Supplemtary Material: Capacity of strong attractor patterns to model behavioural and cognitive prototypes

Abbas Edalat

Department of Computing Imperial College London London SW72RH, UK

ae@ic.ac.uk

We will present the proofs of Lemma 4.1, Lemma 4.3 and Theorem 4.2 here. For completeness, first recall Lyapunov's theorem in probability theory.

Let $Y_n = \sum_{i=1}^{k_n} Y_{ni}$, for $n \in I\!\!N$, be a triangular array of random variables such that for each n, the random variables Y_{ni} , for $1 \le i \le k_n$ are independent with $E(Y_{ni}) = 0$ and $E(Y_{ni}^2) = \sigma_{ni}^2$, where E(X) stands for the expected value of the random variable X. Let $s_n^2 = \sum_{i=1}^{k_n} \sigma_{ni}^2$. We use the notation $X \sim Y$ when the two random variables X and Y have the same distribution (for large n if either or both of them depend on n).

Theorem (Lyapunov) [2, page 368] *If for some* $\delta > 0$, we have

$$\frac{1}{s_n^{2+\delta}} E(|Y_n|^{2+\delta}|) \to 0 \quad \text{as } n \to \infty$$

then $\frac{1}{s_n}Y_n \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)$ as $n \to \infty$ where $\stackrel{d}{\longrightarrow}$ denotes convergence in distribution, and we denote by $\mathcal{N}(a,\sigma^2)$ the normal distribution with mean a and variance σ^2 . Thus, for large n we have $Y_n \sim \mathcal{N}(0,s_n^2)$. \square

Lemma 4.1 Let X be a random variable on \mathbb{R} such that its probability distribution $F(x) = Pr(X \le x)$ is differentiable with density F'(x) = f(x). If $g: \mathbb{R} \to \mathbb{R}$ is a bounded measurable function and X_k ($k \ge 1$) is a sequence of of independent and identically distributed random variables with distribution X, then

$$\frac{1}{N} \sum_{i=1}^{N} g(X_i) \xrightarrow{\text{a.s.}} Eg(X) = \int_{\infty}^{\infty} g(x)f(x)dx, \tag{1}$$

and for all $\epsilon > 0$ and t > 1, we have:

$$\Pr\left(\sup_{k\geq N} \left(\frac{1}{k} \sum_{i=1}^{k} (g(X_i) - kE(g)(X))\right) \geq \epsilon\right) = o(1/N^{t-1})$$
(2)

Proof Since g is bounded, $\mathrm{E}g(X)=\int_{\infty}^{\infty}g(x)f(x)dx$ is absolutely convergent and thus the expected value $\mathrm{E}g(X)$ is well-defined and $|\mathrm{E}g(X)|<\infty$. Equation (1) then follows from the Strong Law of Large Numbers [2, page 80] applied to the random variables $g(X_i)$, for $i\geq 1$. which are independent and identically distributed as g(X) with expectation $\mathrm{E}g(X)$. We also have $\mathrm{E}|g(X)|^t=\int_{-\infty}^{\infty}|g(x)|^tf(x)dx<\infty$ for all t>1 and thus the convergence rate of the Strong Law of Large Numbers implies Equation (2), a consequence of Theorem 3 and the lemma in [1, pages 112 and 113]. \square

Assume $p/N = \alpha > 0$ with $d_1 \ll p_0$ and $d_\mu = 1$ for $1 < \mu \le p_0$. Consider the overlaps

$$m_{\nu} = \frac{1}{N} \sum_{i=1}^{N} \xi_{i}^{\nu} \langle S_{i} \rangle \tag{3}$$

and the mean field equations:

$$m_{\nu} = \frac{1}{N} \sum_{i=1}^{N} \xi_{i}^{\nu} \tanh \left(\beta \sum_{\mu=1}^{p} d_{\mu} \xi_{i}^{\mu} m_{\mu} \right)$$
 (4)

