
233 Computational Techniques

Solution Sheet for Tutorial 1

Problem 1.

(i) The set of all positive integers is countable. Solution f : N→ Z+ with f(n) = n+1.

(ii) The set of all integers is countable. Solution f : N → Z with f(n) = n/2 if n is
even and f(n) = −(n+ 1)/2 if n is odd.

(iii) We can show by induction on n that the set of ordered lists of natural numbers that
have length n ≥ 1 is countable. Solution The base case k = 1 is trivial. For the
inductive step, regard every list of length k + 1 as a natural number followed by a
list of length k and mimic the proof of countability of rational numbers. as follows.

Inductive step: Assume that the ordered lists of natural numbers of length n is
countable and is given by:

a0, a1, a2, a3,

where each ai is an ordered list of natural numbers of length n.

Every ordered list of natural numbers of length n + 1 is of the form j : ai for some
j ∈ N and a list ai for some i ∈ N by the inductive step.

Thus, the set of all ordered lists of natural numbers of length n + 1 is included in
the two dimensional array:

0 : a0 0 : a1 0 : a2 0 : a3 0 : a4 . . . 0 : ai . . .
1 : a0 1 : a1 1 : a2 1 : a3 1 : a4 . . . 1 : ai . . .
2 : a0 2 : a1 2 : a2 2 : a3 2 : a4 . . . 2 : ai . . .
3 : a0 3 : a1 3 : a2 3 : a3 3 : a4 . . . 3 : ai . . .

...
...

...
...

...
...

... . . .

The inductive step now follows since these lists are countable by the diagonal method
(used in the proof of countability of rational numbers in the notes).

(iv) We can then use (iii) to show that the set of all finite ordered lists of natural numbers
is countable. Solution

By part (iii), we know that the ordered list of natural numbers of length n is count-
able and is given, say, by bn0, bn1, bn2, bn3

Thus, the set of all ordered finite lists of natural numbers is included in the two
dimensional array:

a10 a11 a12 a13 . . .
a20 a21 a22 a23 . . .
a30 a31 a32 a33 . . .
...

...
...

... . . .

1

Computational Techniques Tutorial #1

By the diagonal method again, this set of countable.

(v) Any non-finite subset of a countable set is countable. Solution Assume A ⊂ S is
a non-finite subset of a countable set S. We need to construct an enumeration g
of A given an enumeration f of S. We provide two solutions, an inductive solution
and a more simple solution. Inductive solution: From an enumeration f : N→ S
obtain an enumeration g : N → A by an inductive definition. Let g(0) = f(n)
where n is the least natural number for which f(n) ∈ A. Now assume g(k) has been
defined for k ≥ 0 and define g(k + 1) = f(m) where m is the least integer such
that f(m) ∈ A and f(m) 6= g(t) for t ≤ k. Note that if f is one to one, then g
would also be one to one, which is the advantage of this to the more simple solution
explained next. Simple solution: Pick any fixed element c ∈ A. For all n ∈ N, let
g(n) = f(n) if f(n) ∈ A, otherwise let g(n) = c.

(vi) If S is countable then Sn, i.e., the collection of all n-tuples of elements of S, is
countable. Solution As in (iii).

(vii) From (vi), we can deduce that the set of integer polynomials (i.e., polynomials with
integer co-efficients) is countable. Solution Combine (vi) and the analogue of (iv)
for a general countable set.

(viii) From (vii) it follows that the set of roots of integer polynomials, the so-called alge-
braic numbers, is also countable. Solution For each integer polynomial of degree n,
there are at most n (real or complex) roots (some of which may be repeated roots).

Problem 2.
Accuracy of floating point operations. Assuming rounded binary arithmetic, deter-
mine (a) the supremum of values δ > 0 such that fl(1 + δ) = 1, and (b) the number of
significant decimal digits, for both single and double precision.
Solution
(a) In rounded SP arithmetic 1+δ is precisely the midpoint between 1, which is represented
as 1 = 0.1× 21 and the smallest floating point number bigger than 1, namely

n = 0.100 001× 21,

with 21 zeros in the mantissa. Hence δ = (n− 1)/2 = 2−23 ≈ 1.2× 10−7. For DP, we get
δ = 2−52 ≈ 2.2× 10−16.
Remark: We show below that δ is the same as the machine accuracy or the relative
accuracy aR of a floating point format, which is defined to be the maximum relative error of
the numbers in its representable range: aR = sup{eR(n) : n in the representable range}.
For rounded arithmetic in SP and DP these are computed as follows. Since we are dealing
with relative errors we only need to consider numbers of the form n = 0.m1m2 . . .mt (with
t = 23 for SP and t = 52 for DP), where m1 6= 0. The supremum of the relative error

