
Lecture Notes

to be used in conjunction with

233 Computational Techniques

István Maros

Department of Computing
Imperial College London

V2.9e
January 2008



CONTENTS i

Contents

1 Introduction 1

2 Computation and Accuracy 1

2.1 Measuring Errors . . . . . . . . . . . . . . . . . . . . . 1

2.2 Floating-Point Representation of Numbers . . . . . . . . 2

2.3 Arithmetic Operations . . . . . . . . . . . . . . . . . . 5

3 Computational Linear Algebra 6

3.1 Vectors and Matrices . . . . . . . . . . . . . . . . . . . 6

3.1.1 Vectors . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.2 Matrices . . . . . . . . . . . . . . . . . . . . . . 10

3.1.3 More about vectors and matrices . . . . . . . . . . . 14

3.2 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Vector norms . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Matrix norms . . . . . . . . . . . . . . . . . . . . 23

3.3 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Linear dependence and independence . . . . . . . . . 25

3.3.2 Range and null spaces . . . . . . . . . . . . . . . . 30

3.3.3 Singular and nonsingular matrices . . . . . . . . . . . 35

3.4 Eigenvalues, Eigenvectors, Singular Values . . . . . . . . 37

3.4.1 Eigenvalues and eigenvectors . . . . . . . . . . . . . 37

3.4.2 Spectral decomposition . . . . . . . . . . . . . . . 39

3.4.3 Singular value decomposition . . . . . . . . . . . . . 41

3.5 Solution of Systems of Linear Equations . . . . . . . . . 41

3.5.1 Triangular systems . . . . . . . . . . . . . . . . . . 42

3.5.2 Gaussian elimination . . . . . . . . . . . . . . . . . 44

3.5.3 Symmetric systems, Cholesky factorization . . . . . . . 52



CONTENTS ii

3.5.4 Gauss-Jordan elimination if m < n . . . . . . . . 56

3.6 Solution of Systems of Linear Differential Equations . . . 59

3.7 Least Squares Problems . . . . . . . . . . . . . . . . . . 65

3.7.1 Formulation of the least squares problem . . . . . . . . 65

3.7.2 Solution of the least squares problem . . . . . . . . . 67

3.8 Condition of a Mathematical Problem . . . . . . . . . . 71

3.8.1 Matrix norms revisited . . . . . . . . . . . . . . . . 72

3.8.2 Condition of a linear system with a nonsingular matrix . . 73

3.8.3 Condition of the normal equations . . . . . . . . . . . 78

3.9 Introduction to Sparse Computing . . . . . . . . . . . . 79

3.9.1 About real life problems . . . . . . . . . . . . . . . 79

3.9.2 Storing sparse vectors . . . . . . . . . . . . . . . . 82

3.9.3 Operations involving sparse vectors . . . . . . . . . . 83

3.9.4 Storing sparse matrices . . . . . . . . . . . . . . . . 85

3.9.5 Operations involving sparse matrices . . . . . . . . . . 91

4 Convergent Sequences 92

4.1 Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Cauchy Sequences . . . . . . . . . . . . . . . . . . . . 96

4.4 Fixed-point Theorem for Contractions . . . . . . . . . . 98

4.5 Iterative Methods for Ax = b, A Square . . . . . . . . 100

4.5.1 Paradigm of iterative methods . . . . . . . . . . . . 101

4.5.2 Jacobi method . . . . . . . . . . . . . . . . . . . 105

4.5.3 Gauss-Seidel method . . . . . . . . . . . . . . . . . 106

4.5.4 Successive over-relaxation, SOR(ω) . . . . . . . . . . 107

4.5.5 Convergence of the methods . . . . . . . . . . . . . 108

4.5.6 Iterative refinement of a ‘direct’ solution . . . . . . . . 111



CONTENTS iii

5 Functions of Several Variables 112

5.1 Partial Differentiation, The Gradient, The Hessian . . . . 112

5.2 Taylor Expansion . . . . . . . . . . . . . . . . . . . . . 116

5.3 Newton’s Method for min f(x) . . . . . . . . . . . . . . 118

5.4 Quadratic Forms and Linear Systems . . . . . . . . . . . 118

5.4.1 The quadratic form . . . . . . . . . . . . . . . . . 119

5.4.2 Iterative methods with search direction . . . . . . . . 120

5.4.3 The Steepest Descent Method (SDM) . . . . . . . . . 120

5.4.4 The Method of Conjugate Directions (MCD) . . . . . . 124

5.4.5 MCD for general Ax = b . . . . . . . . . . . . . . 127

5.4.6 MCD for arbitrary nonlinear f(x) . . . . . . . . . . . 128



CONTENTS iv



1 INTRODUCTION 1

1 Introduction

2 Computation and Accuracy

2.1 Measuring Errors

Most computational algorithms involve calculations in which precision is

limited and, therefore, the results may not be exact. It is important to

develop ideas and measurements to characterize the difference between an

exact and a computed result.

If a quantity x̄ is viewed as an approximation to x, the absolute error

eA is defined as:

eA = |x − x̄|.

Example 1 Let x = 0.0314 and x̄ = 0.0315. The absolute error is

eA = |0.0314 − 0.0315| = 0.0001 = 10−4.

Example 2 As another example, let x = 1010 and x̄ = 1010 + 100. Now,

the absolute error is

eA = |1010 − (1010 + 100)| = 100 = 102.

Though the absolute error of example 1 is much smaller than that of

example 2, the second approximation is more accurate because it agrees

with the number in eight significant digits.

A calibration based on the size of x can be achieved by defining the

relative error if x 6= 0:

eR =
eA

|x| =
|x − x̄|
|x| .
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Example 3 Applying the definition of eR, the relative error of example 1

is

eR =
|0.0314 − 0.0315|

|0.0314| =
0.0001

0.0314
≈ 3.18 × 10−2,

while the relative error of example 2 is

eR =
|1010 − (1010 + 100)|

|1010| = 10−8,

which confirms what was expected, namely, the second approximation is

better than the first.

If the number x is zero then the relative error is not defined. Additionally,

if x is small the relative error can be misleading and the absolute error

should be used instead. To avoid the need to choose between absolute

and relative error, a mixed error measure is often used in practice:

e =
eA

1 + |x| =
|x − x̄|
1 + |x| .

The value of e is similar to the relative error when |x| ≫ 1 and to the

absolute error when |x| ≪ 1.

2.2 Floating-Point Representation of Numbers

In nearly all scientific, engineering and business applications that require

computing, calculations with real numbers are performed using floating-

point arithmetic of a computer. Real numbers in a computer are rep-

resented by a finite number of bits which immediately entails that not

every number can be represented exactly. Additionally, the result of an

arithmetic operation with two representable numbers may result in a non-

representable number.
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Given an integer b ≥ 2, any real number r can be written in base b as

r = ±m × bz, (1)

where z (the exponent) is a signed integer and m (the mantissa) is a

nonnegative real number. For a general r, m may contain an infinite

number of digits, e.g., if b = 10 and r = 1/3. Most computers are

designed with b = 2 or b = 16 (binary or hexadecimal arithmetic), while

humans use b = 10 (decimal arithmetic).

It is easy to see that the above representation is not unique. Any given

number r can be represented in several different ways even if the base is

the same. For example, 1.23 can be written as 1.23× 100, or 0.123× 101,

or 123.0 × 10−2, etc.

In order to make m unique when r 6= 0, we require that b−1 ≤ m < 1 in

the representation (1). Such a number representation is called normalized.

When r is represented on a computer, only finite number of digits of m

are retained:

r = ±.m1m2 . . .mt × bz, (2)

where t is the number of digits in the mantissa and each mi is a valid

digit in the base b number system: 0 ≤ mi < b. In a normalized nonzero

floating-point number (fl-number), m1 6= 0. In general, t is fixed for a

particular machine and level of precision.

Example 4 Valid and invalid normalized numbers:

Type Valid Invalid

binary (t = 15) −.110011101101001× 23 −.110011121101001× 23

decimal (t = 4) .1234 × 10−2 .0123 × 10−1

hexadecimal (t = 4) −.AB7F × 165 −.0FG7 × 165
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On most scientific computers fl-numbers may be represented in single

and/or double precision. The IEEE standard for floating-point arithmetic

uses b = 2 in (2). The value of t is 23 for single precision (SP) and 52

for double precision (DP). SP and DP numbers occupy 32 and 64 bits,

respectively. Since one bit is needed for the sign of the mantissa, 8 and

11 bits are left for the exponents. The smallest and largest representable

absolute values are:

Precision Smallest absolute Largest absolute

Single ≈ 3.40282 × 10−38 ≈ 3.40282 × 1038

Double ≈ 1.79769 × 10−308 ≈ 1.79769 × 10308

These figures are by a factor of 2 larger than obtainable by (2). The ‘trick’

is that IEEE assumes there is a fixed bit of 1 before the binary point and

such r = ±1.m1m2 . . . mt × 2z. If the exponent of a number is smaller

then the smallest representable exponent (in decimal: −38 for SP, −308 for

DP) then an underflow occurs and the number is usually set to zero. If the

exponent of a number is greater then the largest representable exponent

(in decimal: +38 for SP, +308 for DP) then an overflow occurs which is

usually a fatal error resulting in the termination of the computations.

The t-digit mantissa allows for ≈ 7 significant decimal digits in SP, and

≈ 16 in DP.

When we perform computations with any number x, it must first be con-

verted to its machine representable floating-point equivalent x̄ = fl(x). If

x itself is representable then x = fl(x). Assuming that overflow or under-

flow do not occur, x̄ is usually obtained by either rounding or truncating

(chopping) the representation (1) of x. The relative accuracy aR of fl(x)

is b1−t for truncated arithmetic and 1
2b

1−t for rounded arithmetic.
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2.3 Arithmetic Operations

Errors occur not only in representing numbers on a computer but also in

performing arithmetic operations. Even in the simplest possible case, the

exact result with two representable numbers may not be representable.

For instance, numbers 2.5 and 0.003141 are both representable on a hypo-

thetical four digit decimal machine, their exact sum, 2.503141 is not and

would be rounded or truncated to 2.503.

On machines with reasonable numerical properties, the stored result of

a floating-point operation on two representable numbers x and y satisfies

fl(x op y) = (x op y)(1 + δ),

where ‘op’ is one of the basic operations ‘+’, ‘−’, ‘×’, or ‘/’ and |δ| ≤ aR.

The work associated with the computation of the form fl(u × v + w)

is called a flop. This operation includes access to the values of u, v and

w, a multiplication, an addition and storage of the computed result.

Some laws of mathematics cannot be applied to floating-point calcu-

lations. This is due to the errors in representation and arithmetic. In

particular, the associative property of exact addition is not satisfied for fl-

addition. For instance, there exist representable numbers u, v and w such

that

fl(fl(u + v) + w) 6= fl(u + fl(v + w)),

in other words, the result of fl-addition of three numbers may depend on

the order they are added.

Example 5 Let u = −1, v = 1, w = 0.0001 in a four-digit decimal

arithmetic. Now

fl(u + v) = 0.0, f l(fl(u + v) + w) = 0.0001,
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but

fl(v + w) = 1.0, f l(u + fl(v + w)) = 0.0.

Similarly, mathematical identities such as
(√

|x|
)2

= |x| may not hold

for the floating-point representation of
√

x and x.

An interesting example is the case of the famous harmonic series

1 +
1

2
+

1

3
+ . . . ,

which is known to diverge with exact arithmetic. However, in finite arith-

metic, the next term to be added eventually becomes so small that it does

not alter the computed partial sum, so the series ‘converges’.

3 Computational Linear Algebra

3.1 Vectors and Matrices

3.1.1 Vectors

In the present context, a vector is a linearly ordered set of real numbers

and is denoted by a boldface lower case letter, like v. The numbers are

the components of the vector. Traditionally, vectors are represented in

columnar form:

v =








v1

v2
...

vm








The number of components determines the dimension of the vector. We

say that v is an m dimensional vector, or an element of the m dimensional

space of real numbers: v ∈ R
m.
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If a column vector v is written rowwise, it is called the transpose of v

and is denoted by superscript T, like vT . Therefore, vT is a row vector :

vT = [v1, v2, . . . , vm]. In some cases we use a different notation for row

vectors.

If all the components of a vector are zero then it is called a zero vector.

In any dimension there is a zero vector.

In R
m there are m unit vectors. The ith unit vector (usually denoted by

ei) has a 1 in position i and zero elsewhere.

Example 6 In R
3 the zero vector and the three unit vectors are as follows:

z =





0

0

0



 , e1 =





1

0

0



 , e2 =





0

1

0



 , e3 =





0

0

1



 .

A vector v can be multiplied by a scalar, say λ. It is defined as

λv =








λv1

λv2
...

λvm








,

that is, every component of v is multiplied by λ.

Addition of two vectors is defined if both are of the same dimension.

The sum of u and v is:

u + v =








u1

u2
...

um








+








v1

v2
...

vm








=








u1 + v1

u2 + v2
...

um + vm








,

that is, components with the same index are added.
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Example 7 Compute u + 2.5v with the following vectors:

u =





11

−5

2



 , v =





−2

2

0



 ,





11

−5

2



 + 2.5





−2

2

0



 =





6

0

2



 .

Ordering of vectors. Two vectors u and v are equal if they are of the

same dimension, say m, and all their corresponding components are equal,

that is, ui = vi, i = 1, . . . , m.

We write u ≥ 0 if all components of u are nonnegative: ui ≥ 0, ∀i.

Two vectors, say u and v, of the same dimension can be compared and we

say that u ≥ v if u−v ≥ 0. If this relation does not hold no relationship

exists between them under this definition.

Lexicographic ordering of vectors. This is a generalization of the tradi-

tional ordering. A nonzero vector u is said to be lexicographically positive

(l-positive) if its first nonzero component is positive. Notationally it is

expressed as u ≻ 0. The interpretation of lexicographical negativity is

obvious. For example, u1 = [0, 0, 2,−1]T is l-positive, u1 ≻ 0, while

u2 = [0,−1, 0, 3]T is l-negative, u2 ≺ 0.

Vector u is lexicographically greater than v if they are of the same

dimension, u 6= v and u − v ≻ 0. It is also written as u ≻ v. If u 6= v

than one of them is lexicographically greater than the other.

u � v means that either u = v or u ≻ v holds. It is easy to see that

u � v and u � v imply u = v.

Linear combination of vectors. Given a set of vectors v1,v2, . . . ,vk of the

same dimension and a set of scalars λ1, λ2, . . . , λk, the linear combination,
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LC, of the vectors v1,v2, . . . ,vk is defined as:

λ1v1 + λ2v2 + · · · + λkvk =
k∑

j=1

λjvj. (3)

If all scalars λj = 0 then (3) is the trivial linear combination. If at least

one λj is different from zero then (3) is a non-trivial linear combination.

The line segment connecting two vectors x and y of the same dimension

consists of all vectors of the form λx + (1 − λ)y with 0 ≤ λ ≤ 1. This

is called the convex linear combination of x and y. The convex linear

combination of vectors x1, . . . ,xn is defined as
n∑

i=1

λixi = λ1x1+· · ·+λnxn, with λi ≥ 0 for i = 1, . . . , n and

n∑

i=1

λi = 1.

The multiplication of two vectors u and v of the same dimension is

called inner, dot, or scalar product. It is denoted by uTv (sometimes by

〈u,v〉) and is defined in the following way:

uTv = u1v1 + u2v2 + · · · + umvm =
m∑

i=1

uivi,

which is the sum of the pairwise products of the components. Since uT

is a row vector, the inner product can be conceived as moving rowwise in

the first component and columnwise in the second.

The dot product evidently satisfies commutativity, uTv = vTu, and

distributivity over vector addition, uT(v + w) = uTv + uTw.

It is worth remembering that the result of the dot product is a scalar

(number). This number can be zero even if none the vectors is zero, as

shown in the following example.
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Example 8 Dot product of two nonzero vectors is equal to zero:

Let u =





4

1

3



 , v =





1

2

−2



 , then uTv = 4×1+1×2+3×(−2) = 0.

If the uTv dot product of two nonzero vectors is zero, then u and v are

said to be orthogonal, u ⊥ v.

3.1.2 Matrices

The notion of a matrix was introduced by English mathematician Arthur

Cayley (1821–1895) in 1857.

