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1.1 Complete partial orders

If we have a chaindy E dy C dy C ds C - - - we want
an element which gives exactly the total information
provided by the elements of the chain.

This leads us to the idea of a complete poset.

If A C D is a subset of a poset D, we say A has a
least upper bound (lub) or supremum if there exists
an element d € D such that

e dis an upper bound for A, i.e.a C dforalla € A
o If d’ is any upper bound for A then d C d'.

We usually write d = | | A.

Definition 1.3 A cpo (complete partial order)
or a domasn is a poset with a least element denoted
1 such that every chain dg C dy Edg Cd3 C ---
has a least upper bound, denoted by | |;~qd; or,
often for convenience, simply by | |;d;.

Thus | |, d; gives precisely the total information con-
tained in the chain (and no more).

Example 1.4 (P(A),C) is a cpo for any set A.
Similarly, (P(A), D) is a cpo.

1 Introduction

The basic idea of domain theory is to use simple
recursion to find increasingly better approximations
to a desired object. To formalise the notion of ap-
proximation, we use partial orders.

Definition 1.1 A partial order (or a partially
ordered set or a poset) (D, <) is a set D with a
binary relation < which is

(i) reflexive: a < a,
(ii) anti-symmetric: a < b A b<a = a=0b, and
(iii) transitive: a <b A b<c¢ = a<c.

Example 1.2 (i) (N, <), the set of natural num-
bers with the usual ordering ‘<’ is a poset.

(ii) For any set A, (P(A), C), the set of subsets of
A ordered by inclusion is a poset. Similarly,
(P(A), D) is a poset.

Sometimes we write the binary relation of a partial
order as C. Then a C b is taken to mean that a
is an approrimation to b or that b gives us more
information than a.

1.2 Flat domains

Let S be any set. We define the flat domain S| as
follows. Consider the set S U {L} with the partial
order C defined bya C bif a=bora= L.

All chains in S| will have at most two different el-
ements. Hence S|, called the lift of S| is a cpo.
Similarly, we can define the lift D | of a cpo D.

Example 1.5 Let B = {tt,ff} be the set of
Booleans consisting of true denoted by tt and false

denoted by ff. Then, B, of B is given by:
tt ff

N

Example 1.6 The flat domain N of natural
numbers N is given by:

1

Example 1.7 For any pair of sets S and T', the
set of strictmaps f: S| — T with f(Lg) = Lp

ordered pointwise, i.e. f C g LIRS €S flx)C

g(x), is a cpo.



1.3 Domain of streams

For any set ¥, denote by Str(X) the set of all finite
and infinite sequences over ¥, including the empty
sequence €, ordered by prefix ordering:

def . C
aCb &5 qis an initial subsequence of b.

Soif ¥ = {0,1} we have e.g. ¢ C 0 C 01 C 011. It
can be checked that this gives a cpo.

For example, the lub of the chain ¢ C 01 C 010 C
0100C --- C 010" C - - - is just 010“ = 01000 - - -.

We picture this cpo as a binary tree as follows:

0000... 01100. LAl

000" . % Yo &Y o

Each node of the tree corresponds to a finite string.
The maximal elements of the cpo are precisely the
infinite strings. (An element x of a poset P is max-
imal if z C y implies x = y for all elements y € P.)
In general, if ¥ = {1,2,..., N} then Str(X) is a cpo
giving an N-ary tree.

1.5 Recursive data types

The other basic problem in semantics which gave rise
to domain theory is the need to canonically obtain
recursively defined datatypes.

For example, suppose a data type is defined by L =
(L + L) . This means that an element in our data
type is either undefined (L) or is given by 0 (left) or
1 (right) followed by another such element.

Then, we can check directly that the cpo Str{0, 1}
is a solution of this recursive equation. Indeed,
the empty sequence in Str{0,1} can be regarded
as the undefined element and any other element in
Str{0, 1} is given by 0 or 1 followed by another ele-
ment of Str{0, 1}.

Domain theory provides a general technique to solve
such equations. Starting from a domain equation
as above one can then systematically construct a
domain which satisfies the required specification in
the domain equation.

In order to solve domain equations, we will introduce
the notion of a domain approximating another do-
main and will use a technique which is very similar
to finding the fixed point of well-behaved functions
on domains.

1.4 Domain theory in semantics

Domain theory was introduced by Dana Scott in
1970 as a mathematical theory of programming lan-
guages. Two basic problems in computer science
have given rise to domain theory. One is the need to
canonically solve fixed point equations or recursive
equations of procedures and data-structures.

As an example, consider negation as a function
—: B — B. This has no fixed point x with ~z = z.
But the strict extension = : B, — B, on the flat
domain B has a fixed point, namely L. In gen-
eral, every well-behaved function on a domain has a
canonical fixed point. We can then give meaning to
functions and objects which are recursively defined.

For example, consider the function

fac(n):{1 ¥fn:0
n X fac(n — 1) if n > 0.
We will see later that we can “unfold” this recursive
equation to get a chain of functions f; : N| — N |
each finitely presented:
(@ f0<z<i-1

filz) = { 1 otherwise
Indeed, we will obtain the function fac as the fixed
point of another function on a domain.
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1.6 Exact real arithmetic

Consider the set IR consisting of the real line R and
all its closed intervals [a,b] = {z | a < z < b}
ordered by reverse inclusion. This is a cpo. Any
real number x € R is represented in this cpo as the
singleton element {z}, i.e. IR contains a copy of R
namely the image of the singleton map s : R — IIR:

T 5 {z}
R

IR

1 =R

A chain in TR is simply a shrinking sequence of
nested closed intervals. Any real number can be rep-
resented by such a sequence of intervals which give
better and better approximations to the real num-
ber. Eg., 7 identified as {n} is the lub of the chain
[0,10] D [3,4] D [3.1,3.2] D [3.14,3.15] D .... We
will construct a framework for exact real arithmetic
using this model, in particular, for computing ele-
mentary functions such as +, —, X, +, sin, cos etc.



1.7 Fractal geometry

Since 1993, domain theory has also found new appli-
cations in computations in dynamical systems and
fractal geometry. Here we give a simple example.

Example 1.8 The Sierpinski triangle is ob-
tained by starting with an equilateral triangle Fj,
dividing it into four smaller equilateral triangles, re-
moving the interior of the middle one to obtain Fy
and repeating the same with each of the three re-
maining triangles to get Fy and so on. Then, Fy,
for n = 0,1,2---, forms a shrinking sequence of
subsets of R?. The Sierpinski triangle F' is the in-
tersection of all Ey’s, i.e. F = (,>0 En. We will
see that F is in fact the fixed point of a function on
a cpo.

Ey Eq )
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2 Fractals

A distinction can be broadly made between human-
made objects and natural objects.

Human-made objects usually have simple structures
and piecewise smooth boundaries.

We rely on traditional geometry based on the math-
ematics of polynomials to model these objects:
Points, lines, circles, cubes, spheres, etc. are used
to model the design of buildings, roads, wheels, and
cars.

Natural objects, however, usually have very com-
plex and fine structures with non-smooth bound-
aries. Viewed at greater magnification, natural ob-
jects such as landscapes, coastlines, leaves or clouds
reveal more and more structure.

Here, classical geometry can only provide a crude ap-
proximation in modelling such objects by suppress-
ing and smoothing out their fine details. It does not
therefore provide a suitable framework for modelling
natural objects. In order to encode a digitised pic-
ture of a fern or a cloud exhibiting its fine structure
in a graphics system, we have to specify the address
and the colour attribute of each point in the fern or
the cloud, which gives us a huge data base.
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A Spleenwort fern and a close-up.

2.1 The Koch snowflake

Start with the unit interval. Remove the middle
third of the interval and replace it by the other two
sides of the equilateral triangle based on the removed
segment. The resulting set E7; has four segments.
Apply the algorithm to each of these to get Fg. Re-
peat to get Ej for all n > 1. The limiting curve
F is the Koch curve, figure (a). Joining three such
curves gives us the snowflake as in figure (b).

(b)

We need a richer class of geometrical shapes which
conform to natural objects. Fractal geometry pro-
vides such a framework.

Mandelbrot, a French mathematician, coined the
word fractal, originating from the Latin fractus
(meaning fractured or broken), to describe objects
which are too irregular to fit into a traditional geo-
metric setting,.

He developed a new geometry called fractal geom-
etry to describe the “geometry of nature”. Classi-
cal geometry provides only a first approximation to
natural objects. Fractal geometry is an extension of
classical geometry.

We will now study a simple but rich class of frac-
tals which are generated by simple recursion using a
finite number of functions.

[t turns out that all natural objects can be approxi-
mated by this class of fractals. This means that they
are useful to model natural objects.

We begin by giving three examples of fractals which
we will study in some detail. They have a number of
common features. One is that we can model them by
cpo’s. These examples will motivate us to introduce
the general case.
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2.2 Affine maps

An affine map of R™ is a linear map followed by a
translation. In R2, an affine map f : R? — R2 has,
in matrix notation, the following action on a point
(x,y) of the plane:

G)-C0)G) ()

For the generation of the Koch curve there are four
contracting affine transformations of the plane f;,
1 <4 < 4, each a combination of a simple contrac-
tion, a rotation and a translation, such that

Ent1 = fi(En) U fo(En) U f3(En) U fa(En).

We can label the sides of the polygons Ej, with fi-
nite sequences of 1,2,3 and 4 with length n as fol-
lows. The four segments of E; are labelled by 1
to 4 from left to right. Each of these segments
gives rise to four segments in Eo, which are now la-
belled by two digits: The first is the label of the
original segment while the second corresponds to
the new relative position they occupy. In other
words, the 4" segments of Ej, are labelled by the
4™ strings of 1,2,3 and 4 such that mymsy...my,
where m; = 1,2,3 or 4 (0 < i < m), is the label of

the segment fin, (fmy(. .. (fm,(E0))-..)) in Ep.
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2.3 A cpo for the Koch curve

Any infinite string of 1,2,3 and 4 now determines an
address for a point of the Koch curve.

This means that we can model the generation of the
Koch curve by the cpo Sy = Str({1,2,3,4}).

Then the FEjp’s are made up of segments labelled
by the finite sequences of 1,2, 3,4 and the points of
the Koch curve correspond to the infinite sequences.
A point represented by mimomsgmy - - - is then the
“limit” of the chain of segments

m1 & mymo & mymomg C - --.

It is easily seen that fi, fo, f3, f4 correspond to the
functions f{, fé, f?’), fi : Sy — Sy by

fll@)=ia i=1,2,34.

Furthermore, the Koch curve F' is the solution of
the recursive equation
def
F = fi(F)U f(F)U f5(F)U fa(F) = f(F).
Similarly the set F’ of the infinite sequences of
Str({1,2,3,4}) is the solution of the equation

F' = f(F"Y U f5(F" U f5(FY U i (F) & (P,

2.5 Towards fractal dimension

We have the following intuition for the dimension of
man-made objects:
'Object

finite set of points Zero
(piecewise) smooth curve | one
(piecewise) smooth surface |two
solid volume three

Dimension

Classical geometry confirms this intuition. But it
also tells us that the dimension of any curve, in par-
ticular the Koch curve, is one, which we find difficult
to accept.

[In classical geometry the dimension of a subset of R™ is always
an integer and is recursively defined: It is zero if the set is
totally disconnected (i.e. for any two points in the set there
is a closed surface not in the set, containing one of the two
but not the other), it is one if each point has arbitrarily small

neighbourhoods with boundary of dimension zero and so on.]

We want a new notion of dimension which coincides
with the traditional notion for the objects of the
above table but gives a more satisfactory value for
the dimension of the Koch curve, as well as the other
examples of fractals that we will study.

2.4 Properties of the Koch curve F

1. F' is the limit of a sequence of simple polygons
which are recursively defined.

2. Fine structure, self-similarity: It is made up of
four parts, each similar to F' but scaled by %

3.  Complicated local structure: F' is nowhere
smooth (no tangents anywhere). Think about the
chain of segments 2 C 22 C 222 C ---. It spirals
around infinitely many times!

4. F has infinite length (E, has length (%)n and
this tends to infinity with n) but occupies zero area.
The snowflake can be painted but you cannot make
a string go around it!

5. Although F' is defined recursively in a simple way,
its geometry is not easily described classically (cf.
definition of a circle). But the cpo Str({1,2,3,4})
gives a good model for F'.

