single observation we can only obtain

a single bit and all the information about α and β

are lost forever. Only if we have an infinite number

of identical states cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉 and

make an infinite number of observations, can we

find the values of cos(θ/2) and sin(θ/2) whose

squares are the probabilities of obtaining the basis

vectors |0〉 and |1〉 respectively.

Quantum Computing 20

Exercise 2.5 (i) Show that there is a one to one

correspondence between qubits

|ψ〉 = cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉

and the points on the unit sphere in R
3, called

the Bloch sphere, with θ and φ as the spherical

coordinates of a point of the sphere; see Figure 4.

(ii) Show that the two vectors w1 and w2 in C
4 with

wT
1 = 1

2
(1, 1, 1, 1) and wT

2 = 1
2
(1,−1, 1,−1) are

orthogonal unit vectors. Find vectors w3 and w4

such that the collection {w1, w2, w3, w4} forms an

orthonormal basis for C
4. �

y

x

z

|1>

|0>

.

.
.

θ

φ

|ψ>

Figure 4: The Bloch sphere

Quantum Computing 21

2.4 Change of Basis

Any orthonormal basis of C2 can be regarded as a

computational basis.

For example, the two qubits |+〉 = 1√
2
(|0〉 + |1〉)

and |−〉 = 1√
2
(|0〉− |1〉) also form a computational

basis.

We have:

|0〉 =
1√
2
(|+〉 + |−〉) |1〉 =

1√
2
(|+〉 − |−〉).

Hence, an arbitrary qubit

α|0〉 + β|1〉

can be expressed in the basis |+〉, |−〉 as:

α|0〉 + β|1〉 = α√
2
(|+〉 + |−〉) + β√

2
(|+〉 − |−〉)

= α+β√
2
|+〉 + α−β√

2
|−〉.

It is in principle possible to make measurements

with respect to other computational bases. A

qubit which is measured with respect to the

computational basis |+〉 and |−〉 will collapse to

one of these vectors.

Quantum Computing 22

3 Quantum Gates

Classical circuits consist of wires which carry

information (0 or 1) and gates which apply

elementary operations on bits. The input to a

circuit is a tuple of bits and the output is another

such tuple. For example there is only one non-

trivial classical gate with one input and one output

bit, namely the NOT gate with 0 7→ 1 and 1 7→ 0.

A quantum gate is the quantum analogue of a

classical gate. It takes a tuple of qubits and

outputs another such tuple. Let’s see how to

define a quantum NOT gate on a single qubit with

|0〉 7→ |1〉 and |1〉 7→ |0〉. We need to define the

action of the gate on the general superposition

α|0〉+β|1〉. Clearly the easiest solution is to define

this action as a linear map α|0〉+β|1〉 7→ β|0〉+α|1〉.
It turns out that this is exactly how we should

define the NOT gate. In fact, any quantum

system, such as the input to a quantum gate,

evolves according to a linear map which can be

represented by matrices.

Quantum Computing 23

3.1 Representation of Linear Maps

A map L : C2 → C2 is linear if L(a1v1 + a2v2) =

a1L(v1) + a2L(v2) for all ai ∈ C and vi ∈ C2

(i = 1, 2).

Exercise 3.1 (i) Show that composition of two

linear maps is linear.

(ii) Show that if L1, L2 : C
2 → C

2 are linear, so is

α1L1 + α2L2 : C
2 → C

2 defined by

(α1L1 + α2L2)(v) = α1L1(v) + α2L2(v).

(iii) Show that for |ψ〉, |φ〉 ∈ C
2, the map |ψ〉〈φ| :

C
2 → C

2 defined, using the bracket notation, by

|ψ〉〈φ|(|x〉) = 〈φ|x〉|ψ〉 is linear. �

Suppose L(|0〉) = a11|0〉 + a21|1〉 and L(|1〉) =

a12|0〉 + a22|1〉. Then we can write L as

L = a11|0〉〈0| + a21|1〉〈0| + a12|0〉〈1| + a22|1〉〈1|.

The matrix

A =

(
a11

a21

a12

a22

)

is called the matrix representation of L in the

computational basis |0〉 and |1〉.

Quantum Computing 24

The action of L on any qubit vector
(
α
β

)

is

obtained by matrix multiplication:

L(

(
α

β

)

) =

(
a11

a21

a12

a22

)(
α

β

)

=

(
a11α+ a12β

a21α+ a22β

)

.

A change in the basis is also represented by

a matrix as follows. Suppose |ψ1〉 and |ψ2〉
form a basis with |0〉 = b11|ψ1〉 + b21|ψ2〉 and

|1〉 = b12|ψ1〉 + b22|ψ2〉. Then the matrix

B =

(
b11
b21

b12
b22

)

gives the linear map for the change of coordinates.

The vector
(
α
β

)

, represented with respect to the

basis |0〉 and |1〉, will have coordinates B
(
α
β

)

with

respect to the basis |ψ1〉 and |ψ2〉.

|0>

|1>

α

β

ψ
1

ψ
2

|

|

>

>

Figure 5: Change of basis

Quantum Computing 25

Example 3.2 The matrix corresponding to the

change of basis from |0〉, |1〉 to |+〉, |−〉 is given by

B =
1√
2

(
1

1

1

−1

)

. �

What will the matrix representation of L be in

the new basis? If
(
δ
λ

)

gives the coordinates of a

vector in the new basis, then B−1
(
δ
λ

)

gives the

coordinates of the vector in the old basis |0〉 and

|1〉, where B−1 is the matrix inverse of B. Hence

the coordinates of the transformed vector in the

old basis is AB−1
(
δ
λ

)

and hence the coordinates

in the new basis is BAB−1
(
δ
λ

)

. We conclude that

the matrix representation of L in the new basis is

BAB−1.

Exercise 3.3 Show that the matrix representation

of the NOT gate in the basis |0〉, |1〉 is given by

X =
`

0
1

1
0

´

. What is its matrix representation in the

basis |+〉, |−〉? �

Exercise 3.4 Extend the above notions and proper-

ties to C
d. �

Quantum Computing 26

3.2 Unitary Matrices

We have seen that the evolution of quantum

systems, such as the evolution of an input qubit

through a quantum circuit to an output qubit,

is governed by linear maps. Thus, we need to

consider those linear maps which map qubits to

qubits, i.e., unit vectors to unit vectors.

For any n × m matrix A the transpose AT is

defined by (AT)ij = (A)ji, the conjugate A∗

of A by (A∗)ij = (Aij)
∗ and the adjoint A†

of A by A† = (AT)∗. A matrix A is called

unitary if A† = A−1. A linear map is unitary if

it has a unitary matrix representation in some

computational basis.

Exercise 3.5 (i) Check that a matrix is unitary iff

its columns (or rows) form an orthonormal basis.

(ii) Check that the matrix for a change in the

computational basis is unitary.

(iii) Show that (AB)† = B†A† and deduce that if a lin-

ear map has a unitary matrix representation, then

its matrix representation in any computational

basis is unitary. �

Quantum Computing 27

Theorem 3.6 A linear function maps a qubit to

a qubit (i.e. it preserves normalized vectors) iff it

is unitary.

Proof Consider a linear map L : C
2 → C

2 with a

unitary matrix representation M =
(
a11

a21

a12

a22

)

in

the computational basis |0〉 and |1〉. Then

L(

(
α

β

)

) =

(
a11

a21

a12

a22

)(
α

β

)

=

(
a11α+ a12β

a21α+ a22β

)

.

Hence, ‖L(
(
α
β

)

)‖2 = |α|2(|a11|2 + |a21|2) +

|β|2(|a12|2 + |a22|2) + (a∗11a12 + a∗21a22)α
∗β +

(a11a
∗
12 + a21a

∗
22)αβ

∗ = 1, since the columns of

M form an orthonormal basis. Conversely, if

L preserves unit vectors, then by taking β = 0

(respectively, α = 0) we obtain |a11|2 + |a21|2 = 1

(respectively, |a12|2 + |a22|2 = 1). From these, we

also obtain a∗11a12 + a∗21a22 = 0 (why?). �

Exercise 3.7 Show that

〈u|Av〉 = 〈A†u|v〉.

Deduce that a matrix M is unitary iff it preserves

all inner products, i.e. iff 〈Mu|Mv〉 = 〈u|v〉 for all

u, v ∈ C
2. �

Quantum Computing 28

The NOT gate has the unitary matrix X =
(

0
1

1
0

)
.

NOT| x > | 1-x >

Figure 6: The NOT gate

The matrix X and the two unitary matrices

Y =

(
0

i

−i
0

)

Z =

(
1

0

0

−1

)

.

are called the Pauli matrices. They give, respec-

tively, the x, y and z components of the spin of

the electron.

Exercise 3.8 Show that any unitary matrix U can

be expressed as

U =

„

ei(α−β/2−δ/2) cos γ/2

ei(α+β/2−δ/2) sin γ/2

−ei(α−β/2+δ/2) sin γ/2

ei(α+β/2+δ/2) cos γ/2

«

where α, β, δ and γ are real numbers. �

It turns out that unitarity is the only requirement

on linear maps for quantum evolution. Therefore,

any unitary linear map defines a valid single qubit

quantum circuit.

Quantum Computing 29

3.3 Quantum logic gates

Definition 3.9 A quantum logic gate is a device

that carries out a given unitary operation on its

input qubits in a fixed period of time. A quantum

network is a device consisting of a number of

quantum logic gates whose computational steps

are synchronized in time.

The most important of such gates are the following:

X =
(

0
1

1
0

)
Pauli-X gate

Y =
(

0
i

−i
0

)
Pauli-Y gate

Z =
(

1
0

0
−1

)

Pauli-Z gate

H = 1√
2

(
1
1

1
−1

)

Hadamard gate

H | x > (-1) | x > + | 1-x >x

Figure 7: The Hadamard gate

Quantum Computing 30

Φ =

(
1

0

0

eiφ

)

the phase gate

| x > e | x >
ixφ

 φ

Figure 8: The Phase gate

Exercise 3.10 Verify the output, up to a global

phase, of the following quantum network. �

| 0 > H H cos
2θ φ+π/2

θ | 0 > + e sin θ | 1 >
φ i

It follows from Exercise 3.10 that the Hadamard

and phase gates are sufficient to construct any

unitary operation on a single qubit.

Note that a fundamental property of quantum

logic gates is that they are invertible as any

unitary map has a unitary inverse which is also a

valid quantum gate.

This is in contrast to classical logic gates, such as

the AND gate, which may not be reversible.

Quantum Computing 31

4 Quantum Registers

Consider two qubits, each represented say by

the ground state and the first excited state of a

Hydrogen atom. Since we have a pair of two-state

systems, classically there are four states, namely

00, 01, 10 and 11. Therefore the quantum system

representing the two qubits is a superposition of

the form:

|ψ〉 = α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉

with
∑

i∈{0,1}2 |αi|2 = 1. This is called a two-qubit

quantum register. Similar to the case of a single

qubit, any i ∈ {0, 1}2 in this quantum register is

measured with probability |αi|2. We can however,

make a measurement of a subset of the bits. For

example if the first qubit is measured then one

obtains 0 with probability |α00|2 + |α01|2 and the

state then collapses to

α00|00〉 + α01|01〉
√

|α00|2 + |α01|2
.

Note that the state is renormalized to have unit

length.

Quantum Computing 32

A single qubit, as we have seen, lives in the two-

dimensional complex (Hilbert) space. Where does

a two-qubit quantum register lie? There are four

basic two-qubit states

|00〉 |01〉 |10〉 |11〉.

Hence, we can expect a general two-qubit quantum

register be a normalized vector in C4, the four

dimensional complex vector space. In fact, C
4 can

be constructed from C
2 as follows.

4.1 Tensor Product

We will define a general construction, called the

tensor product, on finite dimensional complex

vector spaces. Note that, for any positive integer

m, the m-dimensional complex vector space Cm

has the standard basis

bm1 , b
m
2 , · · · , bmm,

where bmj is the column vector of dimension m

with all entries zero except for the jth entry which

is one.

Quantum Computing 33

A vector u ∈ C
m can be written as u =

∑m
j=1 ujb

m
j

where uj ∈ C is the jth component of u:

u =














u1

...

uj
...

um














Consider the complex vector spaces C
k and C

l.

We define the tensor product as a map

−⊗− : C
k × C

l → C
kl

with

v ⊗ w =














v1w
...

vjw
...

vkw














where vjw (1 ≤ j ≤ k) is the scalar multiplication

of vj ∈ C with the column vector w ∈ C
l.

Quantum Computing 34

For k = l = 2, we have the tensor products

|i〉 ⊗ |j〉 (i, j = 0, 1) which we simply write, for

convenience, as |i〉|j〉 or even as |ij〉, (i, j = 0, 1)

i.e. |00〉, |01〉, |10〉, |11〉.
We also note that the lexicographical order is the

same as the numerical order when ij is read as a

binary number.

We can, for convenience, write the states in decimal

notation (00 ≡ 0, 01 ≡ 1, 10 ≡ 2, 11 ≡ 3) to

obtain:

|0〉 ≡ |00〉 ≡







1
0
0
0







|1〉 ≡ |01〉 ≡







0
1
0
0







|2〉 ≡ |10〉 ≡







0
0
1
0







|3〉 ≡ |11〉 ≡







0
0
0
1







We can therefore write the general two-qubit

quantum register as

|ψ〉 = α0|0〉 + α1|1〉 + α2|2〉 + α3|3〉.

Quantum Computing 35

Exercise 4.1 (i) Show the bilinearity property:

(αv + α′v′) ⊗ (βw + β′w′) =

αβv ⊗ w + αβ′v ⊗ w′ + α′βv′ ⊗ w + α′β′v′ ⊗ w′,

where α, α′, β, β′ ∈ C, v, v′ ∈ C
k, w,w′ ∈ C

l.

(ii) Show that bki ⊗ blj = bkl
(i−1)l+j .

(iii) Show that for v, v′ ∈ C
k and w,w′ ∈ C

l we have:

〈v ⊗ w|v′ ⊗ w′〉 = 〈v|v′〉〈w|w′〉. �

In a similar way, we can define a quantum reg-

ister of n-qubits which is an element of the

2n-dimensional complex vector (Hilbert) space

C
2n

.

A computational basis of C
2n

is given by the 2n

n-qubits

|i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉,
with ij ∈ {0, 1} for 1 ≤ j ≤ n.

We write this basis vector, for convenience, as

|i1〉|i2〉 · · · |in〉 or simply as |i1i2 · · · in〉.
This basis vector can also be identified with the

2n column vector in C2n

all whose entries are zero

except for the entry i1i2 · · · in (read as an integer

in the binary notation) which is 1.