A matrix is a rectangular array of numbers. It is characterized by the

number of rows and columns. A matrix is denoted by a boldface capital

letter, its elements by the corresponding lower case letter. The rectangular

structure is enclosed in square brackets. If A has m rows and n columns

it looks as follows:

A =








a11 a12 . . . a1n

a21 a22 . . . a2n
... ... . . . ...

am1 am2 . . . amn








We say that matrix A is an element of the m × n dimensional space

of real numbers: A ∈ R
m×n. The row dimension of A is m, the column

dimension is n. A matrix element aij is identified by a lower case letter and

a double subscript. The subscript expresses that aij is at the intersection

of row i and column j.
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Example 9 A matrix with 2 rows and 3 columns:

A =

[
1 3 −1

9 0 2

]

, A ∈ R
2×3

If m = n, the matrix is called square. Two matrices A and B have the

same dimension if the row dimension of A is equal to the row dimension

of B and their column dimensions are also equal. If all the elements of a

matrix are equal to 0 then the matrix is a zero matrix. A zero matrix can

be of any size.

Example 10 This is the 2 × 4 zero matrix:
[

0 0 0 0

0 0 0 0

]

.

Elements of the matrix with equal row and column index are called

diagonal elements, like a22, or aii. Note that the definition of the diagonal

elements does not require that the matrix is square.

Example 11 If A =

[
1 2 3 4

5 6 7 8

]

then the diagonal elements are a11 = 1

and a22 = 6.

Two matrices A and B are said to be equal if they have the same

dimension and aij = bij for all elements.

If A is an m × n matrix its transpose is an n × m matrix, denoted by

AT , obtained from A by interchanging its rows and columns:

aT
ij = aji, 1 ≤ i ≤ n, 1 ≤ j ≤ m,

which means that the first row of AT is equal to the first column of A,

and so on.
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Example 12

A =

[
1 3 −1

9 0 2

]

, AT =





1 9

3 0

−1 2



 .

The transpose of the transpose is the original matrix:

(AT )T = A.

The diagonal elements of A and AT are the same. The matrix A is

said to be symmetric if A = AT . It entails that a symmetric matrix is

square and aij = aji for all i and j.

It is often convenient to partition a matrix into submatrices. This is

indicated by drawing partitioning lines through the matrix, as for example,

A =





a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34



 =

[
A11 A12

A21 A22

]

The resulting submatrices are usually denoted by Aij, as illustrated.

A matrix A can be conceived as a set of column vectors. Column j of

A is denoted by aj and A can be written as

A = [a1, a2, . . . , an] . (4)

We can say that A consists of n m-dimensional vectors.

Similarly, A can be considered as a set of row vectors. Row i of A is

denoted by ai, that is, the index is in the superscript to indicate that this

is a row vector. In this way

A =








a1

a2

...

am








(5)
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and we say that A consists of m n-dimensional row vectors.

We can perform several operations on matrices. The simplest operation

is the computation of a scalar multiple of a matrix. Let λ be a scalar and

A ∈ R
m×n, then

λA =








λa11 λa12 . . . λa1n

λa21 λa22 . . . λa2n
... ... . . . ...

λam1 λam2 . . . λamn








,

that is, every element of A is multiplied by λ.

Example 13 If λ = 2 and A =

[
1 3 −1

9 0 2

]

, then λA = 2A =
[

2 6 −2

18 0 4

]

.

The sum of two matrices A and B is defined if both have the same

dimension (say m × n). In this case:

C = A + B =








a11 + b11 a12 + b12 . . . a1n + b1n

a21 + b21 a22 + b22 . . . a2n + b2n
... ... . . . ...

am1 + bm1 am2 + bm2 . . . amn + bmn








,

that is, cij = aij + bij for all i and j. An immediate consequence is that

A + B = B + A (commutativity).

Example 14
[

1 2 3

−1 −2 0

]

+

[
−1 3 −1

0 2 10

]

=

[
0 5 2

−1 0 10

]
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3.1.3 More about vectors and matrices

The product of matrix A and vector x, Ax, is defined if A ∈ R
m×n and

x ∈ R
n, that is, the column dimension of A is equal to the dimension

of x. The result is an m dimensional vector y = Ax. Because of this,

we can say that by the Ax product the m × n dimensional matrix A

transforms the n dimensional vector x into an m dimensional vector y.

The ith component of y is as:

yi =
n∑

j=1

aijxj

This is nothing but the dot product of row i of A with x, that is, yi = aix.

In this way:

y =








a1x

a2x
...

amx








=








∑n
j=1 a1jxj

∑n
j=1 a2jxj

...
∑n

j=1 amjxj








. (6)

The Ax product can also be considered as the linear combination of the

columns of A with the set of scalars x1, x2, . . . , xn:

y = x1a1 + x2a2 + · · · + xnan =
n∑

j=1

xjaj. (7)

Of course, the two forms, (6) and (7), are algebraically equivalent.

Example 15 Matrix representation of problems.

A company produces three types of alloys: soft (S), medium (M) and

hard (H). They are produced as blends of two basic components C and K.

To produce one ton of S, 0.75 t of C and 0.25 t of K are needed. The

requirements for M and H are 0.55, 0.45 and 0.3, 0.7, respectively. The

data can be represented in matrix form:
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A l l o y

Component S M H

C 0.75 0.55 0.30

K 0.25 0.45 0.70

from which A =

[
0.75 0.55 0.30

0.25 0.45 0.70

]

The company wants to know what amounts of the components are

needed to fulfil an order for 10 tons of S, 12 tons of M, and 20 tons

of H. If the order is formed as vector x = [10, 12, 20]T then the answer to

the question is y = Ax which is

[
0.75 0.55 0.30

0.25 0.45 0.70

]




10

12

20



 =

[
10 × 0.75 + 12 × 0.55 + 20 × 0.30

10 × 0.25 + 12 × 0.45 + 20 × 0.70

]

=

[
20.1

21.9

]

.

Therefore, 20.1 tons of C and 21.9 tons of K are needed.

The product of two matrices A and B is defined for the case when

the column dimension of A is equal to the row dimension of B (the two

matrices are conformable for multiplication). If A ∈ R
m×p and B ∈ R

p×n

the resulting C = AB will be an m × n matrix with cij defined by:

cij =

p
∑

k=1

aikbkj. (8)

It is easy to notice that (8) is nothing but the dot product of row i of A

and column j of B : cij = aibj which is well defined since both are p

dimensional vectors.

In the case of AB we say that A premultiplies B or B postmultiplies

A.
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Example 16 Matrix-matrix products:

If A =

[
1 2 3

1 −1 1

]

, B =





−1 2

2 −1

−3 0



 , C =

[
2 −1

1 1

]

then AB =

[
−6 0

−6 3

]

, BC =





0 3

3 −3

−6 3



 , CA =

[
1 5 5

2 1 4

]

The transpose of a product of two matrices can be expressed as the

product of their transposes taken in reverse order:

(AB)T = BTAT .

The transpose of a product of a matrix and a vector, assuming conforma-

bility,

(Ax)T = xTAT , and (ATy)T = yTA.

Some matrices with special structure play important role in linear al-

gebra. The unit matrix is a square matrix with all off-diagonal elements

being zero and all diagonal elements 1. In case of square matrices it is

customary to quote just the column dimension (which is equal to the row

dimension). A unit matrix is denoted by I and sometimes its dimension

is given in subscript, like Im. An important feature of the unit matrix is

that if it pre- or post-multiplies a conformable matrix A then the resulting

matrix is just A. The m dimensional unit matrix can be considered as the

collection of the m dimensional unit vectors, or m dimensional unit row

vectors.

Im =








1 0 . . . 0

0 1 . . . 0
... ... . . . ...

0 0 . . . 1







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The existence of AB does not necessarily mean that BA also exists

because of the conformability requirement. Even if both AB and BA

exist (both are square and of the same dimension), it is generally true that

AB 6= BA. Equality holds in special cases only, like AIm = ImA or, if

0 denotes the m × m dimensional zero matrix then, A0 = 0A.

If A, B, C and D have appropriate dimensions then the following

relations hold:

A(BC) = (AB)C (Associativity)

A(B + D) = AB + AD (Distributivity)

(B + D)C = BC + DC (Distributivity)

The power of a square matrix A is defined as repeated multiplication:

A2 = AA, A3 = AA2, . . . , An = AAn−1 = A · · ·A︸ ︷︷ ︸
n times

.

If n = 0 then An is defined to be I: A0 = I:

A matrix is diagonal if all its off-diagonal elements are zero. If D is a

square diagonal matrix, it can be defined by the list of the diagonal ele-

ments, D = 〈d1, d2, . . . , dm〉, or diag(d1, d2, . . . , dm), or simply diag(di).

Note that the diagonal elements are not necessarily nonzero.

Example 17

D =





−2 0 0

0 0 0

0 0 3



 = 〈−2, 0, 3〉 = diag(−2, 0, 3)

Premultiplication by a diagonal matrix scales the rows, postmultiplica-

tion by a diagonal matrix scales the columns, since if D and D̄ are diagonal

of appropriate dimension, A is m×n and using the row and column vector
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representations of A, (5) and (4), respectively, then

DA =








d1 0 . . . 0

0 d2 . . . 0
... ... . . . ...

0 0 . . . dm















a1

a2

...

am








=








d1a
1

d2a
2

...

dmam








,

and

AD̄ = [a1, a2, . . . , an]








d̄1 0 . . . 0

0 d̄2 . . . 0
... ... . . . ...

0 0 . . . d̄n








= [d̄1a1, d̄2a2, . . . , d̄nan],

Next, we discuss triangular matrices as they are of great importance

in computational linear algebra. A square matrix U is said to be upper

triangular if all elements below the diagonal are zero:

uij = 0 for all i > j.

In a similar fashion, a square matrix L is lower triangular if all its elements

above the diagonal are zero:

ℓij = 0 for all i < j.

Either form of triangular matrix is called unit triangular if all its diagonal

elements are 1.

Example 18 U is upper triangular and L is lower unit triangular:

U =





−1 2 0

0 4 1

0 0 9



 , L =





1 0 0

−1 1 0

3 6 1



 .
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Recall, two vectors u and v are orthogonal if uTv = 0. A set of nonzero

m-vectors

v1, . . . ,vn (9)

is said to be orthogonal if

vT
ivj = 0 for all i 6= j.

Furthermore, if each of these vectors has the property that

vT
ivi = 1 for 1 ≤ i ≤ n (10)

then the vectors are said to form and orthonormal set.

Example 19 v1 and v2 are orthonormal:

v1 =







1√
2

− 1√
2







, v2 =







1√
2

1√
2







The set of vectors in (9) can be considered a matrix V. Assume, its

column vectors are normalized as in (10). It is easy to see that with these

vectors V satisfies

VTV = In. (11)

A square matrix with orthonormal columns is called an orthogonal ma-

trix. An orthogonal matrix is usually denoted by Q. In this case, a direct

consequence of (11) is that

QTQ = I.

Assume, a and b are two vectors of arbitrary dimension. The outer

product of them is denoted by abT and is interpreted in the following way:
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a =








a1

a2
...

am








, bT = [b1, b2, . . . , bn] , abT =








a1b1 a1b2 . . . a1bn

a2b1 a2b2 . . . a2bn
... ... . . . ...

amb1 amb2 . . . ambn








.

(12)

Row i in the matrix of the outer product (12) is nothing but ai times bT

and column j is bj times a. If the dimensions of a and b are equal then

abT is square.

If u and v are m-vectors, the rank-one update of the unit matrix is

defined as E = I − uvT. For practical purposes, it is more useful to

explicitly include a multiplier α which otherwise can be absorbed in any of

the vectors. In the sequel we will use the following form:

E = I− αuvT

This relation will be of fundamental importance in the Gaussian elimination

(to come later). If x is an m-vector, the Ex product can be computed

without needing the matrix in explicit form:

Ex = (I − αuvT)x = x − αu(vTx) = x − γu,

where γ = α(vTx). Therefore, multiplying x by E means subtracting a

multiple of u from x.

3.2 Norms

Norms are used to measure the size of a vector or matrix. A norm can tell

us which vector or matrix is ‘smaller’ or ‘larger’. Several different norms

can be defined as will be demonstrated in the sequel.
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3.2.1 Vector norms

A vector norm is denoted by ‖·‖. It satisfies the following three properties:

(i) for any nonzero x, ‖x‖ > 0,

(ii) for any scalar λ, ‖λx‖ = |λ| ‖x‖,
(iii) for any two vectors x and y, the triangle inequality holds: ‖x + y‖ ≤

‖x‖ + ‖y‖.
The three most commonly used vector norms are derived from the p-

norm which is defined for an m-vector x as follows:

‖x‖p =

(
m∑

i=1

|xi|p
)1/p

(13)

For different values of p the following norms are obtained:

p = 1 : ‖x ‖1 =
m∑

i=1

|xi| ℓ1 norm

p = 2 : ‖x ‖2 =

√
√
√
√

m∑

i=1

x2
i ℓ2 norm, Euclidean norm/length

p = ∞ : ‖x ‖∞ = max
1≤i≤m

|xi| ℓ∞ norm, infinity norm.
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Example 20 Study the following two examples.

u =





2

3

6



 , ‖u ‖1 = 11, ‖u ‖2 = 7, ‖u ‖∞ = 6

v =





3

4

5



 , ‖v ‖1 = 12, ‖v ‖2 = 7.07, ‖v ‖∞ = 5

Observe that v is larger than u by the ℓ1 norm, smaller by the ℓ∞ norm

and the two are nearly equal by the Euclidean (ℓ2) norm.

It can be shown that for any vector v the following relationships hold:

‖v ‖1 ≥ ‖v ‖2 ≥ ‖v ‖∞.

Computing the ℓ2 norm may be a source of numerical troubles. In several

(mostly statistical) applications the xi values can be very large numbers

and there can be many of them (m is also large). In single precision

computation it may happen that while the magnitude of the norm is within

the representable range, some x2
i or the sum under the square root can

be out of range causing floating point overflow which is a fatal error. The

problem can be overcome at the expense of some extra operations. Since

for any λ > 0, ‖x ‖2 = λ‖(1/λ)x ‖2, we can write

‖x ‖2 = λ

(
m∑

i=1

(xi

λ

)2
)1/2

If λ = ‖x ‖∞ = maxi{|xi|} is chosen then all
(xi

λ

)2

≤ 1 and the norm

becomes computable.

For any norm ‖· ‖ and any nonzero vector v there exists a normalized

vector u which has the same direction as v but has a unit norm, ‖u ‖ = 1.



3 COMPUTATIONAL LINEAR ALGEBRA 23

This is given by

u =
v

‖v ‖,

which is interpreted as vector v multiplied by a scalar λ being the reciprocal

of its norm: λ = 1/‖v ‖.
According to the Cauchy-Schwarz inequality, for any u,v ∈ R

m inequal-

ity ‖u ‖2
2 ‖v ‖2

2 ≥ ‖uTv ‖2
2 holds (proof omitted here). Therefore,

−‖u ‖2‖v ‖2 ≤ uTv ≤ ‖u ‖2‖v ‖2. (14)

If u and v are nonzero vectors we can divide (14) by ‖u ‖2 ‖v ‖2 and

obtain

−1 ≤ uTv

‖u ‖2 ‖v ‖2
≤ 1 (15)

The standard formula for the cosine of the angle φ between two nonzero

vectors u and v is

cos φ =
uTv

‖u ‖2‖v ‖2
. (16)

From (15) it is obvious that (16) satisfies | cos φ| ≤ 1, i.e., this definition is

meaningful. When two vectors u and v intersect at right angle the cosine

is zero because uTv = 0 which corresponds to φ = π/2.

3.2.2 Matrix norms

A matrix norm is denoted by ‖· ‖ and satisfies the same three properties

as a vector norm:

(i) for any nonzero A, ‖A ‖ > 0,

(ii) for any scalar λ, ‖λA ‖ = |λ| ‖A ‖
(iii) for any two matrices A and B, the triangle inequality holds: ‖A + B ‖ ≤

‖A ‖ + ‖B ‖.
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Additionally, it is useful for a matrix norm to satisfy the consistency prop-

erty:

(iv) ‖AB ‖ ≤ ‖A ‖ ‖B ‖.
The three quoted vector norms have their subordinate matrix norm in

the following way:

‖A ‖1 = max
j

‖aj ‖1 the maximum absolute column sum,

‖A ‖2 = σ1(A) the largest singular value (discussion to come),

‖A ‖∞ = max
i

‖ai ‖1 the maximum absolute row sum.

