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Abstract

We extend the basic results on the theory of the generalized Riemann integral to
the setting of bounded or locally finite measures on locally compact second countable
Hausdorft spaces. The correspondence between Borel measures on X and continuous
valuations on the upper space UX gives rise to a topological embedding between the
space of locally finite measures and locally finite continuous valuations, both endowed
with the Scott topology. We construct an approximating chain of simple valuations on
the upper space of a locally compact space, whose least upper bound is the given locally
finite measure. The generalized Riemann integral is defined for bounded functions with
respect to both bounded and locally finite measures. Also in this setting, generalized R-
integrability for a bounded function is proved to be equivalent to the condition that the set
of its discontinuities has measure zero. Furthermore, if a bounded function is R-integrable
then it is also Lebesgue integrable and the two integrals coincide. Finally, we extend R-
integration to an open set and provide a sufficient condition for the computability of the
integral of a bounded almost everywhere continuous function.

1 Introduction

Domain theory was introduced by Dana Scott in 1970 ([27]) as a foundational basis for
the semantics of computation.

In [6], a basic connection between domain theory and some main branches of mathe-
matics has been established, giving rise, in particular, to a novel computational approach
to measure theory and integration. A domain-theoretic framework for measure and in-
tegration has been provided in [7], by proving that any bounded Borel measure on a
compact metric space X can be obtained as the least upper bound of simple valuations
(measures) on the upper space UX, the set of non-empty compact subsets of X ordered
by reverse inclusion.

Simple valuations approximating the given measure play the role of partitions in Rie-
mann integration and are used to obtain increasingly better approximations of the integral
of a bounded real-valued function on a compact metric space. Thus, instead of approx-
imating the function with simple functions as is done in Lebesgue theory, the measure
i1s approximated with simple measures. This idea leads to a new notion of integration,
called generalized Riemann integration, R-integration for short, similar in spirit but more
general than Riemann integration.

All the basic results of the theory of Riemann integration can be extended to this
setting. For instance, it is proved in [7] that a bounded real-valued function on a compact
metric space is R-integrable with respect to a bounded Borel measure if and only if its



set of discontinuities has measure zero and that if the function is R-integrable then it is
also Lebesgue integrable and the two integrals coincide.

This theory has had applications in exact computation of integrals [8], in the seman-
tics of programming languages [12], in the l-dimensional random fields Ising model in
statistical physics [9], in forgetful neural networks [10], in stochastic processes [5] and in
chaos theory [8].

Apart from the domain-theoretic integral, there are two other notions of general-
ized Riemann integrals in the literature, namely, the McShane and the Henstock inte-
grals [25, 15]. These are basically integrals for real valued functions on R. Their general-
izations to R™ also exist but they are much more involved. The basic McShane integral
i1s equivalent to the Lebesgue integral with respect to to the Lebesgue measure. The
Henstock integral, sometimes called the Henstock-Kurzweil integral, 1s a generalization
of the McShane integral in the sense that any McShane integrable function is Henstock
integrable but not conversely. The Henstock integral has the property that every contin-
uous, nearly everywhere differentiable function can be recovered by integration from its
derivative. This property, which does not hold for the Riemann or the Lebesgue integral,
was historically the motivation behind the definition of this integral.

The reason why the McShane and the Henstock integrals are called generalized Rie-
mann integrals is the following. In order to define the ordinary Riemann integral of
a (bounded) function one partitions the domain of the function, whereas to define the
Lebesgue integral of a function one partitions its range to obtain an increasing sequence
of simple functions converging pointwise to the given function. In the McShane integral,
as well as in the Henstock integral, one returns to the idea of partitioning the domain
of the function with a more sophisticated notion of “a tagged partition of an interval
subordinate to a given positive valued function on the interval”. Using such partitions
one can obtain generalizations of the Riemann integral and in fact that of the Lebesgue
integral. The theory however is, like the Lebesgue theory, non-constructive and without
any effective framework.

The domain-theoretic generalization of the Riemann integral works generally for in-
tegration of functions with respect to Borel measures on Polish spaces (topologically
complete separable metrizable spaces) [13, 22, 17] which include locally compact second
countable spaces. Here, one also deals with the domain of the function rather than its
range. But now one goes beyond the notion of partitions and uses finite covers by open
subsets to provide approximations to the measure. These approximations give generalized
upper and lower sums with which we define the integral. The theory, like the Riemann
theory, has a constructive and effective framework. The generalized Riemann integral of
a Holder function with respect to an effectively given measure can be approximated up
to any desired accuracy by upper and lower sums [8].

In order to apply the generalized Riemann integration to a wider range of problems,
we look for an extension of the results in [7] and [8] to the more general setting of locally
compact second countable Hausdorff spaces with bounded or locally finite measures, the
latter being measures which are finite on compact subsets of the space. A number of
these extensions do require further work; others are straightforward generalizations of the
compact case.

These more general hypotheses, however, cover some central fields of application. For
instance, probability distributions on the real line are examples of bounded measures on
a locally compact space, whereas the Lebesgue measure on the real line is an example of
a locally finite measure on a locally compact space.

In this paper, after reviewing the domain-theoretic notions needed here, we show
in section 3 that the set of locally finite measures on a locally compact space are in
one to one correspondence with the set of locally finite continuous valuations on the
upper space which are supported on its maximal elements. Indeed, this gives rise to a
topological embedding when both spaces are endowed with the Scott topologies induced



by the pointwise order.

In section 4, we show how to approximate a locally finite valuation on a locally compact
space by means of an increasing sequence of simple valuations on the upper space, which
is built up from any given presentation of the locally compact space as an increasing
countable union of relatively compact open subsets.

We proceed in section 5 with the definition of the generalized Riemann integral of
a bounded real-valued function on a locally compact space with respect to a bounded
Borel measure. As in the case of compact spaces [7], generalized R-integrability for a
function f is seen to be equivalent to the condition that the set of discontinuities of f
has measure zero. Moreover, if the R-integral exists then the Lebesgue integral exists
and the two integrals are equal. The notion of an effective approximation to a bounded
measure by simple valuations on the upper space, which is used to compute integrals of
Holder continuous functions up to any precision, has a straightforward extension to locally
compact spaces.

We then define, in section 6, the R-integral with respect to a locally finite measure.
In the case of functions with compact support, the R-integral reduces to the R-integral
in compact spaces with respect to the restriction of the measure to the support of the
function. In the case of functions with non-compact support, the R-integral is defined in
a way similar to the improper Riemann integral. It is shown, in this more general case,
that if a function is R-integrable then it is also Lebesgue integrable and the two integrals
coincide.