6. It is difficult to see what the dimension of F' can
be: since it has infinite length within a bounded re-
gion, it is too big to have dimension one. (It also
looks thicker than an ordinary line.) But, since it
has zero area, it is too small to have dimension two.
Does it have a dimension strictly between 1 and 27
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2.6 Similarity dimension

Consider the following simple method to calculate
dimension using recursion and self-similarity. Take
the interval [0, 19 and any integer n > 0. Reduce
the interval by --. Then we need nl copies of this
reduced interval to make up the original interval and

1
B = 1. Sim-

ilarly, if we reduce the unit square [0,1]? by % we
need n? copies of the reduced square to make up
the original square and the dimension of [0, 1] is

logn® _ i i 3 i g’ _
T = 2. The dimension of [0, 1]° is Togn 3.

the dimension of unit interval is

Definition 2.1
A set which can be made up with m copies of itself

scaled by % has similarity dimension 11% gé o

The Koch curve, made up of four copies of it-
self scaled by %, has therefore similarity dimension

% = 1.261.... This is between 1 and 2, consis-

tent with our expectation.

The above definition works only if the object is
strictly self-similar. (There is a general notion of
fractal dimension which reduces to the similarity di-
mension when the latter is defined.)
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2.7 The Sierpinski triangle

Recall that the Sierpinski triangle is obtained by
starting with an equilateral triangle Ej, dividing it
into four smaller equilateral triangles, removing the
interior of the middle one to obtain E; and repeating
the same with each of the three remaining triangles
to get F5 and so on. Again, there are three con-
tracting affine transformations fq, fo, f3 such that

Eny1 = filEp) U fo(Ep) U f3(En).

The Sierpinski triangle F' is the intersection of all
En7S, le F - nnzo En

Ey Eq
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2.9 The Cantor set

Start with Iy = [0,1]. Remove the interior of its
middle third to get I1 = [0, %] U [%, 1]. Do the same
with each interval in 77 to get I and so on. We have

Int1 = fi(In) U fo(In)
where the affine transformations f] and fo9 are given
by: fi(z) = % and fo(z) = % + %. The Cantor
set C' is the intersection of all I};’s.

How many points does C' have?

All the end points of the intervals in I, are in C.
But C has many more points. In fact, C' consists of
all numbers in the unit interval whose expansions in
base 3 do not contain the digit 1, i.e. numbers of the
form

where a; = 0 or 2.

This is an uncountable set of numbers.
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2.8 Properties of the Sierpinski triangle

1. It is the intersection of a shrinking sequence of
simple sets which are recursively defined.

2. Although F' contains a polygon with infinite
length, it occupies zero area.

3. Fine structure, self similarity: It is made up of

three copies of itself scaled by % It has dimension
log3

g2 ~ 1.5 and satisfies:

def

F=fi(F)U fa(F)U f3(F) = f(F).
4. We can model the generation of the Sierpin-
ski triangle by the cpo S3 = Str{1,2,3}: La-
bel the triangles in F7 by 1,2 and 3 as shown.

33

3

31 32

13, 23

Repeat this for each of the bigger triangles in Fo and

so on. The Sierpinski triangle is then represented

by F’, the infinite sequences in S3. If we define

f{, fé, f?’) as in the case of the Koch curve we find

that F’ is the solution of the recursive equation:
F' = F(F) U 7Y U F(F) < 7).
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2.10 Properties of the Cantor set

1. It is the intersection of a shrinking sequence of
simple sets (each being a finite union of intervals)
which are recursively defined.

2. Fine structure and self-similarity: It is made
up of two copies of itself scaled by % It satisfies:

C = f1((C) U fo(C).
3. C'is uncountable but has zero length.

4. Complicated local structure: C' is totally dis-
connected (between any two points in C' there is
always a point not in C) and therefore contains no
intervals; yet it has no isolated points either (in any
neighbourhood of a point in C' there are infinitely
many points of C'). As before it can be modelled by
a cpo, say, Str{1, 2}.

The Cantor dust is obtained by repeatedly di-
viding up a unit square into 16 smaller squares and
removing all but four of them as in the picture be-
low. What is its similarity dimension?
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2.11 Some conclusions

Having studied the Koch curve, the Sierpinski tri-
angle and the Cantor set we can infer that fractals
are objects with complicated local shape, very fine
structure and usually non-integral dimension. But
a rich class of fractals, like the above examples, are
obtained as a solution of a simple recursive equa-
tion involving a finite number of contracting affine
transformations.

We have also seen that the generation of these frac-
tals can be modelled by complete partial orders.

A number of questions now remain to be answered.

How general is our theory? When we generate e.g.
the Koch curve, does it matter where we start the
iteration? Do we still get the same curve in the limit
if we start not with unit interval but, say, with the
unit square, or a finite set of points?

Since in practice we can only iterate our function a
finite number of times, we also need to measure the
degree our finite iterates approximate the limiting
fractal object.

We answer these questions in the next section by
studying fractals in a proper framework. This frame-
work is given by lterated Function Systems.
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3.1 Contracting maps

Amap f: (X,d) = (X', d') is contracting if there
exists 0 < s < 1such that f reduces all distances by
at least a factor s, ie. if d'(f(z), f(y)) < sd(x,y)
for all z,y € X. We say s is a contracting factor
for f. The smallest such s is called the contractivity
of f. Eg., each of the maps in the generation of the
Koch curve, the Sierpinski triangle and the Cantor
set is a contracting map.

Given amap f : X — X on any set, we say x € X
is a fized point of f if f(z) =

Exercise 3.3 Each of the maps in the generation
of the Koch curve, the Sierpinski triangle and the
Cantor set has a unique fixed point.

Any contracting map f : R™ — R™ has a unique
fixed point obtained as follows. Choose r > 0 large
enough so that the disk D, of radius r with centre
the origin is mapped into itself by f. Eg., put r =

HOL then for z € Dy we get |£(z)] < |f(z) —
( |+ 1FO)] < sle| + [FO) < s7+ |f(0)] =

SWOL L o) = YO — e f(z) € D,

The sequence D, O f(Dy) 2 fQ(DT) D - - - shrinks

to a single point which is the fixed point of f.
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3 Fixed points of Contracting Maps

Definition 3.1 A distance function d defined
on a set X assigns to every two points z,y € X a
non-negative number 0 < d(z,y) < oo with

o d(z,z) =0 (reflexive).
o d(x,y) = d(y,x) (symmetric).
o d(x,z) < d(z,y)+d(y, z) (triangular inequality).
ed(z,y) =0 = z =y (antisymmetric).
We write (X, d) to indicate that we have a set X
with a distance function d defined on it.

Example 3.2

e In R (the real line), R? (the plane), and R? (the
three-space) the Euclidean distance |z — y| be-
tween points defines a distance function. In R2:

2=yl = /(@1 — 1)+ (22 — ).

e For two distinct sequences a = agaq... and
b = bgby ... (finite or infinite) in Str(X), define
d(a,b) = 21n where n. > 0 is the least integer such
that ay, # by, (or one of them is undefined). For
example d(0101,0110) = 2—2 = le Then d gives a
distance function on Str(X%).
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3.2 Computing the fixed point

The unique fixed point 2* of f is therefore given by

e} = () 0.

n>0

In the cpo (P(Dr), 2) we have z* = | |, > f"(Dr).

We want to compute the fixed point up to some
given accuracy e > 0, i.e, find a point whose dis-
1 1

tance from z* is at most €. Usually, € = oF O To%"

The diameter of D, is 2r and f has contractivity
factor s. Hence, the diameter of the set f"(Dy) is
at most 2rs".

Let n be the first positive integer such that this di-
log(e/ 27")-‘

. n . B
ameter satisfies 2rs" <€, ie.n = [ Tog s

Since z* € f™(D;) and this set has diameter at most
€, it follows that any point in f™(Dy), for example
f™(0), would be the required approximation.

In applications to computer graphics, we rescale and
translate so that f maps the screen represented as
the unit square [0, 1]2 into itself, i.e.

f:00,1% = [0, 1)%.
We then take € to be of pixel size to plot the best
approximation to the fixed point.
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3.3 Iterated Function Systems

Definition 3.4 An [Iterated Function System
(IFS) in R™ consists of a finite number of contract-
ing maps f; : R™ - R™ §=1,2...N.

We obtain a map f : P(R") — P(R") defined by
f(A) = Ui<ij<p fi(A). Is it contracting?

We define the Hausdorff distance, dg(A, B), be-
tween two non-empty elements A and B in P(R™)
as the least number d such that every point of A
is within distance d of some point of B and every
point of B is within distance d of some point of A.
E.g. in the figure below d7 (A, B) = 5. lf dy(C, D)
is small then C' and D are ‘visually’ close together:

0O

We can obtain dg(A, B) as follows. For r > 0, the
r-neighbourhood of A is:

Ar={z € R™ ||z —a| < r for some a € A}.
Then: dg(A,B) = min{r | B C Arand A C
By}
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3.5 IFS tree

The nth iterate
N

o=
11,09, ip=1
generates the N™ nodes of the nth level of the IF'S
tree. For N = 2, three levels of this tree are shown
below. Each node is a subset of its parent node.

fiyJig - fi, D

Each branch of the tree is a sequence of subsets
D 2 fy(D) 2 fifi,D 2 fififis(D) 2 -
where i1,49,--- € {1,2,--- N} whose intersection
contains a single point as each map f; is contract-
ing. The attractor A* is the set of all such points
for all the branches of the IFS tree.
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3.4 The Attractor of an IFS

The map f : P(R™) — P(R™) given by f(A) =
Ui<ij<n fi(A) is contracting for non-empty subsets
in P(R™) with a contracting factor s = max; s;
where s; is a contracting factor for f;. (Check this!)
There is a largest subset A* satisfying f(A*) = A*,
i.e. a fixed point of f, which is called the attractor
of the IFS. In fact, A* is the most interesting fixed
point of f. Any other fixed point is a subset of A*.

The attractor is obtained as follows. Let Dy, be a
disk with radius r; centred at the origin which is
mapped by f; into itself. Put » = max; r;. Then
D = D, is mapped by f into itself. We get:

DD f(D)2 f*(D)2--
and A" = mn>0 (D).
In the cpo (P(_D), D) we have A* = | |,,~¢ f"(D).

Example 3.5

(i) The Koch curve is the attractor of the IFS
{f1, f2, f3, fa} with a contracting factor 1/3.

(ii) The Sierpinski triangle is the attractor of the IFS
{f1, f2, f3} with a contracting factor 1/2.

(iii) The Cantor set is the attractor of the IFS { f1, fo}
with a contracting factor 1/3.
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3.6 Approximation of the Attractor

We use the IFS tree to obtain an algorithm to gen-
erate a discrete approximation to the attractor A*
up to a given € > 0 accuracy. In other words, we
will obtain a finite set A such that dg (A, A*) <e.

Let n = % . Consider the truncated tree at
level n. Then the diameters of the N leaves of the

tree are at most €. Pick the distinguished point

fisfiy=- fi,(0) € firfiy- - fin(D)
for each of the N™ leaves. Let A be the set of these
N™ points.
Each point in A* is in one of the N leaves each of
which has diameter at most € and contains one of
the distinguished points and hence one point of A.
It follows that dgy(A, A*) < € as required.
The complexity of the algorithm is O(N"), i.e. of the
order of N™. Improve the efficiency of the algorithm
by taking a smaller set of leaves. For each branch

D— f’LlD - filfigD - filfigfigD -
of the tree find an integer £ such that the diameter
of fi; -+ [, D is at most € by taking the first integer
k such that 2rs;; sj, - - - s, < €. Then take this node
as a leaf. Do as before with this new set of leaves.
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3.7 An alternative Algorithm

Assume we have an IFS with contracting factor s
defined in R™.

Let Ay € R"™ be any non-empty bounded subset,
i.e. one which is contained in some disk around the
origin. Then dp(Ap, A*) < oo since both A* and
Aq are bounded.

Proposition 3.6 For any positive integer n > 0:
dr(f"(Ao), A*) < s"dp (Ao, AY).

Proof We use induction. For n = 1, we have:

dp(f(Ao), A*) = dp(f(Ao), f(AT)) < sd(Ag, AY).

The inductive step is similar.[]

Therefore, for large n, dg(f™(Ag), A*) becomes
small, i.e. the iterates f(Ag) give better and better
approximations to A*.

We can use this as the basis of an algorithm to gen-
erate approximations to A* on a digitized screen.
We start with a simple non-empty set Ag, e.g. the
set of fixed points of the maps f; (j = 1,---, N).
We find the images f™(Ag) for n = 1,2,--- until
the image becomes constant.

33

Encoding of images and Image compression
is based on the following theorem, which says that

any image can be approximated by the fixed point
of an IFS.