2

Computational Techniques Tutorial #1

n−n
n

occurs when the absolute error n− n is maximum, i.e. n− n = 2−t/2 and when n is
minimum in the denominator i.e., n = 0.1 = 1/2. Hence, we have aR = 2−t.
Thus the value of δ computed above is the machine accuracy aR, which we have just
computed. This is because, as our computation for aR showed, the machine accuracy is
precisely the supremum relative error for a number n with fl(n) = 1.
(b) There are different definitions for the notion of significant digits. A common and
reasonable definition is the following. If a number has relative error eR, then it has
b− log eRc significant digits in the decimal representation starting with the first non-zero
digit. Thus, if a number has relative error eR = 10−m, then it has m significant decimal
digits and any further digit can be dispensed with. For example, if 18.774 has relative
error 10−3 then it has only 3 significant digits and can therefore be replaced by 18.7.
Thus, the number of significant digits in SP or DP will be b− log aRc, since aR = 2−t is
the supremum of the relative error.
For SP (aR = 2−23) we get

b− log 2−23c ≈ b6.923c = 6,

and for DP (aR = 2−52) we get

b− log 2−52c ≈ b15.653c = 15.

However, since aR itself is the supremum of the possible relative error in the representable
range, then for most computations in SP we will have 6.923 ≈ 7 significant digits and for
DP we will have 15.653 ≈ 16 significant digits.

Problem 3.
Error propagation in the arithmetic operations. Analyse the propagation of the
relative error in each of the four arithmetic operations by comparing the relative error of
the result with the sum of the relative errors of the operands, assuming that the operations
themselves do not introduce additional loss of accuracy. (Treat multiplication first, it’s
the easiest!)
Solution
Suppose we want to compute x ◦ y, where ◦ is any binary operation. If the machine
representations are x + ∆x and y + ∆y, we end up computing (x + ∆x) ◦ (y + ∆y). So
we make an absolute error of eA = |(x+ ∆x) ◦ (y + ∆y)− x ◦ y|, and a relative error of

eR =
eA
|x ◦ y|

=
|(x+ ∆x) ◦ (y + ∆y)− x ◦ y|

|x ◦ y|
.

So for multiplication (◦ = ×), the absolute error eA = |x∆y + y∆x + ∆x∆y| is bounded
by |x||∆y|+ |y||∆x|+ |∆x||∆y|, and so the relative error is

eR ≤
|x||∆y|+ |y||∆x|+ |∆x||∆y|

|x||y|
=
|∆y|
|y|

+
|∆x|
|x|

+
|∆x||∆y|
|x||y|

.

3

Computational Techniques Tutorial #1

So, apart from the last term which is so small that it can be neglected, the relative error
of the product is bounded by the sum of the relative errors of x and y.
For division (x/y), the absolute error is

eA =

∣∣∣∣x+ ∆x

y + ∆y
− x

y

∣∣∣∣ =
|y∆x− x∆y|
|y||y + ∆y|

≤ |y||∆x|+ |x||∆y|
|y||y + ∆y|

and the relative error is

eR = eA
|y|
|x|
≤ |y||∆x|+ |x||∆y|

|y||y + ∆y|
|y|
|x|

=
|y|

|y + ∆y|
|y||∆x|+ |x||∆y|

|x||y|

=
|y|

|y + ∆y|

(
|∆x|
|x|

+
|∆y|
|y|

)
.

Here the term in front of the bracket is close to 1 as |∆y| � |y|, and so again the relative
error of a quotient is essentially bounded by the sum of the relative errors of numerator
and denominator.
For addition, the absolute error eA = |∆x+ ∆y| is at most the sum of the absolute errors
of x and y, eA ≤ |∆x|+ |∆y|. So the relative error of the sum is

eR =
|∆x+ ∆y|
|x+ y|

≤ |∆x|
|x+ y|

+
|∆y|
|x+ y|

=
|x|
|x+ y|

|∆x|
|x|

+
|y|
|x+ y|

|∆y|
|y|

≤ max{|x|, |y|}
|x+ y|

(
|∆x|
|x|

+
|∆y|
|y|

)
.

Here the term in the bracket is the sum of the relative errors of x and y. If x and y
have the same sign, the term in front is at most 1, and so the relative error of the sum is
bounded by the sum of the relative errors of x and y. But if x and y have opposite sign,
|x + y| can be much smaller than the larger of |x| and |y| and so the factor in front can
become very large!
Moral: Subtraction can be dangerous! Subtraction of real numbers with the same
sign (or addition of numbers with opposite signs) can lead to heavy loss of accuracy. Try
to avoid subtracting real numbers that are almost equal, or if you really can’t avoid it,
do it in double precision!

4