Finally in section 7, following the work in [4], we extend the definition of R~ integration
to an open set, and prove that the lower integral coincides with the Lebesgue integral
on the open set, whereas the upper integral coincides with the Lebesgue integral on its
closure. As a consequence, when the boundary of the open set has measure zero, we obtain
two sequences that converge from below and from above to the value of the integral of
a bounded almost everywhere continuous function. This allows a computation of the
integral on the open set up to any desired degree of accuracy.

2 Valuations on continuous posets

We first recall some basic notions from domain theory which we need in this paper. A
non-empty subset A C P of a partially ordered set (poset) (P,C) is directed if for any pair
of elements z,y € A there is z € A with @,y C z. A directed complete partial order (depo)
is a partial order in which every directed subset A has a least upper bound (lub), denoted
by | |A. An open set O C P of the Scott topology of P is a set which is upward closed
(ie. €0 &z Cy = y € O)and is inaccessible by lubs of directed sets (i.e. if A is
directed with a lub, then | |[A € O = Jz € A. 2 € O). The Scott topology of any poset
18 Tp. Given two elements =,y in a poset P, we say x is way-below y or & approzimates y,
denoted by # < y, if whenever y C | | A for a directed set A with lub, then there isa € A
with  C a. We sometimes write € p to emphasise that the way-below relation is with
respect to P. We say that a subset B C D is a basis for D if for each d € D the set A
of elements of B way-below d is directed and d = | | A. We say D is continuous if it has
a basis; 1t 1s w-continuous if it has a countable basis. In any continuous poset, subsets of
the form 16 = {x|b < z} where b belongs to a basis give a basis of the Scott topology.

A wvaluation on a topological space Y is a measure-like function defined on the lattice
Q(Y) of open sets. Here is the precise definition.

Definition 2.1 A valuation on a topological space Y is a map
v:QY)—[0,00)

which, for all U,V € Q(Y), satisfies



L v +v(V)=v(UUV)+v(UNV);
2. v(0)=0;
3. UCV=vlU)<ylV).

A continuous valuation is a valuation such that whenever A is a directed family in Q(Y)
then

4- ¥(Uoea O) = suppe 4 v(0).
A locally finite continuous valuation ¢s a map
v:QY)—[0,00]
satisfying the same properties of a continuous valuation and
Fv(V)<oo for VLY.

The set of locally finite continuous valuations on Y is denoted by P‘(Y); it is pointwise
ordered by:
p B pa = (VO € QX)) (11(0) < 12(0)) -

The subposet of continuous valuations bounded by one, i.e. with u(Y) <1, is denoted by
P(Y) and the set of normalized valuations, i.e. those with u(Y') = 1 is denoted by P*(Y).
The point valuation based at b € Y is the valuation

& QYY) —[0,00)
defined by

_ 1 ifbeO
6(0) = { 0  otherwise.
Any finite linear combination

n

stb, (ri €[0,00), i=1,...,n)

i=1

of point valuations is called a simple valuation.
If Y is an (w)-continuous dcpo then P(Y') is also an (w)-continuous depo with a basis
of simple valuations [19]. We have the following property:

Proposition 2.2 [20, page {6] Let v = ;g6 be a simple valuation and p a
continuous valuation on a continuous depo Y. Then v <& p off for all A C B we have

dom<u(td), O

bEA
where fA={yeY|Ja€ A a <y}

If Y is an (w)-continuous depo with bottom then P(Y') is also an (w)-continuous depo
with a basis of simple valuations and we have the following results [7]:

Lemma 2.3 Let Y be a depo with bottom and let

vi= raba  va= Y siby

acA beB

be simple valuations in PY(Y). Then we have vy C vs iff, for alla € A and for allb € B,

there exists tqp > 0 such that ZbeB lap = Tq, ZaEA tap = sp and t,p > 0 emplies a C b.
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Define the maps

mt: PY — PYY) m~: PY — PY
poo o= opt g
where .
oy = {4 P
and

o w0 itO#£Y
Ho(0)= { u(Y —{L}) otherwise.
Proposition 2.4 (i) v <py p& p € P'Y = vt <piy p.
(i) v<piy p = v~ <L<py p~ Cp.

Lemma 2.5 Suppose p,v € P'Y. Then v <piy p implies v(Y — {L}) < L.

Proposition 2.6 For two simple valuations

p= Y by po =Y sob,

beB ceC

in PYY, we have py <piy po iff L € B with vy # 0, and, for allb € B and all ¢ € C,
there exists a nonnegative number ty . with t1 . # 0 such that

th,c =Ty th,c = S¢

ceC beB
and ty . # 0 implies b < c.

When considering locally finite valuations closure under directed joins does not hold
any more, i.e. P(Y)isnot a depo. However, it is still true that locally finite valuations can
be approximated by simple valuations, since this results holds in general for (unbounded)
valuations (cf. theorem 5.2, page 46 in [20]), and simple valuations are in particular locally
finite. So we have:

Proposition 2.7 For any continuous dcpo Y, any p € PYY) is the supremum of the
(directed) set of simple valuations way-below it and, therefore, PYY) is a continuous
poset.

3 Locally finite measures on a locally compact space

Throughout the paper, X will denote a second countable locally compact Hausdorff space.
We will use the decomposition X = Uz’e]N X;, where (X;);ew is an increasing sequence
of relatively compact open subsets of X such that X; C X;;;. We start with some
definitions:

Definition 3.1 A Borel measure g on a locally compact Hausdorff space is locally finite
if u(C) < oo for all compact C C X. M*(X) will denote the set of locally finite measures
on X. The set of measures bounded by one and the set of normalized measures are denoted
respectively by M(X) and M'(X).



We recall from [6] that the upper space UX of a topological space is the set of all
non-empty compact subsets of X, with the base of the upper topology given by the sets

Oa={CeUX|CCa},

where a € (X). When X is a second countable locally compact Hausdorff space, then
the upper space UX of X is an w-continuous depo and the Scott topology of (UX, D)
coincides with the upper topology. The lub of a directed subset is the intersection and
A <« B iff B is contained the interior of A. The singleton map s : X — UX with
s(x) = {x} is a topological embedding onto the set of maximal elements of U X.

In [6], it was shown that the map

M(X) — PUX)
JT /105_1

is an injection into the set of maximal elements of P(UX) and it was conjectured that its
image is the set of maximal elements. This conjecture was later proved by Lawson in a
more general setting [23]. The continuous dcpo UX does not necessarily have a bottom
element. Therefore, in order to consider normalized valuations, we will adjoin a bottom
element 1= X and denote the dcpo with bottom thus obtained with (X)), . Then the
injective map p +— pos™' : MY(X) — PYUX)_ is onto the set of maximal elements of
PLUX)L. Here, we will show a one-to-one correspondence between locally finite Borel
measures on X and locally finite continuous valuations on the upper space supported in

s(X).
Proposition 3.2 Let s : X — UX be the singleton map. Then the map

e: MZ(X) —
po— -

1s well defined.