Quantum Computing 36

4.2 Tensor Product of Matrices

The tensor product can be extended to matrices.

If we have two linear operators with matrix

representations

M : C
k → C

k N : C
l → C

l,

with respect to the standard bases of Ck and Cl,

we obtain a linear operator on C
kl with matrix

representation

M ⊗N : C
kl → C

kl,

called the tensor product of M and N , defined by:

M ⊗N =











M11N M12N · · · M1kN

M21N M22N · · · M2kN
...

...
...

...

Mk1N Mk2N · · · MkkN











where, Mij is the ij element of M and each MijN

is the l × l matrix obtained by multiplying the

matrix N with the complex number Mij . Thus,

each block MijN is an l× l matrix, so that M ⊗N
is a kl × kl matrix.

Quantum Computing 37

Example 4.2 We have the following:

(
1

0

3

1

)

⊗
(

0

−1

1

2

)

=










0 1 0 3

−1 2 −3 6

0 0 0 1

0 0 −1 2










�

Exercise 4.3 (i) Show that:

(M ⊗N)(v ⊗ w) = (Mv) ⊗ (Nw).

(ii) Show the bilinearity property:

(αM + α′M ′) ⊗ (βN + β′N ′) =

αβM⊗N+αβ′M⊗N ′+α′βM ′⊗N+α′β′M ′⊗N ′.

(iii) Show that:

(M ⊗N)(M ′ ⊗N ′) = (MM ′) ⊗ (NN ′).

(iv) Show that

(M ⊗N)∗ = M∗ ⊗N∗,

(M ⊗N)T = MT ⊗NT

(M ⊗N)† = M† ⊗N†.

(v) Show that M ⊗N is unitary (invertible) if M and

N are unitary (invertible). �

Quantum Computing 38

4.3 Two Qubit Gates

The Hadamard gate and the phase gate can be

used, by Exercise 3.10, to transform the input

state |0〉|0〉 into |ψ1〉|ψ2〉 where |ψ1〉 and |ψ2〉
are arbitrary qubits. However, these two-qubit

quantum registers are special in that they are the

tensor product of single qubits. They are called

separable states. If a quantum register is not

separable, then it is called entangled. For example,

the state α|00〉+β|11〉 (for α 6= 0 6= β) is entangled

as it cannot be written as a tensor product.

In order to produce entangled two-qubit quantum

registers, we need to go beyond single qubit

quantum gates. Multi-qubit circuits, like single

qubit quantum gates, correspond to unitary

operations on multi-qubit quantum registers.

Classically, the most important multi-bit gates are

AND (Figure 9), XOR (exclusive-OR, Figure 10)

and NAND (Figure 11). The NOT and the AND

gates are a universal set of gates, which means

that any Boolean function can be realized from

some composition of these two gates.

Quantum Computing 39

A B C

AND

A

B
 C

 0 0 0

 1 1 1

 0 1 0

 1 0 0

Figure 9: The AND gate

A B C

A

B

 0 0 0

 0 1 1

 1 0 1

 1 1 0

XOR

 C

Figure 10: The XOR gate

A B C

A

B

 0 1 1

 1 0 1

NAND
 0 0 1

 1 1 0

 C

Figure 11: The NAND gate

Quantum Computing 40

In fact, the NAND gate which is the AND gate

followed by the NOT gate is itself universal.

Note that XOR even with the NOT gate is not

universal: any circuit involving these two gates

only will either always preserve or always change

the total parity of bits which restricts the class of

functions representable by them.

The quantum analogue of the XOR gate is the

CNOT or the controlled-NOT gate as in Figure 12.

It has two input qubits: the first (top line in the

figure) is called the controlled qubit, the second

(bottom line) is the target qubit. If the controlled

qubit is zero then the target qubit is intact. If

the controlled qubit is one then the target qubit is

flipped.

|00〉 7→ |00〉, |01〉 7→ |01〉, |10〉 7→ |11〉, |11〉 7→ |10〉.

This can be written as |A,B〉 7→ |A,B⊕A〉, where

B ⊕ A is addition modulo 2, i.e. the action of

XOR. Recall that for positive integers x and n, the

remainder of division of x by n is called x modulo

n and is written x mod n.

Quantum Computing 41

| A >

| B >

| A >

| B A >

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

Figure 12: The CNOT gate

Exercise 4.4 Check that the matrix representing

CNOT in the standard computational basis is the one

given in Figure 12 and that it is unitary. �

Note that CNOT, like any unitary map, is an

invertible transformation: given the output qubits

A and A ⊕ B, we can obtain B and hence the

input qubits. The same is not true of the classical

XOR or the NAND gates. Given A ⊕ B as the

output of XOR, one cannot retrieve A and B,

which means that there is a loss of information in

this irreversible classical gate.

Quantum Computing 42

Exercise 4.5 Show that the circuit on the left in

Figure 13, swaps the two qubits. It is denoted by the

figure on the right. �

Figure 13: Swapping Gate

Exercise 4.6 There is nothing special about the

control bit in the CNOT gate to take value 1. The

control gate in Figure 14 flips the target bit if the

control bit is 0. This is represented pictorially by a

hollow circle instead of the filled circle on the top line.

What is its matrix representation? �

Figure 14: A variation of CNOT

Quantum Computing 43

| x >

 | y >

e
ixy φ

| x > | y >

φ

Figure 15: The controlled phase gate

Another useful two-qubit gate is the controlled

phase gate B(φ), Figure 15, with matrix:









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiφ










More generally, the controlled-U transform for any

single qubit unitary transform U maps |0〉|y〉 to

|0〉|y〉 and |1〉|y〉 to |1〉(U |y〉); see Figure 16.

U

Figure 16: The controlled-U gate

Quantum Computing 44

4.4 Classical Computations

A quantum computer is a family of quantum

networks and a quantum computation is a unitary

evolution of the network which sends any input

qubits into some output qubits.

We will show that we can simulate classical gates

with quantum circuits. We have already seen that

unlike classical gates which may be irreversible

(such as AND, XOR, NAND), quantum gates

are always unitary and therefore reversible. We

can make any irreversible classical gate into an

equivalent but reversible gate by using the Toffoli

gate, a reversible classical gate as in Figure 17.

IN OUT

a b c a’ b’ c’

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

a

b

c

a

b

 c ab

Figure 17: The Toffoli gate

Quantum Computing 45

The Toffoli gate can simulate a reversible NAND:

by choosing c = 1, we get a′ = a, b′ = b and

c′ = 1⊕ab = ¬ab. It can also simulate a FANOUT,

Figure 18, which makes a copy of the input bit a.

1 1

a a

0 a

Figure 18: FANOUT using Toffoli

With NAND and FANOUT it is possible to con-

struct any classical gate. The Toffoli gate can

thus be used to construct, in a reversible way,

any classical gate f . For this, as in NAND and

FANOUT, we use some ancilla bits 0 or 1 as input

to the Toffoli gate. We also have some garbage in

the output which is not needed in the rest of com-

putation. The ancilla and garbage bits are only

important to make the computation reversible.

Quantum Computing 46

We can represent this by

(x, 0, 0) 7→ (x, f(x), g(x)) (1)

where we have assumed that with the aid of the

NOT gate, we can assume all ancilla bits are 0.

Finally, we would like the garbage bits be in a

standard state. This is done by adding a fourth

register in an arbitrary state y so that the effect

of the reversible circuit so far is (x, 0, 0, y) 7→
(x, f(x), g(x), y). Next, we use the CNOT gate to

induce (x, f(x), g(x), y) 7→ (x, f(x), g(x), y⊕f(x)).

Finally we apply the inverse of the circuit 1 to the

first three registers to obtain:

(x, f(x), g(x), y ⊕ f(x)) 7→ (x, 0, 0, y ⊕ f(x)).

Deleting the ancilla bits, the overall evaluation

is: (x, y) 7→ (x, y ⊕ f(x)), which we regard as the

standard reversible circuit for evaluating f .

Exercise 4.7 Check that the Toffoli gate transfor-

mation is unitary, and thus can be implemented as a

quantum gate. �

Hence, using the quantum Toffoli gate we can

simulate any classical circuit.

Quantum Computing 47

4.5 Randomized algorithms

In 1970’s, Solavay and Strassen formulated a

randomized algorithm to determine if an integer is

prime or not. The algorithm, which uses a fair coin

or a random number generator, succeeds to give

the correct result only up to a certain probability.

However, if it is repeated several times, one can

determine with high probability if the number in

question is prime or not. There is no efficient

deterministic algorithm for this task.

Quantum circuits can also simulate randomized

algorithms, i.e. algorithms which use a random bit

in order to carry out a computation. In fact, no

classical computer can generate a truly random

number. But this is indeed possible in quantum

computation.

A Hadamard gate with input |0〉 produces the

output 1√
2
(|0〉 + |1〉) which, when measured, gives

one of the bits 0 and 1 each with probability 1
2 .

Therefore the Hadamard gate can be used as a fair

coin in order to simulate randomized algorithms.

Quantum Computing 48

4.6 A Universal Set of Matrices

The Hadamard gate, all phase gates and the CNOT

gate form an infinite universal set of gates: more

precisely any n-qubit unitary operation can be

simulated exactly with O(4nn) such gates. Recall

that f(n) = O(g(n)) means “f(n) ≤ kg(n) for

some constant k > 0 for sufficiently large n”.

Here we will show that the single qubit gates and

the CNOT gate form an infinite universal set for

quantum computation. First we prove that two-

level unitary matrices, i.e. unitary matrices which

act non-trivially on two or fewer components, are

universal.

We first establish the result for n = 3; the general

case is similar. Let

U =







a d g

b e h

c f j







be a unitary matrix. We construct two-level

unitary matrices U1, U2 and U3 such that

U3U2U1U = I where I is the identity matrix.

Quantum Computing 49

It then follows that

U = U †
1U

†
2U

†
3 ,

which concludes the construction since the inverse

of a two-level unitary matrix is another two-level

unitary matrix.

The construction of U1 is as follows.

If b = 0, let U1 = I;

otherwise let

U1 =








a∗√
|a|2+|b|2

b∗√
|a|2+|b|2

0

b√
|a|2+|b|2

−a√
|a|2+|b|2

0

0 0 1







.

Then U1 is a two-level matrix and

U1U =







a′ d′ g′

0 e′ h′

c′ f ′ j′






,

for some primed entries a′, b′, c′, d′ etc., whose

exact values are unimportant. The important

point is the zero entry in the first column of U1U .

Quantum Computing 50

Next, we construct U2.

If c′ = 0 (which implies |a′| = 1 by unitarity) put

U2 =







a′∗ 0 0

0 1 0

0 0 1







;

otherwise, let

U2 =








a′∗√
|a′|2+|c′|2

0 c′∗√
|a′|2+|c′|2

0 1 0

c′√
|a′|2+|c′|2

0 −a′√
|a′|2+|c′|2







.

Then U2 is a two-level unitary matrix and

U2U1U =







1 d′′ g′′

0 e′′ h′′

0 f ′′ j′′






,

for some double primed entries a′′, b′′, c′′ etc.,

whose values are again unimportant. Since U2U1U

is unitary we must have d′′ = g′′ = 0 as the first

row must have norm 1.

Quantum Computing 51

We finally put

U3 =







1 0 0

0 e′′∗ f ′′∗

0 h′′∗ j′′∗






.

This gives us U3U2U1U = I as required.

We now consider the general case.

Theorem 4.8 Any unitary matrix on Cd can be

written as the composition of at most d(d − 1)/2

two-level unitary matrices.

Proof For the general case of d dimensional uni-

tary matrix U , we can find unitary two-level matri-

ces U1, U2, · · · , Ud−1 such that Ud−1Ud−2 · · ·U1U

has a one in the top left corner and zeros ev-

erywhere else in the first row and first col-

umn. Then we apply the same algorithm

to the (d − 1) × (d − 1) matrix in the lower

right corner of Ud−1Ud−2 · · ·U1U etc. It follows

that U can be expressed as U = V1V2 · · ·Vk
where the matrices Vj are two-level unitary with

k ≤ (d− 1) + (d− 2) + · · · + 2 + 1 = d(d− 1)/2 �

Quantum Computing 52

Next we show that any two-level unitary matrix

U , acting on n-qubits, can be implemented using

single qubit gates and the Cn−1(X) gate. Suppose,

first that the two non-trivial levels of U are the

last two rows and columns. This means that U

acts non-trivially only on the last qubit, when all

other qubits are 1. Let Û be the bottom right

two-by-two matrix in U . Then U can be simply

implemented by a controlled-Û gate conditioned

on all but the last qubit to be equal to 1.

In the general case, assume that U acts non-

trivially on the computational basis |s〉 and |t〉
where s = s1s2 · · · sn and t = t1t2 · · · tn. Again let

Û be the non-trivial submatrix of U corresponding

to the subspace generated by |s〉 and |t〉.
All we need to do is to find a change in the

computational basis so that the non-trivial two

levels correspond to a single qubit. Recall from

Section 3.1 that the matrix representation in the

new basis is V = BUB−1 where B is the matrix

for changing the basis. From this we obtain

U = B−1V B. Our job is therefore to obtain B

and its inverse.

Quantum Computing 53

This is most easily done using Gray Codes. A

Gray code connecting the two binary numbers

s = s1s2 · · · sn and t = t1t2 · · · tn is a sequence of

binary numbers such that each two consecutive

numbers in the list differ in exactly one bit. For

example 1011, 1001, 0001, 0000 is a Gray Code

connecting 1011 and 0000.

Algorithm 4.9 Suppose we have the Gray code

sequence |s〉 = |g1〉 → |g2〉 → |g3〉 → · · · →
|gm−1〉 → |gm〉 = |t〉. Assume |g1〉 and |g2〉 differ

in their ith bit. We use a Cn−1(X) gate to flip

the ith bit conditioned on the values of all other

qubits to be the same as those of |g1〉 and |g2〉.
This is repeated for swapping |g2〉 and |g3〉 and

so on until we swap |gm−2〉 and |gm−1〉. Assume

|gm−1〉 and |gm〉 differ in their jth bit. We use a

controlled-Û gate with the jth bit as the target and

conditioned on the other qubits having the same

values as those in |gm−1〉 and |gm〉. Finally, we

use another sequence of Cn−1(X) gates to undo

the swap operations in reverse order: |gm−1〉 and

|gm−2〉, then |gm−2〉 and |gm−3〉 and so on until

we swap |g2〉 and |g1〉.

