Dynamical Systems

Continuous maps of metric spaces

- ► We work with metric spaces, usually a subset of ℝⁿ with the Euclidean norm.
- A map of metric spaces *F* : *X* → *Y* is continuous at *x* ∈ *X* if it preserves the limits of convergent sequences, i.e., for all sequences (*x_n*)_{*n*≥0} in *X*:

$$x_n \rightarrow x \Rightarrow F(x_n) \rightarrow F(x).$$

- F is **continuous** if it is continuous at all $x \in X$.
- Examples:
 - All polynomials, $\sin x$, $\cos x$, e^x are continuous maps.
 - x → 1/x : ℝ → ℝ is not continuous at x = 0 no matter what value we give to 1/0. Similarly for tan x at x = (n + ½)π for any integer n.
 - The step function s : ℝ → ℝ : x → 0 if x ≤ 0 and 1 otherwise, is not continuous at 0.
 - Intuitively, a map ℝ → ℝ is continuous iff its graph can be drawn with a pen without leaving the paper.

Continuity and Computability

- Continuity of F is necessary for the computability of F.
- Here is a simple argument for $F : \mathbb{R} \to \mathbb{R}$ to illustrate this.
- An irrational number like π has an infinite decimal expansion and is computable only as the limit of an effective sequence of rationals (x_n)_{n≥0} with say x₀ = 3, x₁ = 3.1, x₂ = 3.14 ···.
- ▶ Hence to compute $F(\pi)$ our only hope is to compute $F(x_n)$ for each rational x_n and then take the limit. This requires $F(x_n) \rightarrow F(\pi)$ as $n \rightarrow \infty$.

(日) (日) (日) (日) (日) (日) (日)

Discrete dynamical systems

- A deterministic discrete dynamical system F : X → X is the action of a continuous map F on a metric space (X, d), usually a subset of ℝⁿ.
- X is the set of states of the system; and d measures the distance between states.
- If $x \in X$ is the state at time *t*, then F(x) is the state at t + 1.
- We assume *F* does not depend on *t*.
- ► Here are some key continuous maps giving rise to interesting dynamical systems in ℝⁿ:
- Linear maps $\mathbb{R}^n \to \mathbb{R}^n$, eg $x \mapsto ax : \mathbb{R} \to \mathbb{R}$ for any $a \in \mathbb{R}$.
- Quadratic family $F_c : \mathbb{R} \to \mathbb{R} : x \mapsto cx(1-x)$ for $c \in [1, 4]$.
- We give two simple applications of linear maps here and will study the quadratic family later on in the course.

In Finance

Suppose we deposit 1,000 in a bank at 10% interest. If we leave this money untouched for *n* years, how much money will we have in our account at the end of this period?

Example (Money in the Bank)

$$A_0 = 1000,$$

 $A_1 = A_0 + 0.1A_0 = 1.1A_0,$
 \vdots
 $A_n = A_{n-1} + 0.1A_{n-1} = 1.1A_{n-1}.$

This linear map is one of the simplest examples of an **iterative process** or discrete dynamical system. $A_n = 1.1A_{n-1}$ is a 1st order **difference equation**. In this case, the function we iterate is $F : \mathbb{R} \to \mathbb{R}$ with F(x) = 1.1x.

In Ecology

Let P_n denote the population alive at generation n. Can we predict what will happen to P_n as n gets large? Extinction, population explosion, etc.?

Example (Exponential growth model)

Assume that the population in the succeeding generation is directly proportional to the population in the current generation:

$$P_{n+1} = rP_n$$

where *r* is some constant determined by ecological conditions. We determine the behaviour of the system via iteration. In this case, the function we iterate is the function $F : \mathbb{R} \to \mathbb{R}$ with F(x) = rx.

Iteration

► Given a function F : X → X and an initial value x₀, what ultimately happens to the sequence of iterates

 $x_0, F(x_0), F(F(x_0)), F(F(F(x_0))), \ldots$

We shall use the notation

$$F^{(2)}(x) = F(F(x)), F^{(3)}(x) = F(F(F(x))), \dots$$

For simplicity, when there is no ambiguity, we drop the brackets in the exponent and write

$$F^n(x) := F^{(n)}(x).$$

Thus our goal is to describe the asymptotic behaviour of the iteration of the function *F*, i.e. the behaviour of *Fⁿ(x₀)* as *n* → ∞ for various initial points *x₀*.

Orbits

Definition

Given $x_0 \in X$, we define the **orbit of** x_0 **under** *F* to be the sequence of points

$$x_0 = F^0(x_0), x_1 = F(x_0), x_2 = F^2(x_0), \dots, x_n = F^n(x_0), \dots$$

The point x_0 is called the **initial point** of the orbit.