Theorem 4.2 There is a solution to the mean field equations (4) for retrieving ξ^1 with independent random variables m_{ν} (for $1 \leq \nu \leq p_0$), where $m_1 \sim \mathcal{N}(m, s/N)$ and $m_{\nu} \sim \mathcal{N}(0, r/N)$ (for $\nu \neq 1$), if the real numbers m, s and r satisfy the four simultaneous equations:

$$\begin{cases}
(i) & m = \int_{-\infty}^{\infty} \frac{dz}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \tanh(\beta(d_1 m + \sqrt{\alpha r}z)) \\
(ii) & s = q - m^2 \\
(iii) & q = \int_{-\infty}^{\infty} \frac{dz}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \tanh^2(\beta(d_1 m + \sqrt{\alpha r}z)) \\
(iv) & r = \frac{q}{(1 - \beta(1 - q))^2}
\end{cases}$$
(5)

In the proof of this theorem, as given below, we seek a solution of the mean field equations assuming we have independent random variables m_{ν} (for $1 \leq \nu \leq p_0$) such that for large N and p with $p/N = \alpha$, we have $m_1 \sim \mathcal{N}(m,s/N)$ and $m_{\nu} \sim \mathcal{N}(0,r/N)$ ($\nu \neq 1$), and then find conditions in terms of m, s and r to ensure that such a solution exists. Since by our assumption about the distribution of the overlaps m_{μ} , the standard deviation of each overlap is $O(1/\sqrt{N})$, we ignore terms of O(1/N) and more generally terms of $O(1/\sqrt{N})$ compared to terms of $O(1/\sqrt{N})$ in the proof including in the lemma below.

Lemma 4.3 If $m_{\nu} \sim \mathcal{N}(0, r/N)$ (for $\nu \neq 1$), then we have the equivalence of distributions:

$$\sum_{\mu \neq 1, \nu} \xi_i^1 \xi_i^{\mu} m_{\mu} \sim \mathcal{N}(0, \alpha r) \sim \sum_{\mu \neq 1} \xi_i^1 \xi_i^{\mu} m_{\mu}.$$

Proof Recall that the sum $\sum_{t=1}^k X_t$ of k independent random variables such that X_t has a normal distribution with mean a_t and variance σ_t^2 (for $1 \leq t \leq k$) is itself normally distributed with mean $\sum_{t=1}^k a_t$ and variance $\sum_{t=1}^k \sigma_t^2$. Consider the first equivalence. From $-1 \leq \langle S_i \rangle| \leq 1$, for $1 \leq i \leq N$, and Equation (3), it follows that

$$\mathrm{E}\left(m_{\mu}\xi_{j}^{\mu}\right) = \mathrm{E}\left(\frac{1}{N}\sum_{i=1}^{N}\xi_{i}^{\mu}\langle S_{i}\rangle\xi_{j}^{\mu}\right) \leq \mathrm{E}\left(\frac{1}{N}\sum_{i=1}^{N}\xi_{i}^{\mu}\xi_{j}^{\mu}\right) = \frac{1}{N}$$

Similarly, $\mathrm{E}(m_{\mu}\xi_{j}^{\mu}) \geq -1/N$, and thus $\mathrm{E}(m_{\mu}\xi_{j}^{\mu}) = O(1/N)$. Therefore, for $\mu \neq 1, \nu$, the three random variables $\xi_{i}^{1}, \xi_{i}^{\mu}$ and m_{μ} can be considered independent and it follows that the distribution of each product on the left hand side of the first equivalence is given by $\mathcal{N}(0, r/N)$. Summing up the approximately p independent normal distributions $\mu \neq 1, \nu$, we obtain the first equivalence. The second equivalence is proved in a similar way. \square