A matrix norm and a vector norm are said to be compatible or consistent

if

‖Ax ‖ ≤ ‖A ‖ ‖x ‖
for every A and x. A vector norm and its subordinate matrix norm always

satisfy this condition.

There is one more important matrix norm, called Frobenius norm which

is defined by

‖A ‖F =





m∑

i=1

n∑

j=1

a2
ij





1/2

.

The Frobenius norm is compatible with the ℓ2 (Euclidean) vector norm:

‖Ax ‖2 ≤ ‖A ‖F‖x ‖2.
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3.3 Vector Spaces

3.3.1 Linear dependence and independence

Linear dependence of m dimensional vectors is defined in the following

way: Let

{a1, a2, . . . , an} (17)

a set of m-vectors. They are said to be linearly dependent if the zero

vector can be written as a non-trivial linear combination of them, i.e.,

λ1a1+λ2a2+· · ·+λnan = 0 can be achieved with λj 6= 0 for at least one j.

Vectors in (17) are said to be linearly independent if the zero vector can

be written only as a trivial linear combination of them, i.e.,

λ1a1 + λ2a2 + · · · + λnan = 0 implies that λj = 0, j = 1, 2, . . . , n.

Example 21 The following three vectors

a1 =

[
−1

1

]

, a2 =

[
1

1

]

and a3 =

[
4

0

]

are linearly dependent because with λ1 = −2, λ2 = 2 and λ3 = −1 the

zero vector can be written in a non-trivial way:

−2

[
−1

1

]

+ 2

[
1

1

]

−
[

4

0

]

=

[
0

0

]

.

However,

a1 =

[
1

0

]

, and a2 =

[
0

1

]

are linearly independent because

λ1

[
1

0

]

+ λ2

[
0

1

]

=

[
0

0

]

implies λ1 = λ2 = 0.
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The maximum number of linearly independent m-vectors is m since

any m dimensional vector can be written as a linear combination of the

m dimensional unit vectors (there are m of them). Any set of vectors

containing the zero vector is linearly dependent (why?).

If we consider vectors in (17) as columns of matrix A then the condition

of linear dependence of the column vectors can be written as

Az = 0 holds with some z 6= 0.

Similarly, linear independence of the columns of A is equivalent to the

condition

Az = 0 implies z = 0. (18)

One of the central problems of computational linear algebra is the solu-

tion of a set of linear equations of the form

Ax = b, (19)

that is, to find an x that satisfies equation (19). Since this equation can

also be written as

x1a1 + · · · + xnan = b,

the problem can be thought of as looking for a linear combination of the

column vectors of A that gives b. If such an x can be found then this is a

solution to (19) and it is said that the system (19) is compatible, otherwise

it is incompatible.

We can investigate (19) with respect to the relationship among the

columns of A. First, assume the columns of A are linearly dependent,

that is Az = 0 with z 6= 0. If (19) is compatible then x + λz is also a

solution to it with arbitrary λ because

A(x + λz) = Ax + λAz = b.
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This means that if the columns of A are linearly dependent and the system

(19) has a solution then it has infinitely many solutions in the form of

x + λz. (20)

Example 22 Let

A =

[
−1 1 4

1 1 0

]

, b =

[
2

4

]

.

Columns of A are linearly dependent and Ax = b has a solution because

with z = [2,−2, 1]T and x = [3, 1, 1]T

Az =

[
−1 1 4

1 1 0

]




2

−2

1



 =

[
0

0

]

,

and

Ax =

[
−1 1 4

1 1 0

]




3

1

1



 =

[
2

4

]

.

Using (20), all solutions can be written in the form of




3

1

1



+λ





2

−2

1



 with arbitrary λ. For instance, λ = 1 gives





5

−1

2



 .

It is easy to verify that this is also a solution to the system.

If the columns of A are linearly independent and Ax = b has a solution

then this solution is unique. To prove it, assume that x is not unique and

there exists an x̂ such that Ax̂ = b. Combining it with Ax = b, we

obtain A(x − x̂) = 0. However, because of the linear independence of

the columns of A as in (18), x− x̂ = 0, that is x = x̂ which means that

the solution is unique.
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During the proof we did not assume that A was square. It means that

the uniqueness holds even if the number of columns in A is less than

the dimension of the column vectors (the number of rows in A), that is,

n < m.

Example 23 Let

A =





1 1

1 0

1 −1



 , and b =





3

1

−1



 .

The columns of A are linearly independent and x = [1, 2]T is a solution to

Ax = b because

x1a1 + x2a2 =





1

1

1



 + 2





1

0

−1



 =





3

1

−1



 .

From the observation above, we know that this is ‘the’ solution, no other

solution can exist.

This example shows that b is a linear combination of the columns of A.

The last possibility, regarding the relationship between A and b, is that

b cannot be written as a linear combination of the columns of A, that is,

there is no x that satisfies Ax = b regardless of the linear dependence or

independence of the columns of A. The following example demonstrates

this situation.
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Example 24 If

A =





1 1

1 0

1 −1



 , and b =





1

2

1



 .

then there is no x = [x1, x2]
T that satisfies

x1





1

1

1



 + x2





1

0

−1



 =





1

2

1



 .

The summary of the main points of this subsection is the following:

1. If the columns of A are linearly dependent and the linear system Ax =

b has a solution, it has an infinite number of solutions.

2. If the columns of A are linearly dependent, the linear system Ax = 0

always has a solution with x 6= 0.

3. If the columns of A are linearly independent and Ax = b has a

solution, the solution is unique.
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3.3.2 Range and null spaces

This subsection gives a more formal framework for the characterization of

the solution of a set of linear equations. First, we define the notion of a

subspace.

Let S be a set containing m dimensional vectors. S is a subspace of R
m

if for scalars λ1 and λ2 and vectors a1, a2 ∈ S, any linear combination is

also in S:

λ1, λ2 ∈ R and a1, a2 ∈ S imply λ1a1 + λ2a2 ∈ S.

A direct consequence of this property is that every subspace contains the

zero vector (why?).

Given a subspace S, a set of vectors {a1, . . . , ak} is said to span S if

every vector x ∈ S can be written as a linear combination of these vectors:

x = λ1a1 + · · · + λkak.

The trivial subspace contains only the zero vector. For any nontrivial

subspace, there is a smallest positive integer r such that every vector in

the subspace can be expressed as a linear combination of a fixed set of r

vectors. This number r is called the dimension or rank of the subspace.

Any such set of r vectors is called a basis for the subspace. There can be

several different bases for the same subspace. The vectors in a basis are

linearly independent (otherwise at least one of them could be expressed as

a linear combination of the others and in this way r would not be minimal).

For any positive integer k, a set of k linearly independent vectors is a basis

for a k-dimensional subspace.

The set of all m-vectors that are linear combinations of the columns of

the m×n matrix A is called the range space, column space or the range

of A and is denoted by range(A).
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A vector b is in the range of A if and only if there exists a linear com-

bination of the column vectors of A that gives b, that is, b ∈ range(A)

iff ∃x ∈ R
n such that b = Ax. The system Ax = b is thus compatible

if and only if b is in the range of A. The range of A is a subspace of R
m

(why?).

Example 25 For the matrix A of Example 23 range(A) consists of all

vectors of the form:




1 1

1 0

1 −1





[
β1

β2

]

=





β1 + β2

β1

β1 − β2



 (21)

with arbitrary scalars β1 and β2.

For example, vectors b1 =





2

1

0



 and b4 =





−1

2

5



 lie in range(A)

because




2

1

0



 =





1 1

1 0

1 −1





[
1

1

]

and





−1

2

5



 =





1 1

1 0

1 −1





[
2

−3

]

.

At the same time, vector b = [1, 2, 1]T of Example 24 does not lie in

range(A) because it cannot be written in the form (21).

The row space of A (also called the range of AT) is defined in a similar

fashion. It is the set of all n-vectors that are linear combinations of the row

vectors of A. This is a subspace of the R
n and is denoted by range(AT).

Formally, x ∈ range(AT) iff ∃v such that x = ATv.

The column rank of a matrix A (and hence the dimension of range(A))

is the maximum number of linearly independent columns in A. Similarly,

the row rank of A is the maximum number of linearly independent rows.
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It can be shown that the row and column ranks of a given matrix A are

equal; their common value is called the rank of the matrix and is denoted

by rank(A). For obvious reasons, rank(A) ≤ min{m, n}.
A matrix whose columns are linearly independent is said to have full

column rank. The definition of full row rank is similar. The matrix A is

said to have full rank if it has either full column rank or full row rank. In

case of full rank, rank(A) = min{m, n}. If rank(A) < min{m, n} then

the matrix is said to be rank-deficient.

Example 26 Consider the following matrices:

A =

[
0 0

0 0

]

, B =

[
2 −1 3

4 −2 6

]

, C =

[
2 0 0

0 0 1

]

,

Obviously, rank(A) = 0. The columns of B are linearly dependent (verify!)

with rank(B) = 1. It means that B is rank-deficient because in this case

min{m, n} = 2. (Note that rows of B are also linearly dependent.) As

rows 1 and 2 of matrix C are linearly independent it has full row rank and,

consequently, rank(C) = 2.

Any m×n matrix A defines two other important subspaces apart from

range(A) and range(AT). The set of all m-vectors orthogonal to column

vectors of A (and hence to range(A)) is called the null space of AT and

denoted by null(AT). Formally, the elements of null(AT) are defined as

follows:

z ∈ null(AT) iff ATz = 0.

It can be shown that null(AT) is a subspace (show it, use definition of null

space and linearity of operations with AT).
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The intersection of the two subspaces range(A) and null(AT) is the zero

vector. Any m-vector can be written as a linear combination of vectors in

range(A) and null(AT). These two subspaces are orthogonal complements

of one another. The sum of the dimensions of range(A) and null(AT) is

m.

Analogous properties hold for range(AT) and null(A). Any n-vector can

be written as a linear combination of vectors in range(AT) and null(A).

The sum of the dimensions of range(AT) and null(A) is n.

Example 27 Any vector in the null space of matrix AT of Example 23

satisfies

ATz =

[
1 1 1

1 0 −1

]




z1

z2

z3



 =

[
z1 + z2 + z3

z1 − z3

]

=

[
0

0

]

which directly yields z1 = z3 and, after back-substitution, z2 = −2z3.

This allows arbitrary value for z3, say β3 and the rest is determined as

z1 = β3 and z2 = −2β3. It means that any vector z in null(AT) is of the

form:

z =





β3

−2β3

β3



 .

One such vector is

b3 =





−1

2

−1



 . (22)

which corresponds to β3 = −1. The dimension of null(AT) is one.
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Because range(A) and null(AT) contain only the zero vector in common,

the expression of every nonzero m-vector b as a sum of two vectors is

unique:

b = bR + bN , where bR ∈ range(A), bN ∈ null(AT),

and, because of the orthogonality, vectors bR and bN satisfy

bT
RbN = 0 and, furthermore, bTb = bT

RbR + bT
NbN .

Given A, vectors bR and bN are the range-space and null-space compo-

nents of vector b.

Similar things can be said in the range space of AT, namely, any nonzero

n-vector x has a unique representation in the form of

x = xR + xN , where xR ∈ range(AT) and xN ∈ null(A).

Example 28 Let A be the matrix of Example 23

A =





1 1

1 0

1 −1



 , and b =





1

3

−1



 .

Using vector b1 = [2, 1, 0]T of Example 25 and b3 = [−1, 2,−1]T of (22)

we can give the unique representation of b in terms of its range(A) and

null(AT) components as

b = b1 + b3 =





1

3

−1



 =





2

1

0



 +





−1

2

−1



 ,

where b1 ∈ range(A) and b3 ∈ null(AT), that is, in this break-down

bR = b1 and bN = b3.

Additionally, bT
1b3 = 2 × (−1) + 1 × 2 + 0 × (−1) = 0, and bTb =

11 = bT
1 b1 + bT

3 b3.
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3.3.3 Singular and nonsingular matrices

For the characterization of linear dependence and independence of square

matrices a special terminology is used. In this subsection A will denote an

m × m (square) matrix.

A square matrix with linearly independent columns is said to be nonsin-

gular. A square matrix whose columns are linearly dependent is said to be

singular. If A is nonsingular, its columns (rows) span the m-dimensional

space R
m. This implies that the subspaces null(AT) and null(A) contain

only the zero vector.

The following properties follow immediately from the previous general

discussion of linear independence:

1. A is nonsingular if Ax = 0 only when x = 0.

2. If A is nonsingular, Ax = b always has a unique solution.

3. A is singular iff ∃x 6= 0 such that Ax = 0.

4. If A is singular and Ax = b has a solution, it has infinitely many

solutions.

For every nonsingular matrix A there exists an associated matrix A−1,

called A inverse or inverse of A, such that

A−1A = I.

Such an A−1 is unique, nonsingular and satisfies the property that A−1A =

AA−1 = I. If A−1 exists, it is sometimes said that A is invertible. The

inverse of the inverse is the original matrix: (A−1)−1 = A.

If A and B are nonsingular, the product AB is also nonsingular (why?)

and

(AB)−1 = B−1A−1.
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If A is nonsingular, AT is also nonsingular (why?) and

(AT)−1 = (A−1)T , which is denoted also by A−T .

Computationally it is demanding to compute the inverse of a general

matrix. However, there are some points to be noted here. First, usually

there is no need to explicitly determine the elements of the inverse of a

general matrix. Second, certain kinds of matrices have easily obtainable

inverses. If D is a nonsingular diagonal matrix, D = diag(d1, . . . , dm)

then D−1 is also a diagonal matrix:

D−1 = diag(d−1
1 , . . . , d−1

m ).

A square diagonal matrix is singular iff at least one of its diagonal elements

is zero (why?). Third, if Q is orthogonal, then QQT = I. It means that

QT plays the role of the inverse and, in fact, it is the inverse of Q:

Q−1 = QT.

Hence, if we know that a matrix is orthogonal, its inverse is available

without any computations.

Fourth, the inverse of an elementary matrix E = I − αuvT is also an

elementary matrix involving the same two vectors as E itself. If αuTv 6= 1

then

E−1 =
(
I − αuvT

)−1
= I − βuvT, where β =

α

αuTv − 1
.
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3.4 Eigenvalues, Eigenvectors, Singular Values

3.4.1 Eigenvalues and eigenvectors

For any square matrix A, there exists at least one number λ and an

associated nonzero vector u such that

Au = λu. (23)

Verbally, the transformation of u by A does not change the direction of

u. In the general case it is possible that such a λ is a complex number.

A value of λ for which (23) holds is called an eigenvalue of A and the

corresponding vector is called an eigenvector.

Example 29 Let

A =

[
2 1

1 2

]

, B =

[
3 1

0 3

]

, u1 =

[
1

1

]

, v =

[
1

0

]

.

Now,

Au1 =

[
2 1

1 2

] [
1

1

]

=

[
3

3

]

= 3u1,

that is, λ1 = 3 is an eigenvalue and u1 = [1, 1]T is the corresponding

eigenvector of A. Furthermore, we have

Bv =

[
3 1

0 3

] [
1

0

]

=

[
3

0

]

= 3v,

so, λ = 3 is an eigenvalue and v = [1, 0]T is the corresponding eigenvec-

tor of B. Note that λ = 3 is an eigenvalue for both matrices but the

eigenvectors are different.

From (23), which can be written as (A− λI)u = 0, it follows that for

λ to be an eigenvalue it is necessary and sufficient that A−λI is singular.



3 COMPUTATIONAL LINEAR ALGEBRA 38

Any m×m matrix A has m eigenvalues λ1, . . . , λm. These eigenvalues

are not necessarily distinct and can be complex numbers. They are the

roots of the m-th degree polynomial equation det(A − λI) = 0. Here,

‘det’ denotes the determinant (not discussed in these notes). Sometimes

the set of eigenvalues of A is denoted by {λ1(A), . . . , λm(A)}.
In Example 29, A has two eigenvalues, λ1 = 3 and λ2 = 1, while the

corresponding eigenvectors are u1 = [1, 1]T and u2 = [−1, 1]T. At the

same time, B has a double eigenvalue λ = λ1 = λ2 = 3 (the multiplicity

of this eigenvalue is two) and both have the same eigenvector v = [1, 0]T.