Example

If $F(x) = \sin(x)$, the orbit of $x_0 = 123$ is

$$x_0 = 123, x_1 = -0.4599..., x_2 = -0.4439...,$$

 $x_3 = -0.4294..., \dots, x_{1000} = -0.0543..., x_{1001} = -0.0543..., \dots$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Finite Orbits

• A fixed point is a point x_0 that satisfies $F(x_0) = x_0$.

- ▶ **Example:** $F : \mathbb{R} \to \mathbb{R}$ with F(x) = 4x(1 x) has two fixed points at x = 0 and x = 3/4.
- ► The point x₀ is **periodic** if Fⁿ(x₀) = x₀ for some n > 0. The least such n is called the **period** of the orbit. Such an orbit is a repeating sequence of numbers.
- ▶ **Example:** $F : \mathbb{R} \to \mathbb{R}$ with F(x) = -x has periodic points of period n = 2 for all $x \neq 0$.
- A point x₀ is called eventually fixed or eventually periodic if x₀ itself is not fixed or periodic, but some point on the orbit of x₀ is fixed or periodic.
- For the map $F : \mathbb{R} \to \mathbb{R}$ with F(x) = 4x(1 x), the point x = 1 is eventually fixed since F(1) = 0, F(0) = 0.

Attracting and Repelling Fixed or Periodic Points

- A fixed point x₀ is **attracting** if the orbit of any nearby point converges to x₀.
- The basin of attraction of x₀ is the set of all points whose orbits converge to x₀. The basin can contain points very far from x₀ as well as nearby points.
- ▶ **Example:** Take $F : \mathbb{R} \to \mathbb{R}$ with F(x) = x/2. Then 0 is an attracting fixed point with basin of attraction \mathbb{R} .
- A fixed point x₀ is **repelling** if the orbit of any nearby point runs away from x₀.
- ▶ **Example:** Take $F : \mathbb{R} \to \mathbb{R}$ with F(x) = 2x. Then 0 is a repelling fixed point.

(日) (日) (日) (日) (日) (日) (日)

Attracting/Repelling hyperbolic Fixed/Periodic Points

- If f : ℝ → ℝ has continuous derivative f', then a fixed point x₀ is attracting if |f'(x₀)| < 1. If |f'(x₀)| > 1, then x₀ is repelling. In both cases we say x₀ is hyperbolic.
- If x₀ is a fixed point of f and |f'(x₀)| = 1 then further analysis is required (eg Taylor series expansion near x₀) to determine the type of x₀, which can also be attracting in one direction and repelling in the other.

- If x₀ is a periodic point of period n, then x₀ is attracting and hyperbolic, if |(fⁿ)'(x₀)| < 1.</p>
- Similarly, x_0 is **repelling** and **hyperbolic**, if $|(f^n)'(x_0)| > 1$.

Graphical Analysis

Given the graph of a function F we plot the orbit of a point x_0 .

- First, superimpose the diagonal line y = x on the graph. (The points of intersection are the fixed points of F.)
- ▶ Begin at (x₀, x₀) on the diagonal. Draw a vertical line to the graph of *F*, meeting it at (x₀, *F*(x₀)).
- From this point draw a horizontal line to the diagonal finishing at $(F(x_0), F(x_0))$. This gives us $F(x_0)$, the next point on the orbit of x_0 .
- Draw another vertical line to graph of *F*, intersecting it at F²(x₀)).
- ► From this point draw a horizontal line to the diagonal meeting it at (F²(x₀), F²(x₀)).
- This gives us $F^2(x_0)$, the next point on the orbit of x_0 .
- Continue this procedure, known as graphical analysis. The resulting "staircase" visualises the orbit of x₀.

Graphical analysis of linear maps

Figure : Graphical analysis of $x \mapsto ax$ for various ranges of $a \in \mathbb{R}$.

A Non-linear Example: $F(x) = \cos x$

- ► *F* has a single fixed point, which is attracting, as depicted.
- What is the basin of attraction of this attracting fixed point?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Phase portrait

- When graphical analysis describes the behaviour of all orbits of a dynamical system, we have performed a complete orbit analysis providing the phase portrait of the system.
- **Example:** Orbit analysis/phase portrait of $x \mapsto x^3$.

What are the fixed points and the basin of the attracting fixed point?

Phase portraits of linear maps

Figure : Graphical analysis of $x \mapsto ax$

Bifurcation

- Consider the one-parameter family of quadratic maps x → x² + d where d ∈ ℝ.
- For d > 1/4, no fixed points and all orbits tend to ∞ .
- For d = 1/4, a fixed point at x = 1/2, the double root of $x^2 + 1/4 = x$.
- ► This fixed point is locally attracting on the left x < 1/2 and repelling on the right x > 1/2.
- For *d* just less than 1/4, two fixed points x₁ < x₂, with x₁ attracting and x₂ repelling.
- The family $x \mapsto x^2 + d$ undergoes **bifurcation** at d = 1/4.