Quantum Computing 54

Exercise 4.10 Show that the network in Figure 19

below implements the Toffoli gate using H, CNOT,

S =

„

1

0

0

eiπ/2

«

=

„

1

0

0

i

«

, T =

„

1

0

0

eiπ/4

«

�

H H

T

TT

TTTT

S

Figure 19: An implementation of the Toffoli gate

Exercise 4.11 Show that if for a single qubit unitary

operation U we have U = V 2 where V is another single

qubit unitary operation, then the double controlled

U gate, called C2(U) gate, can be implemented as in

Figure 20. Show that for V = (1 − i)(I + iX)/2 this

implements the Toffoli gate. �

=

U V V V

Figure 20: Implementation of C2(U)

Quantum Computing 55

From Algorithm 4.9, we know how to implement

an arbitrary unitary transformation on C
2n

, i.e. a

unitary operation on n qubits, in terms of

(i) the controlled flip Cn−1(X), which flips the

basis vectors in a given qubit conditioned on

some specific values of all other qubits, and,

(ii) the controlled Û gate Cn−1(Û), which applies

the single qubit transformation Û on a given

qubit conditioned on some specific values of

all other qubits.

We now show how to implement a controlled U

gate, C(U), for any single qubit unitary transfor-

mation U . For any matrix or linear map A we

formally write:

eA = I +
A1

1!
+
A2

2!
+ · · · + An

n!
+ · · · .

Example 4.12 If A2 = I, then we have:

eiAx = I + ix
1

1! A− x2

2! I − ix
3

3! A+ · · ·
= cos(x)I + i sin(x)A.

In particular, this holds for the Pauli matrices X ,

Y and Z since X2 = Y 2 = Z2 = I.

Quantum Computing 56

Definition 4.13 The rotation operators around

the x, y and z axes are respectively defined as:

Rx(θ) = e−iθX/2 = cos
θ

2
I − i sin

θ

2
X,

Ry(θ) = e−iθY/2 = cos
θ

2
I − i sin

θ

2
Y,

Rz(θ) = e−iθZ/2 = cos
θ

2
I − i sin

θ

2
Z.

Exercise 4.14 Check that XYX = −Y and

XZX = −Z; then show that XRy(θ)X = Ry(−θ) and

XRz(θ)X = Rz(−θ). �

Proposition 4.15 If U is a single qubit unitary

operation, then there exist α, β, γ and δ such that

U = eiαRz(β)Ry(γ)Rz(δ).

Proof By Exercise 3.8, there exist α, β, γ and δ

with:

U =

„

ei(α−β/2−δ/2) cos γ/2

ei(α+β/2−δ/2) sin γ/2

−ei(α−β/2+δ/2) sin γ/2

ei(α+β/2+δ/2) cos γ/2

«

.

Then by simple matrix multiplication we get:

eiαRz(β)Ry(γ)Rz(δ) =
„

ei(α−β/2−δ/2) cos γ/2

ei(α+β/2−δ/2) sin γ/2

−ei(α−β/2+δ/2) sin γ/2

ei(α+β/2+δ/2) cos γ/2

«

= U �

Quantum Computing 57

For any single qubit unitary operation U with α,

β, γ and δ as in Proposition 4.15, put

A = Rz(β)Ry(
γ

2
), B = Ry(−γ

2
)Rz(−

δ + β

2
),

C = Rz(
δ − β

2
).

Then, it is easily checked that

ABC = I. (2)

From Exercise 4.14, using X2 = I we get:

XBX = XRy(−
γ

2
)XXRz(−

δ + β

2
)X

= Ry(
γ

2
)Rz(

δ + β

2
).

Hence,

AXBXC = Rz(β)Ry(
γ

2
)Ry(

γ

2
)Rz(

δ + β

2
)Rz(

δ − β

2
)

= Rz(β)Ry(γ)Rz(δ).

It follows that

U = eiαAXBXC. (3)

We can now implement the C(U) gate using the

single qubit unitary operations A, B, C, X and

the phase gate α as in the following exercise.

Quantum Computing 58

Exercise 4.16 Assuming that the single qubit

operation U is given as in Equations 3 and 2 by

U = eiαAXBXC with ABC = I, show that the

network in Figure 21 implements the controlled U

gate, C(U), using the single qubit gate X the phase

gate α and the single qubit gates A, B and C. �

U C B A

α

Figure 21: Implementation of C(U)

Therefore the C(U) gate as well as the Toffoli gate

can be implemented using O(1) single qubit gates

and CNOT gates. In order to complete the proof

that any quantum gate can be constructed using

single qubit gates and the CNOT gate, we show

how to implement for any n ≥ 2 the controlled

U gate Cn(U) using the Toffoli gate and the C(U)

gate. This is done as in the following exercise.

Quantum Computing 59

Exercise 4.17 Show that the Cn(U) gate, where U is

a single qubit unitary operation, can be implemented

using n−1 work qubits as in the network in Figure 22,

depicted for n = 5. Deduce that any such Cn(U) gate

can be implemented by O(n) single qubit and CNOT

gates. �

U U target qubit

work qubits

control qubits

|o>

|o>

|o>

|o>

Figure 22: Implementation of Cn(U)

Quantum Computing 60

Returning to Algorithm 4.9, we need altogether

at most 2(n − 1) controlled operations to swap

|g1〉 and |gn−1〉 and back again. By Exercise 4.17,

each of these controlled operations needs O(n)

single qubit and CNOT gates to implement; each

controlled-Û gate also requires O(n) such gates.

Hence, implementing a two-level unitary operation

requires O(n2) single qubit and CNOT gates.

Example 4.18 Let

U =





















a 0 0 0 0 0 0 c

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

b 0 0 0 0 0 0 d





















Then s = 000 and t = 111. With the sequence

000 → 001 → 011 → 111, we construct the

network in Figure 23 which implements U . �

Quantum Computing 61

U

Figure 23: Network for a two-level unitary operation

Altogether, we have seen that any unitary op-

eration on n-qubit quantum registers can be

constructed by the composition of at most

2n(2n − 1)/2, i.e. O(22n), two-level unitary opera-

tions. Therefore implementing a unitary operation

requires a circuit with O(n222n) single qubit and

CNOT gates. Clearly this is very inefficient. In

practice we need a different technique.

In fact, it can be shown that the Hadamard gate,

the phase gates π/2 and π/4, and the CNOT gate

together form a finite universal set of gates: any

unitary transformation on two or more qubits

can be efficiently approximated as accurately as

desired by a circuit with a finite number of these

gates (see Nielsen & Chuang, page 194).

Quantum Computing 62

4.7 The No-Cloning Theorem

We can easily see that the CNOT gate induces:

|x0〉 7→ |xx〉 for x = 0 or x = 1, i.e. it produces

a copy of such x. The question is if it can copy

an arbitrary qubit |ψ〉 = α|0〉 + β|1〉. The answer

is no: we have (α|0〉 + β|1〉)|0〉 7→ α|00〉 + β|11〉,
and hence the output is an entangled state which

cannot be the tensor product of |ψ〉 with itself. In

fact we prove that, unlike the classical FANOUT,

no unitary matrix can copy an arbitrary qubit.

Theorem 4.19 The No-Cloning Theorem. There

does not exist a unitary transformation M such

that M |ψ〉|0〉 = |ψ〉|ψ〉 for all qubits |ψ〉.

Proof Suppose there existsM such thatM |ψ〉|0〉 =

|ψ〉|ψ〉 for any qubit |ψ〉. Choose qubits |ψ〉 and

|φ〉 with 0 < 〈ψ|φ〉 < 1, e.g. |ψ〉 = |0〉 and

|φ〉 = 1√
2
(|0〉 + |1〉). Then we have M |ψ〉|0〉 =

|ψ〉|ψ〉 and M |φ〉|0〉 = |φ〉|φ〉. Since M , be-

ing unitary, preserves inner products, we get

〈ψ|φ〉〈ψ|φ〉 = 〈ψ|φ〉〈0|0〉 = 〈ψ|φ〉, contradicting

0 < 〈ψ|φ〉 < 1. Therefore M cannot exist. �

Quantum Computing 63

5 Quantum Entanglement

As we have seen the CNOT gate can be used to

create entangled states. The circuit in Figure 24

creates the four basic entangled states (depicted

up to the normalization factor) which are called

the Bell or EPR states. These are named after

Bell, Einstein, Podolsky and Rosen who first

discovered the amazing properties of these states.

In fact, Einstein, Podolsky and Rosen tried to use

these states in order to argue, unsuccessfully, that

quantum mechanics is not a complete description

of the physical world. Entangled states can be

used to carry out a surprising act as follows.

 H x

y

 | βxy >

in out

|00> (|00> + |11>)

|01> (|01> + |10>)

|10> (|00> − |11>)

|11> (|01> − |10>)

Figure 24: The Bell or EPR states

Quantum Computing 64

5.1 Quantum Teleportation

Alice and Bob meet, generate an EPR pair and

each takes one qubit of the EPR state. Then they

move far apart from each other. Several years

later, Alice wants to send a qubit to Bob. She

does not know the state of the qubit, cannot make

copies of the qubit (by the No-Cloning Theorem),

and can only send classical information to Bob.

This certainly looks like an impossible task. Even

if she knew the state of the qubit, she would have

needed an infinite amount of time to describe its

state to Bob since, as we have seen, a quantum

state varies over a continuous space. Fortunately

quantum entanglement makes this task possible.

Here is how it works. Assume the qubit Alice has

to send to Bob is |ψ〉 = α|0〉 + β|1〉, where α and

β are unknown. Alice will combine |ψ〉 with her

half of the EPR pair and then applies the CNOT

gate and the Hadamard gate before measuring her

two qubits. She then sends the result of the two

bits to Bob who is, amazingly, able to retrieve |ψ〉
from this classical information.

Quantum Computing 65

More formally, Alice and Bob will make use of the

three-qubit quantum circuit in Figure 25. Alice

uses the top two lines, corresponding to the first

two qubits, whereas Bob uses the bottom line,

corresponding to the last qubit. The input is:

|ψ0〉 = |ψ〉|β00〉 =
1√
2
[α|0〉(|00〉+|11〉)+β|1〉(|00〉+|11〉)]

where the state |β00〉 = 1√
2
(|00〉 + |11〉) occupies

the second qubit of Alice and the qubit of Bob.

H

X Z

| >

ψ| >

ψ

| β
00

>

m

n

n m

|
0

ψ
1 2

|
3

ψ
4

ψ > | > ψ | > ψ > | >

Figure 25: Quantum teleportation

Alice then sends her qubits through a CNOT gate

which gives:

|ψ1〉 =
1√
2
[α|0〉(|00〉 + |11〉) + β|1〉(|10〉 + |01〉)].

Quantum Computing 66

She then sends her first qubit through a Hadamard

gate to obtain:

|ψ2〉 =
1

2
[α(|0〉 + |1〉)(|00〉 + |11〉)+

β(|0〉 − |1〉)(|10〉 + |01〉)],
or

|ψ2〉 =
1

2
[|00〉(α|0〉 + β|1〉) + |01〉(α|1〉 + β|0〉)

+|10〉(α|0〉 − β|1〉) + |11〉(α|1〉 − β|0〉)] .
Thereafter, she measures her two qubits obtaining

one of the following four pairs of bits:

00 01 10 11.

Each of these measurement results will collapse

Bob’s qubit as follows:

00 7→ |ψ3(00)〉 = α|0〉 + β|1〉

01 7→ |ψ3(01)〉 = α|1〉 + β|0〉

10 7→ |ψ3(10)〉 = α|0〉 − β|1〉

11 7→ |ψ3(11)〉 = α|1〉 − β|0〉

Quantum Computing 67

Alice communicates her two bits mn with Bob

over a classical channel.

Bob will then send his qubit through the circuit

XnZm where

X =

(
0

1

1

0

)

Z =

(
1

0

0

−1

)

.

The final result can be easily checked to be |ψ〉.
Exercise 5.1 Check that the final result is indeed

the state |ψ〉. �

Note the following points:

• Quantum teleportation requires communica-

tion over a classical channel. Therefore there is

no instantaneous transmission of information

and, hence, the speed of light is not broken.

• Although Alice manages to send a copy of

|ψ〉 to Bob the original version of |ψ〉 is

destroyed. Therefore there is no violation of

the No-Cloning theorem.

• Quantum teleportation was discovered theo-

retically in 1993 and has been confirmed by

experiment since then.

Quantum Computing 68

6 Quantum Algorithms

We have seen that the state of a quantum system

is a superposition of its computational basis

elements and that the quantum state evolves,

for example in a quantum circuit, according to a

unitary operation which acts in parallel on all the

basis elements in the superposition. The ability

to compute in parallel is a fundamental feature

of quantum circuits. In fact, we show here that

a quantum circuit can in one step “compute” the

values of a function on different inputs.

Let f : {0, 1} → {0, 1} be a Boolean function which

outputs a bit for each input bit. We construct,

using the method of Section 4.4, a two-qubit

circuit which performs Uf : |x, y〉 7→ |x, y ⊕ f(x)〉.
Exercise 6.1 Show that Uf is unitary. �

We can now check that

Uf : (
|0〉 + |1〉√

2
)|0〉 7→ |0, f(0)〉 + |1, f(1)〉√

2
,

where 1√
2
(|0〉 + |1〉) can be obtained by applying

the Hadamard gate to |0〉.

Quantum Computing 69

We see that the Uf gate “computes” both values

of f(0) and f(1) in one step.

The above construction can be extended to

Boolean functions with n bits of input.

The Uf gate now has n+1 input qubits, the first n

are input to f . It has also n+1 output qubits, the

first n qubits are identical with the first n qubits

of the input as in Figure 26.

x

y

x
n n

y f(x)

Uf

Figure 26: A Gate for Parallel Computation

In this and future figures, we use the convention

that a stroked line with label n indicates that the

line stands for n input or output wires.

Exercise 6.2 Check that for any integer n the

operator Uf is a unitary transformation. �

Quantum Computing 70

Instead of a single Hadamard operation, we use

the n tensor product

H ⊗H ⊗ · · · ⊗H
︸ ︷︷ ︸

n times

of the Hadamard gates, which we denote by H⊗n.

We also write the qubit

| 00 · · · 0
︸ ︷︷ ︸

n times

〉

simply as |0〉⊗n.
Exercise 6.3 Show that

H⊗n|0〉⊗n =
1√
2n

X

x∈{0,1}n

|x〉. �

We then have

Uf :
1√
2n

∑

x∈{0,1}n

|x〉|0〉 7→ 1√
2n

∑

x∈{0,1}n

|x〉|f(x)〉.