Before proving the above proposition we need the following lemmas, connecting the
way-below relation on the upper space UX of X with the one on X.

Lemma 3.3 Let {O; : i € I} be a directed family in Q(X). Then

o Jon ={Joo;.

i€l i€l

Proof: The inclusion from right to left trivially holds. For the converse, assume that C' is
a non-empty compact subset of Uie[ O;. By compactness, C' has a finite subcover, and
therefore, since the family of opens is directed, there exists ¢ € I such that C' is a subset

OfOZ O

Lemma 3.4 Let V be an open set wn the Scott topology of UX. Then
V<UX in QUX) if and only if s7(V) < X in Q(X).

Proof:

=: Suppose X C |J;c; Oi where the right-hand side is a directed union and O; € Q(X).
Then, by lemma 3.3, we have UX = 0X C |J;¢; DO;. Since V < UX in Q(UX), there
exists i € I such that V C 00;, and therefore s~1(V) C Oy, thus proving the claim.

<: Suppose UX C UiEI O;, where the right-hand side is the union of a directed family
of opens of the upper space. Since by hypothesis s71(V) < X and X is a locally compact
space, there exists a compact set C' C X such that s7(V) C C C X. Since C' € UX,



there exists ¢ € I such that C' € O; and therefore | C' C O; as O; is open in the Scott
topology of UX and thus an upper set with respect to reverse inclusion. This implies
V C1 C. For,if K € Vand # € K, then K C {«} and, hence, {«} € V since V is upward
closed. Thus z € s=*(V) C C,i.e. K C C. Therefore VC] C C O;,ie.,V K< UX. O

Proof of proposition 3.2: Let u be a locally finite Borel measure on X. Then it is
immediate to verify that g o s~' satisfies conditions 1-4 of definition 2.1 since y is a
measure and s~! preserves (directed) unions and intersections. The continuous valuation
po st is locally finite since, if V < UX, then, by lemma 3.4, s7}(V) < X. Since X is
locally compact, there exists a compact subset K of X such that s™!(V) C K. Therefore,
by monotonicity of p, pos™1(V) < u(K), and by the assumption on local finiteness of p
the conclusion follows. O

By a result from [24] (theorem 3.9), if P is a continuous dcpo equipped with its Scott
topology, then every continuous valuation v on P extends uniquely to a measure, denoted
by v*. Thus, in particular, gos~! extends to a unique measure (pos=1)* on U X, which, by
abuse of notation, we will denote by p* too. Such a measure satisfies p*(UX —s(X)) = 0,
that is we have:

1

Proposition 3.5 The valuation 1o s~ is supported in s(X).

Proof: We have UX — s(X) = ;e(UX; — s(X;)). By proposition 5.9 and corollary
5.10 in [6], s(X)ands(X;) are G5 subsets of UX and there exists a countable decreasing
sequence of opens (0; j)jew such that s(X;) = NjewnO0;; and s71(0; ;) = X;. Therefore

HAUX = 5(X)) = sup (U = s(Xy),
i€
so it is enough to prove that, for all i € IN, p*(UX; — s(X;)) = 0. We have p*(s(X;)) =
infjen p*(0;;) = infjempos 10 ;) = u(Xi) = pos M UX;) = p(UX;). It follows
that p*(UX; —s(X;))=0. O
Adapting the notation from [6], we will denote with S*(X), resp. S*(X), the locally

finite valuations, resp. the normalized valuations, on UX which are supported in s(X).

We have:

Theorem 3.6 The map

e: MYX) — SYX)
H = po 571
15 a bijection with inverse given by
jiSHX) — MYX)
v — vios.

The proof of the theorem is based on the following lemma.

Lemma 3.7 If i and v are locally finite Borel measures which have the same restriction
to QX)) then p=wv.

Proof: We have u(X;) = v(X;) < oo. Furthermore, for all Borel sets B, BN X; is a
Borel set in the induced topology of X;. By proposition 5.2 in [6], any finite continuous
valuation on a locally compact Hausdorff space has a unique extension to a measure, so
that we have u(X;NB) = v(X;NB) and therefore u(B) = p(XNB) = p((U;eny Xi)NB) =
#(Uien(Xi N B)) = sup;e p(Xi 0 B) = sup;ew v(Xi N B) = v(B). O

Proof of theorem 3.6: By the foregoing discussion, e is well defined. To prove that j is

well defined we only have to prove j(v) is a locally finite measure when v is a locally finite
continuous valuation. Let C' be a compact subset of X. There exists a relatively compact



open subset O, i.e. O € X, with € C O. Then (j(¢))(C) < (J(v))(O) = v*(5(0)) <
v(00) < o0, where the last inequality holds since 00 <« UX by lemma 3.4.
The proof that j is the inverse of v proceeds as in [6], theorem 5.21. O

In [8] it has been proved that the space of probability measures of a compact metric
space equipped with the weak topology is topologically embedded, via the map pu —
pos~! onto the subspace of the maximal elements of the probabilistic power domain of
the upper space.

Here a topological embedding can be obtained by considering the Scott topologies on

MYX) and PY(UX): We define a partial order on M%(X), as in P4(UX), by
p1 € pz = (VO € Q(X))(11(0) < p2(0)) -

The relation C is clearly reflexive and transitive, and it is antisymmetric by lemma 3.7.
Observe that the space (M*(X),C) is not a depo. In fact, a directed subset D of M*(X)
has least upper bound in M*(X) if and only if for all open sets O such that O < X in
Q(X) the set {u(O) : p € D} is bounded. Tt is immediate to check that the maps e and
j are continuous with respect to the Scott topologies on M*(X) and P{UX), i.e., ¢ is a
topological embedding.

4 Approximation of locally finite measures

(Given a measure on a compact metric space it is possible to construct a chain of simple
valuations on the upper space with the measure as its least upper bound (cf. [8]). In
this section we will generalize this construction to the case of locally finite measures on a
locally compact space.

The relatively compact subsets X; are used to construct a sequence of simple valua-
tions on U X approximating any given locally finite measure on X, thus generalizing the
procedure which is worked out in [8]. Asin that work, we assume that the measure is given
by 1ts values on a given countable basis closed under finite unions and finite intersections.

Since the subsets X; are relatively compact, for all ¢ € IN there exists an ordered
finite covering C; of X; made of relatively compact open sets of the basis with diameter
< Zl Moreover such coverings can be chosen satisfying the additional requirement UC; C
UCi4+1. These hypotheses are needed in order to obtain an increasing sequence of simple
valuations. We assume in this section, and the rest of the paper, that open covers are
always constructed from the given countable base satisfying the above property.