Theorem 3.7 (The Collage Theorem)
Let E be a non-empty bounded subset of RZ.
Given an IFS with s, f and F as before, we have

dy(E,F) <dy(E, f(E))/(1—s).
Proof We have:
dH(EaF)SdH( ) E))+dH( (E’F)

E, f( f(E)
du(E, f(E)) + dg(f(E), f(F))
dH(E,f(E)) + SdH(E, F)

Hence, dy(E,F) <dg(E, f(E))/(1—s).0

IA

Suppose that E is an image that we want to en-
code. If we can find an IFS with contractivity s
such that dg(E, f(E)) < ¢, then by the above the-
orem di(E, F) < €/(1 — s), i.e. if € is small then
F'is a good approximation to F and we can take
the code of the IFS as the code for F, and use it for
design, animation, pattern recognition, etc.
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The code of an IFS.
Any affine transformation f : R?2 — R? of the plane
can be written in matrix notation as:

f z\ [ab T\ k
y) \cd Yy 1)
We can therefore tabulate the a, b, ¢, d, k and [ val-
ues of all the maps in the [FS. The resulting table is
called the IFS code. The following is the code for an

IF'S whose attractor is the (right angled) Sierpinski
triangle.

fi o a b c d k 1
1 0500 05 0 O
2 05 00 05 0 50

3 05 0 0 05 50 30

Below, you can see the result of nine iterations for
this IFS with two different starting sets.

N

VB
oy

W

34

But, how do we find an [F'S with
du(E, f(E)) = du(E, fi(E)Uf(E)U...UfN(E))

small?

We have to find a set of affine mappings that shrink
distances and cause the target image to be approx-
imated by the union of the affine mappings of the
image.

We can view an object as the union of several subob-
jects and consider that each subobject is actually an
instance of the original object, obtained by applying
an affine mapping to the object. Each subobject is
then a tile and our job is the self-tiling of the image.

The tiling scheme should completely cover the ob-
ject, even if this necessitates overlapping the tiles or
overhanging the target image slightly. We also want
to keep the number of tiles small. The smaller the
overlapping and the overhanging the more accurate
our result will be: The fixed point of the IFS ob-
tained will be a better approximation to our object.
This gives us the following elementary interactive
scheme to encode an image. [There is a more ad-
vanced fractal image compression technique which
is automated but we will not study it here.]
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The algorithm starts with the image E displayed
within a viewing window, taken to be [0, 1] x [0, 1],
on the graphics workstation monitor.

An affine transformation f; with a = d = %1, say,

and b = ¢ =k = [ = 0 is introduced and the image
f1(E), a quarter-sized copy of E, is displayed on the
monitor in a different colour from E. The user now
interactively adjusts the values of a,b,c,d, k,l by
specifying changes with, e.g., a mouse, so that the
image f1(F) is variously translated, rotated, and
sheared on the screen. The goal is to transform
f1(E) so that it lies over part of E, with the smallest
possible overhang.

Once f1(F) is suitably positioned, it is fixed, and
a new subcopy of the target, fo(E) is introduced.
Then, fs is interactively adjusted until fo(E) covers
a subset of those pixels in £ not in fi(F), with the
smallest possible overlap.

In this way, contracting maps fi, ..., fy are deter-
mined so that £ and the tiling

fE)U... U fN(E)

are visually close and NV is as small as possible.
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3.8 Colours on Fractals

We can get a probability distribution or colours on
an attractor by assigning probabilities to the IF'S.

Definition 3.8 An IFS with probabilities in R™
isan IFS {f1,..., fi} such that each f; is assigned
a probability p; > 0 with p1 + -+ py = 1. We
get an IFS tree with probabilities shown for N = 2
below, where D is, as before, a disk centred at the
origin which is mapped into itself by every map f;.

Consider one unit of mass on the root D. It is dis-
tributed in the ratio p; : py to its children f{D and
foD. The mass on each of these nodes is distributed
in the ratio p; : p9 to its children and so on.
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Below you see the approximate tiling or collage of a
leaf with four contracting affine maps, whose codes
are given in the following table. The attractor of the
[FS is shown on the right hand side.

a b c d k [
06 0 0 0.6 0.18 0.36
06 0 0 0.6 0.18 0.12
04 03 —=03 0.4 0.27 0.36
04 —03 0.3 0.4 0.27 0.09

> W N |~

In the figure below, two tilings of a leaf and the cor-
responding attractors on the RHS are shown. The
first tiling is good and the attractor resembles the
leaf. The second is very poor and produces a bad
approximation to the leaf.

N A
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An IFS with probabilities gives rise to a probability
distribution on the attractor of the underlying IF'S.
We will explain how we obtain a discrete probabil-
ity distribution on a digitized approximation of the
attractor that we constructed before. We construct
as before a finite tree whose leaves give the required
digitized approximation to the attractor. Note that
different leaves can give rise to the same pixel since
they can correspond in the digitized approximation
to the same pixel.

We now associate a probability weight to each of the
leaves of this tree. A leaf such as f; f,--- fi, (D)
gets weight p; p;,---p;, which is precisely the
amount of mass which it gets from the distribution
of one unit mass on the root D.

For each pixel in the attractor, we obtain a prob-
ability weight by adding up all the weights of the
leaves of the finite tree which are associated with
that pixel.

This gives us a probability distribution on the dig-
itized approximation to the attractor. In fact, the
root node has mass one and, given any node on the
[FS tree, the total weights of the descendents of this
node on each level of the IFS tree is equal to the
weight of the node.
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We can now use a gray-scale colouring scheme to
shade each pixel in the attractor such that a darker
gray colour for a pixel corresponds to a greater prob-
ability weight on that pixel. This is shown in the
following example.

Example 3.9

Consider the IFS with probabilities:
fi a bc d k I p
1 05 0005 0 0 .25
2 05 00 05 48 0 .25
3 05 00 05 24 48 5

The attractor is a Sierpinski triangle. In the figure
below, the result of computing one thousand points
is shown. The number
of points in the upper
triangle is roughly twice
that of either of the two
lower ones, and the same
thing is true in each of the
smaller triangles. This is . &
repeated at all scales.

Different sets of probabilities assigned to the map-
pings of an IFS produce different density distribu-
tions and thus different textures of the attractor.
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4 Continuous functions on cpo’s

In the last section, we saw two examples in which a
map f : D — D on acpo D had a fixed point which
was obtained as the lub | |, f*(L) of the chain

LCfL)EfFLC....

We want to formulate a property which ensures that
a map on a cpo has such a fixed point.

In computer science, we think of a map
f:D—FE
between cpo’s D and F as a computation process:

Given an input d € D, f computes the output
f(d) e E.

Definition 4.1

A map f : D — FE between cpo’s D and E is
called monotone if whenever d Cp d' in D, we
have f(d) Cg f(d') in E. A monotone map f is
called continuous if whenever

dyEdiEd E ...
is a chain in D, we have | |; f(d;) = f(L; d;)-
In other words, a monotone map preserves the infor-
mation order, and a continuous map preserves lubs

of chains.
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In the figure below three different sets of probabili-
ties have produced three different renderings of the
maple leaf.

We can colour the fractal by assigning different
colour indices to different density distributions.

This concludes our study of fractals for now. To-
wards the end of the course we will study how power
domains, which model non-determinism, are con-
structed from cpo’s.

Although we will not give details, let us just mention
that the attractors of IF'Ss can be obtained as the
fixed point of a continuous map on a convex power
domain. The probability distribution on the attrac-
tor of an IFS with probabilities can be obtained as
the fixed point of a map on the probabilistic power
domain.

We will now study fixed point semantics in cpo’s in
general.
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Intuitively, a computable map should be monotone:
The more information provided as input the more
information we should obtain as output.

We can also expect a computable map to be contin-
uous: The output information f(| |; d;) computed
with the total information | |; d; in a chain should
be equal to the total information | |; f(d;) computed
with the elements of the chain.

Note that if f is monotone we always have

f(d;) E f(LU; i) and hence | ]; f(d;) T f(L; di)-
This means that if f is continuous we are not go-
ing to get more output information f(| |; d;) from
the lub of a chain than the total output information
LJ; f(d;) computed with the elements of the chain.
Intuitively, we require the same from a computable
map.

Our intuition therefore tells us that a computable
function must be continuous. This is called Scott’s
thesis after Dana Scott, who together with Christo-
pher Strachey formulated the mathematical theory
of semantics of programming languages.

[t turns out that continuity is precisely what we need
to ensure that a map on a cpo has a canonical fixed
point. We first look at some examples.
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Example 4.2

elet D=FE = (NU{oo}, <) and f be given by
f(n)=n+1forn € Nand f(oo) = co. Then
f is continuous.

elet D=F = (NU{oo},<) and let f(n) =0
for n € N and f(oo) = oo. Then f is clearly
monotone but it is not continuous: Take the chain

ap = n forn € N. Then f(| |,n) = f(oo) =00
but | ], f(n) =[],0=0.

o Let f:Str{0,1} — Str{0, 1} be given by f(a) =
Oa. Then f is continuous.

o Let A be any set and B C A a fixed subset.
Let f : (P(A),C) — (P(A4),C) be given by
f(X)=BUX. Then f is continuous.

e The identity map 1p : D — D with 1p(d) = d
(for all d € D) is continuous.

e Any constant map f : D — E is continuous.

olf f: D — FE is monotone and D is finite, then
f is continuous.

e More generally, if f : D — E is monotone and
all chains in D are eventually constant then f is
continuous.
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For n = 0 this is simply L C z. If f*(L1) C =,
then by monotonicity we get f*1(L) C f(z) = =,
completing the inductive proof. Hence, x is an upper
bound of the chain

LEFADEFALESDLE. .
Since fix(f) is the lub of this chain, we get
fix(f) C .0

Example 4.4 Let X be an alphabet. Let ©* de-
note the set of finite sequences of letters from . We
use context-free grammar in the following examples
to specify subsets of ¥*.

(i) E =€ | Ea defines finite strings of a’s includ-
ing the empty string e.

(i) E ::= a | bEb defines finite strings consisting
(for all n > 0) of n b’s followed by an a followed
by another n b’s.

Note that (P(X*),C) is a cpo. Now for each case
define f : P(X*) — P(X*) respectively by:

(1) f(X) = {e} U X{a}

(i) £(X) = {a} U {B}X {5}

Then f is continuous in both cases and its least fixed
point is the desired solution.

a7

Theorem 4.3 (Fixed Point Theorem)

Let f : D — D be a continuous map on the
cpo D. Then f has a least fired point given by
fix(f) = L /" (L)

Proof We claim that f?(L) T f*T!(L) for all
n > 0. We show this by induction on n. Since L is
the least element of D we have L C f(L). This es-
tablishes our claim for the base case n = 0. Assume
that f?(L) C f?*t1(L). Since f is continuous and
hence monotone, we get fPH(L) = f(f(L)) C
F(f"H(L)) = f72(L). This completes the induc-
tive proof. Therefore we have a chain

LofcAnc e
This chain is mapped by f to the chain
FEFALELLE:-
Since f is continuous, it sends the lub of the first
chain to the lub of the second chain. But the sec-
ond chain is the same as the first except for the

first element and therefore the two chains have the
same set of upper bounds and hence the same lub.
It follows that f(| |, f™(L)) = L, f*(L). Hence
fix(f) = |, f*(L) is a fixed point for f.
Suppose x is any fixed point of f. Then we show by
induction that f™(L) C z for all n > 0.
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4.1 Function space

Let D and E be cpo’s and let [D—FE] denote the
set of all continuous functions from D to E ordered
pointwise, i.e. for f,g € [D—E] we put f C g iff
f(d) E g(d) for alld € D.

Then (|[D—E],C) is easily seen to be a poset. We
will show that it is in fact a cpo. The bottom ele-
ment, J—[D—>E] is the constant map J—[D—>E] D —
FE with —L[D%E](d) =l1lpforalld e D.

Suppose we have a chain

JoEAEfLE---
inD— FE.
What is the lub | |,, fn? Let f: D — E be defined
by f(d) =], fn(d) ford € D.
First, we check that f is indeed the lub of (f;);>0.
Since for each j > 0, f;(d) E ||; fi(d) for all d e D,
we have f; £ f and f is an upper bound of the
chain. If g is any upper bound, then for each j
we have f; C g and hence f;(d) C g(d) for all
d € D. Therefore | |; fi(d) C g(d) for all d € D.
We conclude that f C g, ie. f=[]; f;

To conclude the proof, we have to check that f is
continuous.

48



Monotonicity of f: D — E.

Let d C d'. Then fy(d) C fn(d’) for alln > 0. But
fn(d) E f(d)), for all n > 0, therefore f(d') is an
upper bound of the chain (fy(d))p>0. Hence,

f(d) = >0 fnld) C f(d)

and we conclude that f is monotonic.

Continuity of f : D — E.
Let <xj>j20 be a chain in D. We must show that
fU; =) =U; f(z5). We have:
f(l—l] zj) = L; fz(|_|j x;) definition of f,
= L; |_|j fi(zj) f; is continuous,
= ;L; filzj) see next slide!
= L; f(zj) definition of f.