Again we see that this gate is capable of “com-

puting” all the 2n values of f in one step. Clearly

for large n this gives rise to a massive parallel

computation. But does the circuit really compute

all values of f is one step?

Quantum Computing 71

The fact is that after any measurement of the

output, the state vector collapses, we will only

obtain one value f(x) for a single x ∈ {0, 1}n and

all other values are lost for ever.

Therefore, in order to use the hidden information

in this parallelism, we need to be able somehow to

obtain more information from the superposition
∑

x∈{0,1}n

|x〉|f(x)〉

than just one value of f . What is required is some

appropriate interference between the values in the

superposition in the output.

The great American physicist, Richard Feynman,

was the first to observe that a Turing machine

or a classical computer is not able to simulate

a quantum system efficiently. He turned this

observation around and raised the possibility

that computers based on quantum mechanics can

surpass electronic computers.

It was David Deutsch who in 1985 discovered the

first quantum algorithm, generalized in 1992 to

what is now called the Deutsch-Jozsa algorithm.

Quantum Computing 72

6.1 Deutsch’s Algorithm

The first quantum algorithm, with a clear superi-

ority over its classical counterpart, was discovered

by Deutsch. Consider the simple Uf gate of the

previous section which uses the Hadamard gate

on |0〉 to prepare its first qubit 1√
2
(|0〉 + |1〉).

This time a second Hadamard gate on input |1〉
is used to prepare its second qubit 1√

2
(|0〉 − |1〉).

Furthermore, a third Hadamard gate is applied to

the first qubit in the output as in Figure 27. We

have: |ψ0〉 = |01〉 and

|ψ1〉 = (H ⊗H)|01〉 =
1

2
(|0〉 + |1〉)(|0〉 − |1〉).

Uf
H H

H

| 0 >

| 1 >

x

y

x

ψ | > > ψ | > ψ | >ψ
0 1 2 3

y f(x)

|

Figure 27: Deutsch’s Circuit

Quantum Computing 73

Note that

Uf (|x〉(|0〉 − |1〉)/
√

2) = (−1)f(x)|x〉(|0〉 − |1〉)/
√

2.

Hence,

|ψ2〉 =







± 1
2 (|0〉 + |1〉)(|0〉 − |1〉) if f(0) = f(1)

± 1
2 (|0〉 − |1〉)(|0〉 − |1〉) if f(0) 6= f(1).

Finally, the action of the third Hadamard gate on

the first qubit gives:

|ψ3〉 =







±|0〉(|0〉 − |1〉)/
√

2 if f(0) = f(1)

±|1〉(|0〉 − |1〉)/
√

2 if f(0) 6= f(1).

which can be written as:

|ψ3〉 = ±|f(0) ⊕ f(1)〉(|0〉 − |1〉)/
√

2.

Therefore, with this quantum circuit we can, in a

single step, evaluate f(0) ⊕ f(1) which a classical

algorithm would need two steps to compute.

The above algorithm can be extended to Boolean

functions on n bits. Let f : {0, 1}n → {0, 1} be

either a constant function or a balanced function,

i.e. f(x) = 0 for exactly 2n−1 values of x.

Quantum Computing 74

Classically it takes, in the worst case, 1 + 2n−1

queries to establish whether f is constant or

balanced.

Surprisingly, a quantum algorithm can decide this

in only one single step. The circuit, named after

Deutsch-Jozsa, is now as in Figure 28. The stroked

line with label n represents a set of n qubits, which

we call the query register.

Uf

| 0 >

| 1 >

x

y

x

ψ | > > ψ | > ψ | >ψ
0 1 2 3

y f(x)

|

n nn

H

H H

Figure 28: Deutsch-Jozsa Circuit

Exercise 6.4 Show that

H|x〉 =
P

y∈{0,1}(−1)xy|y〉/
√

2

H⊗n|x〉 =
P

y∈{0,1}n(−1)x.y|y〉/
√

2n

where x.y is the bitwise inner product of x and y

modulo 2. �

Quantum Computing 75

We now have:

|ψ0〉 = |0〉⊗n|1〉
|ψ1〉 = 1√

2n

∑

x∈{0,1}n |x〉|(0〉 − |1〉)/
√

2

|ψ2〉 = 1√
2n

∑

x∈{0,1}n(−1)f(x)|x〉(|0〉 − |1〉)/
√

2

|ψ3〉 =
∑

y∈{0,1}n

∑

x∈{0,1}n
(−1)x.y+f(x)|y〉

2n

(
|0〉−|1〉√

2

)

.

The amplitude of |y〉 = |0〉⊗n in |ψ3〉 is
∑

x(−1)f(x)/2n.

If f is constant this will be 1 or −1 which means, by

the normalization condition, that the amplitudes

of all other states are zero. Any measurement

of the query register produces the state |0〉⊗n
with probability 1. On the other hand if f is

balanced then the amplitude of |y〉 = |0〉⊗n will

be zero, which means that the amplitude of at

least one other n-qubit must be non-zero. In

this case, any measurement of the query register

produces at least one qubit 1. Hence, with a

single measurement, one can decide whether f is

constant or balanced, an exponential reduction in

the complexity of the classical algorithm. This is

a massive improvement, but there are no known

applications of the Deutsch-Jozsa algorithm.

Quantum Computing 76

7 Quantum Search

We will now turn to quantum algorithms which

are both superior to their classical counterpart and

also very useful in practice. The quantum search

algorithm discovered by Grover in 1996 gives a fast

solution to the following problem: In an unsorted

list of N items some are distinguished by satisfying

a given condition; the task is to retrieve one of

these distinguished states. More specifically, we

assume, for convenience, that N = 2n and the

items are the bit sequences of length n with M

distinguished states or solutions. We further

assume that there exists an oracle, a black box,

which determines if a state is a solution or not.

Formally, the oracle can be regarded as a Boolean

function f : {0, 1}n → {0, 1} such that f(x) = 1 if

x is a solution and f(x) = 0 otherwise.

On a classical computer, one needs on average

O(N/M) calls of the oracle f to find a solu-

tion. Grover’s algorithm determines a solution in

O(
√

N/M) which is a quadratic improvement over

classical computation.

Quantum Computing 77

Here is how it works. We prepare an n-qubit

quantum register for the superposition of states in

{0, 1}n. We also need a quantum implementation

of the oracle f .

We use a single oracle qubit and a unitary map

O : |x〉|y〉 7→ |x〉|y ⊕ f(x)〉,

where x ∈ {0, 1}n is a computational basis element

in the quantum register and y is the single oracle

qubit.

If y is prepared in state 0, then O flips it if x

is a solution (f(x) = 1) and leaves it unchanged

otherwise (f(x) = 0). However, as in the Deutsch-

Jozsa algorithm, it is convenient to prepare the

oracle qubit in the state 1√
2
(|0〉 − |1〉) by applying

the Hadamard gate to |1〉.
Then the oracle O acts, for x ∈ {0, 1}n, as follows:

O : |x〉 |0〉 − |1〉√
2

7→(−1)f(x)|x〉 |0〉 − |1〉√
2

.

Since the single oracle qubit stays in the state
|0〉−|1〉√

2
throughout the computation, we can

simply remove it from now on for simplification.

Quantum Computing 78

Therefore, the action of O on a general state of

the quantum register is:

O :
∑

x∈{0,1}n

αx|x〉 7→
∑

x∈{0,1}n

(−1)f(x)αx|x〉.

The quantum register is prepared in the state |0〉⊗n
which is then put, by applying the Hadamard

transform H⊗n, in the superposition state

|ψ〉 =
1√
N

N−1∑

x=0

|x〉. (4)

We now apply the following sequence of operations

called the Grover operator:

G = H⊗nP0H
⊗nO

where the conditional phase shift P0 is given by

P0 : |x〉 7→







|x〉 x = 0

−|x〉 x > 0,

for any computational basis state |x〉 (with x in the

range 0 ≤ x ≤ N − 1). By checking its action on

basis states it is easy to check that P0 = 2|0〉〈0|−I
where I is the identity map.

Quantum Computing 79

Since the Hadamard operation is its own inverse,

we get

H⊗nP0H
⊗n = H⊗n(2|0〉〈0|−I)H⊗n = 2|ψ〉〈ψ|−I.

Hence, the G operator can be simply written as

G = (2|ψ〉〈ψ| − I)O.

O
H P

nn

0
n qubit

oracle
qubit

n
H

register

Figure 29: Circuit for Grover’s Operation G

Exercise 7.1 (i) Show that

(2|ψ〉〈ψ| − I)(
X

x

αx|x〉) =
X

x

(−αx + 2〈α〉)|x〉,

where 〈α〉 =
P

x αx/N .

(ii) Explain why the operation 2|ψ〉〈ψ| − I is called

inversion about mean. �

Quantum Computing 80

7.1 Geometric Interpretation of G

The Grover operation is a rotation in the real

plane generated by the initial state |ψ〉 and the

state obtained as the uniform superposition of the

M basis state solutions. To see this in detail, let

T = {x ∈ {0, 1}n|f(x) = 1} and S = {0, 1}n \ T .

Put

|σ〉 =
1√

N −M

∑

x∈S
|x〉, |τ〉 =

1√
M

∑

x∈T
|x〉.

Then it is easily checked that

|ψ〉 =

√

N −M

N
|σ〉 +

√

M

N
|τ〉, (5)

which shows that |ψ〉 is in the same two-

dimensional real plane as |σ〉 and |τ〉. Any

state in this plane is in the form a|σ〉 + b|τ〉 with

a2 + b2 = 1. We have O(a|σ〉+ b|τ〉) = a|σ〉 − b|τ〉,
which shows that the action of O on this plane is

a reflection about |σ〉.

Exercise 7.2 Show that the action of 2|ψ〉〈ψ| − I in

the |σ〉 and |τ〉 plane is reflection about |ψ〉. �

Quantum Computing 81

Since the composition of two reflections is a

rotation, it follows that G rotates state vectors in

the |σ〉, |τ〉 plane by θ towards |τ〉, where θ/2 is the

angle between |ψ〉 and |σ〉, i.e. |ψ〉 = cos(θ/2)|σ〉+

sin(θ/2)|τ〉, with cos(θ/2) =
√

(N −M)/N ,

sin(θ/2) =
√

M/N . Assume, by replacing N with

2N if necessary, that M ≤ N/2 (Figure 30).

Exercise 7.3 Show that if we change the compu-

tational basis so that |σ〉 and |τ〉 are basis elements,

then the matrix representation of G will be;

Gσ,τ =

„

cos θ

sin θ

− sin θ

cos θ

«

. �

θ

θ

θ/2

|τ >

|σ >

|ψ >

Ο|ψ >

|Ψ >

/2

G =(2 |ψ > < ψ | − Ι) Ο |ψ >

Figure 30: Action of Grover’s Operation

Quantum Computing 82

Hence, after m iterations we have:

Gm|ψ〉 = cos(
2m+ 1

2
θ)|σ〉 + sin(

2m+ 1

2
θ)|τ〉.

It follows that when 2m+1
2 θ ≈ π/2, i.e. after

m = ⌊π/2θ − 1/2⌉ (6)

iterations, where ⌊d⌉ is the nearest integer to d, the

state vector is within an angle θ/2 ≤ π/4 of |τ〉.
Measurement of the state vector now will give a

solution with probability at least cos2(π/4) = 1/2.

In the case that M ≪ N (i.e. M very small

compared to N), we get θ ≈ sin θ ≈ 2
√

M/N , so

that θ/2 ≈
√

M/N . Hence, measurement of the

state vector in this case will produce a solution

with probability at least cos2(θ/2) ≈ 1 −M/N .

In general, from Equation 6, we have m ≤ ⌊π/2θ⌋.
Since for any real θ, we have

θ

2
≥ sin

θ

2
=

√

M

N
,

we obtain an upper-bound for the number of

iterations of G needed to find a solution:

m ≤
⌊
π
4

√
N
M

⌋

.

Quantum Computing 83

Exercise 7.4 Let n = 2 so that N = 2n = 4, and

let M = 1. The oracle f with f(x) = 0 for all x 6= x0

and f(x0) = 1 can be chosen from the four circuits in

Figure 31, corresponding to x0 = 0, 1, 2, 3 respectively

from left to right.

Figure 31: Four possible oracles

Show that the circuit in Figure 32 in effect implements

the operation G. How many iterates of G are needed

to determine x0? �

 H

H H H H

HX

X

X

X O

Figure 32: Circuit for G

Quantum Computing 84

8 Fourier Transform

The Fourier Transformation is one of the most

fundamental tools in science and applied mathe-

matics. It maps time dependent functions to their

frequency domains in such a way that a periodic

function of period T > 0 is mapped to a function

whose frequency amplitude is non-vanishing only

at frequencies which are integer multiples of 1/T .

The Quantum Fourier Transform is the quan-

tum analogue of the Discrete Fourier Transform

(DFT).

Given a vector of complex numbers

(x0, x1, · · · , xN−1)

as input, the DFT, denoted here by F , provides a

vector

(y0, y1, · · · , yN−1)

of complex numbers as output by the rule:

F : (x0, · · · , xN−1) 7→ (y0, · · · , yN−1)

yk = 1√
N

∑N−1
j=0 xje

2πijk/N

Quantum Computing 85

In terms of the computational basis |j〉 (j =

0, · · · , N − 1), with N = 2n, this can be written as

F :
N−1∑

j=0

xj |j〉 7→
N−1∑

k=0

yk|k〉 (7)

which is the quantum Fourier transform.

Exercise 8.1 What is the matrix for F when n = 1

and n = 2? Show that F is unitary for any n. �

It follows from Equation 7, by writing the indices

of states in binary form, that:

|j〉
7→ 1√

N

∑N−1
k=0 e2πijk/N |k〉

= 1
2n/2

∑1
k1=0 · · ·

∑1
kn=0 e

2πij(
Pn

l=1 kl2
−l)|k1 · · · kn〉

= 1
2n/2

∑1
k1=0 · · ·

∑1
kn=0

⊗n
l=1 e

2πijkl2
−l |kl〉

= 1
2n/2

⊗n
l=1

∑1
kl=0 e

2πijkl2
−l |kl〉

= 1
2n/2

⊗n
l=1(|0〉 + e2πij2

−l |1〉)

= 1
2n/2 (|0〉 + e2πi0.jn |1〉)(|0〉 + e2πi0.jn−1jn |1〉) · · ·

· · · (|0〉 + e2πi0.j2···jn−1jn |1〉)(|0〉 + e2πi0.j1j2···jn−1jn |1〉)

Quantum Computing 86

Hence,

F : |j1j2 · · · jn−1jn〉 7→ (8)

1

2n/2
(|0〉 + e2πi0.jn |1〉) · · · (|0〉 + e2πi0.j1j2···jn |1〉).