For each 7 € IN we define inductively a finite ordered open cover D; for X; as a list of
opens sets in the following way, where the symbol * denotes the concatenation operation
for lists:

DlEcl;
'DQE'Dl/\Cz*<OECQZOQ_ UCl);
D35D2/\Cg*<0€6310g_ UCQ>;

Diy1 =D; /\Ci+1 * <O S Ci+1 -0 g_ UCZ'>;

where, for given ordered covers A and B, A A B denotes the cover
<01002 04 E.A,Oz EB)

ordered lexicographically. We recall from [8] that, for an ordered cover A = (Oq,...,0y),
the simple valuation p 4 associated with A is given by
pa = Zriéo_, , where r; = p(0; — U 0;).

i=1 i<t



We will denote with p; the simple valuation pup, associated with D;.
We will now prove that the p;’s constitute a chain of simple valuations with least
upper bound p. The following lemma is proved as proposition 3.1 in [§].

Lemma 4.1 Let A= (O4,...,0y) be an ordered cover of X; with O; < X for all j < n,
w1 a locally finite measure on X and the rv;’s as above. Then for all open subsets O of X;

we have
Z r; < p(0) < Z T .

0;COo O;NO#£D
Corollary 4.2 For alli € N, y; C e(p) in PHUX).

Proof: Let V = U>\EA 00, be an open set of the upper space. Then
V)= 2, 00, 1 S 2ol 00

< pUrea On) = e(u) (V)

where the last inequality holds by lemma 4.1. O

Proposition 4.3 For all i € IN, p; C p;41 in PHUX).

Proof: Let O € QUX), Dy = (O1,...,0,), Ciy1 = (V1,..., Vi) and let, for 1 < ¢ < n,
1 S _] S m, r, = /,L(OZ —_ Ui’<i Oi/), 7”(2'7]') = /,L(OZ n V7 —_ U(i’,j’)<(i,j)0il n V?I) Then
#i+1(0) > pip,pc,y, (O) = ZWEO r(i ;). Furthermore,

PRI DD DRI D DR R

0,nV;€0 J<moeo 0,e0J<m

As in the proof of proposition 3.4 in [8], it follows that Zj<m (i j) = T, and therefore
Zo_,eo Z]»<m (i) > Zo_,eo r; = 1i(0), and the result follows. O

Proposition 4.4 p = | |;cp st

Proof: Since, for all ¢, p; C u, we have |_|Z'E]N i C .

For the converse inequality, it is sufficient by lemma 3.3 in [8] to check that, for all
opens O € Q(X), sup; ;1;(00) > p(0). We distinguish two cases, i.e. p(0) < oo and
n(0) = oo. It u(0) < 0, let O; = ONX;, for j € IN. Then, for all j, O; < X and
O = Uje]N Oj. By theorem 3.5 in [8], we have, for all j € IN, u(O;) = | |, #:(O;) and
therefore p(0) = ||; e 1#(05) = Lj e Liew #:(05) = Uiy Ly e #1(05) = Lien #i(O)-
If 4(O) = oo, then for all M > 0 there exists V' < O such that p(V) > M. Since V < O
and g is a locally finite measure, p(V) is finite and therefore, by the previous case,
w(V) =] p(AV). Thus, since OO D OV, we have | | x;(00) > | | (OV) = p(V) > M,

and the conclusion follows since M is arbitrary. O

5 Integration with respect to bounded measures

Let g be a Borel measure on X such that 0 < p(X) < co. By rescaling, we can suppose
that p is normalized, i.e. that u(X) = 1. By corollary 3.3 in [7], P*(UX)_, the set of
normalized valuations of the probabilistic power domain of (UX),, is an w-continuous
dcpo with a basis of normalized simple valuations.



We also know from the previous section that there exists an increasing chain of simple
valuations (p;)i>o in P(UX)y such that po 571 = sup;>q ;. For convenience, in the rest
of this section, we identify p o s~! with p and, therefore, write u = sup;sq ;.

The valuations N

i =i+ (L= p((UX)1)8s
are in PL(UX),. Moreover, for any proper open subset O of (U X) ., we have pf (0) =
pi(0) and pos™t = supi>0u;", where (/1;»")2'20 Is again an increasing chain of simple
valuations. N

Let f be a bounded real-valued function defined on X and let ;1 be a bounded Borel
measure on X. For a simple valuation v = 7, 5 10, define, as in [7], the lower and
upper sums by

Sx(fiv) =D ryinf ]

beB

S§(fiv)= Y rsup f1B)

beB
where f[b] = {f(z)|z € b}. Observe that, since f is bounded, S&(f,v) and S%(f,v) are

well defined real numbers. For a choice of x € b for all b € B, we also have a Riemann
sum Sy (f,v) = ) ycp rof(xs). By proposition 4.2 in [7] we have:

Proposition 5.1 Let vq,vy € Pl(UX)J_ be simple valuations with v1 T ve. Then
Sﬁ((fa Vl) S Sﬁ((fa VZ) and S})L((fa VZ) S Sg((fa V1)~

Corollary 5.2 Ifvy,vs € PHUX) 1 are simple valuations with vy, vs < pi, then S5 (f,v1) <
Sg((f’ V2)

Using the notation introduced above we define the lower and upper R-integrals as
follows:

Definition 5.3 R/ fdu = SUP, <y S5%(f,v) (the lower R-integral);

Rdeu =inf,«, S%(f,v) (the upper R-integral).

ledu < ijdﬂ .

DeﬁnitioE 5.4 We say that [ is R-integrable with respect to p and write f € Rx(p) if
Rif =R/[/.

As a consequence of the definition we have:

By corollary 5.2 we have

Proposition 5.5 (The R-condition). We have f € R(u) iff for all ¢ > 0 there exists a
simple valuation v € PHUX) | with v < p such that

SY(f,v)— Sﬁg(f, v)<e.

If f is R-integrable then the integral of f can be calculated by using the increasing sequence
of simple valuations (/1;")2'20 :

Proposition 5.6 If f is R-integrable with respect to p, and (p;);>0 s an increasing
sequence of simple valuations on UX with least upper bound pu, then

/ fdp = sup Sk (f, pf) = inf S (f, i)
X i>0 i20

10



Proof: Cf. proposition 4.9 in [7]. O
The following properties are easily shown as in [7]:

Proposition 5.7 1. If f and g are R-integrable with respect to p then f + g is also
R-integrable with respect to p and [(f + g)dp = [ fdp+ [ gdp.

2. If f 1s R-integrable with respect to pp and ¢ € IR then cf is R-integrable with respect
top and [efdp=c [ fdpu.
3. If f and g are R-integrable with respect to p then so is their product fg.