Any nonzero multiple of an eigenvector is also an eigenvector, since

the linearity of the transformation ensures that A(γu) = λ(γu) for any

nonzero scalar γ. This makes it possible to implicitly assume that the

eigenvectors have a Euclidean (ℓ2) norm of one. The eigenvalues and

eigenvectors together comprise the eigensystem of a matrix.

The sum of the diagonal elements of a square matrix A (called the trace

of A) is equal to the sum of the eigenvalues:

trace(A) =
m∑

i=1

aii =
m∑

i=1

λi(A).

As an illustration of it, check A of Example 29, where a11+a22 = 2+2 = 4

and λ1 + λ2 = 3 + 1 = 4.

The product of the eigenvalues is equal to the determinant of A:

det(A) =

m∏

i=1

λi(A).

For A of Example 29, det(A) = 2×2−1×1 = 3, and λ1×λ2 = 3×1 = 3.



3 COMPUTATIONAL LINEAR ALGEBRA 39

3.4.2 Spectral decomposition

If we multiply both sides of (23) by a nonsingular matrix S, we obtain

SAu = λ(Su). Using S−1S = I, it follows that

SAu = SAS−1Su = SAS−1(Su) = λ(Su), (24)

which shows that λ is an eigenvalue and Su is an eigenvector of SAS−1.

Two matrices are said to be similar if they have the same eigenvalues.

(24) verifies that SAS−1 is similar to A. The matrix SAS−1 is called a

similarity transform of A.

If A is singular, there exists a nonzero vector x such that Ax = 0,

which shows that a singular matrix has at least one zero eigenvalue. If A

is nonsingular, all its eigenvalues are nonzero, and the eigenvalues of A−1

are the reciprocals of the eigenvalues of A.

The eigensystem of a nonsingular symmetric matrix A has two special

properties:

1. All eigenvalues of A are real.

2. A has m orthogonal eigenvectors which form a basis for R
m. They

may be normalized so that ‖ui ‖2 = 1, i = 1, . . . , m (that is, uT
iui = 1

and uT
iuj = 0 for i 6= j).

Let Q = [u1, . . . ,um]. Since the column vectors are normalized and are

orthogonal, Q is orthogonal and QT = Q−1. It follows that with this Q

Q−1AQ = QTAQ = QT[Au1, . . . ,Aum] = QT[λ1u1, . . . , λmum].

Comparing the first part with the last one:

Q−1AQ =





λ1
. . .

λm



 = Λ (25)
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and therefore a symmetric A is similar to a diagonal matrix Λ = diag(λi),

where λi’s are the eigenvalues of A.

Premultiplying (25) by Q and postmultiplying by Q−1, we obtain the

spectral decomposition of A:

A = QΛQ−1.

Recall that xT is a row vector, so is xTA. Therefore, xTAx = (xTA)x

is a dot product resulting in a number. A symmetric matrix A is said to

be positive definite if

xTAx > 0 for all nonzero x. (26)

If the relation is ‘≥’ then A is said to be positive semidefinite. Negative

definite and negative semidefinite are defined with relations ‘<’ and ‘≤’

in (26). The matrix A is indefinite if xTAx is positive for some x and

negative for others.

It is easy to obtain a connection between definiteness and eigenvalues

of A. For any x let y = Q−1x (⇒ x = Qy, xT = yTQT), where Q is

defined as above (remember: QT = Q−1). Then xTAx = yTQTAQy =

yT(QTAQ)y = yTΛy which implies that

xTAx =

m∑

i=1

λiy
2
i .

Since yi’s are arbitrary (because x is), it is clear that A is positive definite

(or positive semidefinite) if and only if all λi eigenvalues of A are positive

(or nonnegative).
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3.4.3 Singular value decomposition

Any m × n matrix A can be written as

A = USVT, (27)

where U is an m×m orthogonal matrix, V is an n×n orthogonal matrix,

and S is an m × n diagonal (!) matrix, S = diag(σ1, σ2, . . . , σp), with

p = min{m, n} and σi ≥ 0, i = 1, . . . , p. The nonnegative numbers

{σi} are called the singular values of A, and (27) is called the singular

value decomposition (SVD). The SVD is the most informative general

representation of a matrix. The convention is usually adopted that σ1 ≥
σ2 ≥ · · · ≥ σp, so that σ1(A) denotes the largest singular value of A.

If A has rank r and r > 0, then A has exactly r strictly positive singular

values, so that σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and σr+1 = · · · = σp = 0. If

A has full rank, all its singular values are nonzero (that is, positive).

The singular values of A are the square roots of the eigenvalues of the

symmetric matrix ATA (if m ≥ n) or of the symmetric matrix AAT (if

m < n). If A is symmetric, its singular values are the absolute values of

its eigenvalues.

3.5 Solution of Systems of Linear Equations

The fundamental problem of this section is the solution of the set of linear

equations given in the following form:

Ax = b, (28)

where vector x is to be determined. We already know that a solution exists

only if (28) is compatible, i.e., b lies in the range of A.
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3.5.1 Triangular systems

If A is upper triangular, the solution of (28) can easily be computed.

Consider the following example:

x1 + 2x2 + 3x3 = 5

−x2 + x3 = 3

−3x3 = −6

(29)

From the third equation x3 can be determined as x3 = (−6)/(−3) = 2.

However, knowing that x3 = 2, it can be substituted into equation 2 where

x2 remains the only unknown:

−x2 + 2 = 3,

which immediately gives x2 = −1. Now, we know the values of x2 and x3

and can substitute them into equation 1:

x1 + 2(−1) + 3(2) = 5,

from which x1 = 1 follows. This completes the solution procedure. The

solution of (29) is x = [1,−1, 2]T.

What we have just done is called back-substitution. Thus, we can

say that if A of (28) is upper triangular, (28) can be solved by back-

substitution. In general, if A is an m × m nonsingular upper triangular

matrix then the diagonal elements are all nonzero and the solution, which

is unique, can be computed by the following formula:

xi =
1

aii



bi −
m∑

j=i+1

aijxj



 , for i = m, m − 1, . . . , 1,

where the sum is defined to be zero for i = m. The formula reflects that

at the time of calculating xi all variables xi+1, . . . , xm are known.
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We can conclude that the case when A is upper triangular is a favourable

one that can be solved in a rather straightforward way. Let us now consider

an example when A is lower triangular:

2x1 = 4

x1 + x2 = 1

x1 − 3x2 + 2x3 = −1

From the first equation we immediately get x1 = 4/2 = 2. Substituting it

into the second equation: 2 + x2 = 1 from which x2 = −1 follows. Now,

the values of x1 and x2 can be substituted into equation 3 and we obtain

2 − 3(−1) + 2x3 = −1. Solving it for x3, we get x3 = (−6)/2 = −3.

Thus, the solution is x = [2,−1,−3]T.

The systematic way the solution was obtained is valid for the general case

and is called forward substitution. Formally, if A of (28) is a nonsingular

lower triangular matrix then the solution to (28) is unique and can be

computed by the following formula:

xi =
1

aii



bi −
i−1∑

j=1

aijxj



 , for i = 1, 2, . . . , m,

where the sum is defined to be zero for i = 1. The formula shows that at

the beginning of step i variables x1, . . . , xi−1 are known.

Thus, we can conclude that if A is upper or lower triangular, (28) can

be solved easily. This observation suggests that one should try to reduce

the general case to one of the triangular forms to take advantage of the

solution procedures just developed.

These advantages of the triangular cases have motivated the develop-

ment of the LU factorization (also called LU decomposition) of a non-

singular matrix A. If

A = LU,
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then (28) can be written as

Ax = LUx = b. (30)

Defining y = Ux, from (30) we get Ly = b. This latter is a lower

triangular system that can be solved for y by forward substitution. When

y becomes known, Ux = y can be solved for x by back-substitution. The

LU form of A can practically be obtained by the Gaussian elimination

discussed in the next section.

3.5.2 Gaussian elimination

The Gaussian elimination, GE, (named after the German mathematician

Karl Friedrich Gauss [1777–1855]) is the basic computational technique to

solve (28). Its application can also reveal that no solution exists or there

are infinitely many solutions.

GE performs transformations on the linear system to be solved in such

a way that the transformed system is equivalent to the original one in

the sense that both have the same solution. Therefore, if a solution to

the transformed system is obtained, it is also the solution to the original

problem. The transformations will result in an upper triangular system

that can be solved by back-substitution as discussed in section 3.5.1.

To facilitate GE, we introduce elementary row operations (ERO) on (28)

that are equivalent transformations in the above sense. The notion row

now refers to an equation of (28): aix = bi. To illustrate the operations,

we use the following example:

Example 30
x1 + x2 − x3 = 2

2x1 − x2 + 4x3 = 4

3x1 − 2x2 − x3 = −2

(31)
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The matrix of the coefficients (including b as the last column):

A∗ =





1 1 −1 2

2 −1 4 4

3 −2 −1 −2





ERO-1: Multiplication of a row by a constant. Mathematical form: λaix =

λbi. In pseudo-code form: row(i):=lambda * row(i), with obvi-

ous meaning of row(i).

Example 31 Multiply row 1 of A∗ by 2:





2 2 −2 4

2 −1 4 4

3 −2 −1 −2





ERO-2: Replacing a row by subtracting from it a scalar multiple of another

row. Mathematically, row i becomes [ai − λak, bi − λbk] if the index

of the other row is k. In pseudo-code: row(i):=row(i) - lambda

* row(k).

Example 32 Consider A∗ and multiply row 1 by 3 and subtract it

from row 3:





1 1 −1 2

2 −1 4 4

0 −5 2 −8





Note: row 1 remains unaltered.

ERO-3: Swapping rows i and k, pseudo-code: swap(row(i),row(k)),

with obvious interpretation of function swap().
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Example 33 Swap rows 2 and 3 of A∗:




1 1 −1 2

3 −2 −1 −2

2 −1 4 4





Let us consider the system of equations in (31). If we perform ERO-2

on row 2 with row 1 and λ = 2 as row(2):=row(2)-2*row(1) and then

ERO-2 on row 3 with row 1 and λ = 3 as row(3):=row(3)-3*row(1),

the coefficients of x1 in rows 2 and 3 become zero:

x1 + x2 − x3 = 2

− 3x2 + 6x3 = 0

− 5x2 + 2x3 = −8

In other words, the first equation has remained unaltered and we have

eliminated variable x1 from all but the first equation. At this stage we

can forget about the first equation and consider the remaining system and

do exactly the same as with the original. Now we use equation 2 and

eliminate x2 from all equations (in the example from only one) so that

subtract a multiple of (−5)/(−3) of row 2 from row 3 (ERO-2 on row 3):

row(3):=row(3)-(5/3)*row(2) and obtain:

x1 + x2 − x3 = 2

− 3x2 + 6x3 = 0

− 8x3 = −8

This is already the well known upper triangular system that can be solved

by back-substitution resulting in the solution x = [1, 2, 1]T.

The solution of a general m×m system follows the above pattern with

some fine tuning. The principle idea is to eliminate one variable at each

stage from the remaining equations. This can be achieved by applying

EROs in an appropriate manner. After each elimination the remaining
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part of the system (the matrix of the system) changes. At the beginning

of stage i the coefficients will be given a superscript (i) in parentheses. As

such, the original system will have superscript (1) as follows:

a
(1)
11 x1 + a

(1)
12 x2 + · · · + a

(1)
1mxm = b

(1)
1

a
(1)
21 x1 + a

(1)
22 x2 + · · · + a

(1)
2mxm = b

(1)
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a
(1)
m1x1 + a

(1)
m2x2 + · · · + a

(1)
mmxm = b

(1)
m

It is easy to see that the appropriate multiple of row 1 to subtract from

row 2 in order to eliminate x1 from row 2 is a
(1)
21 /a

(1)
11 , assuming that

a
(1)
11 6= 0. If a

(1)
11 = 0, we look for a row k where a

(1)
k1 6= 0 and perform

ERO-3 with rows 1 and k. In general, to eliminate x1 from row i, a
(1)
i1 /a

(1)
11

times row 1 must be subtracted from row i. Performing this operation on

all rows i = 2, . . . , m (i.e., ERO-2 on row i with row 1), the following

system is obtained:

a
(1)
11 x1 + a

(1)
12 x2 + · · · + a

(1)
1mxm = b

(1)
1

a
(2)
22 x2 + · · · + a

(2)
2mxm = b

(2)
2

... . . . ... ...

a
(2)
m2x2 + · · · + a

(2)
mmxm = b

(2)
m

Note superscript (2) in rows 2, . . . , m. If all coefficients of x1 are zero in

all rows then the matrix is singular. In this case there are two possibilities:

either we have infinitely many solutions or there is no solution at all (see

the end of section 3.3.1). To find out what is the case we simply ignore

the empty column (where all coefficients are zero) and move over to the

column of x2.

In the next step we consider the reduced problem with coefficients having

superscript (2). Again, we look for a row k which has a nonzero coefficient

in the column of x2, that is, a
(2)
k2 6= 0. If such a row cannot be found, the
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matrix is singular and, again, we move over to the next variable. If one is

found we swap it with row 2 making a
(2)
22 6= 0. (If k = 2 then formally a

swap(row(2),row(2)) is performed which, of course, involves no oper-

ation.) To eliminate x2 from rows 3, . . . , m, the following multiples of row

2 have to be subtracted from rows 3, . . . , m: a
(2)
32 /a

(2)
22 , . . . , a

(2)
m2/a

(2)
22 , re-

spectively. The coefficients of the newly obtained system are superscribed

by (3).

In the general step k the following transformations take place:

a
(k+1)
ij = a

(k)
ij −

(

a
(k)
ik /a

(k)
kk

)

a
(k)
kj , i, j > k (32)

and

b
(k+1)
i = b

(k)
i −

(

a
(k)
ik /a

(k)
kk

)

b
(k)
k , i > k. (33)

The denominator in the transformation (in this case a
(k)
kk ) is called pivot

element, while the a
(k)
ik /a

(k)
kk ratios are the multipliers of the elimination.

Continuing this procedure (if possible), finally we obtain the following

upper triangular system which is equivalent to the original system of equa-

tions:
a

(1)
11 x1 + a

(1)
12 x2 + · · · + a

(1)
1mxm = b

(1)
1

a
(2)
22 x2 + · · · + a

(2)
2mxm = b

(2)
2

. . . ... ...

a
(m)
mmxm = b

(m)
m

which can be solved by back-substitution. Note that in this form each

row has a different superscript. The superscript represents the ‘age’ of the

coefficients in that row, which is equal to the number of times the row has

undergone ERO-2. It is more likely that values which were subject to many

transformations are less accurate than others with fewer transformations.
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If the matrix turned out to be singular, at the end of the above procedure

we either get a contradiction (no solution exists) or obtain an equation in

several variables. One of them can be expressed in term of the others.

The ‘others’ can be given arbitrary values (infinitely many possibilities)

and they determine all other variables via back-substitution.

Summarizing the above, step k of the triangularization phase of the

Gaussian elimination is:

TrStep(k): Elimination of xk from equations k + 1, . . . , m (coefficients

with superscript (k) are involved):

k.1 Look for a nonzero coefficient (in column of xk) a
(k)
jk 6= 0, j ≥ k,

and swap row j with row k, i.e., perform swap(row(j),row(k)).

This results in a
(k)
kk 6= 0.

k.2 For j = k + 1, . . . , m perform ERO-2 on row j with row k using

multiplier a
(k)
jk /a

(k)
kk .

Triangularization is achieved by performing TrStep(k) for k = 1, . . . , m−
1. It is then followed by back-substitution which completes the solution of

(28) by Gaussian elimination.

There are several subtleties of this procedure. The most important of

them is that in step k.1 it is worth looking for a j for which |a(k)
jk | is the

largest and not simply nonzero. This choice can dramatically improve the

numerical stability of the procedure.