This gives a simple way of implementing F as in

Figure 33 where

Rk =

(
1

0

0

e2πi/2k

)

.

The n-qubit input on the left of the figure is

|j1j2 · · · jn−1jn〉.

H

H

R

Rn−2 Rn−1

2

|j >
2

|j > n

 n−1|j >

H R 2

|j >
3

H R 2 nR
|j >1 R n−1

Figure 33: Circuit for Fourier Transform

We will now check that the circuit correctly

implements F .

Quantum Computing 87

After the action of the Hadamard gate on the first

qubit |j1〉, we get:

1√
21

(|0〉 + e2πi0.j1 |1〉)|j2 · · · jn〉

as e2πi0.j1 = 1 when j1 = 0 and is −1 when j1 = 1.

Next applying the controlled-R2 gate we obtain

1√
21

(|0〉 + e2πi0.j1j2 |1〉)|j2 · · · jn〉.

Continuing in this way to apply the controlled-R3

to Rn gates, the final outcome is:

1√
21

(|0〉 + e2πi0.j1j2···jn |1〉)|j2 · · · jn〉.

Next we consider the second qubit |j2〉 which goes

through the sequence of the Hadamard and the

controlled-R2 to Rn−1 gates. The result will be:

1√
22

(|0〉+e2πi0.j1j2···jn |1〉)(|0〉+e2πi0.j2···jn |1〉)|j3 · · · jn〉.

Repeating this scheme for qubits |j3〉 · · · |jn〉 gives:

1√
2n

(|0〉 + e2πi0.j1j2···jn |1〉)(|0〉 + e2πi0.j2···jn |1〉) · · ·

· · · (|0〉 + e2πi0.jn−1jn |1〉)(|0〉 + e2πi0.jn |1〉).

Quantum Computing 88

Finally applying the swap operations, the order of

all qubits is reversed and we end up with:

1√
2n

(|0〉 + e2πi0.jn |1〉)(|0〉 + e2πi0.jn−1jn |1〉) · · ·

· · · (|0〉 + e2πi0.j2···jn |1〉)(|0〉 + e2πi0.j1j2···jn |1〉),
which is precisely the outcome of F . Since all the

gates involved are unitary, it follows that F is a

unitary operation.

Note that there are n(n + 1)/2 Hadamard and

controlled-Rk gates and ⌊n/2⌋ swapping gates

in the circuit. Hence, this method provides an

algorithm of complexity O(n2) for computing the

Fourier transform.

Exercise 8.2 (i) Work out the matrix for F and

the network which implements it for n = 3.

(ii) Show that the inverse of F is given by:

F † : |j〉 7→ 1√
2n

2n−1
X

k=0

e−2πijk/2n

|k〉. (9)

(iii) Work out the circuit for F †. �

Quantum Computing 89

9 Phase Estimation

The quantum Fourier transform gives rise to a

technique for estimating the phase of an eigenvalue

of a unitary matrix, which is the basis of a number

of quantum algorithms. We first recall the notions

of eigenvalue and eigenvector.

9.1 Eigenvalues and Eigenvectors

Let A be an m×m matrix with complex entries.

Then λ ∈ C is an eigenvalue for A if det(A−λI) =

0, where det denotes determinant and I is the

identity m×m matrix. The expression det(A−λI)
is a polynomial of degree m in λ and (by the

fundamental theorem of algebra) it has m, in

general complex, roots which are the eigenvalues

of A (some of them may be multiple roots).

Furthermore any non-zero vector v ∈ Cm with

Av = λv is called an eigenvector of A for the

eigenvalue λ. The subspace generated by the

eigenvectors of A corresponding to the same

eigenvalue λ is called the eigenspace of λ.

Quantum Computing 90

If the eigenspace has dimension bigger than one

then it is called degenerate.

Exercise 9.1 • Find the eigenvalues and eigen-

vectors of the Pauli matrices, X, Y , Z. Locate

the eigenvectors on the Bloch sphere.

• Show that the eigenvalues of a unitary matrix

have norm one.

• Show that a change of basis does not alter the

eigenvalues of a matrix. How do the eigenvectors

alter with a change in the basis? �

The matrix representation of a linear operator

with respect to a given basis is diagonal if it is

of the form A =
∑

j λj |j〉〈j| where the vectors

|j〉 form an orthonormal basis with eigenvalues

λj . A linear operator is diagonalizable if it has a

diagonal matrix representation. A linear operator

L is Hermitian if L† = L.

Theorem 9.2 A linear operator L is diagonaliz-

able iff L†L = LL†. (Nielsen/Chuang, p. 72.)

Corollary 9.3 Unitary and Hermitian operators

are diagonalizable.

Quantum Computing 91

9.2 Diagonalization of Linear Maps

Suppose we have a diagonalizable linear map

L : Cn → Cn given by a matrix A in some basis.

By Corollary 9.3, L can be, in particular, a unitary

or a Hermitian map. How do we diagonalize the

linear map L, equivalently the matrix A?

Algorithm 9.4 We construct an orthonormal

basis with respect to which L is diagonal:

(i) Find all the eigenvalues λ1, λ2, · · · , λk (where

1 ≤ k ≤ n) of A, i.e. the roots of det(A−λI) =

0 and determine the multiplicity nj of each,

so that
∑k
j=1 nj = n

(ii) For each eigenvalue λj of A, find nj orthonor-

mal vectors |vjm〉 (1 ≤ m ≤ nj) which satisfy

(A− λjI)|vjm〉 = 0.

(iii) The vectors {|vjm〉|1 ≤ m ≤ nj , 1 ≤ j ≤ k}
will form an orthonormal basis with respect to

which L is diagonal.

Exercise 9.5 Diagonalize the three Pauli matrices

and the Hadamard matrix. �

Quantum Computing 92

Let U be a unitary operator on, say, l qubits with

an eigenvalue e2πiφ associated with an eigenvector

|u〉. Assume that we do not know U , φ or |u〉, but

we are given a single preparation of |u〉 and have

devices, considered as black boxes, to perform

controlled-U , controlled-U2, controlled-U22

, and

generally controlled-U2t

for a given positive integer

t. Our goal is to estimate φ. In the first stage, we

construct the network of Figure 34.

H

H

H

H

 U U U U2 2 2 2
0 1 2 t−1

| u >

| 0 >

| 0 >

| 0 >

| 0 >

| u >

2
 | 0 > + e | 1 >

0

 | 0 > + e
2

 | 1 >
1

 | 0 > + e
2

 | 1 >

 | 0 > + e | 1 >
2

t−1

i(2)π φ

π φ

π φi(2)

i(2)

i(2)π φ

2

l

Figure 34: Circuit for Phase Estimation (stage 1)

Quantum Computing 93

The input to the second register is the eigenvector

|u〉 which will not change under the action of the

controlled-U2k

gates. The input to the first register

is |0〉⊗t which, after the H⊗t gates becomes

[(|0〉 + |1〉)/
√

2]⊗t =
1√
2t

2t−1∑

k=0

|k〉. (10)

Now consider the kth qubit (0 ≤ k ≤ t − 1)

counted from zero for the bottom qubit in the

first register. After undergoing the controlled-U2k

,

it becomes (|0〉 + e2πi(2
kφ)|1〉)/

√
2, as the phase

factor e2πi(2
kφ) is “kicked back” from the second

register to this qubit. Thus, the output |ψ〉, say,

of the first register (starting with the top qubit) is

|ψ〉 =

0⊗

k=t−1

|0〉 + e2πi(2
kφ)|1〉√

2
=

1√
2t

2t−1∑

y=0

e2πiφy|y〉,

(11)

where the last equality follows by induction on t.

In the next stage, we apply the inverse F † of the

quantum Fourier transform F to the output of the

first register and then measure the new output.

Note that we have altogether O(t2) gates.

Quantum Computing 94

This gives a good estimate for φ as we will now

show. First assume that φ can be expressed

by exactly t bits in binary representation: φ =

0.φ1φ2 · · ·φt. Then the output of the first register

after the first stage will be

|ψ〉 =
1√
2t

(|0〉+e2πi0.φt |1〉)(|0〉+e2πi0.φt−1φt |1〉) · · ·

· · · (|0〉 + e2πi0.φ2···φt |1〉)(|0〉 + e2πi0.φ1φ2···φt |1〉).
Comparing this result with the output of the

quantum Fourier transform in Equation 8, we

conclude immediately that, after the application

of the inverse Fourier transform, we get

F †(|ψ〉) = |φ1φ2 · · ·φt〉,

i.e. measurement of the final output of the first

register produces the value of φ exactly.

Now assume that φ ∈ [0, 1] is any real number

(rational or irrational). Let φ = a/2t + δ where

a = a0a1 · · · at−1, with ak ∈ {0, 1} for 0 ≤ k ≤ t−1,

such that a/2t is the best t-bit approximation to

φ, i.e. 0 ≤ |δ| ≤ 1/2t+1. We have already dealt

with δ = 0, so we assume that 0 < |δ| ≤ 1/2t+1.

Quantum Computing 95

Applying the inverse quantum Fourier transform,

given by Equation 9, to Equation 11, we obtain:

|φ̂〉 def
= F †|ψ〉 =

1

2t

2t−1∑

k=0

2t−1∑

y=0

e
2πi
2t (a−k)ye2πiδy|k〉.

(12)

The coefficient of |k〉 for k = a, which gives the

probability of measuring a, is the geometric series:

1

2t

2t−1∑

y=0

(e2πiδ)y =
1

2t

(

1 − (e2πiδ)
2t

1 − e2πiδ

)

.

From |δ| ≤ 1
2t+1 , we have 2t|δ| ≤ 1

2 . Note that,

|1 − e2πix| = 2| sinπx| (13)

and for x ∈ [−1/2, 1/2],

2|x| ≤ | sinπx| ≤ π|x|. (14)

It follows that |1 − e2πiδ2
t | = 2| sinπδ2t| ≥ 4|δ|2t.

Furthermore, |1 − e2πiδ| = 2| sinπδ| ≤ 2π|δ|.
Having a lower bound for the numerator and an

upper bound for the denominator, we find that:

∣
∣
∣
∣
∣

1

2t

(

1 − (e2πiδ)
2t

1 − e2πiδ

)∣
∣
∣
∣
∣

2

≥
(

1

2t

(
4|δ|2t
2π|δ|

))2

=
4

π2
.

Quantum Computing 96

Hence, measurement of the output state will

produce the best t-bit approximation a to φ with

probability at least 4/π2 ≈ 0.405.

9.3 Bounding the Error

Now let φ = a/2t + δ, where a/2t, this time, is the

best t-bit approximation less than or equal to φ,

i.e. 0 ≤ δ < 1/2t.

By choosing t large enough, we can actually bound

the probability of obtaining a measurement m

which differs from a by a tolerance constant c, i.e.,

p(|m− a| > c).

Let αk be the amplitude of |(a + k)(mod 2t)〉 in

|φ̂〉 of Equation 12. Then, we have:

αk =
1

2t

2t−1∑

y=0

(e2πi(2
tδ−k)/2t

)y (15)

=
1

2t

(

1 − e2πi(2
tδ−k)

1 − e2πi(δ−k/2t)

)

.

Quantum Computing 97

Since the set of integers

0, 1, · · · , 2t − 1 (mod 2t)

is precisely the set of integers

−2t−1+1,−2t−1+2, · · · ,−1, 0, 1, · · · , 2t−1 (mod 2t)

we have:

p(|m− a| > c) =

−(c+1)
∑

k=−2t−1+1

|αk|2 +
2t−1
∑

k=c+1

|αk|2.

(16)

As |1 − eix| ≤ 2, for any real x, from Equation 15

we obtain:

|αk| ≤
2

2t|1 − e2πi(δ−k/2t)| .

For the set of integers k with:

−2t−1 + 1 ≤ k ≤ 2t−1,

we have:

−1/2 ≤ δ − k/2t ≤ 1/2.

Therefore, from Equations 13 and 14, it follows

that:

|αk| ≤
1

2t+1|δ − k/2t| . (17)

Quantum Computing 98

Using Equation 17 in Equation 16, and recalling

that 0 ≤ 2tδ < 1, we have for c ≥ 2:

p(|m− a| > c)

≤ 1

4





−(c+1)
∑

k=−2t−1+1

1

(k − 2tδ)2
+

2t−1
∑

k=c+1

1

(k − 2tδ)2





≤ 1

4





−(c+1)
∑

k=−2t−1+1

1

k2
+

2t−1
∑

k=c+1

1

(k − 1)2





≤ 1

2

2t−1−1∑

k=c

1

k2
≤ 1

2

∫ 2t−1−1

c−1

dk

k2
≤ 1

2(c− 1)
,

since the sum of reciprocals of squares of con-

secutive integers is less than the corresponding

area under the graph of x 7→ x−2. We now aim

to obtain a measurement m close to a up to an

accuracy of 1/2s, for a given positive integer s,

i.e. |m2t − a
2t | < 1

2s with probability at least 1 − ǫ,

for 0 < ǫ < 1. Thus, we take c = 2t−s − 1 and

put t = s+ q where the positive integer q is to be

determined in terms of s and ǫ. Then:

p(|m
2t
− a

2t
| ≥ 1

2s
) = p(|m−a| > 2q−1) ≤ 1

2(2q − 2)
.

Quantum Computing 99

Hence, it is sufficient to choose q such that
1

2(2q−2) ≤ ǫ, i.e. q = ⌈log(2 + 1
2ǫ)⌉, which implies:

t = s+

⌈

log(2 +
1

2ǫ
)

⌉

. (18)

Exercise 9.6 More generally, suppose the states |u〉
for u ∈ T are eigenstates of U with eigenvalue e2πiφu .

The phase estimation algorithm maps the normalized

state

|0〉(
X

u∈T

du|u〉)

to the state
X

u∈T

du|φ̂u〉|u〉,

where the state |φ̂u〉 gives a good estimate of φu. Show

that with t chosen as in Equation 18, the probability

of measuring φu accurate to s bits in the output of the

phase estimation algorithm is at least |du|2(1 − ǫ). �

Phase estimation gives rise to a number of algo-

rithms; we will study the following:

(i) quantum counting,

(ii) order finding, and,

(iii) prime factorization of large numbers.