This shows that f is continuous.

We have therefore proved:

Theorem 4.5

For any pair of cpo’s D and E, [D—FE], the set
of continuous functions from D to E, ordered
pointwise, is a cpo.

The equality | |;|]; fi(z;) = Ll;L; fi(z;) needed
above is a special instance of the proposition on the
next slide.
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Recall that a continuous function f : D — E be-
tween cpo’s is strictif f(Lp) = Lp. We denote the
subset of strict functions in [D—E] by [D—sE].

Exercise 4.7 [D—E] is a cpo.

Recall also that for any set S, the flat domain S|
is the set S U { L} with the partial order C defined
by

aCbifa=bora=_1.
All chains in S| will have at most two different el-
ements. Hence S| is cpo.

We can use the least fixed point theorem to solve
recursive equations for functions.

Example 4.8 Consider the factorial function:
1 ifn=0
fac(n) = {n x fac(n —1) ifn>0
This function is recursively defined in terms of it-
self. We want to overcome the circularity in this

definition. ~ We introduce a new function F
IN| —=sN || — [N| =sN | | defined by:

1 ifn=0
F(fiin)=< nx f(n—=1) ifn>0
L ifn=_1
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Proposition 4.6
Let A be a cpo and let a;j € A (i,5 > 0) be such
that for each fived i, {(a;;);>0 s increasing in j,
i.e.

apCanboapk ...
and for each fizxed j, (a;j)i>0 is increasing in i
i.e.

ap; Caj Eay E ...
Then
L L; @i = U Ui @i = Ly ana.

Proof [t is easy to check that each of the lubs
in the above formula does exist. For example,
{(@nn)n>0 is increasing since
ann & app+1 E apt1p+1-
For each n we have apy C | | j Gnj hence

LI, ann T LI; |_|j Qjg-
For each pair 4,j, we have a;; E app where
n = max(i,j). Hence a;; T | |, ann. Therefore
|_|j aij E |l ann. We conclude that

L; |_|j a;; & L, ann.
It follows from anti-symmetry that

LI; Lj aij = Ly, ann-

The other equation follows in a similar way.[]
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Exercise 4.9 F'is a continuous function.

The map fac is the least fixed point of F'. In fact, if
LN, N ] NI — Ny denotes the least element
of [N| =N |, i.e. the constant map with value L,
then
; fac(n) ifn <1
2 —
FA (LN, N () = { 1 otherwise.

There are good reasons why we choose the least fixed
point rather than any other fixed point.

Firstly, the least fixed point provides precisely the
information contained in the recursive equation (and
no more!).

Secondly, it is the canonical solution of the fixed
point equation in a sense which we will make precise.

Definition 4.10 A fized point operator, F(_),
is a class of continuous functions

Fp:[D—D]— D

for each cpo D, such that for every continuous f :
D — D we have Fp(f) = f(Fp(f)).

Exercise 4.11  Show that fix : [D—D] — D
with fix(f) = |J; f*(L) is continuous. Hence fix is a
fixed point operator.
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We say the fixed point operator F(f) is uniform if
for any pair of continuous maps f : D — D and
g : E — FE and strict continuous map h : D — E
which make the following commute:

DLD
hl oy b
E—~—F

(i.e. ho f =goh) we have Fg(g) = h(Fp(f)).

Proposition 4.12

fix is the unique uniform fized point operator.
Proof That fix is uniform is left as an exercise.
Let g : E — FE be a continuous function on a cpo
(E,C). Consider the subset D C E defined by
D ={a|aCfix(g)}. Then (D,C)isa cpo and the
restriction, f : D — D say, of g to D is continuous
and has a unique fixed point fix(g). The inclusion
map i : D — E (with i(d) = d for all d € D) is
strict and continuous with:

plp

i
ELE

Therefore, for any uniform fixed point operator F'
we must have Fg(g) = i(Fp(f)) = Fp(f). But

Fp(f) is a fixed point of f so it must be equal to
fix(g), i.e. Fg(g) = fix(g).0
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The interval [a,b] G S1 is defined to be the closed
arc going anti-clockwise from a to b.

A suitable distance function on S is defined as fol-
lows. For extended reals x and y which are both
non-negative or both non-positive,

[z -1 |y[—1
lz]+1 |yl +1
Otherwise, if  and y have different signs, then

p(z,y) =

p(z,y) = min(p(z, 0)+ p(0,y), p(z, 00) + p(c0, y)).

Expressions such as oo — oo, 0/0 and 07 must be
denoted by L = R*. This leads us to the domain
IR* = {[a,b] G R*} U {R*} of the closed intervals
of R* ordered by reverse inclusion. Any continuous

function f : R* — R* has a canonical extension
fIR* — IR* given by f(A) = {f(z) | z € A}.

{=1} {1}
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5 Exact real number computation

Consider a real number 7 € R as the intersection
of a shrinking nested sequence of rational intervals
{r} = N, lan, bn]. The real number is computable
if there is a master program which generates the
intervals [ap, by).

The usual predicates such as =, < and < on com-
putable real numbers are not decidable, e.g. we can-
not decide in finite time if r = 0.

Since there is no test for zero, we have to deal with
the problem of dividing say 1 by 0. Therefore, we
allow oo to be the output of a program.

We work with the simple model of the extended real
line R* = R U {00}, represented by the unit circle
S! with the map s : R* — S

S s(z)

5.1 Lft’s and continued fractions

A linear fractional transformation (Ift) is a map:

Fee e e vd
with a,b,c,d € R and ad — bc # 0. An Ift is a con-
tinuous map of R* with a continuous inverse; it is
orientation preserving if ad —bc > 0 and orientation

reversing if ad —bc < 0. The Ift above can be repre-
a c\.

b d)’

ar +c¢
+ :R* - R*

sented up to scaling by the matrix M = a

real number z is represented by the vector ( :f ) =z

— 1

and oo by <(1) = 5, called homogeneous coordi-

nate. Then composition of two Ift’s corresponds
to multiplication of the two matrices. The Ift’s are
linked to continued fractions.

A continued fraction is an infinite development
bo
by

by
as + ————
2 a3+

ag +

a +

with ay, by, € Z. The rational number ry,, obtained
from the above expression by replacing by, with 0,
is the nth rational approximation. If limy, oo 7 =
r € R then the continued fraction converges to r.
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Any real number has many continued fraction rep-
resentations. The regular continued fraction expan-
sion of a real number r is obtained as follows. If r
is not an integer then r = ag+ 1/x1 where ag is the
integer part of r and 1 > 1. Similarly, if 1 is not
an integer we have x1 = a1 + 1/x9 where a; > 1 is
the integer part of z; and z9 > 1. This scheme is

repeated to obtain a9, as,---. We then have
1
r=aqy+ 1
al + T
a9 +

where ag € Z and a; € Z* for i > 1. The regu-
lar expansion is finite if and only if 7 is a rational
number. For example, we have:

V2=1+

The golden ratio = =1+

We now take [0, 00| as our base interval. Then any
other rational interval [¢/d, a/b] can be expressed as
[c/d,a/b] = f|0, c0] where
ar +c¢
bx +d
The set of all Ift’s is denoted by Ml. Let M™ C M be
those Ift’s whose coefficients are all non-negative or,
equivalently, all non-positive. Check that for any Ift
f we have f[0, 00] C [0, 0o] if and only if f € M™.

:R* — R*.

fx

Proposition 5.1
Forlft’s f and g we have f]0,00] D g[0, 00| if and
only if g = f o h where h € M.

Proof We have f[0,00] D g¢[0, co] if and only if
[0,00] 2 f~Log[0,00] if and only if f~1og e M.
Therefore, we put h = f 1o ¢.00

It follows that for any shrinking sequence of nested
intervals [po,qo] 2 [p1, 1] 2 [p2,q2] 2 --- we have
[pn,an] = fofi--- fnl0,00] where fy € M and
fi € Mt for 1 < i < n. Therefore, the sequence
can be expressed as an infinite composition of Ift’s, or
equivalently infinite product of matrices, fofifo---.

Note that we have here a generalization of IFS with,
in particular, a countable set of continuous (not nec-
essarily contracting) maps on R*.
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Any continued fraction expansion of a real number
can be expressed as an infinite composition of Ift’s.
In fact, a continued fraction expansion
bo
b1
by

a9 +
2 as+

r=ay+
al +

of a real number r can be expressed as r = fy(zg)
with
b1

To=a1+

b
and fo(x) = ap + X, [terating the above scheme,
we obtain r = fof1 -+ fn(xn) with
bn+1

bn+2
an+3+

ap+2 +

b.
and f;(x) :ai-i-zlforogign.

One can therefore identify the original contin-
ued fraction for r with the infinite composition

fofifa---
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We have therefore shown that any real num-
ber can be represented as the intersection
Muso fofife- - fal0,00] with fo € M and f; € M'
(¢ > 1) such that f, has integer coefficients for all
n>0.1If

_ an,x + Cp
U )
then in matrix notation, the real number can be
expressed as the infinite product

(ao Co) (al Cl) (CLQ 02) (a3 63)

by do b1 di by do by ds '
We call this a normal product. If the first matrix
is in M we call it a signed normal product (snp);
otherwise it is called an unsigned normal product
(unp).

The information, Info(K), given by an Ift K is an
interval of R* defined by: Info(M) = M ([0, oo]).

The first matrix tells us that the result is contained
in the interval [’;—3, dﬂg] or [g—g, ‘;—3] according to the sign
of the determinant of the matrix. The other matri-
ces will successively refine this interval to give better
and better approximations to the real number. In
analogy with the decimal representation of real num-
bers, the first matrix is called a sign matrix whereas

the other matrices are digit matrices.
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Example 5.2
Our continued fraction for v/2

V2=1+

1
1

2
+2+

gives us the normal product

a-(1)ENE )

We therefore obtain the following shrinking nested
sequence of intervals for approximating v/2:

(1 0)0ed = [L.o0]
: é)[o,oo} — 1,15

= [1.4,1.5]

(1)) (f é) (? (1))[0’00] = 14,1

[1.4,1.46]

12

Recall that the intersection of all these intervals is

precisely {v/2}.
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Signed and unsigned normal products are general-
ized to signed and unsigned expression trees by al-
lowing tensors as follows. Denote the set of all vec-
tors and all non-negative vectors by V and V* re-
spectively.

Definition 5.3 A signed expression tree (sext)
and an unsigned expression tree (uext) are finite
or infinite binary trees defined by:

sext ==V | M(uext) | T (uext, uext)
where V e V M e M, T €T

uext =V | M(uext) | T'(uext, uext)
where V. € V', M e M, T € T*

A finite truncation of such an expression tree cor-
responds to a finite subtree such that the removed
nodes are replaced by the base interval [0, co]. Any
such truncation denotes the composition of a finite
number of Ift’s applied to [0, co]. Hence, it denotes
a compact interval. The intersection of all compact
intervals obtained gives the value of the expression
tree.

In order to compute the value of an expression tree,
we need a way to transform such a tree into a snp.
We first need the rules for composition of Ift’s of
different dimensions.
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We can represent rational functions with Ift’s of two
arguments. These are of the form f : R* x R* — R*

where
ary +cr+ey—+g

x,y) =

f(z,) bry +dx+ fy+h

with integer coefficients which in homogenous coor-
dinates can be represented by a tensor:

(5)-(0)]- Gas ) 1G)-(7)]

If we fix any of the two arguments of an Ift with two
arguments we obtain a usual Ift with one argument.

We can express the following basic arithmetic oper-
ations by tensors:

(205 e = o e
(1002 ) oy

<0 01 0)(”3’?/) =TTy

The set of tensors and the subset of non-negative
tensors are denoted by T and T respectively. The
information given by a tensor is the interval of R*
defined by: Info(f) = £(]0, o], [0, c0]).

Check that Info(f)

O o= OO
_ O O O =
O OO O
O PO = O

min(%, % %, %), max(g, o %)} or
ace g

=
[max(§, g, %, 7), min(3, 5, 5, )], in which any fraction of
the form 0/0 should be ignored.
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a c €

We say that a tensor 7' is composed of two ma-

: B _ _[aceg
trices T = (Ty,Th): f T = <b df h> then

_fac _[egyg - i
Ty = <b d) and T = (f h>' Similarly, a ma
trix M consists of two vectors M = (M, My).

Definition 5.4 The dot product, left product,
and the right product, denoted respectively by -,
o; and oy, are defined by:
(M . V)z = Ej:(),l M”V} TOT V == (Tg . VY,Tl . V)
(M-N) = (M-No, M-Ny) To, M = (Ty- M, T} - M)
(M-T) = (M-Top, M-Ty) ToV =To,V
ToyM = (Tt o, M)!