There is an interesting modification of the above procedure which is

referred to as Gauss-Jordan elimination. This is based on the observa-

tion that the back-substitution of Gaussian elimination may be avoided by

adding row operations that make entries above the diagonal zero. The

operations (32) and (33) are replaced by the operations
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a
(k+1)
ij = a

(k)
ij −

(

a
(k)
ik /a

(k)
kk

)

a
(k)
kj , i 6= k, j > k

b
(k+1)
i = b

(k)
i −

(

a
(k)
ik /a

(k)
kk

)

b
(k)
k , i 6= k,

and

b
(k+1)
k = b

(k)
k ,

and the system is reduced to the diagonal form

a
(k)
kk xk = b

(m)
k for k = 1, 2, . . . , m,

which is trivial to solve. Note that here the superscript of bk is (m) since the

entire right-hand-side is transformed in each step. A slight modification

of the G-J procedure is to apply ERO-1 to row k with a
(k)
kk to make the

coefficient of xk equal to 1. In this case the final stage is

xk = b
(m)
k for k = 1, 2, . . . , m,

which is the solution itself. This latter ‘normalized’ form is computationally

not attractive because of some extra work but it has significance in linear

programming.
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Example 34 G-J elimination:

Operations to perform

2x1 − 3x2 + 2x3 = −2

x1 + 1
2x2 − x3 = 1 row(2):= row(2) - 1

2 row(1)

4x1 − x2 + x3 = 3 row(3):= row(3) - 4
2 row(1)

2x1 − 3x2 + 2x3 = −2 row(1):= row(1) -
(−3)

2
row(2)

2x2 − 2x3 = 2

5x2 − 3x3 = 7 row(3):= row(3) - 5
2
row(2)

2x1 − x3 = 1 row(1):= row(1) -
(−1)

2 row(3)

2x2 − 2x3 = 2 row(2):= row(2) -
(−2)

2 row(3)

2x3 = 2

2x1 = 2

2x2 = 4

2x3 = 2

from which the solution is x1 = 1, x2 = 2, x3 = 1.
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3.5.3 Symmetric systems, Cholesky factorization

When matrix A is symmetric (A = AT) and the G-J elimination steps can

be performed without row changes then the symmetry of the transformed

matrix is retained throughout the process. It means whenever the lower

triangularization eliminates a column from the remaining matrix, the same

automatically takes place with the corresponding row. (In this way, half of

the computational work can be saved.)

If A is not only symmetric but also positive definite (xTAx > 0 for any

x 6= 0) then some interesting properties ensure that the diagonal element

can always be used for pivoting. These properties are:

1. All diagonal elements are positive (aii > 0) for all i.

2. The largest element (in magnitude) in the entire matrix occurs in the

diagonal.

3. All the eigenvalues of A are strictly positive.

4. All leading principle minors (i.e., the 1× 1, 2× 2, . . . , m×m subma-

trices beginning in the upper left corner) are positive definite.

5. If the Gaussian elimination without row changes is performed on A,

the remaining matrix is positive definite at every step.

In this case, the A = LU factored form is also symmetric with U = LT,

i.e.,

A = LLT

This is called the Cholesky factorization of A and L is called the Cholesky

factor.

The Cholesky factor can be computed in several different ways. One of

them is the Gaussian elimination (not discussed). Another possibility is to
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determine its elements by direct computation. Writing out the elements

of A = LLT, we have:







a11 a12 . . . a1m

a21 a22 . . . a2m
... ... . . . ...

am1 am2 . . . amm








=








ℓ11

ℓ21 ℓ22
... ... . . .

ℓm1 ℓm2 . . . ℓmm















ℓ11 ℓ21 . . . ℓm1

ℓ22 . . . ℓm2
. . . ...

ℓmm








Here, a11 is defined by the dot product of the first row of L by the first

column of LT (which is equal to the first row of L), giving a11 = ℓ2
11.

Since property 1 ensures that a11 > 0, the (1,1) element of L is defined

by ℓ11 =
√

a11 (> 0).

Continuing the dot products with row 1 of L and columns 2, . . . , m

of LT (≡ rows 2, . . . , m of L), we obtain ℓ11ℓ21 = a12, . . . , ℓ11ℓj1 =

a1j, . . . , ℓ11ℓm1 = a1m, which gives

ℓj1 =
a1j

ℓ11
, j = 2, . . . , m

completing the first column of L.

Element (2,2) of A is defined as the dot product of row 2 of L and

column 2 of LT:

ℓ2
21 + ℓ2

22 = a22 ⇒ ℓ2
22 = a22 − ℓ2

21.

Since a22 − ℓ2
21 is the leading diagonal element of the remaining matrix

after one step of the Gaussian elimination, it is positive by property 5.

Therefore ℓ22 is well defined. The (2,j) element of A is obtained as the

dot product of row 2 of L and column j of LT: ℓ21ℓj1 + ℓ22ℓj2 = a2j for

j = 3, . . . , m. Since a2j, ℓ21, and ℓj1 are known, we have

ℓj2 =
a2j − ℓ21ℓj1

ℓ22
, j = 3, . . . , m
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which determines column 2 of L. Continuing in this fashion, at the be-

ginning of step k columns 1 through k − 1 of L have been computed and

the k-th diagonal element of L is defined by the equation

ℓ2
kk = akk − ℓ2

k1 − ℓ2
k2 − · · · − ℓ2

k,k−1. (34)

Again, property 5 ensures that this quantity remains positive for k =

1, . . . , m. The k-th column of L is determined from the relation

ℓk1ℓj1 + ℓk2ℓj2 + · · · + ℓkkℓjk = akj, j = k + 1, . . . , m.

Below, we give a computational description of the Cholesky factoriza-

tion. First, two functions, cdiv(k) and cmod(j, k), are defined, then the

algorithm itself. It is assumed that m is globally available for the functions.

cdiv(k) cmod(j, k)

ℓkk =
√

akk

do i = k + 1 to m do i = j to m

ℓik := aik/ℓkk aij := aij − ℓikℓjk

enddo enddo

Column Cholesky algorithm

do k = 1 to m

cdiv(k)

do j = k + 1 to m

cmod(j, k)

enddo

enddo

The Cholesky factorization is an all-important computational technique

in many different areas ranging from linear algebra through least squares

problems to linear and nonlinear optimization. It can be used to determine
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whether a symmetric matrix A is positive definite or not. If the procedure

terminates successfully then A is positive definite. If it breaks down at an

intermediate stage because the right hand side of (34) becomes negative

or zero, then A is not positive definite.

Example 35 Find the Cholesky factor for

A =





1 −1 1

−1 10 −1

1 −1 5





It is symmetric but we do not know (yet) if it is positive definite.





ℓ11

ℓ21 ℓ22

ℓ31 ℓ32 ℓ33









ℓ11 ℓ21 ℓ31

ℓ22 ℓ32

ℓ33



 =





1 −1 1

−1 10 −1

1 −1 5





k = 1 :

ℓ2
11 = 1 ⇒ ℓ11 = 1

ℓ11ℓ21 = −1 ⇒ ℓ21 = −1

ℓ11ℓ31 = 1 ⇒ ℓ31 = 1

k = 2 :

ℓ2
21 + ℓ2

22 = 10 ⇒ ℓ2
22 = 9 ⇒ ℓ22 = 3

ℓ21ℓ31 + ℓ22ℓ32 = −1 ⇒ ℓ32 = 0

k = 3 :

ℓ2
31 + ℓ2

32 + ℓ2
33 = 5 ⇒ ℓ2

33 = 4 ⇒ ℓ33 = 2

Thus the factorization was successful ⇒ A is positive definite. Its factored

form is 



1 −1 1

−1 10 −1

1 −1 5



 =





1

−1 3

1 0 2









1 −1 1

3 0

2




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If A is in the Cholesky factored form, Ax = b can be solved in the fol-

lowing way. Since now A = LLT (a special form of the LU decomposition),

we have to solve LLTx = b. Denoting LTx = y, first Ly = b is solved

for y by forward substitution then LTx = y for x by back-substitution.

3.5.4 Gauss-Jordan elimination for the m < n case

So far we have discussed the Gaussian (and Gauss-Jordan, G-J) elimination

to solve Ax = b when A is a square matrix. We know solution exists if

b ∈ range(A). This latter is also true if A ∈ R
m×n with m < n (fewer

equations than variables). Obviously, in this case the column vectors of A

are linearly dependent.

This subsection investigates the solution of Ax = b, A ∈ R
m×n with

m < n. The normalized version of the G-J elimination can be used to

make the coefficients of as many x
(k)
k = 1 as possible. The transformations

are performed on the augmented matrix [A | b]. Its current transformed

version is now denoted by [Ā | b̄].

First, row 1 is searched for a pivot element. Assume, a11 6= 0. To make

it equal to 1 (as required by the normalized G-J) row 1 is divided by a11

and then x1 is eliminated from all other rows by appropriate ERO-2s. Next,

row 2 is taken. It has a zero in position 1 as the result of the previous

elimination step. If ā22 6= 0 variable x2 can be eliminated from all rows,

including row 1, in a similar fashion as in step 1. Assume this procedure can

be repeated for all subsequent rows until step k (āii 6= 0, i = 1, . . . , k−1).

If ākk = 0 (and, of course, āki = 0, i = 1, . . . , k − 1), it cannot

be selected as pivot. In this case search continues in row k to locate a

nonzero entry that can be used as a pivot element. If we find ākj 6= 0 then

variable xj can be eliminated from all other rows. The situation is visually

represented in the following table.
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x1 xk−1 xk xj b̄

1 1 0 . . . 0 0 ā1k 0 b̄1

0 1

... . . . ... ... ... ...

0 0 1 0

k − 1 0 0 . . . 0 1 0 b̄k−1

k 0 0 . . . 0 0
�

�

�

�0 1 b̄k

m 0 0 . . . 0 0 ā′mk 0 b̄m

It may also happen that all ākj entries are zero. In this situation two cases

can be distinguished.

1. If b̄k = 0, row i is linearly dependent. It means the rank of A is less

than m (rank deficiency) but the algorithm can proceed with the next

row. We also say that such a row is redundant.

2. If b̄k 6= 0, system is incompatible: b 6∈ range(A), therefore, solution

does not exist.

If there are redundant rows they simply can be dropped from the system

of equations. We now assume A is of full (row) rank. It entails the

above procedure finds m variables that are eliminated from all but one

equations. The corresponding columns are unit vectors in the final matrix.

Variables with a unit column vector are called basic variables (BVs) . All

other variables are called nonbasic variables (NBVs). Basic variables are



3 COMPUTATIONAL LINEAR ALGEBRA 58

associated with the rows of the matrix. For instance, in the above tabular

form the basic variable of row k − 1 is xk−1 and the BV of row k is xj.

At the successful termination of the G-J procedure we have m basic

and n − m nonbasic variables. If the columns of the basic variables are

permuted to the first m positions we have the following structure:

BV NBV b̄

1

. . .

1

Formally, the i-th equation is

xi +
n∑

j=m+1

āijxj = b̄i,

from which the i-th basic variable can be expressed as

xi = b̄i −
n∑

j=m+1

āijxj,

We can give arbitrary values to NBVs. Each such assignment uniquely

determines the values of the BVs. Therefore, we have infinitely many so-

lutions. For example, one possibility is to assign all zeros to the NBVs

which yields xi = b̄i. The freedom in assigning arbitrary values to NBVs

can be utilized to generate solutions that satisfy some additional require-

ments, like all components are nonnegative or integer. These ideas are

further discussed in the discipline of linear programming. A complete ex-

ample of the G-J solution procedure is the subject of a tutorial.

In general, there are several possible choices of basic variables. For

computational stability, it is advantageous to choose in each row an entry
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with the largest magnitude. In manual computing we usually look for a

unit element in a row because in this case the normalization step (dividing

the row by the pivot element) can be avoided.

The main point of this subsection is that the Gauss-Jordan elimination

can be used to solve Ax = b even if there are more variables than equa-

tions, m < n.

3.6 Solution of Systems of Linear Differential Equations

The solution of linear differential equations is an important application of

computational linear algebra. This section is an introduction to this topic.

As a reminder, let us consider a single differential equation with an initial

condition in the following form:

x′(t) = λx(t), x(0) = x∗, (35)

where x(t) is an unknown function of t, prime denotes differentiation and

λ is a constant. It is known that the solution of (35) is

x(t) = x∗eλt. (36)

Obviously, differentiating (36), we obtain (35).

There may be functional relationships among several functions of t,

x1(t), . . . , xm(t) and their derivatives. As an example, let us investigate

the following system of linear differential equations with constant coeffi-

cients:

x′
1 = x1

x′
2 = x1 + 2x2 (37)

x′
3 = x1 − x3.

For notational simplicity, here we wrote xi instead of xi(t), for i = 1, 2, 3.
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Introducing matrix notation, (37) can be expressed as

x′ = Ax, where x′ =





x′
1

x′
2

x′
3



 , x =





x1

x2

x3



 , and A =





1 0 0

1 2 0

1 0 −1





(38)

(38) can be investigated with initial conditions in the following general

form:

x′ = Ax, x(0) = x∗. (39)

We use the following theorem (presented without proof):

Theorem 1 If A is a nonsingular m × m matrix that has distinct real

eigenvalues then there exists a nonsingular matrix R such that RAR−1 =

D = diag{λ1, . . . , λm}, where λ1, . . . , λm are the eigenvalues of A.

Introducing new coordinates y = Rx (from which x = R−1y), we can

write

y′ = Rx′ = RAx = RA(R−1y) = RAR−1y = Dy,

or, in short,

y′ = Dy. (40)

Since D is diagonal, (40) decomposes into independent differential equa-

tions:

y′i = λiyi, i = 1, . . . , m. (41)

We know that (41) has unique solution for every initial condition yi(0),

namely:

yi(t) = yi(0)eλit, i = 1, . . . , m. (42)

To solve (39), set y(0) = Rx∗. If y(t) denotes the solution of (40) then
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the solution of (39) is x(t) = R−1y(t), or




x1(t)
...

xm(t)



 = R−1





y1(0)eλ1t

...

ym(0)eλmt



 . (43)

Differentiation shows that it is a solution to (39), because

x′ = R−1y′ = R−1Dy = R−1(RAR−1)y = AR−1y = Ax.

Comparing the beginning and the end of the equation, we have the required

x′ = Ax. For the initial conditions:

x(0) = R−1y(0) = R−1Rx∗ = x∗,

which proves that x of (43) really solves (39). Furthermore, the solution

is unique. The reason for it is that an x(t) is a solution to (39) if and only

if Rx(t) is a solution to

y′ = Dy, y(0) = Rx∗. (44)

Therefore, if there were two different solutions they would lead to two

different solutions to (44), which is impossible since D is diagonal.

To solve the problem computationally, we need to determine R. It can

be shown that R is the inverse of the matrix formed by the eigenvectors of

A. Since, by assumption, the eigenvalues of A are distinct (and different

from zero) the eigenvectors are also distinct. Additionally, they are linearly

independent, thus R is nonsingular.

The first step is to compute the eigenvalues of A. They can be obtained

as the roots of the m-degree polynomial det(A−λI) = 0. By assumption,

these roots are distinct now. Next, the eigenvectors u1, . . . ,um have to

be determined by solving m sets of linear equations:

(A − λiI)ui = 0 for i = 1, . . . , m. (45)
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The matrix formed by the eigenvectors is denoted by U:

U = [u1, . . . ,um] =








u11 u12 . . . u1m

u21 u22 . . . u2m
... ... . . . ...

um1 um2 . . . umm








.

Now, R = U−1 and R−1 = U. Applying these identities to (43), we

obtain

xi(t) =

m∑

j=1

uijyj(t) for i = 1, . . . , m, (46)

where yj(t) = yj(0)eλjt. To find a solution x(t) with a specified initial

value

x(0) = x∗ = [x∗
1, . . . , x

∗
m]T,

we substitute t = 0 into (46) and solve the system of linear equations for

unknowns z1 = y1(0), . . . , zm = ym(0):

m∑

j=1

uijzj = x∗
i for i = 1, . . . , m,

or in matrix notation, Uz = x∗, from which

z = U−1x∗.

In other words, the initial values x(0) = x∗ correspond to the initial values

y(0) = U−1x∗ of (42).