Quantum Computing 100

10 Quantum Counting

We now return to Grover’s search algorithm with

the search space of size N = 2n and ask if can we

compute the number M of solutions if this number

is not known. Clearly, it takes N calls of the oracle

to determine M classically. There is surprisingly a

much more efficient quantum algorithm for this.

Recall from Exercise 7.3 that the matrix represen-

tation of the operator G in the plane generated by

|σ〉 and |τ〉 is

Gσ,τ =

(
cos θ

sin θ

− sin θ

cos θ

)

,

where

sin θ/2 =
√

M/N. (19)

Exercise 10.1 Show that the eigenvalues of Gσ,τ

are eiθ and e−iθ corresponding to the eigenvectors

|a〉 = i|σ〉 + |τ〉 and |b〉 = |σ〉 + i|τ〉. �

We, therefore, apply the phase estimation algo-

rithm to determine the eigenvalues of Gσ,τ , from

which we can calculate M . We construct the

circuit in Figure 34, with U = Gσ,τ .

Quantum Computing 101

The first register will contain

t = s+ ⌈log(2 + 1/(2ǫ))⌉

qubits with input |0〉⊗t. The input to the sec-

ond register is, as in Equation 4, the uniform

superposition state

|ψ〉 =
1√
N

N−1∑

x=0

|x〉

which by Equation 5 is a linear combination of |σ〉
and |τ〉, hence a linear combination of |a〉 and |b〉.
By Exercise 9.6, measurement of the first register

will provide, with a probability of at least 1 − ǫ,

an approximation to θ or −θ correct to s bits:

|∆θ| ≤ 2−s. (20)

From Equation 19 and our approximation for θ we

get an approximation for M .

What is the bound on the error ∆M for M? Note

that if we have the functional relation g(y) = h(x)

where x and y are dependent variables then:

∆y

∆x
≈ dy

dx
= h′(x)/g′(y).

Quantum Computing 102

We assume that s is large and differentiate Equa-

tion 19 to obtain:

∆M

∆θ
≈

√
MN cos θ/2,

from which it follows, by Equation 20, that

∆M ≤ 2−s
√
MN. (21)

Consider an example. Let s = ⌊n/2⌋ + 1 and

ǫ = 1/6; then t = ⌊n/2⌋ + 4 and the algorithm

requires O(2n/2) = O(
√
N) iterations of G.

Furthermore, for M ≥ 1, Inequality 21 gives:

∆M <
√
M = O(

√
M). (22)

We can also determine, using this algorithm, if

a solution exists at all, i.e. whether M = 0 or

M ≥ 1. Consider the above example again.

• If M = 0, then, by Inequality 21, ∆M = 0 so

that the algorithm, with probability at least

5/6, gives the correct answer M = 0.

• If M ≥ 1, by Inequality 22, ∆M < M so

that the algorithm proves that there exists a

solution with probability at least 5/6.

Quantum Computing 103

11 Order Finding

Suppose the positive integers x and N have no

common factors and x < N . Then the order of

x modulo N is defined to be the least positive

integer r such that xr = 1(mod N). We put

L = ⌈logN⌉ so that N ≤ 2L. There are no known

classical polynomial time algorithms in L to solve

this problem. We will show below that there is an

O(L4) quantum algorithm for this task.

Recall that for positive integers x and n, the

remainder of division of x by n is called x modulo

n and is written x mod n. More precisely, x

can be written uniquely as x = kn + r where

k is nonnegative and 0 ≤ r ≤ n − 1 is the

remainder: r = x (mod n). The great German

mathematician Karl Friedrich Gauss introduced

Arithmetic modulo n early in the nineteenth

century. It is simply the operations of additions,

subtraction, multiplication and division of integers

when we take the result modulo n. It should

be clear how one adds, subtracts and multiplies

modulo n. But how do we divide modulo n?

Quantum Computing 104

What is the inverse of an integer modulo n?

Note that in ordinary arithmetic of integers, the

integers 1 and −1 are the only integers which have

an inverse. In modular arithmetic, many more

integers have an inverse as we will now see.

We denote by gcd(a, b) the greatest common

divisor of integers a and b. We aim to show that x

will have an inverse modulo n iff gcd(x, n) = 1.

Proposition 11.1 The greatest common divisor

of two integers a and b is the least positive integer

which can be written in the form ar + bs where r

and s are integers.

Proof Assume u = ar + bs is the least positive

integer which can be written as such. Since

gcd(a, b) divides both a and b it therefore divides

u and hence gcd(a, b) ≤ u. In order to show that

gcd(a, b) ≥ u, we will prove that u divides both a

and b. Suppose to the contrary that, for example,

u does not divide a. Then a = mu + n where

1 ≤ n ≤ u − 1. Therefore n = a −m(ar + bs) =

a(1−mr)− bms which contradicts the assumption

that u is minimal. �

Quantum Computing 105

Corollary 11.2 An integer c divides both a and b

iff c divides gcd(a, b).

Proof The “if” part is easy. To show the “only

if” part, assume c divides both a and b. Then

c divides any linear combination ar + bs, and in

particular it divides gcd(a, b). �

We say x and n are co-prime if gcd(x, n) = 1.

Corollary 11.3 An integer x has an inverse

modulo n > 1 iff x and n are co-prime.

Proof Suppose x has an inverse modulo n which

we denote by x−1. Then xx−1 = 1 + nk for some

integer k. Hence 1 = xx−1 − nk and therefore

gcd(x, n) = 1. On the other hand, if gcd(x, n) = 1

then xr+ ns = 1 for some integers r and s. Hence

r is an inverse of x modulo n. �

Exercise 11.4 (i) Find the inverse of 8 (mod 21).

(ii) Show that if a and b are both inverses of x modulo

n then a = b (mod n).

(iii) Show that the order r of x modulo n satisfies

r ≤ n. �

Quantum Computing 106

11.1 Quantum Order Finding

In order to find the order r of x modulo N (with

gcd(x,N) = 1)), we apply the phase estimation

algorithm to the operation U defined by:

U |y〉 = |xy(mod N)〉,

for 0 ≤ y ≤ N − 1 and U |y〉 = |y〉 for N ≤ y ≤
2L − 1. For 0 ≤ s ≤ r − 1, let:

|us〉 =
1√
r

r−1∑

k=0

exp

(−2πisk

r

)

|xk (mod N)〉.

Then, using xr = 1 (mod N), we have

U |us〉 = 1√
r

∑r−1
k=0 exp

(−2πisk
r

)
|xk+1 (mod N)〉

= exp
(

2πis
r

)
|us〉,

and hence |us〉 is an eigenvector of U with eigen-

value exp(2πis
r) for each s with 0 ≤ s ≤ r − 1.

Our strategy will be to obtain, using the phase

estimation algorithm, accurate approximation for

the phase s/r which will give us the value of r.

Exercise 11.5 Show that U is unitary. �

Quantum Computing 107

However, we do not have a preparation for |us〉 as

this requires the value of r which is to be found.

Instead, we note that

1√
r

r−1∑

s=0

|us〉 =

r−1∑

k=0

(

1

r

r−1∑

s=0

e
−2πisk

r

)

|xk (mod N)〉 = |1〉,

since the expression in the bracket is 1 if k = 0 and

is 0 otherwise. Therefore, we can use the input |1〉
in the second register which is a linear combination

of eigenvectors of U . We take n = 2L + 1 (for

reasons which will become clear in Section 11.3)

so that t = 2L+ 1 +
⌈
log(2 + 1

2ǫ)
⌉
. It follows from

Exercise 9.6 that measurement of the first register

will produce, for each s with 0 ≤ s ≤ r − 1, an

approximation φs to s/r correct up to 2L+ 1 bits

with a probability of at least (1 − ǫ)/r. We still

have the following two problems to resolve in the

next two sections:

(i) How do we perform the sequence of controlled-

U2k

gates?

(ii) Given the approximation φs, how do we finally

compute the order r?

Quantum Computing 108

11.2 Controlled-U2k
Sequence

We need to compute the sequence of controlled-

U2k

operations, which had been regarded as black

boxes in the phase estimation algorithm. By

Equation 10, the state of the first register after

the Hadamard gates is

1√
2t

∑2t−1
k=0 |k〉.

Consider the state |k〉 = |ktkt−1 · · · k1〉 of the

first register and the state |u〉 of the second

register. Then, the sequence of the controlled-U2k

operations gives:

|k〉|u〉 7→ |k〉Ukt2
t−1

Ukt−12
t−2 · · ·Uk120 |u〉

= |k〉|xkt2
t−1

xkt−12
t−2 · · ·xk120

u (mod N)〉
= |k〉|xkt2

t−1+kt−12
t−2···+k120

u (mod N)〉
= |k〉|xku (mod N)〉

Therefore, the result of the controlled operations

is equivalent to multiplying modulo N the second

register with x to the power of the content of the

first register. This is computed using the scheme

of reversible computation in Section 4.4.

Quantum Computing 109

One first computes, in a reversible way, xk

(mod N) in a third register and then multi-

plies, in a reversible way, the content of the second

register with xk (mod N), deleting the content

of the third register, the garbage. The reversible

computation of xk (mod N) is done in two stages.

First, we apply modular multiplication to compute

x2 (mod N), then x4 (mod N), then x8 (mod N)

and so on up to x2t−1

(mod N) where we use

t = 2L+ 1 + ⌈log(2 + 1/(2ǫ))⌉.
This requires t − 1 = O(L) squaring operations

each costing O(L2) if we use ordinary rules of

multiplication. (There is a fast O(L logL log logL)

algorithm for multiplication of large integers.) It

takes therefore O(L3) basic operations to complete

the first stage.

In the second stage, we use the identity

xku (mod N) = xkt2
t−1+kt−12

t−2···+k120

u (mod N)

to obtain xku (mod N) by t − 1 further multipli-

cations, with a complexity of O(L3). Therefore,

the operation |k〉|u〉 7→ |k〉|xku (mod N)〉 can be

done with O(L3) gates.

Quantum Computing 110

11.3 Continued fractions

Suppose we have made a measurement of the out-

put of the first register and obtained the rational

number φs which we know is an approximation to

the phase s/r. We can obtain r from φs by the

technique of continued fractions.

Continued fractions enable us to approximate any

real number with a sequence of rational numbers

of the form

[a0, a1, a2, · · · , ap] def
= a0 +

1

a1 + 1
a2+

1

···+ 1
ap

, (23)

where aj is a positive integer for j ≥ 1. We

will explain how to obtain the so-called regular

continued fraction expansion of a real number

c. We define two sequences 〈aj〉j≥0 and 〈rj〉j≥0

recursively. We put a0 = ⌊c⌋, r0 = c − a0 and

define inductively a sequence of “split and invert”

operations for j ≥ 1:

aj =

⌊
1

rj−1

⌋

rj =
1

rj−1
−
⌊

1

rj−1

⌋

.

Quantum Computing 111

For each j ≥ 0 with rj > 0, we have:

c = a0 +
1

a1 + 1
a2+

1

···+ 1
aj+rj

The rational number [a0, a1, a2, · · · , aj], is called

the jth convergent of c. If rj = 0 then the

continued fraction terminates with aj and we

obtain c = [a0, a1, a2, · · · , aj].

Example 11.6 We find the continued fraction

expansion of 47/13:

47
13 = 3 + 8

13 = 3 + 1
13
8

= 3 + 1
1+ 5

8

= 3 + 1
1+ 1

8
5

= 3 + 1
1+ 1

1+3
5

= 3 + 1
1+ 1

1+ 1
5
3

= 3 + 1
1+ 1

1+ 1
1+ 2

3

= 3 + 1
1+ 1

1+ 1
1+ 1

3
2

= 3 + 1
1+ 1

1+ 1
1+ 1

1+ 1
2

It follows that 47
13 = [3, 1, 1, 1, 1, 2]. �

Quantum Computing 112

The sequence of convergents of any real number

converges to it. Here, we are only interested in the

continued fraction expansion of rational numbers.

Proposition 11.7 The continued fraction ex-

pansion of a real number c terminates iff c is a

rational number.

Proof If the continued fraction terminates, then

for some j ≥ 0 we have c = [a0, a1, a2, · · · , aj]
which is a rational number. On the other hand,

assume, for a contradiction, that the continued

fraction expansion of a rational number c does not

terminate. Thus, rj is a positive rational number

for each j ≥ 0. Let rj = uj/vj with uj > 0 where

gcd(uj , vj) = 1 for all j ≥ 0. Dividing vj by uj , we

have vj = mjuj + nj where 0 ≤ nj < uj . Then

uj+1

vj+1
= rj+1 =

1

rj
−
⌊

1

rj

⌋

=
mjuj + nj

uj
−mj =

nj
uj
.

Therefore, uj+1 ≤ nj < uj , i.e. uj is a strictly

decreasing sequence of positive integers, which is

a contradiction. �

Since [a0, · · · , aj−1, aj] = [a0, · · · , aj−1, aj − 1, 1],

we can assume j is even or odd as desired.

Quantum Computing 113

Proposition 11.8 We have [a0, · · · , aj] =
pj

qj

where p0 = a0, q0 = 1, p1 = 1 + a0a1, q1 = a1 and

for j ≥ 2:

pj = ajpj−1 + pj−2 qj = ajqj−1 + qj−2.

Proof We use induction. The cases for 0 ≤ j ≤ 2

are trivial to check. For j ≥ 3, we have by

definition:

[a0, · · · , aj] = [a0, · · · , aj−1 +
1

aj
]. (24)

Let p̂l/q̂l be the sequence of convergents for the

expansion on the right hand side of Equation 24,

so that by the induction hypothesis,

[a0, · · · , aj−1 +
1

aj
] =

p̂j−1

q̂j−1
. (25)

Since p̂l = pl and q̂l = ql, for 0 ≤ l ≤ j− 2, we get:

p̂j−1

q̂j−1
=

(aj−1+1/aj)pj−2+pj−3

(aj−1+1/aj)qj−2+qj−3
=

pj−1+pj−2/aj

qj−1+qj−2/aj

=
ajpj−1+pj−2

ajqj−1+qj−2
=

pj

qj
.

From this and Equations 24 and 25, we obtain:

pj/qj = [a0, · · · , aj], as required. �

Quantum Computing 114

Corollary 11.9 The continued fraction expansion

of any positive rational number p/q can be obtained

in O(m3) operations if p and q are m bit integers.