Here, T is the transpose of T obtained by swapping
the two middle columns of 7', in other words,we have

aecgqg. aceg

= (b fdh) T = (b d f h)'

Let T = T(T1,T>) be a signed expression tree hav-
ing the tensor 7" as its root node with left and right
unsigned expression subtrees 77 and 75 respectively.
In order to obtain the sign matrix of the snp, we
choose M such that M ([0, co]) 2 T'([0, 0o], [0, o0]).
Then, M is the sign matrix of the snp. We now
replace T in T by M ! - T which has non-negative
coefficients because M ([0, oo]) D T'([0, o0}, [0, o0]).
This is called emission.
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In order to have a more precise result, we absorb
some information in the tensor 7. That means emit-
ting matrices M7 and My from 77 and 75 and re-
placing 7" with (1" o My) o My. This gives an in-
cremental algorithm to compute an expression tree.
We can also represent all basic elementary functions
such as f = tan,arctan,log and exp in terms of
expression trees with an entry = of the form given
in the figure below.

Let x be a real number. The value f(z) of the in-
finite expression tree in the figure below is given in

terms of the truncated expression trees STJ: (x) by the
intersection of a nested sequence of closed intervals

f(@) =N, Sh(x), where
Sg(x) = {Tl(x7T2('T’ T ’Tn(ya Z) o ))lyv AS [07 OO}}

In general, f(z) may be a closed interval.
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We need an algorithm to compute the value of an
expression tree T (z) when the entry z corresponds
to an extended real number represented by an unp
DDy ---.

Let Tp(xz) denote the truncation of the T (z) at
depth n, i.e., any node with n edges away from the
root node is replaced by [0, 00]. In the case of the
expression tree in the figure on page 65, Tp(z) is
simply Sf;(a:)

We let (x)y, denote the truncation at depth n of the
tree representing x. In the case of an unp,

(D1D3 -+ )n = Dy -+~ Dn[0, 0c].

We can compute the information given by the fi-
nite tree 7y, ((x)p) using the absorption and emission
rules we have defined.

The sequence

(Tn((@)n)) nen

is a nested shrinking sequence of compact inter-
vals which tends to the value of the expression tree
T(D1Ds---).

Note that the algorithm is incremental, i.e., it is not
necessary to recompute 7 ((2)p) in order to evalu-
ate Tnt1((%)n+1).

67

For example, the function arctan has the following
continued fraction expansion:
x

arctanx = 5 ,
X

1+ 15
1+

which can be transformed into

(0 =z
arctana::H e on—1 )

n=1
This is an infinite composition of Ift’s with non-
negative coefficients but now each Ift has x as a
parameter, i.e., it is a function of two arguments.
For example, when n = 1, we have:

(1) ()= Coot)i(3)-(0)

as it can be directly checked using the left and right
absorption rules.

Thus the infinite product can be rewritten as an
infinite expression tree:

arctanzr =

(Yo01) = (Go0s) [= (5003 )]
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5.2 Exact Floating Point

So far our representation allows arbitrary normal
products of integer matrices MoMiMy--- with
My € M and M; € M" for 4 > 1. This, in
practice, results in some major problems. Firstly,
intervals will be refined at an arbitrary rate, mak-
ing any analysis of complexity of algorithms prac-
tically impossible. Secondly, matrix multiplication
can quickly produce huge integers in a matrix quite
disproportionate to the information contained it.

In analogy with floating point formats, where num-
ber representations in a given base are generated by
two sign symbols and a finite number of digits, we
restrict the sign and digit matrices to a finite set
of specific matrices. Sign matrices are rotations of
S whereas digit matrices are contracting maps with
respect to the metric p on R*.

We start with sign matrices. The information in
sign matrices must overlap and cover S L If we fur-
ther assume that they have the same length with
respect to p and are evenly placed on Sl then
they will be generated by rotations of S1. The
z COS% + sin g

0 0

: rotates S by 6.
—ZSllg + oSy

1ft ¢expi9 ST
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Moreover, gy, ;9 generates a finite cyclic group ift 6
is a rational multiple of 2. Our choice will be fur-
ther restricted if the Ift is required to have integer
coefficients.

Proposition 5.5 Suppose 6 is a non-integral ra-
tional multiple of 2m.  Then the Ift ¢expig will
have integer coefficients iff 6 =5 or 0 = .

For 8 = m, we get the cyclic group of order 2
consisting of @expir : T = —% and the iden-
tity Ift Id : * — z. This gives the two intervals
info(gexpin) = [00,0] and info(Id) = [0, oo] which
are not overlapping. For § = 7/2 we get the cyclic
group of order 4 with elements

‘ z+1 ' 1
¢exp%f CT = L Pexpim © T > 7
z—1
Id :
qﬁexp% xr—>x+1, d:zw—z,

with information [1, —1], [0o, 0], [—1,1] and [0, oc]
respectively. The simplest matrices representing
these 1ft’s are, respectively:

e (3]) (4 )
a(07) ()
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The signed digit system in base b > 1 in [—1,1]
is generated by an IFS on [—1, 1] with contracting
maps

R [_171] = [_1’1]

z+k
b

with

k € Dig(b) ={-b+n,b—n|n e N;1 <n < |b]},
where |b] is the integral part of b. Here, b can be
allowed to be a rational or an irrational number.
The case b = 3/2 was considered by Brouwer and
the case b = %, the golden ratio, has also been
studied recently.

We now define the digit matrices in base b as the
IF'S on [0, oo] with p-contracting maps:

i 1+b+k —1+b+k
Dy, =5 fk50:<—1+b—k 1+b—Fk )

For example, for base 2, we have the four sign ma-
trices S+, Seo, S_1 and Sy together with the three
digit matrices:

10 3 1 2 1
pas(i) w=(03) m=()
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We therefore take these as our sign matrices.

We now select an appropriate set of digit matrices
from M™. Since compositions of digit matrices are
required to represent shrinking sequences of inter-
vals, we will look for matrices which contract dis-
tances in [0, oo] with respect to the metric p. Digit
matrices must overlap and cover [0, co].

Note that Sp is a homeomorphism from [0, co] to
its image Sp[0,00] = [—1,1], i.e. it is a 1-1, onto
and continuous map with a continuous inverse. Let
¢ € M and consider the restriction ¢ : [0, 00] —
[0,00]. Then SypSy ' is a homeomorphism from
[—1,1] onto itself. For z,y € [0,00] we have

p(z,y) = |So(z) — So(y)| and we get:

Proposition 5.6 The map ¢ : [0, 00] — [0, 0] is
contracting with respect to the p-metric iff

SopSy i [=1,1] = [-1,1]

15 contracting with respect to the Fuclidean met-
TiC.

It follows that for any base b > 1, the signed digit
representation on [—1, 1] in base b induces via the

homeomorphism S a suitable set of digit matrices
in M.
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Ezact floating point in base b is defined as the rep-
resentation of real numbers by infinite composition
of Ift’s, or, equivalently, infinite product of matrices,
such that the first matrix is one of the sign matrices
above and the subsequent matrices are digit matri-
ces. For each finite composition Dy, Dy, - -+ Dy, of
digit matrices we have:

SoDy, Dy, - Dy, [0,00] = fr, fry -+ fr, [~ 1 1]-

Therefore, for every infinite composition of digit ma-
trices, we obtain

() SoDk,Diy -+ Dy, [0, 0]
n>0

n>0
This gives us:

Proposition 5.7 A real number with signed
digit expansion .kikgks--- (with k; € Dig(b) for
j > 1) is represented in exact floating point by
the infinite product

SoDi, Dy Diy -

Thus we obtain a reasonable data-type for represent-
ing real numbers, with which we can obtain provably
correct algorithms for exact real number computa-
tion.
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6 A domain-theoretic model of geometry

A topology on a space X is given by a set of subsets
of X, called the open subsets, which is closed under
infinite unions and finite intersections. The empty
set (), being the empty union, and X, being the
empty intersection, are open. A closed subset is
one whose complement is open. The boundary 0A
of a set A C X is the set of points x € X such
that every open set O with x € O intersects both
A and its complement A¢. Check that closed sets
are closed under taking finite unions and arbitrary
intersections. The set X with its given topology is
called a topological space.

For example the Euclidean topology on R" has as
non-empty open sets the union of open balls O =
U;er O(ci, 74), where the open ball of centre ¢ and
radius r is the set O(c,r) = {z € R" ||z —¢| < r}.
The closed ball of centre ¢ and radius r is the set
Cle,r) = {x € R"||z — ¢| < r}. Check that
O(c,r) is open and C(c, ) is closed.

Exercise 6.1 (i) What is the boundary of O(c, r)?
How about that of C(c,r)?

(ii) Show that the Cantor set is closed. What is its
boundary?

3

Exercise 6.2 Check that a subset O C D of a
depo D is open if (i) O is upward closed, i.e. z €
O&zxCy = ye€ O;and (ii) whenever A C D is
a directed subset with | |A € O, then AN O # 0.

We say that a sequence (zp),>0 of points of a topo-
logical space X converges to a point x € X, if for
every open set O with x € O there exists N > 0
such that x,, € O for all n > N; we write this as
limy, 300 Tp, = T.

Exercise 6.3 (i) Check that in Euclidean spaces, if
a sequence has a limit then the limit is unique.
Show that a convergent sequence in a dcpo may
have more than one limit in general.

(ii) Show that a closed subset C' of a topological
space contains all its limit points, i.e. whenever
limy, o0 zp, = x, with x,, € C for all n > 0,
then z € C'.

(iii) Show by an example that membership in a closed
set in Euclidean spaces is not semi-decidable.
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6.1 Semi-decidable predicate

Membership in an open set is a semi-decidable pred-
icate or an observable property: we can confirm in
finite time if a point belongs to an open set. For
example consider a point z € R, given as the in-
tersection of a shrinking nested sequence of rational
rectangles and an open rational ball (rational centre
and rational radius) O(c, ). If z € O(c, r) then one
of the rational rectangles will be contained in O(c, r)
and we can confirm that in finite time. However, if
z lies on the boundary of O(c,r), then we cannot
verify it in finite time.

Let (P,C) be a poset. A non-empty subset A C P
is directed if for any pair of elements a, b € A, there
exists ¢ € A with a,b C ¢. A directed complete
partial order or a dcpo is a poset in which every
directed subset has a lub. Check that every dcpo
with bottom is a cpo. Let (D,C) be a depo. The
Scott topology on D is defined by characterising its
closed sets as follows. A subset C' C D is closed if

e C is downward closed, ie. ye C &z Cy =
x € C; and

e whenever A C C'is a directed subset, | | A € C.
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6.2 Continuity and Computability

A function f : X — Y of topological spaces is
continuous at a € X if for each open subset O C Y
with f(a) € O, there exists an open set U C X with
a € U and f(U) C O. We say f is continuous if it
is continuous at all points of X.

Exercise 6.4 (i) Check that a function f : R® —
R"™ is continuous with respect to the Euclidean
topology iff it preserves limits of convergent se-
quences, i.e. iff whenever limy, o0 5, = x then
limp—o0 f(zn) = f(z).

(ii) Check that a function f : D — E between dcpo’s
D and F is continuous with respect to the Scott
topology iff f is monotone and preserves the lubs
of directed sets.

Recall the notion of computable real number (p. 54).

Exercise 6.5 Show that r € R is computable iff
there exists a master program which on input n € N
outputs a rational number g, with |g, — 7| < 1/2™.

With respect to Exercise 6.5, we say that there exists
an effective sequence (gn)n>0 of rational numbers
with limy 00 gn = 7 and |gp, — 7| < 1/2™; thus gy,
gives an approximation with precision 1/2" to r.
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Intuitively, we expect a “computable” real-valued
function f : R — R to take a computable real num-
ber to a computable real number: If limy, o0 g = 7
as in Exercise 6.5, then we expect limy,—so0 f(qn) =
f(r), i.e. a sequence of rational approximations to r
should be mapped to a sequence of approximations
converging to f(r). This is also called Scott’s thesis:
A computable function is always continuous.

6.3 Non-computability of predicates and
operations in classical geometry

It is now easy to see that basic predicates and oper-
ations in classical geometry are not computable.

We consider the two element Boolean set {tt,ff}
with its discrete topology i.e. every subset is open
and thus observable.

Take the membership predicate €, : R? — {tt, ff}
of a simple object such as the unit disk

D={zeR®||z|<1}:

N ttzeD
DT\ ffz¢D

Exercise 6.6 Show that €, 1s not continuous at
any point on the boundary of D.

"

The non-continuity of the basic predicates and op-
erations creates a foundational problem in compu-
tation, which has so far been essentially neglected.
In fact, in order to construct a sound computational
model for solids and geometry, one needs a frame-
work in which these elementary building blocks are
continuous and computable.