5.1 Lebesgue criterion for R-integrability

We will extend the Lebesgue criterion for Riemann integration of a bounded function on
a compact real interval to R-integration of a bounded real-valued function on a locally
compact space, by generalizing the result in [7], that is the analogous criterion for R~
integration on compact spaces.

We first recall some definitions.

Definition 5.8 Let T C X and r > 0 and define
Qi(T) =sup{f(x)— f(y) | z,y € T}, called the oscillation of f on T';
wi(z) = limy_ o+ Qp(B(x, h)), where B(x, k) is the open ball of radius h centred at x;
Dy={reX |upe)> L.

Then we have (cf. [2], p. 170, and [7]):

Proposition 5.9 The following statements hold:
(i) f is continuous at z iff we(x) = 0.

(ii) If X is compact and we(x) < € for all x € X, then there exists & > 0 such that, for
all compact subsets b C X with |b] < §, we have Q;(b) < e.

(iii) For any r > 0, the set D, is closed.

If D is the set of discontinuities of f, we have D =, Dy where D1 C Dy C D3 C ...
is an increasing chain of closed sets. Hence D is an Fj and therefore a Borel set. In the
following, 1 € M*(X). We have:

Lemma 5.10 Let d be a compact subset of X and let v =73, pryb € PYUX). Then:

1oIfv o then 3oy0 .9 76 > p(d).
2. If v < p then Zb°nd¢w rp > p(d), where b° denotes the interior of b.

Proof: Cf. lemma 6.4 in [7]. D

Proposition 5.11 Let {u;)icr be a directed set of simple valuations

pi =Y Tiaby

beB;

in PLUX). Then Llicrmi € im(e) iff all ¢ > 0 and all 6 > 0, there exists i € I with

Z Tip < €

bEB,,|b]| >4

where |b] is the diameler of the compact set b C X.

11



Proof: The two directions in the proof were shown for a compact X in proposition 4.14
in [7] and in proposition 5.1 in [8], but the proofs there hold for a locally compact X as
well. O

We recall from [26] that a bounded measure on a second countable locally compact
Hausdorff space is regular, i.e., for any Borel set B, it satisfies

u(B) =inf{u(0) | BC O, O open} =sup{u(K) | K C B, K compact} .
Then the Lebesgue criterion follows:

Theorem 5.12 A bounded real-valued function on a locally compact second countable
Hausdorff space 1s R-integrable with respect to a bounded Borel measure p on X iff its set
of discontinuities has measure zero.

Proof: Suppose (D) > 0. Since D = |J,,5; Dn, there exists n > 1 such that u(D,) > 0.
As D, = U;s0Dn N X;, there exists i such that w(Dyp N 72) > 0. Weput D!, = D, NX;.
Let v = Zbe_B ryéy be a simple valuation with v < y. Then

Su(f,v)y—SHf,v) = >_sep ro(sup f[b] — inf f[b])

Z Zb°nD;L¢m rb(sup f[b] - inff[b])

\Y

v

ZbonD;L;ém ro/n > p(Dy)/n >0

by definition of D/, and the above lemma. Thus f does not satisfy the R-condition and
therefore it is not R-integrable.

Conversely, assume p(D) = 0. For all n > 1, there exists a compact subset ¥ of X
such that u(X —Y) < % Let T and Z be regular compact subsets of X with Y C 7° and
Z CT. Let Dy ={x €T | ws(x) > L} We know that D, is closed and pu(D,) = 0. By
regularity of p, there exists an open V' C X such that D, N2 CV and pu(V) < % By
taking the intersection of V' with 7°, if necessary, we can assume V C 7°. Since D, N 7
is compact, there exists an open set W with D, NZ C W and W C V. Let d(W, Vey=4
and d(Y,07) = 82, where 87 denotes the boundary of Z. Observe that 7 — W is compact
and for all e € Z — W, wy(z) < % By proposition 5.9(ii), there exists 83 such that for
all compact b C Z — W with [b| < 65 we have Q7(b) < 2. Let 0 < § < min(é;, 62, 83). By
proposition 5.11, there exists v € PHUX), v = > sep b0, such that Z|b|>é ry < % and
v C u. Observe that, by the choice of 8, [b] < é impliesb C Z or b C X —Y. Moreover,
[b] <éand b C Z imply bC VNZ orbC Z—W. Then we have

SU(f.7) = S“(f,v) = > _ re(sup f[b] — inf f[b])

beB
< > m(sup [l —inf [+ Y re(sup f[B] — inf f[b])
|6]>6 |b]<6,6CZ
+ Y m(sup f[b]) — inf f[b])
[b]<6,0CX-Y
<> m(sup fB] —inf [+ Y my(sup f[b] — inf f[B])
[8]>6 [b|<8,6CVNZ
+ > mlsup fE)—inf )+ > ry(sup fB] — inf f[5])
|b]<6,6CZ-W [b]<6,0CX-Y

< (M = m)/n+ (M —m)/n+1/n+ (M —m)/n = [3(M — m) +1}/n

and we conclude that f is R-integrable. O
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5.2 R-integration and Lebesgue integration

In this section we will prove that the result in [7] connecting R-integration and Lebesgue
integration for bounded real-valued functions defined on a compact space extends to the
case of bounded functions defined on a locally compact second countable Hausdorff space.
The proof for the compact case uses the domain-theoretic result for the existence of a di-
rected set of deflations whose lub is the identity function on the domain; it can be extended
to the locally compact case using the one-point compactification of the space. However,
the following alternative proof which uses the construction of the simple valuations in
section 4 approximating a given measure is elementary and conceptually simpler than the
proof in [7]. Furthermore, the new proof can be used to generalize the result to other
spaces such as complete separable metric spaces where the domain-theoretic property on
the existence of deflations does not exist.

Theorem 5.13 If a bounded real-valued function f s R-integrable with respect to a
bounded Borel measure p on a locally compact second countable Hausdorff space, then
it 1s also Lebesgue integrable and the two integrals coincide.

Proof: We will use the increasing chain of simple valuations {(y;);emn, constructed in
section 4, such that p = | |, . We recall that the simple valuation y; associated with
the ordered cover D; = (0;1,...,0;,) of X; is given by

nq

i = eréw , where r; ; = p(0; ; — U Oix) .
ji=1 k<j

Let Vi; = O;5 — qu O; . Observe that for all x € UD; there exists a unique j such
that * € V; ;. Moreover, let m and M be a lower bound and an upper bound of f on X,
respectively. For all i € N we define two functions

b — R ffoup — R

K3

x o inff[Vi;], forz eV x  — sup f[Vi;], for x €V
By putting £ (z) = m and f(x) = M for + € X — UD; we obtain two functions
i X—=1R f{":X—JR

Observe that f;~ and f{" are simple measurable functions. Moreover, since the cover D; 41
is a refinement of the cover Dy, for all # € X we have

m< . < f(e) < fig(w). < fl@) << fi"_'l_l(x) <fHE)< M.