Proof We can assume that p/q ≥ 1 since if

0 < p/q < 1 then p/q = 0 + 1
q/p and we can

obtain the continued fraction expansion of p/q

from that of q/p > 1. Assume that the continued

fraction expansion of p/q terminates after n split

and invert operations, i.e. p/q = pn/qn. Since aj
is positive for all j, it follows from the definition

that pj and qj are nondecreasing sequences and

therefore we have: pj = ajpj−1 + pj−2 ≥ 2pj−2

and similarly qj ≥ 2qj−2. Hence, pj , qj ≥ 2⌊j/2⌋

and therefore, p ≥ q ≥ 2⌊n/2⌋. It follows that

n = O(log p) = O(m). Therefore, the continued

fraction expansion of p/q can be computed in

O(m) split and invert operations, each costing

O(m2) for arithmetic gates. Hence, overall, it

requires O(m3) basic operations. �

Exercise 11.10 Show by induction that

pj−1qj − qj−1pj = (−1)j

and deduce that gcd(pj , qj) = 1. �

Quantum Computing 115

Theorem 11.11 Suppose x and p/q are rational

numbers such that |x− p/q| ≤ 1/2q2. Then p/q is

a convergent of the continued fraction for x.

Proof Let p/q = [a0, · · · , an] with n even and

let pj , qj be as in Proposition 11.8 so that p/q =

pn/qn. By Exercise 11.10, pn and qn are co-prime;

hence qn ≤ q. Let δ = 2q2n(x − pn/qn) so that

|δ| ≤ q2n/q
2 ≤ 1. The case δ = 0 is trivial and we

can assume, by replacing δ with −δ if necessary,

that 0 < δ ≤ 1. If we put

λ = 2

(
qnpn−1 − pnqn−1

δ

)

− qn−1

qn
,

then a simple calculation shows that

x =
λpn + pn−1

λqn + qn−1
,

which implies x = [a0, · · · , an, λ]. By Exer-

cise 11.10, λ = 2/δ − qn−1/qn, since we have

chosen n to be even. Recalling that qj is increas-

ing, we get: λ = 2/δ − qn−1/qn ≥ 2 − 1 = 1.

Thus, λ = [b0, · · · , bl] with b0 ≥ 1. Hence, we have

x = [a0, · · · , an, b0, · · · , bl] and p/q is a convergent

for the continued fraction expansion of x. �

Quantum Computing 116

We now return to the order finding algorithm.

Recall that measurement of the first register will

produce, for each s with 0 ≤ s ≤ r − 1, a rational

approximation φs to s/r correct up to 2L+ 1 bits

with a probability of at least (1 − ǫ)/r satisfying

|φs − s/r| < 1/22L+1 ≤ 1/2r2 since r ≤ N ≤ 2L.

Hence, by Theorem 11.11, s/r is a convergent of

the rational number φs, which can be computed

in O(L3) basic operations.

Proposition 11.12 There is at most one fraction

p/q which satisfies both inequaities

|φs − p/q| < 1/22L+1 & q ≤ 2L. (26)

Proof In fact, suppose we have a rational number

p′/q′ satisfying |φs−p′/q′| < 1/22L+1 with q′ ≤ 2L

and p/q 6= p′/q′. Then

|p/q − p′/q′| = |p/q − φs + φs − p′/q′|
≤ |p/q − φs| + |φs − p′/q′| < 1/22L.

But now |pq′ − qp′| ≥ 1 gives a contradiction:

|p/q−p′/q′| =
|pq′ − p′q|

qq′
≥ |pq′ − qp′|

22L
≥ 1/22L. �

Quantum Computing 117

Suppose now that s and r are co-prime. Then we

try to find a convergent p/q of φs, with q ≤ 2L

and |φs − p/q| < 1/22L+1. The denominator q is a

candidate for r.

The number, Φ(r), of positive numbers less than

r and co-prime with r satisfies: Φ(r) ≥ r
2 ln ln r

when r is large. The function Φ is Euler’s totient

function.

Therefore, the probability that gcd(r, s) = 1 is

greater than 1/2 ln ln r ≥ 1/2⌈ln lnN⌉.
Note that for large n we have (1 − 1/n)n ≈ e−1.

Hence, if we repeat the algorithm 2⌈ln lnN⌉ times,

with probability ≥ 1−(1−1/2⌈ln lnN⌉)2⌈ln lnN⌉ ≈
1− 1/e, we will have an instance of s/r with s and

r co-prime.

If we do not succeed in finding a convergent p/q

of φs, with q ≤ 2L and |φs − p/q| < 1/22L+1, then

we start all over again. Note that the algorithm

is probabilistic: The probablity of success after

2⌈ln lnN⌉ rounds of trial is (1 − ǫ)(1 − 1/e).

Quantum Computing 118

11.4 Summary

To find the order r of the positive integer x modulo N :

(i) Put L = ⌈logN⌉ and t = 2L+1+⌈log(2 + 1/(2ǫ))⌉,
for small ǫ > 0, in the phase estimation circuit:

(ii) Prepare the first register in the state |0〉⊗t and

the second register in the state |1〉.
(iii) – Apply the Hadamard gates to the first register

(O(L) operations),

– then apply the sequence of controlled-U

operations, where U |y〉 = |xy (mod N)〉, to

both registers (O(L3) operations), and finally,

– apply the inverse Fourier transform to the first

register (O(L2) operations).

(iv) Measure the first register to obtain φs an approx-

imation to s/r.

(v) Apply the continued fraction algorithm and

find s/r, the only fraction that satisfies the two

inequalities 26, as a convergent of φs from which

we can find r if gcd(r, s) = 1 (O(L3) operations).

(vi) The algorithm succeeds with probability ≥ (1 −
ǫ)(1 − 1/e) if it is repeated 2⌈ln lnN⌉ = O(logL)

times, i.e. for the cost of O(L3 logL) operations.

Quantum Computing 119

12 Quantum Factoring

Any positive integer is the product of powers of

some prime numbers. The problem of finding the

prime factors of a positive integer is thought to be

intractable. Existing algorithms for factoring are

exponential. For example, it took 1000 computers

around the world two whole months in 1990 to

factorize the ninth Fermat number F9 = 229

+ 1,

which has 155 decimal digits. It is estimated that

it will take more than the age of the universe to

factorize numbers with 200 digits.

The RSA encryption scheme which is the most im-

portant and widely used cryptographic technique

is based on the assumption that factoring large

numbers is an intractable problem.

Remarkably, the quantum order finding algorithm

can be used to provide a polynomial algorithm

for factoring. We need a few results from basic

number theory. First, we will describe Euclid’s

algorithm for finding the gcd of two integers, which

is based on the following result.

Quantum Computing 120

Proposition 12.1 Let p and q be integers and r

the remainder of division of p by q. Assuming that

r 6= 0 we have: gcd(p, q) = gcd(q, r).

Proof We show that each side divides the other

side. There exists an integer a such that r = p−aq.
It follows that gcd(p, q), which divides p and q,

also divides r. Hence, by Corollary 11.2, gcd(p, q)

divides gcd(q, r). Furthermore, gcd(q, r) divides q

and, since p = aq + r, it also divides p. Hence, by

Corollary 11.2 again, gcd(q, r) divides gcd(p, q). �

Euclid’s algorithm to find the gcd of integers p

and q with p > q is as follows. We divide p by q

to find the remainder r1 < q. By Proposition 12.1,

gcd(p, q) = gcd(q, r1). We now divide q by r1
to find the remainder r2 < r1 with gcd(q, r1) =

gcd(r1, r2). Inductively, we divide rn−2 by rn−1 to

find the remainder rn < rn−1 with

gcd(p, q) = gcd(q, r1) = · · · = gcd(rn, rn+1).

since rj is a strictly decreasing sequence of pos-

itive integers, there exists n with rn+1 = 0, i.e.

rn−1 = arn. Hence, the algorithm terminates with

gcd(p, q) = gcd(rn−1, rn) = rn.

Quantum Computing 121

What is the complexity of Euclid’s algorithm?

Suppose p and q are L bit integers. Then rj will

be an L bit integer for all j. Each division in the

algorithm costs O(L2). How many divisions are

needed? We show that rj+2 ≤ rj/2. This is clear

if rj+1 ≤ rj/2. Otherwise, if rj+1 > rj/2, then

rj = 1× rj+1 + rj+2 and hence rj+2 = rj − rj+1 ≤
rj/2. We conclude that at most 2⌈log p⌉ = O(L)

divisions are required at the total cost of O(L3).

Theorem 12.2 Let N be a composite number and

y ∈ {1, · · · , N} a solution of y2 = 1 (mod N) with

y 6= 1 (mod N) and y 6= N − 1 (mod N). Then,

gcd(y − 1, N) and gcd(y + 1, N) are non-trivial

factors of N which can be computed in O(⌈logN⌉3)
operations.

Proof Since y2 = 1 + Nk, for some integer k, it

follows that N has a common factor with y − 1

or with y + 1. But 1 < y < N − 1 implies

y − 1 < y + 1 < N so that N itself cannot be

the common factor. We therefore use Euclid’s

algorithm, in O(⌈logN⌉3) operations, to find

gcd(y − 1, N) and gcd(y + 1, N) which are non-

trivial factors of N . �

Quantum Computing 122

We need one further result whose proof is given in

Nielsen & Chuang, p. 634.

Theorem 12.3 Let N = pn1
1 · · · pnm

m be the prime

factorization of the composite odd integer N .

Let x be a randomly chosen integer in the range

1 ≤ x ≤ N subject to the condition that x and N

are co-prime. If r is the order of x (mod N), then:

p(r is even and xr/2 6= −1 (mod N)) ≥ 1 − 1/2m.

Shor’s quantum factoring algorithm. Sup-

pose the L bit composite odd integer N is given.

To compute a non-trivial factor of N :

(i) Randomly choose x with 1 ≤ x ≤ N − 1.

(ii) If gcd(x,N) > 1 then return gcd(x,N).

(iii) If gcd(x,N) = 1, use the order finding

algorithm to find the order r of x mod N .

(iv) If r is odd, or if r is even and xr/2 = −1

(mod N), return to (i).

(v) Compute and return gcd(xr/2 − 1, N) and

gcd(xr/2 + 1, N) using Euclid’s algorithm.

The algorithm takes O(L3 logL) basic operations.

Quantum Computing 123

13 Physical Realization

We will describe how the NOT gate, the simplest

of all gates can be physically implemented as a

two level quantum system. Quantum gates, some

of which we have studied in detail, necessarily

have an evolution in discrete time. But physical

systems evolve in continuous time. Therefore, in

order to see how to implement a quantum gate as

a physical system, we need to know how quantum

systems evolve in continuous time.

The time evolution of a closed quantum system

is given by the Schrödinger equation, named

after Erwin Schrödinger the prominent Austrian

physicist who discovered it in 1920’s:

i~
d|ψ〉
dt

= H|ψ〉 (27)

where ~ is Planck’s constant, a physical constant

whose numerical value does not concern us, and

H is the Hamiltonian of the system, a Hermitian

operator (i.e. H = H†), which describes the energy

of the system. The Hamiltonian gives all the

information about the system.

Quantum Computing 124

Since H is diagonalizable by Corollary 9.3, it

has with respect to some computational basis, a

matrix representation of the form:

H =
∑

i

Ei|Ei〉〈Ei|,

where Ei is the eigenvalue, called the energy level,

corresponding to the eigenvector |Ei〉, called the

energy eigenstate.

Theorem 13.1 The eigenvalues of any Hermitian

operator are real.

Proof Let L be any Hermitian operator with nor-

malized eigenvector v corresponding to eigenvalue

λ. Then Lv = λv and hence 〈v|Lv〉 = λ〈v|v〉 = λ.

Since, for any vectors, u and w, we have:

〈u|Lw〉 = 〈L†u|w〉 and 〈u|w〉 = 〈w|u〉∗, we

deduce, using L = L†, that:

λ = 〈v|Lv〉 = 〈L†v|v〉 = 〈Lv|v〉 = 〈v|Lv〉∗ = λ∗. �

The eigenvalues of a Hermitian matrix correspond

to observable quantities, e.g. energy, spin etc. The

lowest energy level is called the ground energy level

and its corresponding eigenstate the ground state.

Quantum Computing 125

The evolution of an energy eigenstate is simple.

From Schrödinger equation we get:

i~
d|E(t)〉
dt

= H|E(t)〉 = E|E(t)〉,

or, d|E(t)〉
dt = − iE

~
|E(t)〉; We obtain:

|E(t)〉 = e
−iEt

~ |E(0)〉; (28)

at t the vector |E(0)〉 is simply multiplied by e
−iEt

~ .

Notice that we can write |E(t)〉 as:

|E(t)〉
= e

−iEt
~ |E(0)〉

= (1 +
(−iEt

~
)1

1! +
(−iEt

~
)2

2! +
(−iEt

~
)3

3! + · · ·)|E(0)〉

= |E(0)〉 +
(−iEt

~
)1

1! |E(0)〉 + · · · + (−iEt
~

)n

n! |E(0)〉 + · · ·

= |E(0)〉 +
(−iEt

~
)1

1! |E(0)〉 + · · · + (−iEt
~

)n

n! |E(0)〉 + · · ·

= e
−iHt

~ |E(0)〉.

Recall that for any operator L and state |ψ〉, we

formally define

eL|ψ〉 = |ψ〉+
L1

1!
|ψ〉+

L2

2!
|ψ〉+ · · ·+ Ln

n!
|ψ〉+ · · · .

Quantum Computing 126

More generally, if H is any time independent

Hamiltonian, we have

|E(t)〉 = e
−itH

~ |E(0)〉 = U(t)|E(0)〉. (29)

Exercise 13.2 (i) Prove that |E(t)〉 = e
−itH

~ |E(0)〉
satisfies the Schrödinger equation for any time

independent H.

(ii) Show that the operator U(t) = e
−itH

~ is unitary.

(iii) For a unitary matrix U , define logU , show

that −i logU is Hermitian and deduce that

U = exp(iK) for some Hermitian K. �

Exercise 13.2 implies that there is a close relation-

ship between Hermitian and unitary matrices:

• Any Hermitian matrix can be regarded as the

Hamiltonian of a quantum system which gives

rise via the Schrödinger equation to a unitary

matrix describing the time evolution of the

quantum system.

• Conversely, any unitary matrix describes the

time evolution of a quantum system arising

from some Hermitian matrix which is the

Hamiltonian of the quantum system.