Example 36 Find a general solution to the introductory example in (37)

x′
1 = x1

x′
2 = x1 + 2x2

x′
3 = x1 − x3
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which is in matrix form




x′
1

x′
2

x′
3



 =





1 0 0

1 2 0

1 0 −1









x1

x2

x3



 , or x′ = Ax

Since A is triangular, det(A − λI) = (1 − λ)(2 − λ)(−1 − λ), from

which the eigenvalues are λ1 = 1, λ2 = 2, and λ3 = −1. They are real

and distinct so the assumptions of the theorem are satisfied. Therefore,

the diagonal matrix D is

D =





1

2

−1





and the new (equivalent) set of differential equations is

y′1 = y1

y′2 = 2y2

y′3 = −y3,

which has the solution

y1(t) = c1e
t

y2(t) = c2e
2t

y3(t) = c3e
−t,

where c1, c2, c3 are arbitrary constants. The eigenvectors corresponding

to the eigenvalues can be determined by (45). In our case, however, by

inspection we can identify u2 as [0, 1, 0]T and u3 as [0, 0, 1]T. To find u1

we have to solve (A − I)u1 = 0, which is




0 0 0

1 1 0

1 0 −2









u11

u21

u31



 =





0

0

0




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A nontrivial solution to this system is u1 = [2,−2, 1]T. Now we can form

matrix U which is:

U =





2 0 0

−2 1 0

1 0 1





Applying (43), we obtain




x1(t)

x2(t)

x3(t)



 =





2 0 0

−2 1 0

1 0 1









c1e
t

c2e
2t

c3e
−t



 (47)

which gives the general solution as

x1(t) = 2c1e
t

x2(t) = −2c1e
t + c2e

2t

x3(t) = c1e
t + c3e

−t

with arbitrary constants c1, c2, c3.

If an initial value problem is to be solved with some xi(0) = x∗
i , i =

1, 2, 3, then the values for c1, c2 and c3 have to be determined appropriately

by substituting t = 0 in (47)




2 0 0

−2 1 0

1 0 1









c1

c2

c3



 =





x∗
1

x∗
2

x∗
3



 ,

which is simply a system of linear equations that can be solved by using

any suitable method.
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3.7 Least Squares Problems

One of the most important application areas of computational linear alge-

bra is least squares problems. Such problems occur in many diverse situa-

tions. The prototype problem is that some constants (called parameters)

of a functional relationship have to be determined so that the resulting

function matches (approximates) a set of observed data in the best pos-

sible way. The quality of the fit is measured by a norm of the difference

between the vector of the observed and computed data. The norm is

usually the Euclidean (ℓ2) norm because it has some favourable properties.

The forthcoming discussion will be restricted to the most important case:

the linear least squares problems, where the functional relationship is linear

in the parameters. For example, if a, b and c are three parameters then

y = ax2 + bx + c is linear in a, b and c, while y = xa + bx + c is not.

The nonlinear least squares problems are beyond the scope of this course.

3.7.1 Formulation of the least squares problem

Having studied the general Ax = b system of linear equations, we know

that there are cases when this system is unsolvable (incompatible). For

instance, if A ∈ R
3×1 (a matrix with 3 rows and 1 column) and b ∈ R

3

with the following coefficients:

A =





0

1

2



 and b =





2

1

0





then there is no multiple of the only column of A that is equal to b.

However, even in this case we might be interested in finding an x for

which Ax approximates b the best. In the general case of an m × n

incompatible Ax = b system, instead of satisfying Ax = b, we want to
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find an x such that Ax is as close to b as possible, i.e., an x that minimizes

‖b− Ax ‖2. In practice, it is more convenient to use the square of the

norm and define the least squares problem as to

minimize
x∈Rn

‖b− Ax ‖2
2. (48)

The actual difference between b and Ax is called residual and is denoted

by ρ:

ρ = b− Ax. (49)

Using this terminology, the (48) least squares problem minimizes the square

of the Euclidean norm of the residual (49). For any given x, the residual

of row i is ρi = bi − aix, where aix is the dot product of the i-th row of

matrix A with x.

From previous discussion we know that if the system is compatible then

there exists a linear combination Ax of the columns of A that gives b

exactly. In such a case the residual is 0.

In the sequel, we will refer to the data fitting model, where n param-

eters x1, . . . , xn of a linear relationship have to be determined from m

observations. (Remember the introductory model: amount of heating oil

as a function of the outside temperature and amount of attic insulation.)

In the i-th observation we have the following figures: bi (the value of the

dependent variable to be ‘explained’) and ai1, . . . , ain (the observed val-

ues of the ‘explaining’ variables). The weighted sum of the observed data

should approximate the observed value of the dependent variable:

bi ≈ ai1x1 + · · · + ainxn =
n∑

j=1

aijxj, i = 1, . . . , m.

The solution x of a linear least squares problem is an n-vector that

produces the smallest sum of squared errors in the model over a given set
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of observations, i.e., that solves

minimize
x∈Rn

m∑

i=1



bi −
n∑

j=1

aijxj





2

.

If

b =








b1

b2
...

bm








, A =








a11 a12 . . . a1n

a21 a22 . . . a2n
... ... . . . ...

am1 am2 . . . amn








, x =








x1

x2
...

xn








.

then the model can be represented in matrix form as min ‖b− Ax ‖2
2.

If m > n, the least squares problem is called overdetermined because

a linear model with n free coefficients cannot in general exactly match a

number of observations larger than n. In practical cases it is nearly always

true that m > n, sometimes even m ≫ n.

3.7.2 Solution of the least squares problem

Subsection 3.3.2 introduced the notion of subspaces defined by the rows

and columns of an m × n matrix A. It is useful to think of a least

squares problem involving matrix A in terms of the subspaces defined by

A. The range space of A, range(A), consists of all m-vectors that are

linear combinations of the columns of A. The complementary subspace,

null(AT), consists of all m-vectors z orthogonal to the columns of A,

i.e., aT
jz = 0 for j = 1, . . . , n, (or, with matrix notation, ATz = 0) if

z ∈ null(AT). Let r denote the rank of A (assume r > 0). The dimension

of range(A) is r, and the dimension of null(AT) is m − r.

We know that, given A, any m-vector b can be written uniquely as the

sum of its range and null space components, i.e., b = bR + bN , where
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bR ∈ range(A) and bN ∈ null(AT), i.e., bT
RbN = 0. Similar arguments

apply to the residual: ρ = ρR+ρN and ρ
T
RρN = 0. Using these notations,

ρ = ρR + ρN = b− Ax = bR + bN − Ax = bR − Ax
︸ ︷︷ ︸

+ bN︸︷︷︸
.

Since by definition Ax ∈ range(A), the range space component of b−Ax

is bR −Ax which entails that its null space component is bN , i.e., ρR =

bR − Ax and ρN = bN . Therefore, we can conclude that

‖b− Ax ‖2
2 = ‖ρ ‖2

2

= ‖ρR + ρN ‖2
2

= (ρR + ρN)T(ρR + ρN)

= ρ
T
RρR + ρ

T
RρN︸ ︷︷ ︸
=0

+ ρ
T
NρR︸ ︷︷ ︸
=0

+ρ
T
NρN

= ‖ρR ‖2
2 + ‖ρN ‖2

2

= ‖bR − Ax ‖2
2 + ‖bN ‖2

2

≥ ‖bN ‖2
2.

Comparing the left hand side and the penultimate row it is obvious that

‖b− Ax ‖2
2 is minimized if ‖bR − Ax ‖2

2 is as small as possible. Addition-

ally, the last row shows that the minimum cannot be smaller than ‖bN ‖2
2

(which is constant for a given A). However, this theoretical minimum can

be achieved because, by definition, bR ∈ range(A) and, therefore, there

exists an x for which Ax = bR. This x will make ‖bR − Ax ‖2
2 = 0. For

this x, the entire range space component of b is removed by subtraction

of Ax, and what remains is nothing but bN , i.e., b− Ax = bN .

Since bN lies in the null space of AT, relation ATbN = 0 holds. If

b−Ax is substituted for bN , the following fundamental characterization

of the optimal least squares solution is obtained:

x minimizes ‖b− Ax ‖2
2 iff AT(b− Ax) = 0. (50)
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This is equivalent to the following:

x minimizes ‖b− Ax ‖2
2 iff Ax = bR and b − Ax = bN . (51)

(51) shows that if x is a minimizer then the residual is ρ = bN , and (50)

says that the residual is orthogonal to the columns of A. This phenomenon

is similar to the geometrical principle that the shortest distance from a

point to a plane is the length of the perpendicular joining them. Now, the

point is the vector b, and the plane is all the vectors in the range of A.

Since the range and null space components (bR and bN) of b are

unique, the optimal least squares residual vector is also unique (being bN

itself). What is not necessarily unique is the solution vector x. How-

ever, it is true (proof omitted) that if the columns of A are linearly in-

dependent, even x is unique. Thus, we can conclude that the solution of

min
x∈Rn

‖b − Ax ‖2
2 is unique iff A has full column rank. In practical cases

it is very likely that this condition is satisfied.

Having established that the optimal least squares residual lies in the null

space of AT, see (50), we know that the solution x satisfies AT(b−Ax) =

0. Rearranging this equation, we obtain the normal equations:

ATAx = ATb. (52)

The symmetric matrix ATA is positive semidefinite for any matrix A,

and positive definite iff the columns of A are linearly independent. The

normal equations are always compatible. A solution of (52) exists even if

ATA singular.

The normal equations are of great practical importance because they

offer a straightforward way to compute the least squares solution. When

ATA is positive definite, the normal equations have a unique solution. In

this case we can use the Cholesky factorization to solve the linear least

squares problem with the help of the following algorithm:
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Step 1. Form the normal equations matrix ATA and the vector ATb.

Step 2. Compute the Cholesky factorization ATA = LLT.

Step 3. Solve the (52) normal equations by solving two triangular systems:

Ly = ATb for y, and LTx = y to obtain the desired solution x.

Example 37 Let

A =





2 2

1 2

2 0



 , b =





0

5

−1



 .

The matrix of normal equations and the right hand side:

ATA =

[
9 6

6 8

]

, ATb =

[
3

10

]

.

The normal equations:

9x1 + 6x2 = 3

6x1 + 8x2 = 10

Though this system can easily be solved with the Gaussian elimination, to

demonstrate the use of the Cholesky factorization, we proceed as follows:

ATA = LLT =

[
3

2 2

] [
3 2

2

]

The first triangular system is Ly = ATb:

3y1 = 3

2y1 + 2y2 = 10

from which y1 = 1 and y2 = 4. The next system is LTx = y:

3x1 + 2x2 = 1

2x2 = 4
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which gives the solution x = [−1, 2]T. Using this x, bR = Ax gives

bR = [2, 3,−2]T and bN = b−Ax gives ρ = bN = [−2, 2, 1]T. The value

of least squares is the Euclidean norm of bN which is 3. This completes

the solution of the least squares example.

3.8 Condition of a Mathematical Problem

The condition of a problem is a measure that reflects the sensitivity of its

exact solution to changes in the problem. To quantify this idea, assume

that a problem P is defined by a set of data, say d. Let s(d) denote the

exact solution of the problem for the data d. If small changes in d lead to

small changes in s(d), the problem is said to be well-conditioned for the

data d. Otherwise, if small changes in d lead to large changes in s(d),

the problem is said to be ill-conditioned. Suppose that d1 and d2 are two

possible sets of data. The condition (or condition number) of problem P

is a measure of the maximum possible ratio

‖s(d1) − s(d2)‖
‖d1 − d2‖

(53)

when ‖d1 − d2‖ is small. The crucial point to remember is that the

condition of a problem is a mathematical property, and is independent of

computation and rounding error.

As a simple illustration of condition, consider the problem of determining

the roots of the polynomial

(x − 1)4 = 0, (54)

whose four roots are all exactly equal to 1. Suppose that a small per-

turbation (say, 10−8) is made in the right-hand side of (54), so that the

equation to be solved is now
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(x − 1)4 = 10−8. (55)

One exact root of (55) is 1 + 10−2, which has changed by 10−2 from the

exact root of the original problem. By almost any standard, problem (55)

is close to (54), since their right-hand sides differ by only 10−8. However,

the change in the exact solution is six orders of magnitude larger than

the change in the problem! Since the ratio (53) is of order 106 (i.e.,

substantially larger than one), we say that problem (54) is ill-conditioned.

Note that this property is not related to computation in any way.

3.8.1 Matrix norms revisited

For any vector norm, an associated matrix norm can be defined as follows.

Intuitively, the matrix A should have a “large” norm if its application to a

nonzero vector x can produce a vector Ax whose norm is large relative to

‖x ‖. For any matrix A and any vector norm ‖· ‖ the subordinate matrix

norm ‖A ‖ is defined as

‖A ‖ = max
x6=0

‖Ax ‖
‖x ‖

Note that norms on the right hand side are vector norms. This is equivalent

to

‖A ‖ = max
‖u ‖=1

‖Au ‖

(why?). A lower bound on ‖A ‖ can be obtained by computing the ratio

of ‖Ax ‖ and ‖x ‖ for any specific nonzero vector x:

‖A ‖ ≥ ‖Ax ‖
‖x ‖ .
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3.8.2 Condition of a linear system with a nonsingular matrix

Let A be a nonsingular matrix, so that A−1 exists (and is unique), and

consider the linear system

Ax = b,

whose exact (unique) solution is x = A−1b. Suppose that the right-hand

side b of this system is perturbed to b + δb, while A remains unaltered.

Let x + δxb denote the exact solution to the perturbed problem

A(x + δxb) = b + δb. (56)

In this section, the occurrence of “δ” immediately preceding the name of

a vector or matrix means a perturbation of the same dimension, so that

δb is a change in the vector b. The subscript “b” on δxb emphasizes that

this change in the exact solution results from a change in b.

Since Ax = b, relation (56) implies that Aδxb = δb, and hence

δxb = A−1δb.

Using any subordinate norm, we obtain a bound on ‖δxb‖:

‖δxb ‖ ≤ ‖A−1 ‖ ‖δb ‖, (57)

where equality will hold for at least one vector δb. Relation (57) shows

that the size of the change in the exact solution of Ax = b resulting from

a change δb in the right-hand side may be as large as ‖A−1‖ multiplied

by ‖δb‖.
To express (57) in terms of relative perturbations, note that the relation

Ax = b implies

‖b ‖ ≤ ‖A ‖ ‖x ‖, (58)
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where again equality is possible for certain x and b. Multiplying (57) by

(58) and rearranging, we obtain the following important result:

‖δxb ‖
‖x ‖ ≤ ‖A−1 ‖ ‖A ‖‖δb ‖

‖b ‖ . (59)

We emphasize that the quantity on the right-hand side is the maximum

possible value of the relative change in the exact solution. Although the

upper bound is unduly large in some cases, equality will hold in (59) for

certain choices of A, b and δb.

Next, we perturb the matrix A while keeping b fixed, so that we are

interested in the exact solution of

(A + δA)(x + δxA) = b, (60)

where the subscript “A” signals an association with a change in A. Assume

that ‖δA‖ is small enough so that A+ δA remains nonsingular. A bound

on the relative change in the exact solution can be obtained in the following

way. Performing the multiplication in (60) we get

Ax + AδxA + δA(x + δxA) = b.

Since Ax = b, this reduces to

AδxA = −δA(x + δxA)

δxA = −A−1δA(x + δxA).

For the norms:

‖δxA ‖ ≤ ‖A−1 ‖ ‖δA ‖ ‖x + δxA ‖
‖δxA ‖

‖x + δxA ‖ ≤ ‖A−1 ‖ ‖δA ‖
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Multiplying and dividing the right hand side by ‖A ‖, we obtain the bound

in the following form:

‖δxA ‖
‖x + δxA ‖ ≤ ‖A−1 ‖ ‖A ‖‖δA‖

‖A‖ , (61)

where equality holds for certain choices of δA and b.

The quantity ‖A−1 ‖ ‖A ‖ appears in both (59) and (61), and reflects

the maximum possible relative change in the exact solution of a linear

system induced by a change in the data (either the right-hand side or the

matrix itself). Guided by (53), we define the condition number (or simply

the condition) of a nonsingular matrix A (with respect to solving Ax = b)

as

cond(A) = ‖A−1 ‖ ‖A ‖. (62)

The notation κ(A) is sometimes used for cond(A).