Let
f/ X — R ff: X - IR
o~ lim;_ f7(2) r — lim; fi"'(x).
Then f~(z) < f(z) < ft(z) for all z € X, and, by the monotone convergence theorem,
f~ and fT are Lebesgue integrable.
We will now estimate their Lebesgue integrals. We have

Sfop) = 5L p(Vig)inf £1O ]

Sty p(Vig)inf f[Vi;] = L[ fidp—mup(X —UD;)

IN

and
SUfop) = 5Ly p(Vig)sup f[Oi ]

Yt p(Vigysup flVij] = Lf frdp— Mp(X —UD;)

v
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Since f < fi‘" implies L [ fdp < Lffi-l—d/i, we obtain
mp(X = UD) + () S [ frdn S L[ i< SU(m) + M u(x - D),

Since f is assumed to be R-integrable, we know by proposition 5.6 that S*(f, u;)
increases to R [ fdp and S“(f, pt;) decreases to R [ fdu. Moreover pu(X —UD;) — 0 as
1 — 0o since Ui>0 up; = X.

Therefore, both L [ f7 dp and L ff{"du converge to R [ fdu, and thus, by the mono-
tone convergence theorem, L [ f~du =L [ ffdu=R [ fdpu.

We thus obtain L [(f* — f~)dp = 0, which implies that f* = f~ almost everywhere.
Therefore f = ft = f~ almost everywhere and we can conclude that f is Lebesgue

integrable and that
L/fd/i:L/f_d/,L:L/f-I_d/,L:R/fd/,L

as required. O

5.3 Computation of integrals

Following [8], we can develop an effective framework for computing integrals of bounded
Holder continuous functions with respect to a normalized measure on a locally compact
second countable metric space X. This is a straightforward generalization of the compact
case and is presented here for completeness. Given a measure p € M1(X), a chain {;)ien
of simple valuations in PL(UX) is an effective approrimation to p if |lier i = p and for
all positive integers m and n there exists ¢ > 0, recursively given in terms of m and n, such
that p; = ), 7.0, satisfies ZICIZUW r. < 1/n. Suppose such an effective approximation
exists for p. Let f : X — R be a bounded Holder continuous function with constants
k >0 and h > 0 such that |f(z) — f(y)| < k(d(z,y))" for all z,y € X, and let |f(z)| < K
for all z € X. In this setting one can compute the integral of f with respect to p up
to any desired accuracy as follows. Let € > 0 be given. To compute [ fdu to within €
accuracy, we choose positive integers m and n with 1/m < (e/2k)/" and 1/n < ¢/(4K),
and let the integer 7 be such that v; = Ecec r.6, satisfies ZICIZUW r. < 1/n. We have

SUfopi) < / Fdu< S (Fou),  SUCFp) < Se(f ) < S*(Fomi),

where S¢(f, pti) is any generalised Riemann sum for p;. For any ¢ € C' we have sup f[c] —
inf flc] < 2K; whereas for ¢ € C with |¢| < 1/m we have sup f[c] — inf f[¢] < ¢/2. Hence,

N
| [ Fdp—Se(fip)l < SU(f ) = S'(fopm) =D re(sup fle] — inf f[c])
ceC
= Z re(sup fle] —inf fle]) + Z re(sup fle] — inf fle])
le|21/m lel<1/m

IN

/24 ¢/2=¢.

Therefore any Riemann sum for y; gives the value of the integral up to e accuracy. We
have then shown:

Theorem 5.14 The expected value of any Holder continuous function with respect to any
normalised measure on a second countable locally compact metric space can be obtained
up to any given accuracy with an effective approrimation of the measure by an increasing
chain of normalised valuations on the upper space of the metric space.

14



6 Integration with respect to locally finite measures

6.1 Functions with compact support

In this section we define the R-integral for a real-valued function with compact support
defined on a locally compact space with respect to a locally finite measure.
We first need the following:

Definition 6.1 For any Borel measure pu and any Borel sel B, let ulg be the unique
extension to a measure of the continuous valuation given by

ul5(0) = (BN O) .

Let f be a real-valued function on X with compact support C' and let u be a locally
finite measure on X. Then the integral of f with respect to u is given by

/fduz/fdulc .

The computation of the above integral can be obtained by cutting down, to the compact
support C' of f, the construction of the chain of simple valuations approximating the given
locally finite measure p.

Recall from section 4 that g = | |y, where y; is the simple valuation, associated with
the ordered cover D; of X;, given by Z] 1 i, with r; j = = pn(O; Uk<] i k). Since
C' 1s compact, there exists n € IN such that C' C X for all ¢ > n. For ¢ > n, define

nq

né = Zr %6 nc,wherer =u(0;;NC — UOzkﬁC)
j=1 k<j

The following properties are then easily derived as in section 4 (observe that it is enough
to know the value of & on the induced topology of C):

Lemma 6.2 32, cco; S MONC) <Y 5 cnow 6y -

Then we have:

Proposition 6.3 Let p|c and pf be defined as above. Then:
1. For alli > n, /JZ»C C e
2. For alli > n, /JZ»C C /iiC.H;

3. ﬂ|C = |_|i>n /’Lz’C’

The above proposition shows that the integral of f can be computed by means of the
chain of simple valuations (u¢);. Therefore R-integrability of f with respect to p reduces
to the R-integrability of f|o Wlth respect to p|c.

6.2 Functions with non-compact support

Let f : X — IR be a positive function which is bounded on compact sets. Given a subset
A of X let x4 denote the characteristic function of A. In order to extend the theory of
generalized Riemann integration to this setting we need the following.

Definition 6.4 A positive function f, bounded on compact sets, is R-integrable on X with
respect to p if, for all i € IN, the function with compact support - xx, is R-inlegrable
and the limat

lim R f xx,dp

71— 00
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1s fintte. In this case we put
R [ pap=Jim R [ fodu
X — 00 X

The above definition of R-integrability for positive functions bounded on compact sets
does not depend on the choice of the increasing sequence of relatively compact subsets
X;’s such that X = [J, X;. Indeed, if (Y;);ew is another such sequence then, for all 4,
[ xx, 13 R-integrable if and only if, for all 7, f - yy, is R-integrable and

lim R/ foxx,dp = lim R/ I xv.dp.
X 11— 00 X

11— 00

In fact, for all ¢, there exists j such that X; C Y}, hence

R/ f~XX,du§R/ [ xvidp
X X

and conversely.
For a general function f we can use the decomposition

f=rr—f

where ft = maz(f,0) and f~ = maz(—f,0), and say that f is R-integrable if both f*
and f~ are R-integrable and we put

R/deﬂ:R/Xfwﬂ—R/Xf—dﬂ.

