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We will present the proofs of Lemma 4.1, Lemma 4.3 and Theorem 4.2 here. For completeness, first
recall Lyapunov’s theorem in probability theory.

Let Yn =
∑kn
i=1 Yni, for n ∈ IN , be a triangular array of random variables such that for each n,

the random variables Yni, for 1 ≤ i ≤ kn are independent with E(Yni) = 0 and E(Y 2
ni) = σ2

ni,
where E(X) stands for the expected value of the random variable X . Let s2n =

∑kn
i=1 σ

2
ni. We use

the notation X ∼ Y when the two random variables X and Y have the same distribution (for large
n if either or both of them depend on n).

Theorem (Lyapunov) [2, page 368] If for some δ > 0, we have

1

s2+δn

E(|Yn|2+δ|)→ 0 as n→∞

then 1
sn
Yn

d−→ N (0, 1) as n → ∞ where d−→ denotes convergence in distribution, and we denote
by N (a, σ2) the normal distribution with mean a and variance σ2. Thus, for large n we have
Yn ∼ N (0, s2n). �

Lemma 4.1 LetX be a random variable on IR such that its probability distribution F (x) = Pr(X ≤
x) is differentiable with density F ′(x) = f(x). If g : IR → IR is a bounded measurable function
and Xk (k ≥ 1) is a sequence of of independent and identically distributed random variables with
distribution X , then

1

N

N∑
i=1

g(Xi)
a.s.−→ Eg(X) =

∫ ∞
∞

g(x)f(x)dx, (1)

and for all ε > 0 and t > 1, we have:

Pr

(
sup
k≥N

(
1

k

k∑
i=1

(g(Xi)− kE(g)(X))

)
≥ ε

)
= o(1/N t−1) (2)

Proof Since g is bounded, Eg(X) =
∫∞
∞ g(x)f(x)dx is absolutely convergent and thus the ex-

pected value Eg(X) is well-defined and |Eg(X)| < ∞. Equation (1) then follows from the
Strong Law of Large Numbers [2, page 80] applied to the random variables g(Xi), for i ≥ 1.
which are independent and identically distributed as g(X) with expectation Eg(X). We also have
E|g(X)|t =

∫∞
−∞ |g(x)|tf(x)dx <∞ for all t > 1 and thus the convergence rate of the Strong Law

of Large Numbers implies Equation (2), a consequence of Theorem 3 and the lemma in [1, pages
112 and 113]. �
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Assume p/N = α > 0 with d1 � p0 and dµ = 1 for 1 < µ ≤ p0. Consider the overlaps

mν =
1

N

N∑
i=1

ξνi 〈Si〉 (3)

and the mean field equations:

mν =
1

N

N∑
i=1

ξνi tanh

(
β

p∑
µ=1

dµξ
µ
i mµ

)
(4)

Theorem 4.2 There is a solution to the mean field equations (4) for retrieving ξ1 with independent
random variables mν (for 1 ≤ ν ≤ p0), where m1 ∼ N (m, s/N) and mν ∼ N (0, r/N) (for
ν 6= 1), if the real numbers m, s and r satisfy the four simultaneous equations:

(i) m =
∫∞
−∞

dz√
2π
e−

z2

2 tanh(β(d1m+
√
αrz))

(ii) s = q −m2

(iii) q =
∫∞
−∞

dz√
2π
e−

z2

2 tanh2(β(d1m+
√
αrz))

(iv) r = q
(1−β(1−q))2

(5)

In the proof of this theorem, as given below, we seek a solution of the mean field equations assuming
we have independent random variables mν (for 1 ≤ ν ≤ p0) such that for large N and p with
p/N = α, we have m1 ∼ N (m, s/N) and mν ∼ N (0, r/N) (ν 6= 1), and then find conditions
in terms of m, s and r to ensure that such a solution exists. Since by our assumption about the
distribution of the overlaps mµ, the standard deviation of each overlap is O(1/

√
N), we ignore

terms of O(1/N) and more generally terms of o(1/
√
N) compared to terms of O(1/

√
N) in the

proof including in the lemma below.

Lemma 4.3 If mν ∼ N (0, r/N) (for ν 6= 1), then we have the equivalence of distributions:∑
µ 6=1,ν

ξ1i ξ
µ
i mµ ∼ N (0, αr) ∼

∑
µ6=1

ξ1i ξ
µ
i mµ.