In practice, correctness of algorithms in computa-
tional geometry is usually proved using the Real
RAM machine model of computation, in which com-
parison of real numbers is considered to be decidable.
Since this model is not realistic, correct algorithms,
when implemented, turn into unreliable programs.
A simple example is provided by computing, in any
floating point format, first the intersection point x
in the plane of two straight lines L1 and L9 meeting
under a small angle, and then computing the mini-
mum distance d(x, L1) and d(x, Lo) from z to each
of the two lines. In general, d(x, L1) and d(z, L9)
are both positive and distinct, contradicting the ex-
pected values d(x, L1) = d(x, Ly) = 0.

L2

X Ll
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Therefore, the membership predicate of even a
simple object is non-continuous and thus non-
computable.

We can directly see the non-computability of the
classical membership predicate. If x € D is on
the boundary of D, i.e. if || = 1, and if = is ap-
proximated step by step by a shrinking nested se-
quence of rational rectangles (rectangles with ratio-
nal vertices), then we cannot decide in finite time
that z € D.

Similarly, consider the intersection operator as
a binary operator on the collection C(R"™) of
bounded closed subsets of R™ equipped with
the Hausdorff distance dp defined as before
by dp(C,D) = max(maxgep mingecle —
d|, max.cc mingep|c — d|), with the convention
that dg7(0,0) = 0 and for C # 0, dg (0, C) = oo

—N—:CR") x C(R") — C(R™)
(A, B) — ANB

Exercise 6.7 Check that — N — is discontinuous
whenever A and B just touch each other.

Intuitively, when two objects touch each other, then
by an arbitrary small perturbation their intersection
can become empty.

8

A more sophisticated example is given by the im-
plementation in floating point of any algorithm to
compute the convex hull of a finite number of points
in the plane (i.e. the smallest convex set containing
the points). If there are three nearly collinear points
A, B, C as in the picture, then depending upon the
floating point format, the program can give, instead
of the edges AB and BC as in the first figure below,
any of the following as in the next four figures:

(i) AB only. (ii) AC only.

(iii) BC only. (iv) none of them.

Q 3 Q W o Q3

A

B

c
A
B

In any of the above four cases, we get a logical in-
consistency as the edges returned by the program
do not give the correct convex hull and in the cases
(i), (iii) and (iv) do not give a closed polygon at all.
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The solid modelling framework provided by classical
analysis, which allows discontinuous behaviour and
comparison of exact real numbers, is not realistic as
a model of our interaction with the physical world
in terms of measurement and manufacturing.

For example, as far as the process of design, manu-
facturing or any other practical application is con-
cerned, the closed ball of radius one and the open
ball of radius one are exactly the same despite the
fact that these two objects are distinguished in clas-
sical geometry.

As we have seen the classical framework is also not
realistic as a basis for the design of algorithms imple-
mented on realistic machines, which can only deal
with finite data.

A robust algorithm is one whose correctness is
proved with the assumption of a realistic computable
model. Domain theory defines precisely what it
means, in the context of the realistic model of
computation, to compute objects belonging to non-
countable sets such as the set of real numbers.

Here, we use a domain-theoretic approach to develop
the foundation of a computable framework for solid
modelling and computational geometry.

81

Here, {tt, ff} | is the three element poset with least
element | and two incomparable elements tt and ff.

Exercise 6.8 (i) Check that in the Scott topology
of {tt, ff} | the two subsets {tt} and {ff} are open
sets but in contrast the subset {_L} is not open.

(ii) Show that €’ is continuous for any subset S.

We therefore call Efg the continuous membership
predicate.

Exercise 6.9 Check that two subsets have the
same continuous membership predicate iff they have
the same interior and the same exterior (interior of
complement).

Thus in this model the closed unit ball and the open
unit ball are not distinguished as geometric objects.

By analogy with general set theory for which a set
is completely defined by its membership predicate,
we can define a geometric object in R to be any
continuous map of type R” — {tt, ff} | .

The definition of the geometric domain is then con-
sistent with the requirement that a computable
membership predicate has to be continuous and that
membership of the boundary of a set is in general
not semi-decidable and not observable.
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6.4 The domain of geometric objects

In the domain-theoretic model, the basic predicates,
such as membership and subset inclusion, and opera-
tions, such as union and intersection, are continuous
and computable. The model provides a methodol-
ogy for developing robust geometric algorithms and
enables us to capture the uncertainties of input data
in CAD (Computer Aided Design) situations.

For any subset S of a topological space, S, S°, 05
and S¢ denote respectively the closure (i.e. the inter-
section of all closed sets containing S), the interior
(i.e. the union of all open sets contained in S), the
boundary and the complement of S.

Given any proper subset of S C R™ (i.e. ) # S #
R™), observe that the classical membership predi-
cate €g: R™ — {tt, ff} is continuous at every point
in the interior S° and every point in S¢°, called
the exterior, but not on 0S. It therefore makes
sense from a computational viewpoint to redefine
the membership predicate as the function:
€q R" — {tt,ff} |
tt ifxesS°
x—  ff ifze S
L otherwise.
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Note that a geometric object, given by a continuous
map f : R” — {tt,ff} |, is determined precisely by
two disjoint open sets, namely f~1(tt) and f~1(ff).
Moreover, the interior (f~1(tt) U f1(f))¢” of the
complement of the union of these two open sets can
be non-empty.

If we now consider a second continuous function ¢ :
R™ — {tt,ff} | with f C g, then we have:

Flay gty & fNE) C g ().

This means that a more defined geometric object
has a larger interior and a larger exterior. We can
think of the pair f~1(tt), f~L(ff) as the points of
the interior and the exterior of a geometric object
as determined at some finite stage of computation.
At a later stage, we obtain a more refined approx-
imation g which gives more information about the
geometric object, i.e. more points of its interior and
more points of its exterior.

Definition 6.10 The domain of geometric ob-
jects or the solid domain (SR™,C) of R™ is the
set of ordered pairs (A4, B) of disjoint open subsets
of R" endowed with the information order:

(A1, By) E (A9, By) <= A1 C Ay and B; C Bo.
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An element (A, B) of SR is called a partial geo-
metric object or a partial solid. The sets A and
B are intended to capture, respectively, the interior
and the exterior of a geometric object, possibly, at
some finite stage of computation.

We say that two dcpo’s are isomorphic if there is a
continuous 1-1 and onto map from one to the other
with a continuous inverse.

Theorem 6.11 The poset (SR™,C) is a di-
rected complete partial order with | |;c;(A;, B;) =
(User 4isU;er Bi) and is isomorphic with the
function space R™ — {tt,ff} .

Proof It is easy to check that if (A;, B;)icr is a
directed set of disjoint open subsets then (J;c; 4;
and (J;cy B; are disjoint and | |;c;(4;, B;) =
(User 4iU;er Bi) is the lub of (A;, B;)jer. The
function I' : (R"™ — {tt,ff} ) — S(R") given by
T(f) = (f~ ({tt)}, F~L({f)}) provides the isomor-
phism. [J

By duality of open and closed sets, (SR C) is
also isomorphic with the collection of ordered pairs
(A, B) of closed subsets of R with AU B = R"”
with the information ordering: (A1, B1) C (A9, Bo)
< A9 C A; and By C Bj.
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6.5 Predicates and Operations on Solids

Partial geometric objects, and, more generally,
domain-theoretically defined data types allow us to
capture partial, or uncertain input data encountered
in realistic CAD situations. This means that the
input data for a “point” is actually a rational rect-
angle, for example a point in the plane whose co-
ordinates are two floating point numbers actually
specifies a rational rectangle.

In order to be able to compute the continuous mem-
bership predicate, we extend it to the interval do-
main IR" and define — € — : IR" x SR" —
{tt, ff} | with:

tt fCCA

Ce(A,B)=« ff fCCB

L otherwise
(see the figure below). Note that we use the infix
notation for predicates and Boolean operations.
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Proposition 6.12 The partial geometric object
(A, B) € (SR", C) is a maximal element iff A =
B¢ and B = A®°.

Proof Let (A, B) be maximal. Since A and B are
disjoint open sets, it follows that A C B€°. Hence,
(A,B) C (B, B) and thus A = B®. Similarly,
B = A. This proves the “only if” part. For the
“if” part, suppose that A = B¢ and B = A°°.
Then, any proper open superset of A will have non-
empty intersection with B and any proper open su-
perset of B will have non-empty intersection with

A. Tt follows that (A, B) is maximal. [J

An open set is regular if it is the interior of its clo-
sure; dually, a closed set is regular if it is the closure
of its interior.

Exercise 6.13 Show that the interior of a closed
set is a regular open set.

Corollary 6.14 If (A, B) is a mazimal element,
then A and B are reqular open sets.

Proof Note that A is the interior of the closed
set B¢ and is, therefore, regular; similarly B is
regular.[]
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Starting with the continuous membership predicate,
the natural definition for the complement would be
to swap the values tt and ff. This means that the
complement of (A, B) is (B, A).

Bearing in mind that for a partial solid object
(A, B), the open sets A and B respectively capture
the interior and the exterior of the solid, we can de-
duce the definition of Boolean operators on partial
solids:

(A1, B1) U (Ag, By) = (A1U Ay, Bi N By)
(A1, B1) N (A, By) = (A1 N Az, B1U By).
One can likewise define the m-ary union and the m-
ary intersection of partial solids. Note that, given
two partial solids representing adjacent boxes, their

union would not represent the set-theoretic union of
the boxes, as illustrated in the figure.

(A1B1) I (A2B2) I (A1BY)O(A2B2) II
B:inB;

AL By A L B, ADA; L j
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In order to define the Boolean operations as maps on
the domain of geometric objects, we need to define
the product of two depo’s. Given depo’s (A, C) and
(B, L), we define their product as (A x B, C) where
the Cartesian product A x B is given by

Ax B={(a,b)|a € Abe B}

and the partial order C on A X B, is defined com-
ponentwise i.e. (a,b) C (a/,V/) iffa Ea’ and b C 0.

Exercise 6.15 (i) Check that for depo’s A and B
the partial order (A x B,C) is a dcpo.

(i) Show that if A, B and C are dcpo’s, then a map
f: Ax B — C'is continuous iff it is continuous in
each component separately, i.e. iff for each a € A
the map b — f(a,b) : B — C and for each b €
B the map a — f(a,b) : A — C are continuous.

(iii) Define the product of n depo’s A; (i = 1,...,n),
and show that it is a dcpo.

(v) Show that if A; (¢ =1,...,m) and B are dcpo’s,
then a map f : A Xx A9 X ... x Ay, = B
is continuous iff it is continuous in each compo-
nent separately, i.e. iff for each 1 = 1,...,m,
given a; € Aj for j # i, the map a; —
flat,a9,...,am) : A; — B is continuous.
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6.6 The convex hull revisited

We will now describe an algorithm in our domain-
theoretic framework to compute the convex hull of a
finite number of points in the plane in the context of
the solid domain. It will be able to approximate the
convex hull of m points in the plane by providing
approximations from inside and outside to to the
convex hull by rational polygons. The algorithm
easily extends to higher dimensions.

Assume we have m points in the plane. Each of
these points is approximated by a shrinking nested
sequence of rational rectangles; at each finite stage
of computation we have approximations to the m
points by m rational rectangles. For these m ra-
tional rectangles we obtain a partial geometric ob-
ject with an interior open rational polygon, which is
contained in the interior of the convex hull of the m
points, and an exterior open rational polygon, which
is contained in the exterior of the convex hull of the
m points.

The union of the interior (respectively, the exterior)
open rational polygons obtained for all finite stages
of computation gives the interior (respectively, the
exterior) of the convex hull of the m points.
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We can now express the binary and m-ary Boolean
operations as functions on the solid domain.

Theorem 6.16 The following are continuous:
(i) Complementation map — : SR — SR with
—-(A,B) = (B, A).
(ii) Binary union —U — : SR x SR"” — SR".
(i1i) Binary intersection — N — : SR™ x SR —
SR™.
Proof (i) This is easy.
(ii) It is easy to check that — U — is monotone
in each component separately. Assume then that

(A,B) € SR™ and let ((A;, B;))ier be a directed
set of geometric objects. We have:

(A, B)U|_|(4:, B) = (A, B)u(|J 4, | B)

el el el
= (AUU Aj, BﬂU Bz) = (U AUA;, U BﬂBZ')
el el el el
= |_|(A UA;, BN B;).
el

(iii) This is dual to (ii).0]
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Formally, we define a map

Cpn : (IR?)™ — SR?,
where IR? is the domain of the planar rectangles,
the collection of all rectangles of the plane partially
ordered by reverse inclusion. Let C(R?) be the col-
lection of non-empty bounded and closed subsets of
R? with the Hausdorff metric and let

Hp : (RH)™ = C(R?)
be the classical function which sends any m-tuple of

planar points to its convex hull regarded as a closed
bounded subset of the plane.