Proof of Theorem 4.2 First consider Equation (4) for $\nu = 1$, which, by separating the contributions of $\mu = 1$ and $\mu \neq 1$ on the right hand side, we write as

$$m_1 = Y_N := \frac{1}{N} \sum_{i=1}^N \xi_i^1 \tanh \beta (d_1 m_1 \xi_i^1 + \sum_{\mu \neq 1} \xi_i^{\mu} m_{\mu}).$$
 (6)

Multiplying the odd function tanh and its argument by ξ_i^1 , we obtain:

$$\begin{cases} Y_{N} = \frac{1}{N} \sum_{i=1}^{N} \xi_{i}^{1} \xi_{i}^{1} \tanh \beta (d_{1} m_{1} \xi_{i}^{1} \xi_{i}^{1} + \sum_{\mu \neq 1} \xi_{i}^{\mu} \xi_{i}^{1} m_{\mu}) \\ = \frac{1}{N} \sum_{i=1}^{N} \tanh \beta (d_{1} m_{1} + \sum_{\mu \neq 1} \xi_{i}^{\mu} \xi_{i}^{1} m_{\mu}) \\ \xrightarrow{\text{a.s.}} \int_{-\infty}^{\infty} \frac{dz}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} \tanh(\beta (m d_{1} + \sqrt{\alpha r} z)), \end{cases}$$
(7)

where the last step is justified as follows. By Lemma 4.3

$$\sum_{\mu \neq 1} \xi_i^{\mu} \xi_i^1 m_{\mu} \sim \mathcal{N}(0, \alpha r) \tag{8}$$

Since, by assumption, m_1 has distribution $\mathcal{N}(m,s/N)$ and is independent of $\sum_{\mu\neq 1}\xi_i^\mu\xi_i^1m_\mu$, it follows that $d_1m_1+\sum_{\mu\neq 1}\xi_i^\mu\xi_i^1m_\mu$ is the sum of two normal distributions and thus has itself normal distribution $\mathcal{N}(d_1m,\frac{d_1^2s}{N}+r\alpha)\sim\mathcal{N}(d_1m,r\alpha)$ by ignoring $\frac{d_1^2s}{N}$ compared to $r\alpha$:

$$X_{i} := d_{1}m_{1} + \sum_{\mu \neq 1} \xi_{i}^{\mu} \xi_{i}^{1} m_{\mu} \sim \mathcal{N}(d_{1}m, r\alpha)$$
(9)

Therefore, the random variables X_i , for $i \geq 1$, are independent and identically distributed with distribution $\sim \mathcal{N}(d_1 m, \alpha r)$, and the last step in Equation (7) then follows by applying Lemma 4.1 using $g(x) = \tanh(\beta x)$, which is a bounded continuous function. Since almost sure convergence implies convergence in distribution, it follows that as $N \to \infty$,

$$Y_N \xrightarrow{\mathsf{d}} \int_{-\infty}^{\infty} \frac{dz}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \tanh(\beta(d_1 m + \sqrt{\alpha r}z)),$$
 (10)

where the latter is the degenerate (point) distribution with the integral on the right hand side as its value. On the other hand, by the assumption about m_1 , we have

$$m_1 \sim \mathcal{N}(m, s/N) \xrightarrow{\mathbf{d}} m,$$
 (11)

as $N \to \infty$. Therefore, from Equations (6), (11) and (10), we can now obtain

$$m = \int_{-\infty}^{\infty} \frac{dz}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \tanh(\beta (d_1 m + \sqrt{\alpha r}z)), \tag{12}$$

which gives Equation (5(i)).