Proof Recall that the sum
∑k
t=1Xt of k independent random variables such that Xt has a normal

distribution with mean at and variance σ2
t (for 1 ≤ t ≤ k) is itself normally distributed with

mean
∑k
t=1 at and variance

∑k
t=1 σ

2
t . Consider the first equivalence. From −1 ≤ 〈Si〉| ≤ 1, for

1 ≤ i ≤ N , and Equation (3), it follows that

E
(
mµξ

µ
j

)
= E

(
1

N

N∑
i=1

ξµi 〈Si〉ξ
µ
j

)
≤ E

(
1

N

N∑
i=1

ξµi ξ
µ
j

)
=

1

N

Similarly, E(mµξ
µ
j ) ≥ −1/N , and thus E(mµξ

µ
j ) = O(1/N). Therefore, for µ 6= 1, ν, the three

random variables ξ1i , ξµi and mµ can be considered independent and it follows that the distribution
of each product on the left hand side of the first equivalence is given by N (0, r/N). Summing up
the approximately p independent normal distributions µ 6= 1, ν, we obtain the first equivalence. The
second equivalence is proved in a similar way. �

Proof of Theorem 4.2 First consider Equation (4) for ν = 1, which, by separating the contributions
of µ = 1 and µ 6= 1 on the right hand side, we write as

m1 = YN :=
1

N

N∑
i=1

ξ1i tanhβ(d1m1ξ
1
i +

∑
µ6=1

ξµi mµ). (6)

Multiplying the odd function tanh and its argument by ξ1i , we obtain:
YN = 1

N

∑N
i=1 ξ

1
i ξ

1
i tanhβ(d1m1ξ

1
i ξ

1
i +

∑
µ6=1 ξ

µ
i ξ

1
imµ)

= 1
N

∑N
i=1 tanhβ(d1m1 +

∑
µ6=1 ξ

µ
i ξ

1
imµ)

a.s.−→
∫∞
−∞

dz√
2π
e−

z2

2 tanh(β(md1 +
√
αrz)),

(7)
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where the last step is justified as follows. By Lemma 4.3

∑
µ6=1

ξµi ξ
1
imµ ∼ N (0, αr) (8)

Since, by assumption, m1 has distribution N (m, s/N) and is independent of
∑
µ6=1 ξ

µ
i ξ

1
imµ, it

follows that d1m1+
∑
µ6=1 ξ

µ
i ξ

1
imµ is the sum of two normal distributions and thus has itself normal

distribution N (d1m,
d21s
N + rα) ∼ N (d1m, rα) by ignoring d21s

N compared to rα:

Xi := d1m1 +
∑
µ6=1

ξµi ξ
1
imµ ∼ N (d1m, rα) (9)

Therefore, the random variables Xi, for i ≥ 1, are independent and identically distributed with
distribution ∼ N (d1m,αr), and the last step in Equation (7) then follows by applying Lemma 4.1
using g(x) = tanh(βx), which is a bounded continuous function. Since almost sure convergence
implies convergence in distribution, it follows that as N →∞,

YN
d−→
∫ ∞
−∞

dz√
2π
e−

z2

2 tanh(β(d1m+
√
αrz)), (10)

where the latter is the degenerate (point) distribution with the integral on the right hand side as its
value. On the other hand, by the assumption about m1, we have

m1 ∼ N (m, s/N)
d−→ m, (11)

as N →∞. Therefore, from Equations (6), (11) and (10), we can now obtain

m =

∫ ∞
−∞

dz√
2π
e−

z2

2 tanh(β(d1m+
√
αrz)), (12)

which gives Equation (5(i)).

Next, write YN =
∑N
i=1 YNi with YNi = 1

N tanhβ(Xi). We have a triangular array of ran-
dom variables with E(YNi) = m/N , by Equation (9), the equality in Equation (1), using g(x) =
1
N tanhβ(x) and f as the Gaussian distribution N (d1m, rα), and Equation (12). Furthermore,

E(Y 2
Ni) = q/N2, (13)

by Equation (9), where q is given in Equation (5(iii)). This gives

σ2
Ni := E(Y 2

Ni)− (E(YNi))
2 = (q −m2)/N2, σ2

N :=

N∑
i=1

σ2
Ni = (q −m2)/N.

Moreover, it is easy to see that E(|YNi|3) ≤ 1/N3 since tanh is bounded by 1. Thus,

1

σ3
N

N∑
i=1

E(|YNi|3) = O(1/N1/2) (14)

and it follows that the Lyapunov condition holds for δ = 1. Therefore, by Lyapunov’s theorem
(YN −m)/σN ∼ N (0, 1), as N → ∞, and thus m1 = YN ∼ N (m, (q −m2)/N), as N → ∞.
Since by assumption m1 ∼ N (m, s/N), we obtain the value of s = q −m2 as in Equation (5(ii)).