For any subordinate norm, the identity matrix has norm one. Since I =

A−1A and ‖A−1A ‖ ≤ ‖A−1 ‖ ‖A ‖, we conclude that cond(A) ≥ 1.

Therefore, a well-conditioned matrix has a condition number of order unity

(and the identity matrix is “perfectly” conditioned). An ill-conditioned

matrix has a condition number much larger than unity. Although the

exact value of cond(A) will vary with the norm used in (62), its size will

be comparable for any norm because of the relationship among norms.

According to (59) and (61), knowledge of the condition number allows us

to bound the maximum relative change in the exact solution. Conversely,

knowledge of the relative change in the exact solution for any particular

perturbation in b or A allows us to obtain a lower bound on the condition

number. Rearranging (59) and (61), we have
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cond(A) ≥ ‖δxb ‖/‖x ‖
‖δb ‖/‖b ‖ and cond(A) ≥ ‖δxA‖/‖x + δxA‖

‖δA‖/‖A‖ . (63)

These relations show that, if the relative change in the exact solution is

much larger than the relative perturbation in b or A, we know immediately

that A is ill-conditioned.

Example 38 Let us consider the following set of equations:

0.550x1 + 0.423x2 = 0.127

0.484x1 + 0.372x2 = 0.112

which is in the form of Ax = b with

A =

[
0.550 0.423

0.484 0.372

]

and b =

[
0.127

0.112

]

.

We will see that this system is rather ill-conditioned. Consider the original

vector b = [0.127, 0.112]T and the following perturbed vector

b̄ =

[
0.12707

0.11228

]

=

[
0.127

0.112

]

+

[
0.00007

0.00028

]

= b + δb. (64)

The exact solution of Ax = b is x = [1,−1]T , but the exact solution

of Ax̄ = b̄ is x̄ = [1.7,−1.91]T , so that δxb = [0.7,−0.91]T . The

relative perturbations in the right-hand side and solution, measured in the

infinity-norm, are

‖δb‖
‖b‖ =

.00028

.127
≈ 2.2 × 10−3 and

‖δxb‖
‖x‖ = 0.91.

For this choice of δb, the relative change in the solution is more than

400 times the relative change in the right-hand side, which shows that the

condition number of A is at least 400 (see (63)).
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The ill-conditioning of A can also be observed by making a “small”

perturbation (of 0.001) in the (2,1) element, producing

A + δA =

[
0.550 0.423

0.483 0.372

]

. (65)

The exact solution, say x̄, of (A + δA)x̄ = b is x̄ = [−0.4536, 0.8900]T ,

which gives ‖δxA‖ = ‖x̄−x‖ = 1.89. In this case, the relative change in

the exact solution is approximately 2000 times the relative change in A.

In fact, the exact inverse of A (rounded to five digits) is

A−1 =

[
−2818.2 3204.5

3666.7 −4166.7

]

.

Since ‖A‖ = 0.973 and ‖A−1‖ = 7833.4, the condition number of A

(measured in the infinity-norm) is approximately 7622. Thus, neither δb

of (64) nor δA of (65) produces the maximum possible change in the exact

solution!

A matrix A is ill-conditioned when its application to different vectors of

the same size produces transformed vectors of dramatically different size. If

‖Ax‖ is large for one vector x of unit norm and small for another, then A

is ill-conditioned. It is the difference in possible sizes of ‖Ax‖ that leads

to ill-conditioning. If ‖Ax‖/‖x‖ is large for all x—for example, when

A = diag(108, 108)—then A is not ill-conditioned. In contrast, consider

the following matrix and vectors:

Ā =

[
104

10−4

]

, x =

[
1

0

]

, x̄ =

[
0

1

]

,

for which ‖x‖ = ‖x̄‖ = 1. We then have

Āx =

[
104

0

]

, and Āx̄ =

[
0

10−4

]

,
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so that ‖Āx‖ = 104 (large) and ‖Āx̄‖ = 10−4 (small). Since vectors

of unit norm transformed by Ā vary enormously in size, Ā must be ill-

conditioned. In fact, it is easy to see that x and x̄ achieve the maximum

and minimum possible changes in norm when transformed by Ā, and that

cond(Ā) = 108.

The condition of a nonsingular matrix A is a quantitative indication

of the sensitivity to perturbation of a linear system involving A. The

condition of A also has a precise interpretation in terms of the closeness

of A to singularity. Informally speaking, an ill-conditioned matrix is “nearly

singular”.

3.8.3 Condition of the normal equations

Solving the least squares problem by means of the normal equations is

quite efficient in terms of computational work. The number of flops re-

quired to form ATA and ATb is of order 1
2
mn2, computing the Cholesky

factorization uses of order 1
6
n3 flops, and solving the two triangular systems

involves of order n2 flops.

Unfortunately, use of the normal equations has undesirable implications

with respect to numerical stability because the condition number of ATA

is the square of the condition number of A. Consequently, the normal

equation matrix ATA can be severely ill-conditioned.

For example, let

A =





1 1

1 1

0 10−4



 .

The condition of a nonsquare matrix was not discussed, therefore it is to

be accepted that cond(A) = 2.8× 104 now (rounded to two figures). The



3 COMPUTATIONAL LINEAR ALGEBRA 79

associated normal equation matrix is

ATA =

[
2 2

2 2 + 10−8

]

,

with cond(ATA) = 7.8 × 108.

Ill-conditioning in the normal equations may lead not only to inaccuracy

in the computed solution of the normal equations, but also to loss of

information when the numerical rank of A is marginal like in the case of

this example.

3.9 Introduction to Sparse Computing

3.9.1 About real life problems

Computational linear algebra is one of the most frequently used computa-

tional technique. Real life problems have a number of characteristics that

can be taken into account when designing efficient solution algorithms

involving linear algebra.

First of all, it is typical that realistic models lead to large scale problems.

Storing and solving such problems require very powerful computing facili-

ties. Sometimes even the most advanced computers cannot accommodate

refined models of a given problem.

Second, when it comes to the linear algebra of the solution of large

scale problems, the emerging vectors and matrices are usually sparse, often

very sparse. Sparsity means that only a small proportion of all possible

vector/matrix entries are different from zero. Let z denote the number of

nonzeros in a vector or matrix. The density of an m dimensional vector v

is defined as

ρ(v) =
z

m
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Density of an m × n matrix A is:

ρ(A) =
z

mn

Sometimes density is expressed as percentage. Sparsity is nothing but low

density.

There is an observation that in many cases even among the nonzero

entries there are only few distinct values. For instance, it is typical that

there are many ±1 entries in a matrix. This phenomenon is called super

sparsity. It is important to note that super sparsity is not the superlative

of sparsity. It simply gives an additional characterization of the nature of

sparsity. In some cases it is advantageous to utilize super sparsity to reduce

memory requirements by storing each distinct value only once and using

appropriate pointers to them.

Example 39 Let v and A be

v =










1

0

0

−3

1










, A =










−1 0 0 2 0

0 0 1 0 0

1 −1 0 0 2

0 0 0 4 −1

0 0 0 3 1










In this case, ρ(v) = 3/5 = 0.6 (or 60%) and ρ(A) = 10/25 = 0.4

(or 40%). Among the ten nonzeros of A there are five distinct values

{−1, 1, 2, 3, 4}.
Notions of ‘small’, ‘medium’ and ‘large’ as used to characterize the size

of problems are just loosely defined. They keep changing over time as

a result of developments in hardware, software, solution algorithms and

computing techniques. In 1965 a 100×100 system of linear equations was

large, now (at the beginning of the 21st century) it is considered small.
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Typical densities of large problems (m > 10,000) vary between 0.01%

and 0.1%. Some researchers noticed that matrices often have no more

than 10 nonzeros per column, independent of their size. It means that

density decreases as problem size increases.

The main idea of sparse computing is to store and perform calculations

only on nonzeros. The importance of the first part of this idea (storage)

can be illustrated by the following example. Let us assume that in a

10,000×10,000 matrix each column has five nonzeros on the average,

giving ρ(A) = 0.05%. If the matrix entries are stored as double precision

(dp) numbers (the typical case) then the storage of the complete matrix

would require 100,000,000 dp storage units which is 800Mb of memory.

Not only the storage but the number of actual arithmetic operations would

be prohibitively large. However, if only the nonzeros are stored, 50,000 dp

units (0.4Mb) plus some administration are sufficient. This space is readily

available on every desktop computer.

From experience, a third characteristic of large scale problems has been

concluded: algorithms that work well for small problems are very often

completely useless for medium and large problems.

The purpose of this section is to give an insight into sparse computing

that makes all the difference in case of the solution of large scale real life

problems.

The starting point is the storage of sparse entities (vectors and matri-

ces). There are several different ways they can be stored. To make the

correct choice, we have to consider the operations to be performed on

them. There is an important distinction between static and dynamic data

structures. The former remains unchanged during computations while

the latter may change in size as a result of the computations (for instance,

nonzeros can be created in place of original zeros during Gaussian elimina-
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tion). Additionally, the size of a static data structure can be determined in

advance. The size of a dynamic data structure is unknown and can grow

substantially, sometimes even an estimate of the upper bound cannot be

given.

3.9.2 Storing sparse vectors

The easiest way to store a sparse vector is to hold it in a full-length array.

This is also called explicit storage of a vector. While this can be rather

wasteful, the elements are directly accessible (by their subscript) and algo-

rithms using such vectors are simple, though not too efficient if the vectors

are really sparse.

As a better way, only the nonzeros of a sparse vector are stored as

(integer, double) pairs (i, vi), for i ∈ Z, where Z is the set of indices

of nonzeros in v. In a computer program we usually keep a separate integer

and a double array each of length of the number of entries (at least). This

is the compressed or packed storage of a sparse vector.

Example 40 Vector v of Example 39 can be stored with Z = {1, 4, 5}
and |Z| = z = 3 as

ind 1 4 5

val 1.0 -3.0 1.0

The storage is said to be ordered if the subscripts are in a monotone

(usually ascending) order, like in this example, otherwise unordered. Usu-

ally, there is no need to maintain ordered form of sparse vectors (see later).

Sometimes we need to bring an explicit vector into packed form. This

operation is called gather. The opposite operation is scatter when a packed

vector is expanded into full-length representation.
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3.9.3 Operations involving sparse vectors

Addition and accumulation of sparse vectors. In the Gaussian elimination

a typical step (ERO–2) is the subtraction of a multiple of a row from

another row (assuming u and v are row vectors now)

u := u − λv. (66)

If both vectors are in unordered packed form then this operation would

require search of vectors to identify the matching pairs and newly created

nonzeros (fill-ins). A better way is the following. Assume there is a full-

length work vector (array) w available with every position initialized to

zero. We will work with this array, modify its elements, but at the end

restore it to zero. One possible way is method-1:

1. Scatter v into w.

2. Scan u. For each entry ui check wi. If it is nonzero, update ui

(ui := ui − λwi) and reset wi to zero.

3. Scan v. For each entry vi check wi. If it is nonzero, we have a fill-in:

ui := −λwi (= −λvi). Add the new component of u to the data

structure of u and reset wi to zero.

If the vectors are in ordered form then scan can be made without expan-

sion but any fill-in (which is usually put to the end of the data structure)

can destroy ordering in one step. This is one of the reasons why we do

not assume ordering in packed form.
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There is another way of performing (66). Here, again, we assume an

explicit working vector w = 0 is available. Method-2:

1. Scatter u into w.

2. Scan v. For each entry vi check wi. If it is nonzero, update wi

(wi := wi − λvi), otherwise set wi := −λvi and add i to the data

structure of u.

3. Scan the modified data structure of u. For each i, set ui := wi, wi :=

0.

As with the previous case, at the end of this algorithm w is restored to

zero and can be used for similar purposes again.

The second algorithm is slightly more expensive than the first one be-

cause the revised u is stored first in w and then placed in u. However, if

the following sequence of operations is to be performed

u := u +
∑

j

λjvj,

then the second algorithm is more efficient. The reason is that steps 1

and 3 are performed only once and step 2 is repeated for v1,v2, . . . , with

intermediate results for u remaining in w.

Both algorithms share the following very important feature: the num-

ber of operations to be performed is a function of the number

of nonzeros and is completely independent of the explicit size

(m) of the participating vectors.
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Dot product of two packed vectors. The dot product of two m dimensional

vectors u and v is defined as uTv =
∑m

i=1 uivi. With full-length vectors

this operation is logically very simple. However, if the vectors are sparse, a

large number of multiplications and additions may be performed with zero

valued operands. If u and v are stored as sparse vectors, the best to do is

to scatter one of them as described in section 3.9.2 and perform the dot

product between a sparse and a full-length vector. If u is expanded into

full representation in array w and nzv denotes the number of nonzeros

in v then the following pseudo-code will do the job (assuming that the

nonzeros of v are represented in the two arrays indv and valv).

dotprod = 0.0

do i = 1, nzv

dotprod = dotprod + valv(i) * w(indv(i))

enddo

which requires one direct and one indirect access of arrays valv and w,

respectively, in the body of the loop.

3.9.4 Storing sparse matrices

A sparse matrix can be considered as a set of sparse row or column vectors,

or simply a set of nonzero elements together with their coordinates. We

briefly discuss the different variants.
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Collection of sparse column/row vectors. A straightforward way to store a

sparse matrix is to store it as a collection of sparse column (row) vectors.

The nonzeros of the columns (rows) can be stored consecutively in the

same array, indices (row indices of entries in rind) and elements (in val)

separately, of course. The starting position (beginning) of each column

(say, cbeg) must be recorded. If we have n columns, we need n + 1

such positions, the last one pointing to the first position after the last

element of the last column. In this way the length (in terms of nonzeros)

of column j is clen(j) = cbeg(j+1) - cbeg(j). In general, clen is

not needed explicitly. However, if the columns are not stored consecutively,

it is necessary to maintain clen. In this case a column is accessed by cbeg

and clen. Keeping clen makes the structure more flexible.

Table 1 shows how matrix A of Example 39 can be represented as a set

of sparse column vectors. It is to be noted that some of the column vectors

are unordered, that is, the indices of the elements are not in an ascending

order. Under subscript 6, we enclosed 11 in parentheses to indicate that

this entry of cbeg is needed only if clen is not used.

Subscripts 1 2 3 4 5 6 7 8 9 10

cbeg 1 3 4 5 8 (11)
clen 2 1 1 3 3

rind 3 1 3 2 4 1 5 3 4 5

val 1.0 −1.0 −1.0 1.0 4.0 2.0 3.0 2.0 −1.0 1.0

Table 1: Matrix A of Example 39 stored as a collection of sparse column vectors.

The main problem with this representation becomes evident when a

new matrix element is to be inserted, that is, when this structure is used

dynamically. If there is some free space left after each column the new

elements can be placed there, if not, a fresh copy of the column is created

and placed after the last up-to-date column leaving the out-of-date version
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unaltered. This action is possible only if the array has some ‘elbow room’

at the end. Since columns may not be consecutive anymore, both cbeg

and clen are needed to access them. Unfortunately, in this way we can

run out of the allocated array. Therefore, from time to time the vectors

may have to be shifted up to form a consecutive sequence from the begin-

ning again. This operation is called compression, more specifically, this is

column compression.

Similar arguments can be used if A is stored as a collection of sparse

row vectors.

Linked lists. The advantages of linked lists are well known in computer

science. Sparse computing can also greatly benefit from using linked lists

wherever it is appropriate.

We can store a matrix as a collection of linked column (row) vectors.

Each column (row) has a header that points to the first element of the

column (row). Additionally, each nonzero has a pointer pointing to the

position of the next nonzero in the linked list. The last element points

to null or any other invalid position. With linked lists, ordering within a

column (row) is meaningless. The sequence of elements is determined by

the way pointers have been set up.