Next, write $Y_N = \sum_{i=1}^N Y_{Ni}$ with $Y_{Ni} = \frac{1}{N} \tanh \beta(X_i)$. We have a triangular array of random variables with $\mathrm{E}(Y_{Ni}) = m/N$, by Equation (9), the equality in Equation (1), using $g(x) = \frac{1}{N} \tanh \beta(x)$ and f as the Gaussian distribution $\mathcal{N}(d_1 m, r\alpha)$, and Equation (12). Furthermore,

$$E(Y_{Ni}^2) = q/N^2, \tag{13}$$

by Equation (9), where q is given in Equation (5(iii)). This gives

$$\sigma_{Ni}^2 := \mathbb{E}(Y_{Ni}^2) - (\mathbb{E}(Y_{Ni}))^2 = (q - m^2)/N^2, \qquad \sigma_N^2 := \sum_{i=1}^N \sigma_{Ni}^2 = (q - m^2)/N.$$

Moreover, it is easy to see that $\mathrm{E}(|Y_{Ni}|^3) \leq 1/N^3$ since \tanh is bounded by 1. Thus,

$$\frac{1}{\sigma_N^3} \sum_{i=1}^N \mathcal{E}(|Y_{Ni}|^3) = O(1/N^{1/2})$$
(14)

and it follows that the Lyapunov condition holds for $\delta=1$. Therefore, by Lyapunov's theorem $(Y_N-m)/\sigma_N\sim \mathcal{N}(0,1)$, as $N\to\infty$, and thus $m_1=Y_N\sim \mathcal{N}(m,(q-m^2)/N)$, as $N\to\infty$. Since by assumption $m_1\sim \mathcal{N}(m,s/N)$, we obtain the value of $s=q-m^2$ as in Equation (5(ii)).

Now fix $\nu \neq 1$ in Equation (4), take a sample point $\omega \in \Omega$, separate the three terms for $\mu = 1$, $\mu = \nu$ and $\mu \neq 1$, ν on the right hand side of the equation, as before multiply \tanh and its argument by ξ_i^1 and write the equation as $m_{\nu}(\omega) = h(m_{\nu}(\omega))$, where $h : \mathbb{R} \to \mathbb{R}$ with

$$h(x) = \frac{1}{N} \sum_{i=1}^{N} \xi_i^{\nu}(\omega) \xi_i^{1}(\omega) \tanh \beta \left(d_1 m_1(\omega) + \xi_i^{\nu}(\omega) \xi_i^{1}(\omega) x + \sum_{\mu \neq 1, \nu} \xi_i^{\nu}(\omega) \xi_i^{1}(\omega) m_{\mu}(\omega) \right)$$

$$\tag{15}$$

By assumption m_{ν} is normally distributed with mean zero and standard deviation \sqrt{r}/\sqrt{N} . Therefore, in contrast to the case for m_1 treated earlier, here $m_{\nu}(\omega)$ is small and of order $O(1/\sqrt{N})$. Since m_{ν} appears in two terms on both sides of $m_{\nu}(\omega) = h(m_{\nu}(\omega))$, we need to collect together on one side of the equation the contributions of these two terms. To this end, we regard $m_{\nu}(\omega)$ as small compared with the term $m_1(\omega)d_1$ and the term $\sum_{\mu\neq 1,\nu}\xi_i^1(\omega)\xi_i^\mu(\omega)m_\mu(\omega)$ which are both of order O(1), and we employ the Taylor expansion of h near the origin x=0:

$$h(m_{\nu}(\omega)) = \frac{1}{N} \sum_{i=1}^{N} \xi_{i}^{\nu}(\omega) \xi_{i}^{1}(\omega) \tanh \beta (d_{1}m_{1}(\omega) + \sum_{\mu \neq 1, \nu} \xi_{i}^{\mu}(\omega) \xi_{i}^{1}(\omega) m_{\mu}(\omega)) + \frac{\beta}{N} \left(\sum_{i=1}^{N} (1 - \tanh^{2}(\beta (d_{1}m_{1}(\omega) + \sum_{\mu \neq 1, \nu} \xi_{i}^{\mu}(\omega) \xi_{i}^{1}(\omega) m_{\mu}(\omega))) \right) m_{\nu}(\omega) + c(m_{\nu}(\omega))^{2}$$
(16)