Let (Ry, Ry, -+, Rm) € (IR%)™ be an m-tuple of
rectangles. Fach rectangle R; has four vertices de-
noted, anti-clockwise starting with the bottom left
corner, by Rzl, RZZ, R? and R?.

We define

Cn((Ry, -+ Rm)) = (In((Ra, -+, Rin)), E((Ra, -+, Rn)))
where the interior convex hull is defined by

L((Ri- Ru) = () H o ym)’

yi€R; i=1,-m

and the exterior convexr hull is defined by
Em((Rla"'aRm)) = ( U H(yla"'aym))c'

yi€R; i=1,-m

92



We will now show that In((Ry,---,Rm)) and
Epn((Ry,- -+, Ry)) can be obtained by two simple
algorithms.

In the following proof, we use the simple property
that the convex hull of a finite set of points is pre-
cisely the intersection of all half-planes containing
these points. Let x = (R, -, Rm)-

Proposition 6.17 We have the following finite

algorithms to compute the interior and exterior
convex hulls:

In(a) = ( () Ha(R)Z,)"

En(z) = (Hum((R}, B}, R}, RY)iL,)°

Proof That N, cx H(y1,,ym) S Micjca H(R])2,
is clear. To show the converse relation, we note
that any half plane containing a point from each of
the rectangles will contain N, ,, H, (R, and thus
ﬂyieRi H(yi, , Ym) 2 ﬂ1§jg4 Hy (R

To show the second identity, we first note that
Uy,veRi H(yla T ym) 2 H4m((Rzlv R127 R?a R:l));ll holds as
each point of the boundary of the latter is a point
of one of the convex hulls in the union. Further-
mnore, ineRL- H(yi, +ym) © Hun((Rj, B, R}, RY))y
since every convex hull in the union is contained
in H4m((Rzlv RZ?, R?’ R;L));lllj
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But by Proposition 6.17, for each 2 > 0, the interior
and the exterior convex hulls Iy, (Ry;, - - -, Ryp;) and
Em(Ry;, -+, Rpyi) can be computed in finite time,
in fact in m log m time.

Example 6.19 Consider the points of the plane in
the figure below, each approximated at every stage
of computation by a rational rectangle.

At every stage of computation, we compute the
outer (or exterior) and the inner (or interior) convex
hulls. The outer convex hull will consist of points
which are definitely outside the convex hull of the
planer points and the inner convex hull will consist
of points which are definitely in the interior of the
convex hull of the points. The union of the inner
convex hulls and that of the outer convex hulls give
us respectively the interior and the exterior of the
convex hull of the points.
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In words, Ep,(z) is the complement of the convex
hull of the 4m vertices of all rectangles, whereas
I, (z) is the interior of the intersection of the 4 con-
vex hulls of the bottom left, bottom right, top right
and top left vertices. Since the intersection of con-
vex sets is convex, I, (z) as well as Ey,(x) are both
convex open rational polygons.

Using the above proposition one can show the follow-
ing theorem whose proof is non-trivial and is omit-
ted.

Theorem 6.18 The map Cy, : (IR?)™ — SR? s
Scott continuous. UJ

Using the above theorem we can approximate the

convex hull of m points (a1, a9, - - -, amy) in the plane
from inside and outside by rational convex hulls as
follows. Suppose, for each j = 1,---,m, {a;} =

Ni>o Rji where (Rj;)i>0, for each j =1,---,m, is
a shrinking sequence of nested rectangles. Then, by
the above theorem, the interior and the exterior of
the convex hull is given by

Cm({ai}, {az}, - {an})
- U(Im(Rm e+, Roni)s Em(Rui, -+, Runi))

= (JIn(Rus, -, Runi), | J B Ruiy -+, Runi)).

i>0 i>0
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The outer convex hull of the rectangles is obtained
by taking the convex hull of all the vertices of the
rectangles as in the figure below. Since these ver-
tices have rational coordinates, we can accurately
compute their convex hull, a rational polygon.

To compute the inner convex hull, we obtain the
four convex hulls of the top left, top right, bottom
right and bottom left corners and then find their
intersection as in the figure below.

Inner Convex Hull

Top left corners
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With more accurate input data about the planer
points, the boundaries of the inner and outer convex
hulls get closer to each other as in the next two
figures.

In the limit, the inner and outer convex hulls will
be simply the interior and the exterior of the convex
hull of the planer points.

Since we work completely with rational arithmetic,
we will not encounter any round-off errors and, since
comparison of rational numbers is decidable, we will
not get inconsistencies.
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7.2 Smash product

Given cpo’s D and F, sometimes we want to identify
(d,Lg) (d € D) and also (Lp,e) (e € E) with
the new bottom. For cpo’s D and E we define the
smash product

D®FE =

{(d,e)e Dx E|d# Lp,e# Lg} U{Llpgr}
with the pointwise ordering and least element
1 pgE- Define the maps:

smash: DX FEF - D®FE
(d,e) w(dye) ifd#L,e#L
— Lpgr otherwise

and
unsmash: DQF — D x FE

(d,e) —(de)
J—D@E — (_L, L).
Now given f : D1 — D9 and g : F4 — E9 we have
the map
fRg: D1 ®FE; —- Dy® FEy
defined by f ® g = smash o (f X g) o unsmash.

Exercise 7.2 Show that smash, unsmash and
f ® g are all continuous maps.
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7 New cpo’s from old

We have seen that if D and E are cpo’s so is [D —
E]. We will now see more examples of constructing
new cpo’s.

7.1 Product

If D and E are cpo’s, the product D x E consists
of pairs (d,e) with d € D and e € E with the
pointwise ordering, i.e. (d, e) C (d, /) iffd C d’ and
e C €. Thisisthen acpowith Lpyp=(Lp, Lg)
and lubs of chains are obtained componentwise, i.e.
the lub of

(do, e0) E (d1, 1) T (do, e9) E -

is simply (| |;d;,);e;). There are two projection
maps 71 : DX E — Dandm: DX E — E,
defined by 71((d,e)) = d and my((d,e)) = e. If
f Dy — Dyand g : £ — FE5 are continuous,
then we have a continuous map

fxg:Dyx Ey— Dy x Ey
defined by (f x g)(d,e) = (f(d), g(e)).

Exercise 7.1 Show that 7,7 and f X g are
indeed continuous.
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7.3 Coalesced sum

The coalesced sum D@ E of cpo’s D and E is given
by the set

(D—{Lp})x{BU(E—{Lg})x{r})U{Llper}
where | pa g is the new bottom element and (D —
{Lp}) x {l} and (E — {Lg}) x {r} inherit the
partial orders from D and E respectively.

We have the strict functions inl : D — D & E and
inr: K — D & FE defined by

inl(z) = { (2,1) oL

J-DGBE if x = J_;
i) ={ )
Given continuous maps
f : D1 — DQ
we have a continuous map:
f®&g: D1 EL — Dyd Es

g:El—)EQ

(d, 1) = (f(d),l) if f(d)#L
L if £(d) = L
(e,7) = (g(e),r) ifgle) #L
— L if gle) =L

1 — L.

100



7.4 Lifting
We sometimes want to add a new bottom to a cpo.
For a cpo D, define its lift
D, =D x{0}u{Ll}
where L is a new bottom and we stipulate
1 E(d,0)foralld € D

and
(d,0) C (d',0)iff d C d'.

Given f : D — FE we have a continuous map:
fJ_ : DJ_ — EJ_

(d,0) = (f(d),0)
1L - L.

7.5 Disjoint sum

The disjoint sum D + E of two cpo’s D and FE is
given by D+ E =D | @& E|. For two continuous
functions

f:Dy— Dy g:E1— Ey
we have the continuous map

f+9: D1+ E; — Dy+ Ey
defined by f+g9g=f D g,.
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We give a few examples of categories:

category| objects morphisms
Set sets maps
Poset | partial orders monotone maps
CPO cpo’s continuous maps

CPOg Cpo’s strict continuous maps

Any partial order (D,C) can be considered as a
category: The objects are the elements of D and for
any a,b € D, we assign a unique morphism from a
to biff a C b.

The product C x C' of two categories C and C'
has collection of objects Objc x Objr and collec-
tion of morphisms Morg X Morcy, with (f, f/)
(A,A) —» (B,B)iff:A— Bandg: A — B’
The identity morphism on (A4, A’) is (14,14) and
composition of morphisms is obtained component-
wise.

The opposite, C°P, of a category C has the same
objects as C and also the same morphisms but con-
sidered in the opposite direction, i.e. any morphism
f A — B of C gives a morphism f°? : B — A.
If we denote composition in C as before by — o —
and in C°P by — % —, then we have

g7 x f7 = (fog)”.
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7.6 Function space
We have already defined [D — E]. Given continu-
ous functions
f . DQ — D1

we have a continuous function:

[f = g]: [D1 = Eq] = [Dy — Eo

h — gohof

Note that f is in the direction opposite to g.

g:El—)EQ

7.7 Categories

The proper framework to study these constructors
is provided by the notion of categories. A cate-
gory C consists of a collection, Objc, of objects
and a collection, Morc, of morphisms (or arrows)
f : A — B between the objects. Each object A has
an tdentity morphism 14 : A — A, and for each
pair of morphisms

f:A—>B g:B—=>C
there is a composition go f : A — C' satisfying:

(i) folg=fforany f: A— Bandlgog=g
for any g : C' = A.

(ii) fo(goh) = (fog)oh whenever the compositions

are defined, i.e. composition is associative.
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A functor F : C — C' from the category C to the
category C' is given by two mappings

F Objc — Objcl
with any morphism f : A — B in C mapped to a
morphism F(f) : F(A) — F(B) in C’ such that
the identity morphisms and the composition of mor-
phisms are preserved, i.e.

F: MOT‘C — MO’/‘C/

] F(lA) = 1F(A) for all A € Objc
® F(go f)=F(g)o F(f)
for all composable f,g € Morc.

All constructors we have defined for cpo’s are exam-
ples of functors:

— x —: CPO x CPO — CPO.
— ®—: CPO x CPO — CPO.
— @& —: CPO x CPO — CPO.

(), : CPO — CPO.
— +—: CPO x CPO — CPO.

[~ — —]: CPO x CPO — CPO.
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8 Domain equations

Two objects A and B in a category are said to be
tsomorphic, denoted A = B, if there are morphisms
f:A— Bandg: B — Asuchthat go f =1y
and fog=1p.

Let F' : CPO — CPO be a functor. We want to
solve the recursive equation F'(D) = D for D. We
call this a domain equation.

Consider, for example, the domain equation D =
Y| x D, where ¥ = {0, 1}. Let us try to solve this
by mimicking the way we found the least fixed point
of a continuous function f : A — A, on a cpo A,
by taking the lub, | |; f*(_L), of the chain of iterates
of f on the least element of A. The analogue of L
here is the cpo { L} with only one element namely
L.

Dy D, D,

Proposition 8.3
Let (e,p) : D< E. Then

be & :>p(b):|_|{a€D|e(a)Eb}.

Proof If e(a) C b, then a = poe(a) C p(b).
On the other hand e o p(b) C b. Therefore, p(b)
is both an upper bound and an element of the set
{a € D |e(a) C b}.0O

This means that b € E is mapped to its best ap-
proximation in D. Now assume we have an “ap-
proximation sequence”:

T: Dy<Dy<Dy< D3y«

with (en,pn) : Dn < Dyp+1. How do we obtain the
limiting object? Let Dy be the set of infinite se-
quences (Tn)p = (x, 1,2, ) with x, € Dy
and pp(Tp11) = zp for all n > 0. Dy is partially
ordered componentwise, i.e.

<.’E0,.’E1,.’I}2 ot > E <CC6,CC/1,.T/2 o >

iff 2y, C 2], for all n > 0. (Doo, E) is a cpo, in
which the least upper bound of a chain is obtained
componentwise, i.e. if (y*);>0 is a chain in Dy, then
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Notice that D; is embedded by e; in D; 1 and each
element d of D;,1 is projected to its best approxi-
mation p;(d) in D;. Note also that the pairs (e;, p;)
satisfy:

eiopi Elp,, -

pioce;=1p,
Definition 8.1
Given cpo’s D and FE, we say that a continuous
function e : D — E is an embedding of D into E
if there exists a continuous function, called a pro-
jection, p : E — D such that poe = 1p and

eopC 1. We write (e,p) : D< E.

Proposition 8.2

If (e,p) : D<E and (¢,p)) : D < E are two
embedding-projection pairs between D and FE,
theneC e iffp Jp.