The following result connects R-integration with respect to locally finite measures to
Lebesgue integration, generalizing theorem 5.13.

Theorem 6.5 If a real-valued function f bounded on compact sets is R- integrable with
respect to a locally finite Borel measure i on a locally compact second countable Hausdorff
space, then it is also Lebesgue integrable and the two integrals coincide.

Proof: By using the decomposition f = fT — f~ and the fact that Lebesgue integrable
functions are closed under sum, we can suppose f > 0.

By hypothesis, for all ¢, f - xx, i1s R-integrable. Since it is a function with compact
support, by the results of the previous section, its R-integral can be computed with respect
to the bounded measure plx,. By theorem 5.13, it is Lebesgue integrable and

L/f'XX,dNIR/f~XX,dﬂ~

Moreover {f - yx,)ie is an increasing monotonic sequence of functions that converges
pointwise to f. Therefore, by the monotone convergence theorem, f is Lebesgue integrable
and

L/fdp:'limL/f~Xdeu.

Since limj—oo L [ f - xx,dp = limimoo R [ f - xx.,dp = RfX fdu, we have L [ fdu =
RfX fdu. O
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7 The generalized Riemann integral on an open Set

In this section we generalize the definition of R-integration to an open set, in such a way
that it gives the usual one when the open set is the whole space. We remark that for this
purpose we could take O itself as a locally compact space and then use the results already
established in the theory of integration developed so far. Nevertheless this extension is
necessary if we want to compute the integral of f on O by using the original chain of
simple valuations {p;};en approximating ¢ on X. Once this chain has been obtained, it
will not be necessary to construct a new chain for each subspace O.

In what follows, f is a bounded non-negative real valued function on X and g a
normalized Borel measure on X.

Definition 7.1 Let v = ) . 1 74ba be a simple valuation. The generalized lower and
upper Darbouz sums relative to the open O are, respectively:

So(f,v) = ZaEA,agOrainff[a]’
Se(f,v) = ZaEA,aﬂO;é@ rasup fla] .

Note that for O = X, the above sums reduce to the earlier definitions.
As in section 5, we will consider the w-continuous depo with bottom (U X)), and obtain
the generalization of proposition 5.1 for the lower and upper sums relative to an open set.

Proposition 7.2 Let vq,vy € Pl(UX)J_ be simple valuations with v1 T ve. Then
Sé(fa Vl) S Sé(fa VZ) and S(%(fa VZ) S S(%(fa V1)~

Proof: The first inequality holds as before. For the second, by the above lemma, we have:

Se(fiva)= > smsupfll= D> > tapsup f[b]

beB,bNO#D beB,bNO#D a€A
SD SRS SERATTYICEN SED SN AT
beB,bNO#D a€ A, anO#D beB,bNOZD a€A,anO#D
= ) rasupfla =S5(f,m) . O
a€A,anOZ£D

Definition 7.3 The lower R-integral of f on O with respect to p is
Rlofdu =Sup, ¢, S5(f,v) .

The upper R-integral of f on O with respect to p is
R [, fdu=inf e, S5(f,v) .

We clearly have Rlofdu < Rlofdu =SUp,«, S5(F,v).

Proposition 7.4 If f is a non-negative, real-valued function on X which is conlinuous
almost everywhere with respect to u, then for alle > 0 there exists v € p, v = ZbeB 756,
such that

Z rp sup f[b] —Sé(f,l/) <e€.

bEB,HCO

Proof: The proof proceeds as the proof of the ‘if” part of theorem 5.12 by showing
that for all € > 0 there exists a simple valuation v = 7, g6 < p, such that

ZbeB,bgO rp(sup f[b] —inf f[b]) < e. O
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7.1 R-integration on an open set and Lebesgue integration

We will now investigate the connection between R-integration on an open set and Lebesgue
integration. We will see that when the function f is continuous almost everywhere and
f > 0 then the lower integral coincides with the Lebesgue integral of f on O whereas the
upper integral coincides with the Lebesgue integral of f on O. An important consequence
of this fact 1s that the lower and the upper integral are equal when the boundary of O
has measure zero.

In what follows, i is a normalized Borel measure on X, f is a bounded, non-negative,
real-valued function on X whose set of discontinuities has measure zero and O is an open
subset of X.

Lemma 7.5 Let p = I—ll/ED v be the lub of a directed set of simple valuations on UX
and O an open sel. For v = ZbeB rpby, define vo = ZbeB sco v0y.  Then the set
{vo 1 v € D} s directed and | |, vo = pilo-

Proof: First we prove that for two simple valuations v and «, v C « implies vp C ap and
therefore {vo : v € D} is directed: For any open A C UX we have vo(4) = v(ANDOO) <
V' (ANDOO0) = vi(4).

Then we have

Ho(A) = uloos™(4) = u(0Ns~1(A) = plo o s~(D0O N A)

pBOO0NA) = (,epv(BONA)

= Lepro(4) .0

Lemma 7.6 If f is a non-negative real valued function on X which is continuous almost
everywhere with respect to p then

R/ fdp = sup{/ fdu | C C O,C compact} .
J 0 C
Proof: For O = X | the result is clear. Assume that O # X. We first prove

sup Sé(f, v) < sup{/ fdu | C C O,C compact}.
v C

Let v = 3", cpmby <prux), M, Vo = ZbeB,bgO rydy and C' = UbeB,bgO b. Observe
that C' is compact since it is a finite union of compact sets and vo € P(UC). By
proposition 2.4(ii), v~ <pwx), p- It follows by proposition 2.2, applied first to P(U X)L
and then to P(UC), that (v~ )o <pwe) plc. We also have vo = (v7)o since O # X by
assumption. Hence, vo <p(v¢) #t|c, and consequently, S5(F,v) = S5(f,vo) < R [ fdp.

For the converse inequality, let C' be a compact subset of O and let u|c and p|o be
the restrictions of p to C and to O respectively. Since f is non-negative,

/Cfdué/xfdulo.

By lemma7.5, pu|lo = |—|V<<u vo and hence [, fdulo = SUp, ¢, SH(f,vo) = SUp, « 4 S5(F,v).
O

We observe that by the above lemma the generalization to open sets that we gave
for R-integration extends the usual for ordinary Riemann integration: indeed, if ]a, b] is
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an open interval of the real line the Riemann integral of f on it can be defined in the
following way:

b—e

(x)dx = lir% fle)de = sup{/ flx)dx | I Cla,b[, I compact}
Ja,b[ Y Jate I

Therefore R-integration on open sets extends usual Riemann integration on open intervals.
As announced, we have:

Proposition 7.7 If [ is a non-negative real valued function on X which is continuous
almost everywhere with respect to pu then

Rlofdu:L/Ofdu.