where $|c| \leq \beta^2$, which is obtained by using the Lagrange form of remainder $c(m_{\nu}(\omega))^2$ to estimate the second derivative h''(0) and by noting that $|\tanh(x)| \leq 1$ for all $x \in I\!\!R$. Thus, the Taylor series remainder is of order O(1/N), which we ignore compared to the standard deviation of m_{ν} namely \sqrt{r}/\sqrt{N} . By Lemma 4.1, the last summation in Equation (16), containing the bounded continuous function \tanh^2 , converges almost surely to q as $N \to \infty$. Moreover, by using t = 3/2 in the second part of Lemma 4.1, it follows that for large N, while retaining m_{ν} which is of order $1/\sqrt{N}$, we can replace the sum in the equation with q by ignoring the error which, for any degree of certainty, is of order $1/\sqrt{N}$. Thus, by using 1/N 1/N from Equation (4), we now obtain the following reduced stochastic equation for 1/N

$$(1 - \beta(1 - q))m_{\nu}(\omega) = \frac{1}{N} \sum_{i=1}^{N} \xi_{i}^{\nu}(\omega)\xi_{i}^{1}(\omega) \tanh \beta \left(d_{1}m_{1}(\omega) + \sum_{\mu \neq 1, \nu} \xi_{i}^{\mu}(\omega)\xi_{i}^{1}(\omega)m_{\mu}(\omega) \right)$$

$$(17)$$

Now we drop ω everywhere and let the right hand side of Equation (17) be written as $Z_N = \sum_{i=1}^N Z_{Ni}$ with $Z_{Ni} = \frac{1}{N} \xi_i^{\nu} \xi_i^1 \tanh \beta \left(X_i' \right)$, where $X_i' = d_1 m_1 + \sum_{\mu \neq 1, \nu} \xi_i^{\mu} \xi_i^1 m_{\mu}$. By Lemma 4.3 and Equation (9), $X_i' \sim X_i \sim \mathcal{N}(d_1 m, r\alpha)$ and the three random variables ξ_i^{ν} , ξ_i^1 and X_i' are independent.

We again have an array Z_{Ni} of random variables $1 \le i \le N$ for each N, and by the independence of the above three random variables we have: $\mathrm{E}(Z_{Ni}) = 0$ and

$$E(Z_{Ni}^{2}) = \frac{1}{N^{2}} E(\xi_{i}^{\nu})^{2} E(\xi_{i}^{1})^{2} E(\tanh^{2}\beta(X_{i}'))$$

$$= \frac{1}{N^{2}} E(\tanh^{2}\beta(X_{i})) = E(Y_{Ni}^{2}) = \frac{q}{N^{2}},$$
(18)

as in Equation (13). Therefore, $\sigma_N^2 = \sum_{i=1}^N \mathrm{E}(Z_{Ni}^2) = q/N$. Moreover, it is easy to see that $\mathrm{E}(|Z_{Ni}|^3) \leq 1/N^3$ since $|\tanh(x)|$ is bounded by 1 for all $x \in I\!\!R$. Thus,

$$\frac{1}{\sigma_N^3} \sum_{i=1}^N \mathcal{E}(|Z_{Ni}|^3) = O(1/N^{1/2})$$
(19)

and it follows that the Lyapunov condition holds for $\delta = 1$. We conclude by Lyapunov's theorem that $Z_N / \sigma_N \sim \mathcal{N}(0,1)$ and thus $Z_N \sim \mathcal{N}(0,q/N)$. From this and Equation (17), we deduce that

$$m_{\nu} \sim \mathcal{N}\left(0, \frac{q}{(1-\beta(1-q))^2 N}\right)$$
 (20)

and obtain $r = q/(1-\beta(1-q))^2$ in Equation (5(iv)). This completes the proof of the theorem. \Box

References

- [1] L. E. Baum and M. Katz. Convergence rates in the law of large numbers. *Transactions of the American Mathematical Society*, 120(1):108–123, 1965.
- [2] P. Billingsley. Probability and Measure. John Wiley & Sons, second edition edition, 1986.