Proof

eCe = p=poeop’ Cpoeop Cp

pdp = e=ceop’oe/ Ceopoe CeO

It follows that any embedding corresponds to a
unique projection. It is easy to check that e and
p are strict, p is onto and e is one-to-one and pre-
serves existing lubs of arbitrary subsets. Because of
the strictness, there is a unique embedding of the
one point cpo {_L} to any cpo E.
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We will justify that Dy is the “limiting object” of the “ap-
proximation sequence” T'. (For simplicity, we avoid categorical
notions. )

For n > 0, define (E,, P,) : Dy, 4 Dy, by
Pn(<'r0’ T1,T2, " >) = Tn
En(x) = <f0n(x)7 fln(x)a f2n(x)7 o )
where fi; : D; — D is defined by

piopi1o---opi ifi<j
fii =1 1p, ifi=j
€-10€ 90---0e; ifi>j.
Exercise 8.4 Check that for each n > 0, (E,, P,) is an
embedding-projection pair and that we have

En+loen:En Pn © n+1:Pn~

This means that we have, for each n > 0, the following pair of
commutative diagrams:

En+1

Therefore, each D,, is an approximation to D, in other words

Dy, is an “upper bound” for the approximating chain.
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We now have to show that D, is the “least upper bound”.
Suppose A is a cpo which is another “upper bound” for the
“approximating chain”, i.e. (E,, P,) : D, < A such that the
following two diagrams commute for each n > 0:

...... Dy~ Dyy

Define E : Dy, — A by
E((z0, 1, ) = || Eul@n)-

Note that

E, = En+loen = Enopn = En+1 oenop, & En+1 =
E:L opn(xn—H) E En—%—l(xn—H) = -/E\’;(xn) E En+1(xn+1)

and hence F is well-defined.

FE is continuous: For a chain (z'};50 in Dyo:
L L Ene) = L B(2).
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In the terminology of category theory, D is a di-
rect limit or colimit of the approximation chain

in the category of cpo’s and embedding-projection
pairs, denoted by CPO®P.

Exercise 8.7 Show that any two direct limits of a chain

of embedding-projection pairs are isomorphic.

Note the analogy with the lubs of chains in cpo’s.
We further use this analogy to solve domain equa-
tions. We say a functor

F:CPO — CPO

is w-continuous if it preserves the pointwise order-
ing of morphisms in each function space and the
“lubs” of “approximation chains” in CPO®. Then,
similar to the least fixed point theorem for cpo’s, we
deduce that for any continuous functor the “lub”,
Dy, of

where 1 = {L} is the one point cpo and ! : 1 —
F(1) is the unique embedding-projection pair from
1 to F(1), satisfies F(Dxo) = Do.

Using the following result, it is easy to check the
w-continuity of functors:
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Also define P : A — Dy by P(y) = (P,(y))n. P is continuous
since each P, is continuous.

Proposition 8.5 (F,P): Dy < A.
Proof We have
Eo P(y) = E((Pa(y))a) = LI, Bn o Pa(y) C .

Also for n > m, we have

Exercise 8.6 Show that (E, P) : Dy < A is the unique
embedding-projection pair which makes the following diagrams
commute for all n > 0:

Conclude that Dy, is “the least upper bound”.
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Proposition 8.8

If F : CPO — CPO s continuous on func-
tion spaces, then F' : CPO® — CPO is w-
continuous.

Proof See Plotkin’s notes, page 43.0J

We cannot use this result for the function space func-
tor

[- — —]: CPO”” x CPO — CPO
as it stands. However, we can define a functor
[— =% —]: CPO*’ x CPO?’ — CPO

which is defined on objects as [- — —] and on
morphisms (e, p) : D — E and (¢/,p’) : D' — E’
by
[(e,p) = (¢/,p)] =
([p—¢€l,le—=7]) :[D—D]—[E— E]

We check that ([p — €/], [e — p']) is an embedding-
projection pair. We have

e =»plolp—=e]=[poe—=poe]=[lp—=1p|=1p,p

p—elole=p]=leop—=e€op|Clleg— lp]=1lgm

as required.
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We can now define a class of functors for which we
can solve the domain equation. Note that for any
functors F : C — C' and G : C' — C” the
composition G o F': C — C” is a functor. For any
category C there is a diagonal functor A : C —
C x C given by A(A) = (A, A) for an object A and
A(f) = (f,f) : (A,A) — (B, B) for a morphism
fiA—B.
Consider the class of functors
F : CPO — CPO?%
obtained from composing the following functors
Fo=Fp|ID|-x—-[-@—-]-®&—|(-)L
| =+ —[[-=>7"-]A
where F'p is the constant functor with D a given
cpo, Fp(X) = D and Fp(f) = 1p for all objects
X and morphisms f, and ID is the identity functor
with ID(X) = X and ID(f) = f.
It is easy to check that each of the functors in the
above list is continuous on function spaces. By
Proposition 8.8, we have a class of functors which
are w-continuous. We can therefore solve domain
equations with these functors. For example, the do-
main equation D = Y| X D treated earlier in this
section is given by the functor F' = (Fy | X ID)oA.
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The cpo (NU{oo}, <) is w-algebraic. If ¥ is a count-
able set (e.g. X = {0, 1}), then Str(X) is w-algebraic.

Example 9.4 The cpo ([0, 1], <), where [0, 1] is
the unit interval, is not w-algebraic as its only finite
element is 0. The following is another example of a
cpo which is not w-algebraic:

_—
a

Exercise 9.5

(i) Show that a finite cpo is w-algebraic and all its
elements are finite.

(ii) Show more generally that if all chains in a count-
able cpo are eventually constant, then the cpo is
w-algebraic and all its elements are finite.

(iii) Show that the least upper bound a U b of two
finite elements a and b of a domain is finite (if it
exists). Show that this is not always true of the
greatest lower bound.

(iv) Show that embeddings preserve finiteness. How
about projections?
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9 Algebraic cpo’s

To construct a computable theory of domains, we
need to approximate the elements of a cpo by finite
information or finite elements. This is the basic in-
tuition for an algebraic cpo. The slogan for algebraic
domains is that it is always sufficient to work with
the finite elements.

Definition 9.1 An element a € A of a cpo A is
finite or compact if for all chains (d;);>0, whenever
a C | J;d; then a T d; for some ¢ > 0. The set of
finite elements of A is denoted by K 4.

Example 9.2

(i) In the cpo (NU{oo}, <) the natural numbers are
the finite elements.

(ii) In the cpo Str(X), the finite elements are precisely
the finite strings.

Definition 9.3 A cpo A is w-algebraic if the
set, K 4, of finite elements of A, is countable (i.e.
denumerable) and for any a € A there is a chain
(d;)i>0, di € Ky, of finite elements of A, with
a = | |;d;. The category of w-algebraic cpos and
continuous functions is denoted by w-ALG.
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Proposition 9.6
Let D and E be cpo’s withd € Kp and e € K.
Then the step function d \, e : D — E defined

by
e ifdCx
(dNe)w) = { 1 otherwise

is a finite element of the function space [D — E].

Proof It is easily seen that d “\, e is monotone.
Let (z;);>0 be a chainin D. If d C | |; z;, then by
finiteness of d there is some ¢ > 0 with d C z; and
hence

LIi(d \ce)(@;) =e=(d\ce) (L; i) -
Otherwise if d IZ | |; z;, then d £ x; for all ¢ > 0
and we have

Lli(d \ce)(zi) = L = (d \ce) (L; i) -
Therefore d ~\, e is continuous. Suppose now that
(fi)i>0 is a chain in [D — E] with

(d~\ce) CL; fi-
Then | |; fi(d) is a chain in E and
e = (d\ce)(d) EL; fi(d)
and hence, as e is finite, there is © > 0 with e C
fi(d). It follows that (d \  e) C f;, i.e. d \ e is
finite.[]
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9.1 Scott domains

It is easy to check that the constructors (—) |, — X
—, — ® — and — + — all preserve w-algebraicity;
e.g. if Aand A" are w-algebraic, so is A x A’ with
KAXA’:KAXKA"

However, the function space constructor does not
preserve w-algebraicity. For example, the function
space [A — A] of the following w-algebraic cpo A
has an uncountable set of finite elements. (why?)

0 1. 2 i m -
N
NS

This is a serious shortcoming, as the function space
plays a crucial role in semantics. E.g., models of the
untyped X-calculus in functional programming are
solutions of the equation:

X=X - X+ A

Fortunately, w-ALG has a few subcategories with
function space. We study the most important one.

Definition 9.7 A cpois bounded completeif ev-
ery bounded subset has a lub. A Scott domain is a
bounded complete w-algebraic cpo.
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Our aim is to show that S-DOM, the category of
Scott domains and continuous functions is closed un-
der the function space construction.

Proposition 9.9
Suppose D and E are bounded complete cpo’s.
Then so is [D — E].

Proof Let FF C [D — E] be bounded. Then
for each x € D, {f(z) | f € F?} is bounded in
E and so has lub | |t f(2). Define (|| F)(z) =
Ll¢er f(z). Then | | F is continuous since for any
chain (z;);>0 in D

UFNU; i) = Uger s f2i) =
Ll Uyer f(zi) = Li(L F) ().
Clearly | | F' is the lub of F.O

We need one more result:

Proposition 9.10

Given a cpo A, if the countable set B C K4 is
such that every element of A is the lub of a chain
i B, then B = K 4 and A is w-algebraic.
Proof Letc e Ky . Then by assumption there is
a chain (z;);>0 in B with ¢ = | |; #;. By finiteness
of ¢ there is ¢+ > 0 with ¢ C z;, i.e. ¢ = z; € B.
Hence B = K 4 and A is w-algebraic.[]
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Proposition 9.8 An w-algebraic cpo is
bounded complete iff every bounded pair of finite
elements has a least upper bound.

Proof The ‘only if part’ is trivial. For the ‘if
part’, assume the cpo A has lubs of bounded pairs
of finite elements and suppose (c;);>( is a bounded
subset of finite elements with ¢; C a for all 2 > 0.
Define (c});>p inductively by ¢ = ¢y and ¢ =
cg L ¢;41 for all 2 > 0. We check by induction that
cg is well-defined, finite and below a for all 7z > 0.
This is clear for 06 =cCoa If cg is well-defined,
finite and below a, then cg and ¢; 41 are both finite
and bounded by a and therefore have by our as-
sumption a least upper bound cg 1, Which is below
a and also finite by Exercise 9.5(iii). Clearly (c});>0
is an increasing chain. Let ¢ = | |, cg. Then c is
an upper bound for ¢; (for all > 0). On the other
hand any upper bound of ¢;’s is also an upper bound
for the chain (c});>o as well. Hence c is the lub of

(ci)i>0- Suppose B C A is bounded. Then
{a€A|aCbforsomebe B}N Ky

is a bounded subset of finite elements and hence has
lub by, say. But by is an upper bound of each element
of B and is clearly the lub of B.[J
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Proposition 9.11  Suppose D and E are Scott
domains. Then so is [D — E|.

Proof We have already proved that [D — EJ is
bounded complete. Let f € [D — E]. We claim
that f =| | F where

F:{d\,e|d€KD,6€KE,€Ef<d)}.
First note that | | F exists as FF C [D — E] is
bounded by f. Suppose that x € D and e € Kg
with e © f(z). Since D is w-algebraic there exists
an increasing chain of finite elements (d;);>o with
z = | |; d;. By continuity of f we have

e C f(z) = fUdi) = L 7 (dy).
Hence, by finiteness of e, e C f(d), where d = d;
for some ¢ > 0. But then (d \ e) € F and e C
(d \ e)(x). Since e is an arbitrary finite element
below f(z) and since f(x) is the lub of the set of
finite elements below it, we conclude that f(z) C
(LI F)(z) ie. f C||F. Hence, f = ||F. Now
consider the set A C [D — E] containing all step
functions of the form d \, e with d € Kp and
e € K and the lubs of their bounded finite subsets.
Then A C Kjp_,p will satisfy the conditions of
Proposition 9.10. We conclude that [D — E]J is
w-algebraic and hence a Scott domain.[]
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It is easy to check that Scott domains are closed
under all other constructors we have studied so far,
ie.under — X —, —® —, — B —, —+ —, (—) | as
well as [— — —].

In order to solve domain equations in S-DOM we
need the following fact:

Exercise 9.12
Show that w-ALG and S-DOM are closed under
direct limits.

It follows that if
F:S-DOM — S-DOM

is any functor which is continuous on function
spaces, in particular if F' is made up of the func-
tors studied so far, the direct limit D of the chain

| Py PO

1 ——F(1) FQ) F?(1) F3(1)

in S-DOM® is a Scott domain and and satisfies
the domain equation Do = F(Doo).

Scott domains can be made effective by enumerat-
ing their finite elements and defining a computable
element as the lub of an effective or computable
chain of finite elements.
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