Proof: Since X is locally compact and second countable, there exists a chain (C;);ew of
compact sets such that O = Uz’e]N C;. By applying Lebesgue’s monotone convergence
theorem to the sequence of functions {fx¢,)iew, we obtain

L/ fdu = sup L/ fdu .
o) CCO, C compact C

The conclusion then follows by lemma 7.6 and the fact that we already know that on
compact spaces the Lebesgue and the generalized Riemann integral coincide. O

Recall that for any subset A C X of a metric space (X, d) and any r > 0, the r-parallel
body Ay of A is given by A, = {zx € X |Jy € A. d(z,y) < r}.

Proposition 7.8 If [ is a non-negative real valued function on X which is continuous
almost everywhere with respect to pu then

R7Ofdu = L/6fdu .

Proof: We will start with proving that RTO fdu <L f5 Jdu. Let Oy, be the 1/n-parallel

body of O. Since
5 n20  Jo

1/n

it is enough to prove that, for all positive integer n, RTOfdu < Lfol/ fdu. Fixn >1
and let ¢ > 0 be given.
Let M = sup f[X]. By proposition 5.11 there exists v; < p such that, for all v =

ZaEA 740q - V1, We have
€
r, < — .
> re<gy

a€A,lal>1/n

By applying propositions 7.4 and 7.7 to Oy, there exists vo < p such that, for all
V=73 ucaTaba I va, we have:

Z rbsupf[b]—L/ fdp < €/2.

a€A,aCOy,y, O1/n
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Take v =3 rabq < p with v, v C v. Then,

aEA
Rf, fdu < S4(fv)

= ZaEA,aﬂO;é@,|a|<1/n Taq SUP f[a] + ZaeA,aﬂO;é@,hﬂZl/n Fq SUP f[a]

IN

ZaEA,agOl/n Taq SUP f[a] + M ZaEA,|a|21/n Ta
< ZGEA,agol/n Tq SUpP f[a] + 6/2

< Lfol/n fdu+e.

The conclusion follows since ¢ is arbitrary.

As for the converse inequality, we have to prove that, for all v < u, SE(f,v) >
L f5 fdu. For this purpose, we will use the chain of simple valuations (v;);en constructed
in section 4 with p = | ;o v

If O <« X, there exists i € IN such that O C X;. Moreover, since v < p, there exists j
such that v C v;. Let k = max{¢, j}. Then O C X, and and v C . To fix the notation,
let v be the simple valuation associated to the ordered cover (Oy,...,0,) of X. Since
the upper sums decrease, we have:

SU(fv) = So(f,ve)

= ) Ginozs M(Oi —U;j<iOj) sup f[O]

v

Y oinoxs M0 = Uj<i0;) N O)sup f[(O; = Uj<;0;) N O]

2 Zo_,no;éw Lﬁo,-uj<,oj)n5fd“ = Lf5fd“

If O is not way-below X we can use the decomposition O = J;cpny O N X;, where, for all
t, ONX; < X. By the above argument, for all i we have

R/ fdp> L / fdy
onX; onX;

and therefore, for all 7,

R fipzt [ fiy
o onX,
that gives

R/ fdu>sup L/ fdu
O €N onX;

and the conclusion follows since sup;cy L fm fdu=1L f5 fdu. O

The following linearity properties are easily derived from the corresponding properties
of the Lebesgue integral:

Proposition 7.9
1. Rio(f—i—g)dp = Rlofdu—I—RlOgdu.
2. If ¢ 1s any positive real number, then Rfocfdu =c Rfofdu.

Similarly we have:
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Proposition 7.10 If O1, 0+ are disjoint open sets then

R/ fdﬂ:R/ fdu—i—R/ Fdu .
L 0,00, L 0O, 0O,

Proposition 7.11 If a sequence (f;j)jewn of R-integrable, real-valued functions defined
on X 1s uniformly convergent to the function f and O is an open subset of X, then f 1s

R-wntegrable on O and Rfofdu = limj .o Rfofjdﬂ~

By the next proposition, in the following we can dispense with the assumption on f being
non-negative.

Proposition 7.12 If f is a bounded real-valued function which is continuous almost ev-

erywhere then Lfo fdu = Rfo frdp — Rfo fdu.
Proof: We have Lfo fdu = Lfo frdp — Lfo fdp = Rfo frdp — Rfo fdu. O

7.2 Computation of the R-integral on an open set

In order to have a computation of the integral fo fdu of a bounded function continuous

almost everywhere with respect to p, we require to have two sequences which converge to

the expected value of the integral from below and from above, so that at each stage of the

computation a lower bound and an upper bound for the value of the integral is obtained.
First, by definition, for every simple valuation v,

So(f,v) < S5(f,v) .

Then it follows from proposition 7.2 that for any two simple valuations vy, vs € pu we
have

Sé(fa Vl) S Sg(fa VZ)

and therefore

SE < inf S% :
sup Solf,v) < juf So(f,v)

The lower sums and the upper sums of a continuous function relative to a given a
chain of valuations and a given open may not converge to the same limit, as the following
example of an iterated function system (IFS) with probabilities [18, 3] will show.
Example. Consider the IFS with probabilities on the space X = [0, 1]:

fiizw—a/2 p1=1/3
foixz—1/2 p2=1/3
fsixz—a/2+1/2 p1=1/3

This IFS gives rise to the following chain (v,),>1 of simple valuations on the upper space

of X, where
3

v, = 1/371 Z 6f117"'7fln[071]

21,..,0n=1

It follows from [6, 7] that | |, v» is maximal in P*(UX) and gives the unique measure
1 satisfying B
p=1/3(o fit +pofit +pofit).

Observe that there is a non-zero mass on all points 1/2".
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If we consider as f the i1dentity function, we have, for all n,

S[%,l/2)(f’ Vn) = 5[60,1/2)(13’ vp) > 1/6
Therefore the upper sums and the lower sums cannot converge to the same limit.

The lower sums and the upper sums of f with respect to O are proved to converge to
the same limit under the auxiliary assumption that the boundary of O has measure zero.

Theorem 7.13 Let X be a compact metric space, i a normalized measure on X, O an
open subset of X, f : X — IR a bounded function continuous almost everywhere with
respect to p. If the boundary of O has measure zero, then the lower sums and the upper
sums of f on O converge to the same limit which is the Lebesgue integral of f on O.

Proof: We already know that the lower sums of f on O converge from below to L fo fdu
and that the upper sums converge from above to Lfafdu. If the boundary of O has
measure zero then L fo fdu=1L f5fdu and the conclusion follows. O
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