Quantum Computing 127

13.1 Measuring Physical Values

Suppose A : Cn → Cn is a Hermitian matrix which

has eigenvalues λj (where 1 ≤ j ≤ k and k ≤ n)

with multiplicity nj . We know by Algorithm 9.4

that the collection {vjm|1 ≤ m ≤ nj , 1 ≤ j ≤ k}
of eigenvectors of A forms an orthonormal basis

for Cn. Recall that the eigenvectors vjm for

1 ≤ m ≤ nj form an orthonormal basis for the

eigenspace corresponding to eigenvalue λj . Let

Pj =
∑nj

m=1 |vjm〉〈vjm| : C
n → C

n.

Definition 13.3 Let S ⊆ C
n be a t-dimensional

subspace of C
n with orthonormal basis |wm〉 (1 ≤

m ≤ t). Then the operator PS : C
n → C

n defined

by PS =
∑t
m=1 |wm〉〈wm| is called projection

into S. More abstractly, a Hermitian operator

P : Cn → Cn is called a projection if P ◦ P = P .

Exercise 13.4 (i) Show that PS ◦ PS = PS and

that any projection operator P is in fact projection

into some subspace of C
n.

(ii) Check that Pj is the projection to the eigenspace

corresponding to eigenvalue λj .

(iii) Show that A =
Pk

j=1 λjPj . �

Quantum Computing 128

Principle of measurement of an observable.

Given a state |ψ〉, a measurement of the observable

(Hermitian operator) A =
∑k
j=1 λjPj has outcome

λj with probability

p(λj) = 〈ψ|Pj |ψ〉 = 〈ψ|PjPj |ψ〉 = ‖Pj |ψ〉‖2.

If the outcome is λj , then the state collapses into

the state:
Pj |ψ〉
√

p(λj)
.

Let |ψ〉 =
∑

jm αjm|vjm〉 be an arbitrary state

expressed in terms of the orthonormal basis.

Exercise 13.5 Show that the probability of obtain-

ing λj is p(λj) =
Pnj

m=1 |αjm|2. �

We have:

〈ψ|A|ψ〉 =

k∑

j=1

nj∑

m=1

|αjm|2λj =

k∑

j=1

p(λj)λj . (30)

Since p(λj) is the probability that |ψ〉 has value

λj for the observable A, Equation 30 implies that

〈A〉 def
= 〈ψ|A|ψ〉 is the average, or expected, value

of the operator A.

Quantum Computing 129

Example 13.6 Suppose a single qubit has Hamil-

tonian

H = X =

(
0

1

1

0

)

.

Then the energy levels are −1 (ground level) and

1 (excited level), corresponding respectively to the

eigenstates |−〉 = (|0〉−|1〉)/
√

2 (ground state) and

|+〉 = (|0〉+ |1〉)/
√

2 (excited state). Given a state

|ψ〉 = α|0〉+ β|1〉, the probability of measuring −1

is |〈−|ψ〉|2 = |α− β|2/2 whereas the probability of

measuring 1 is |〈+|ψ〉|2 = |α+ β|2/2. The average

value of H is 〈ψ|H|ψ〉 = αβ∗ + α∗β. �

Exercise 13.7 Find the energy levels and the energy

eigenstates of the quantum systems with the following

Hamiltonians:

(i) Pauli-Y : Y =
`

0
i

−i
0

´

.

(ii) Hadamard: H = 1√
2

“

1
1

1
−1

”

(ii) CNOT: 1
2
(|00〉〈00| + |01〉〈01| + |10〉〈11| + |11〉〈10|).

In each case determine the probabilities of measuring

the energy levels and the expected value of the

Hamiltonian for an arbitrary state. �

Quantum Computing 130

13.2 Implementation of NOT

There are a number of two-level quantum systems

with which one can implement the NOT gate.

We will take the proton spin in a uniform magnetic

field B in the z−direction.

The Schrödinger equation of the system is:

i~d|ψ〉dt = H|ψ〉, where the Hamiltonian is given by

H = −γ~BzIz = −1

2
γ~BZ = −1

2
~ω0Z,

where Iz = 1
2Z = 1

2

(
1
0

0
−1

)

describes the

z−component of spin, Bz = B, γ is the pro-

ton gyromagnetic ratio and ω0 = γB is the

eigenfrequency of the system.

The two energy levels of the system are −~ω0/2

(ground level) and ~ω0/2 (excited level), corre-

sponding respectively to the eigenstates |0〉 =
(

1
0

)

(ground state) and |1〉 =
(

0
1

)
(excited state).

We can write the solution of the Schrödinger

equation at time t as

|ψ(t)〉 = c0(t)|0〉 + c1(t)|1〉. (31)

Quantum Computing 131

Substituting this in the Schrödinger equation, and

using the notation ċ = dc
dt , we get:

i~(ċ0|0〉+ċ1|1〉) = −~ω0

2
(|0〉〈0|−|1〉〈1|)(c0|0〉+c1|1〉)

= −~ω0

2
(c0|0〉 − c1|1〉).

Therefore, we get the two differential equations:

ċ0 =
iω0

2
c0, ċ1 = − iω0

2
c1,

which have solutions:

c0(t) = c0(0)e
iω0t/2, c1(t) = c1(0)e

−iω0t/2.

Exercise 13.8 Show that, at time t, the average

values of the x, y and z-component of spin, given

respectively by the Hermitian matrices

Ix =
1

2

„

0

1

1

0

«

, Iy =
1

2

„

0

i

−i
0

«

, Iz =
1

2

„

1

0

0

−1

«

,

are as follows:

〈ψ(t)|Ix|ψ(t)〉 = a cos(ω0t+ φ)

〈ψ(t)|Iy|ψ(t)〉 = −a sin(ω0t+ φ)

〈ψ(t)|Iz|ψ(t)〉 = 1
2
(|c0(0)|2 − |c1(0)|2),

where c0(0)c∗1(0) = aeiφ with real a and φ. �

Quantum Computing 132

It follows from Exercise 13.8 that the average value

of Iz does not change with time. Also, the total

length of spin is constant:

〈Ix〉2 + 〈Iy〉2 + 〈Iz〉2

=
1

4
(|c0(0)|4 + |c1(0)|4 + 2|c0(0)|2|c1(0)|2) =

1

4
.

The average value of the spin in the xy-plane

rotates with frequency ω0 in the clockwise direction

viewed from the top (z > 0).

We now apply a transverse circularly polarized

magnetic field (Bx, By) resonant with the preces-

sion of the vector (〈Ix〉, 〈Iy〉). Put Bx = ~ cosωt,

By = −~ sinωt. The new Hamiltonian is:

H = −~γ(BxIx +ByIy +BzIz)

= −~γ(BxIx +ByIy) − ~ω0I
z

= −~γ

2
(B+I− +B−I+) − ~ω0I

z, (32)

where

B+ = Bx + iBy = ~e−iωt, B− = Bx − iBy = ~eiωt,

I+ = Ix + iIy = |0〉〈1|, I− = Ix − iIy = |1〉〈0|.

Quantum Computing 133

Substituting the values of B± and I± into Equa-

tion 32, we obtain the Hamiltonian:

H = (33)

−~

2

[
ω0(|0〉〈0| − |1〉〈1|) + Ω

(
eiωt|0〉〈1| + e−iωt|1〉〈0|

)]
,

where Ω = γ~. Using the Hamiltonian 33 in the

Schrödinger equation, we obtain the following

equations for the time dependent solution |ψ(t)〉:

ċ0 =
i

2
(ω0c0 + Ωeiωtc1),

ċ1 =
−i
2

(ω0c1 − Ωe−iωtc0).

These equations, which have time-periodic co-

efficients, reduce to equations with constant

coefficients by going to a system of coordinates

rotating with the resonant magnetic field:

c0 = c′0e
iωt/2, c1 = c′1e

−iωt/2,

which give us:

ċ′0 =
i

2
[Ωc′1 − (ω − ω0)c

′
0]

ċ′1 =
i

2
[Ωc′0 + (ω − ω0)c

′
1].

Quantum Computing 134

Using the resonant condition, ω = ω0, these

equations reduce to:

ċ′0 =
iΩ

2
c′1, ċ′1 =

iΩ

2
c′0. (34)

In the new coordinates the precession about the

z-axis is turned off; we only have the transverse

constant magnetic field. Dropping the primes,

differentiation of Equations 34 gives:

c̈0 = −Ω2

4
c0, c̈1 = −Ω2

4
c1,

from which we get the general solution:

c0(t) = c0(0) cos
Ωt

2
+ ic1(0) sin

Ωt

2
,

c1(t) = ic0(0) sin
Ωt

2
+ c1(0) cos

Ωt

2
.

If initially the system is in the ground state, i.e.

c0(0) = 1 and c1(0) = 0, then at time t:

c0(t) = cos
Ωt

2
, c1(t) = i sin

Ωt

2
.

At t1 = π/Ω, we have: c0(t1) = 0 and c1(t1) = i

so that |c0(t1)|2 = 0 and |c1(t1)|2 = 1. Hence, the

system will be in the excited state at t1.

Quantum Computing 135

Conversely, if the system is initially in the excited

state: c0 = 0 and c1 = 1, then at time t we have:

c0(t) = i sin
Ωt

2
, c1(t) = cos

Ωt

2
.

Hence at time t1 = π/Ω: c0(t1) = i and c1(t1) = 0

so that |c0(t1)|2 = 1 and |c1(t1)|2 = 0. Therefore,

the system will be in the ground state at t1.

We conclude that a pulse of the resonant magnetic

field for a period of π/Ω, called a π pulse, acts as

a quantum NOT gate.

Exercise 13.9 (i) Show that under the action of

a resonant field the average values of the spin

components at time t for the state which is

initially in the ground state are given by:

〈Ix〉(t) = 0, 〈Iy〉(t) =
1

2
sin Ωt, 〈Iz〉(t) =

1

2
cosΩt.

Hence, the average value of the z-component goes

from 1/2 at t = 0 to −1/2 at t = π/Ω.

(ii) Show that one can construct, starting with the

ground state, an equally weighted superposition

of the ground and the excited states with a pulse

of the resonant field applied for a suitable time

interval. This therefore implements a fair coin.

Quantum Computing 136

14 Error Correction

We have seen how to implement the quantum

NOT gate; other quantum gates can also be

implemented in physical systems. In this way, we

can build networks of quantum gates to implement

quantum algorithms.

However, as we connect more and more quantum

gates together we will soon face a serious practical

problem. In general, there is no absolutely closed

system: the surrounding environment inevitably

interacts with any quantum network and destroys

the interference pattern which is so crucial in

quantum computing. This phenomenon is called

decoherence, a fundamental issue in quantum

computing.

The undesirable interaction of any coded message

with its environment in a communication channel

is called noise. It is also present in classical

systems and is in general tackled by introducing

redundancy to encode the message so that even

after the effect of noise from the environment, the

original information can be retrieved or decoded.

Quantum Computing 137

A basic encoding technique against noise is pro-

vided by simply multiplying the original informa-

tion so that if some of the information is corrupted,

there would be enough information to reconstruct

the intended message.

Example 14.1 Suppose we intend to send an

information bit 0 or 1 through a classical commu-

nication channel which flips a bit with probability

p and leaves it intact with probability 1 − p. The

probability of an error is therefore p. We replace

the bit with three copies of itself i.e. 0 7→ 000 and

1 7→ 111 and then send the resulting three-bit. At

the receiving end, some of the bits may have been

flipped. We take a majority vote on the three bits

to decide what was the original bit. This method

succeeds if one or no bit was flipped and fails if

two or all three bits were flipped. The probability

of error is thus the probability that two or three

bits are flipped: pe = 3p2(1 − p) + p3 = 3p2 − 2p3.

We have pe < p if 3p2−2p3 < p which is equivalent

to p(1 − p)(2p − 1) < 0, i.e. p < 1/2. Therefore,

if p < 1/2, the three fold multiplication of the

original bit will reduce the probability of error. �

Quantum Computing 138

14.1 Quantum error correction

In formulating error-correcting codes in quantum

computation we face a number of problems absent

in the classical sphere. These include: (i) By

the No-Cloning theorem, we cannot duplicate

a quantum state. (ii) Because measurement

destroys quantum information, we cannot observe

the output channel without losing information. It

is however possible to effectively reduce the error

by various encoding schemes.

We start with the simplest method which resembles

the three fold multiplication of classical bits in

Example 14.1. We encode the qubit |ψ〉 =

α|0〉+β|1〉 as the three-qubit state α|000〉+β|111〉
by the circuit in Figure 35. The error-correction

method, applied after the effect of noise, uses the

general measurement principle, explained below.

| >

| 0 >

| 0 >

ψ

Figure 35: Circuit for qubit to three-qubit state

Quantum Computing 139

The general measurement principle. General

quantum measurements are carried out by a

collection of, say, k linear measurement operators

Mj : Cn → Cn (1 ≤ j ≤ k) satisfying

k∑

j=1

M †
jMj = I,

where I is the identity matrix. Each j with 1 ≤
j ≤ k is a possible outcome of the measurement. If

the state of the system is |ψ〉, then the probability

of obtaining j is

p(j) = 〈ψ|M †
jMj |ψ〉,

and the state of the system after the measurement

collapses into
Mj |ψ〉
√

p(j)
.

Exercise 14.2 (i) Show that

Pk
j=1 p(j) = 1.

(ii) Show that both the basic measurement principle

of Section 2.3 and the principle of measuring

observables in Section 13.1 are special cases of the

general measurement principle. �

Quantum Computing 140

We now return to the error-correction method.

The initial state |ψ〉 = α|0〉 + β|1〉 is converted by

the circuit of Figure 35 into |ψ′〉 = α|000〉+β|111〉
and then each of the three qubits is sent indepen-

dently through the bit flip channel. We then apply

a two-stage error correction method: We first

make a measurement using the four measurement

operators, the so-called error syndromes:

M0 = |000〉〈000| + |111〉〈111| no error

M1 = |100〉〈100| + |011〉〈011| bit flip on qubit 1

M2 = |010〉〈010| + |101〉〈101| bit flip on qubit 2

M3 = |001〉〈001| + |110〉〈110| bit flip on qubit 3,

which are in fact projections and clearly satisfy
∑3
j=0M

†
jMj = I. Hence, the general measurement

principle is applicable. Depending on which error

syndrome is measured we then recover the original

state. Suppose, for example, that a bit flip

occurred, on qubit two: α|000〉 + β|111〉 7→ |ψ′′〉 =

α|010〉+ β|101〉. Then 〈ψ′′|M †
2M2|ψ′′〉 = 1 and we

will certainly measure j = 2. The state of system

will not change: M2|ψ′′〉 = |ψ′′〉. Therefore, we

finally flip qubit two to recover |ψ′〉 from |ψ′′〉.

Quantum Computing 141