Now fix ν 6= 1 in Equation (4), take a sample point ω ∈ Ω, separate the three terms for µ = 1,
µ = ν and µ 6= 1, ν on the right hand side of the equation, as before multiply tanh and its argument
by ξ1i and write the equation as mν(ω) = h(mν(ω)), where h : IR→ IR with

h(x) =
1

N

N∑
i=1

ξνi (ω)ξ1i (ω) tanhβ

d1m1(ω) + ξνi (ω)ξ1i (ω)x+
∑
µ6=1,ν

ξνi (ω)ξ1i (ω)mµ(ω)


(15)
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By assumption mν is normally distributed with mean zero and standard deviation
√
r/
√
N . There-

fore, in contrast to the case for m1 treated earlier, here mν(ω) is small and of order O(1/
√
N).

Since mν appears in two terms on both sides of mν(ω) = h(mν(ω)), we need to collect together
on one side of the equation the contributions of these two terms. To this end, we regard mν(ω) as
small compared with the term m1(ω)d1 and the term

∑
µ6=1,ν ξ

1
i (ω)ξµi (ω)mµ(ω) which are both of

order O(1), and we employ the Taylor expansion of h near the origin x = 0:

h(mν(ω)) = 1
N

∑N
i=1 ξ

ν
i (ω)ξ1i (ω) tanhβ(d1m1(ω) +

∑
µ6=1,ν ξ

µ
i (ω)ξ1i (ω)mµ(ω))

+ β
N

(∑N
i=1(1− tanh2(β(d1m1(ω) +

∑
µ6=1,ν ξ

µ
i (ω)ξ1i (ω)mµ(ω)))

)
mν(ω) + c(mν(ω))2

(16)

where |c| ≤ β2, which is obtained by using the Lagrange form of remainder c(mν(ω))2 to estimate
the second derivative h′′(0) and by noting that | tanh(x)| ≤ 1 for all x ∈ IR. Thus, the Taylor series
remainder is of order O(1/N), which we ignore compared to the standard deviation of mν namely√
r/
√
N . By Lemma 4.1, the last summation in Equation (16), containing the bounded continuous

function tanh2, converges almost surely to q as N →∞. Moreover, by using t = 3/2 in the second
part of Lemma 4.1, it follows that for large N , while retaining mν which is of order 1/

√
N , we

can replace the sum in the equation with q by ignoring the error which, for any degree of certainty,
is of order o(1/

√
N). Thus, by using mν(ω) = h(mν(ω)) from Equation (4), we now obtain the

following reduced stochastic equation for ν 6= 1:

(1− β(1− q))mν(ω) =
1

N

N∑
i=1

ξνi (ω)ξ1i (ω) tanhβ

d1m1(ω) +
∑
µ6=1,ν

ξµi (ω)ξ1i (ω)mµ(ω)


(17)

Now we drop ω everywhere and let the right hand side of Equation (17) be written as ZN =∑N
i=1 ZNi with ZNi = 1

N ξ
ν
i ξ

1
i tanhβ (X ′i), where X ′i = d1m1 +

∑
µ6=1,ν ξ

µ
i ξ

1
imµ. By Lemma

4.3 and Equation (9), X ′i ∼ Xi ∼ N (d1m, rα) and the three random variables ξνi , ξ1i and X ′i are
independent.

We again have an array ZNi of random variables 1 ≤ i ≤ N for each N , and by the independence
of the above three random variables we have: E(ZNi) = 0 and

E(Z2
Ni) = 1

N2 E(ξνi )2E(ξ1i )2E(tanh2 β (X ′i))
= 1

N2 E(tanh2 β (Xi)) = E(Y 2
Ni) = q

N2 ,
(18)

as in Equation (13). Therefore, σ2
N =

∑N
i=1 E(Z2

Ni) = q/N . Moreover, it is easy to see that
E(|ZNi|3) ≤ 1/N3 since | tanh(x)| is bounded by 1 for all x ∈ IR. Thus,

1

σ3
N

N∑
i=1

E(|ZNi|3) = O(1/N1/2) (19)

and it follows that the Lyapunov condition holds for δ = 1. We conclude by Lyapunov’s theorem
that ZN/σN ∼ N (0, 1) and thus ZN ∼ N (0, q/N). From this and Equation (17), we deduce that

mν ∼ N
(

0,
q

(1− β(1− q))2N

)
(20)

and obtain r = q/(1− β(1− q))2 in Equation (5(iv)). This completes the proof of the theorem. �
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