Table 2 shows matrix A of Example 39 represented as a set of sparse

linked column vectors. Here, rlink is the pointer to the next row in-

dex in the column. The elements of some of the columns are not held in

consecutive memory locations. If, during operations on the matrix, new

elements have to be inserted into columns, we can place them to the end

of the array and adjust the pointers accordingly (an exercise second year

computing students are familiar with). It may happen that an element has

to be deleted from the structure. This operation can be done efficiently if
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Subscripts 1 2 3 4 5 6 7 8 9 10

chead 9 1 10 2 7

rind 3 1 5 4 3 4 3 5 1 2

val −1.0 2.0 3.0 4.0 1.0 −1.0 2.0 1.0 −1.0 1.0
rlink 0 4 0 3 0 8 6 0 5 0

Table 2: An instance of representing matrix A of Example 39
stored as a collection of sparse linked column vectors.

not only forward but also backward links are maintained within each col-

umn. In this case an additional header to the last element of each column

is needed. The backward pointing linked list has the same properties as

the forward list. Table 3 shows matrix A of Example 39 represented as

a set of sparse doubly linked column vectors. Here, we use cfhead and

cbhead to denote the column head of the forward and backward lists, re-

spectively, while rflink and rblink stand for row forward and backward

link, respectively. As a summary, linked lists eliminate the need for ‘elbow

Subscripts 1 2 3 4 5 6 7 8 9 10

cfhead 9 1 10 2 7

cbhead 5 1 10 3 8

rind 3 1 5 4 3 4 3 5 1 2
val −1.0 2.0 3.0 4.0 1.0 −1.0 2.0 1.0 −1.0 1.0

rflink 0 4 0 3 0 8 6 0 5 0
rblink 0 0 4 2 9 7 0 6 0 0

Table 3: An instance of representing matrix A of Example 39
stored as a collection of sparse doubly linked column vectors.

room’ and column/row compression, they make insertion and deletion easy

and efficient. This method has an increased memory requirement and will

somewhat slow down matrix operations due to more indirect memory ref-

erencing. However, when the data structure is ‘very dynamic’ it is the
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method of choice.

Coordinate scheme. A coordinate scheme is obtained from a straightfor-

ward interpretation of matrices. Every element of a matrix is characterized

by its position (row and column index) and actual value. In other words,

if (i, j, aij) triplets are given for all nonzeros of an m × n matrix A then

the matrix is uniquely defined. The elements need not be in any order.

While this scheme can be very convenient to prepare the matrix for

input (it is a sort of free format), it is not particularly suitable for efficient

operations involving matrices and vectors. If a matrix is given in this

form, the usual practice is to convert it to one of the previously discussed

representations (collection of sparse vectors or linked lists). It is possible

to design a linear time algorithm (in terms of the number of nonzeros) to

make the conversion. Details are omitted here.

Comparison of the schemes. From purely storage point of view, the three

sparsity forms discussed above require the following amount of memory

to represent an m × n matrix with z nonzeros. Here, we assume that a

pointer is of the size of an integer.

Method Integer Double

Collection of sparse column vectors 2n + z z

Collection of sparse row vectors 2m + z z

Linked list by columns n + 2z z

if doubly linked 2n + 3z z

Linked list by rows m + 2z z

if doubly linked 2m + 3z z

Coordinate scheme 2z z
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The main question is: What is the critical density when the sparse stor-

age becomes more practical than the explicit storage?

First, let us look at the speed of memory access. Experience shows that

on a scalar processor, most operations involving one level indirect address-

ing are typically two to four times slower than the same operations using

direct addressing. This suggests that the break even density is between

25% and 50%.

Next, let us compare the memory requirements of the different storage

schemes. The explicit storage of an m × n matrix A requires mn dp

locations (8mn bytes). If the ‘collection of sparse column vectors’ scheme

is used then 2n + z integers (8n + 4z bytes) and z dp’s (8z bytes), all

together 8n + 12z bytes are needed. Break even occurs when 8mn =

8n + 12z, from which, z = 2
3n(m − 1). If we have this many nonzeros

then the density is

ρ(A) =

2

3
n(m − 1)

mn
=

2

3
× m − 1

m
.

If m is large, the critical density for this case is about 67%.

For efficient sparse algorithms we have to consider both aspects, there-

fore, the critical density below which the sparse storage is more beneficial

is min{25%−50%, 67%} = 25%−50%. We are definitely on the safe side

if we take it 25%. It means that the first matrix storage scheme (collection

of sparse column vectors) is more efficient for storage and operations if the

density is 25% or less. Since we noted that matrices of real life problems

are typically less than 1% dense, it is compelling to use sparse techniques

in such cases.

Calculations for other sparse matrix storage schemes can be performed

in a similar fashion to obtain the critical densities.
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3.9.5 Operations involving sparse matrices

Matrix by vector products. Let us consider the y = Ax product. If x

is given as an explicit vector then any representation of A is suitable to

perform the operation efficiently. If x is in sparse form then the preferred

form for A is the collection of column vectors. Now we use the alternative

definition of the product as y = x1a1 + · · ·+xnan and perform operations

with nonzero xjs only. This can be done most conveniently by method-2

of subsection 3.9.3.

Matrix by matrix products. Let C = AB with C ∈ R
m×n, A ∈ R

m×p

and B ∈ R
p×n. Recall that cij = aibj =

∑

k aikbkj. If we follow this

formula then it is difficult to identify matching aik, bkj pairs when both

are 6= 0 since sparse vectors ai and bj may be unordered. Additionally, we

cannot predict which cij positions will be nonzero, therefore, all possible

mn positions have to be computed and only the nonzeros stored.

A better way is if the multiplication is performed by the alternative

definition as C =
∑p

k=1 akb
k, i.e., as a sum of p outer products made

up of the columns of A and rows of B. If a nonzero cij is generated in

this way, it can be inserted into the data structure of C by some of the

methods discussed. It is also clear that the preferred storage forms are:

columnwise for A and rowwise for B.

If both matrices are stored columnwise, cj (column j of C) can be accu-

mulated as a linear combination of the columns of A by cj =
∑p

k=1 bkjak.

This may be done conveniently by method-2 defined in subsection 3.9.3.

Similar things can be done if both matrices are stored rowwise.
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4 Convergent Sequences

This section presents some basic properties of convergent sequences. While

there is an inherent relationship between series and sequences, the discus-

sion will concentrate on the latter. First, we need the general definition of

metric spaces that will be used in special cases.

4.1 Metric Spaces

Some important features of sequences depend on some properties of the

distance between points and not on the fact that the points are in R
k.

When these properties are studied abstractly they lead to the concept of

a metric space.

A metric space is a nonempty set S of objects (called points) together

with a function d : S×S 7→ R
1 (called the metric of the space) satisfying

the following four properties for all points x,y, z ∈ S:

1. d(x,x) = 0.

2. d(x,y) > 0 if x 6= y.

3. d(x,y) = d(y,x) (symmetry).

4. d(x,y) ≤ d(x, z) + d(z,y) (triangle inequality).

The nonnegative number d(x,y) is to be thought of as the distance

from x to y. In these terms the intuitive meaning of properties 1 through

4 is clear. A metric space is usually referred to as (S, d), where S is the

set of points and d is the metric.

Example 41 Let S = R
k and d(x,y) = ‖x− y ‖2. This is called the

Euclidean metric.
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4.2 Limits

The limit of a sequence of real numbers {xn} is denoted symbolically by

writing

lim
n→∞

xn = A.

Its meaning, formally, is that for every ǫ > 0 there is an integer N such

that

|xn − A| < ǫ, whenever n ≥ N. (67)

In practical terms it means that A is the limit of the sequence if xn can

be made arbitrarily close to A with sufficiently large n.

Example 42 Let a sequence be defined by xn =
n − 1

n
. Its limit is 1,

i.e., limn→∞ xn = 1, because given any small positive ǫ, we can determine

N such that (67) holds with A = 1. For instance, if ǫ = 0.001 then we

want to know N such that

∣
∣
∣
∣

N − 1

N
− 1

∣
∣
∣
∣
< 0.001. This can be solved for

N giving N = 1000. It means that whenever n > 1000, the distance

between xn and 1 will be less than 0.001.

There is also a limit of a function indicated by notation such as

lim
x→p

f(x) = A, (68)

which means that for every ǫ > 0 there is another number δ > 0 such that

|f(x) − A| < ǫ whenever 0 < |x − p| < δ.

Again, in practical terms it means that A is a limit of f(x) at p if f(x)

can be made arbitrarily close to A by taking x sufficiently close to p.
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Example 43 Let f(x) = x3 and p = 3. The limit of x3 at x = 3 is

27. To see how definition (68) works in this case, let ǫ = 0.01. Now

|x3 − 27| < 0.01 must hold. If this expression is solved for x we obtain

that x must satisfy 2.9996 < x < 3.0004 because 2.99963 ≈ 26.99 and

3.00043 ≈ 27.01. Hence, δ = 0.0004. Here, an interesting observation

can be made, namely, for a certain closeness in the function value, a much

tighter closeness in the argument is needed at p = 3.

On the other hand, function f(x) = 1/x2 has no limit at x = 0 since it

can be made arbitrarily large in the neighbourhood of 0.

What was just said about limits of sequences of numbers and functions

of a single variable can be easily generalized for points (vectors) in higher

dimensional Euclidean spaces R
k, k > 1. To be able to do so, a measure

for the distance between two points is needed. Any of the discussed norms

can be used for this purpose by saying that the distance between x and y

is d(x,y) = ‖x − y ‖.
A sequence {xn} of points in a (vector) space S is said to converge if

there is a point p in S with the following property: For every ǫ > 0 there

is an integer N such that

d(xn,p) < ǫ whenever n ≥ N.

We also say that {xn} converges to p and we write xn → p as n → ∞,

or simply xn → p. If there is no such p in S, the sequence {xn} is said

to diverge. This definition of convergence implies that

xn → p if and only if d(xn,p) → 0.

The convergence of the sequence of distances {d(xn,p)} to 0 takes place

in the one dimensional Euclidean space R
1.
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In Euclidean space R
1, a sequence {xn} is called increasing if xn ≤ xn+1

for all n. If an increasing sequence is bounded above (that is, if xn ≤ M

for some M < +∞ and all n), then {xn} is convergent. For example,

(n−1)/n converges to 1. Similarly, {xn} is called decreasing if xn ≥ xn+1

for all n. Every decreasing sequence which is bounded below converges.

For example, 1/n converges to 0.

If {an} and {bn} are sequences of nonnegative real numbers converging

to 0, then {an + bn} also converges to 0. If 0 ≤ cn ≤ an for all n and

if {an} converges to 0, then {cn} also converges to 0. These elemen-

tary properties of sequences in R
1 can be used to simplify some of the

proofs concerning limits in higher dimensional Euclidean spaces. As an

illustration, let us consider the following important theorem.

Theorem 2 A sequence {xn} in R
k can converge to at most one point

in R
k.

Proof. Assume that xn → p and xn → q. We will prove that p = q.

By the triangle inequality of the norm (see page 21) which is the distance

now, we have

0 ≤ d(p,q) ≤ d(p,xn) + d(xn,q).

Since d(p,xn) → 0 and d(xn,q) → 0 this implies that d(p,q) = 0, so

p = q. �

If a sequence {xn} converges, the unique point to which it converges is

called the limit of the sequence and is denoted by limxn or by limn→∞ xn.

In the one dimensional Euclidean space we have limn→∞ 1/n = 0. The

same sequence in the subspace T = (0, 1] does not converge because the

only candidate for the limit is 0 and 0 /∈ T . This example shows that the

convergence or divergence of a sequence depends on the underlying space

as well as on the definition of the distance.
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4.3 Cauchy Sequences

If a sequence {xn} converges to a limit p, its terms must ultimately be-

come close to p and hence close to each other. This property is stated

more formally in the next theorem.

Theorem 3 Assume that {xn} converges in R
k. Then for every ǫ > 0

there is an integer N such that

d(xn,xm) < ǫ whenever n ≥ N and m ≥ N.

Proof. Let p = limxn. Given ǫ > 0, let N be such that d(xn,p) < ǫ/2

whenever n ≥ N . Then d(xm,p) < ǫ/2 if m ≥ N . If both n ≥ N and

m ≥ N the triangle inequality gives us

d(xn,xm) ≤ d(xn,p) + d(p,xm) < ǫ/2 + ǫ/2 = ǫ

which completes the proof. �

This theorem intuitively means that for any arbitrary precision (ǫ), we

can find an index (N) beyond which any two elements of the convergent

sequence are closer to each other than the given precision.

Definition of a Cauchy Sequence. A sequence {xn} in R
k is called a

Cauchy sequence if it satisfies the following condition (called the Cauchy

condition):

For every ǫ > 0 there is an integer N such that

d(xn,xm) < ǫ whenever n ≥ N and m ≥ N.

Theorem 3 states that every convergent sequence is a Cauchy sequence.

The converse is also true in R
k as it is stated in the following theorem

which is given without proof.
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Theorem 4 In Euclidean space R
k every Cauchy sequence is convergent.

This theorem is often used for proving the convergence of a sequence

when the limit is not known in advance.

Example 44 Consider the sequence {xn} in R
1 defined by

xn = 1 − 1

2
+

1

3
− 1

4
+ · · · + (−1)n−1

n
.

If m > n ≥ N , we find (by taking successive terms in pairs) that

|xm − xn| =

∣
∣
∣
∣

1

n + 1
− 1

n + 2
+ · · · ± 1

m

∣
∣
∣
∣
<

1

n
≤ 1

N
,

so |xm − xn| < ǫ as soon as N > 1/ǫ. Therefore, {xn} is a Cauchy

sequence and hence it converges to some limit. It can be shown that this

limit is log 2, a fact which is not immediately obvious.

Example 45 As another example, let us consider the following. Given a

sequence {an} of real numbers such that |an+2 − an+1| ≤ 1
2|an+1 − an|

for all n ≥ 1. We can prove that {an} converges without knowing its limit

by showing it is a Cauchy sequence. The technique used here is important

for the proof of the fixed-point theorem.

Let bn = |an+1 − an|. Then 0 ≤ bn+1 ≤ bn/2. So, by induction,

bn+1 ≤ b1/2n. Hence bn → 0. Also, if m > n we have

am − an =
m−1∑

k=n

(ak+1 − ak),
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hence

|am − an| =

∣
∣
∣
∣
∣

m−1∑

k=n

(ak+1 − ak)

∣
∣
∣
∣
∣

≤
m−1∑

k=n

|ak+1 − ak|

= bn + bn+1 + bn+2 + · · · + bm−1��H
H−n

≤ bn +
bn

2
+

bn

22
+ · · · + bn

2m−1−n

= bn

(

1 +
1

2
+

1

22
+ · · · + 1

2m−1−n

)

< 2bn → 0.

This implies that {an} is a Cauchy sequence, therefore it converges.

4.4 Fixed-point Theorem for Contractions

In this subsection we present the background of some general computa-

tional techniques for solving linear and nonlinear equations. Some examples

will illustrate the findings.

First, we define the complete metric spaces. A metric space (S, d) is

called complete if every Cauchy sequence in S converges in S, i.e., the

limit point is also in S. A subset T of S is called complete if the metric

subspace (T, d) is complete. For example, every Euclidean space R
k is

complete. In particular, R
1 is complete, but the subspace T = (0, 1] is not

complete.
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Now, let f : S 7→ S be a function from a metric space into itself. A

point p in S is called a fixed point of f if f(p) = p. The function f is

called a contraction of S if there is a number α, 0 < α < 1 (called a

contraction constant), such that

d(f(x), f(y)) ≤ αd(x,y) for all x,y ∈ S. (69)

Theorem 5 (Fixed-Point theorem) A contraction f of a complete met-

ric space S has a unique fixed point p.

It is quite instructive to see the logic of the proof.

Proof. If p and p′ are two fixed points, (69) implies

d(p,p′) = d(f(p), f(p′)) ≤ αd(p,p′), so d(p,p′) = 0 and p = p′.
Hence f has at most one fixed point.

To prove that it has one, take any point x in S and consider the sequence

of iterates:

x, f(x), f(f(x)), . . .

That is, define a sequence {pn} intuitively as follows:

p0 = x, pn+1 = f(pn), n = 0, 1, 2, . . .

We will prove that {pn} converges to a fixed point of f . First, we show

that {pn} is a Cauchy sequence. From (69) we have

d(pn+1,pn) = d(f(pn), f (pn−1)) ≤ αd(pn,pn−1),

so, by induction, we find

d(pn+1,pn) ≤ αnd(p1,p0) = cαn,

where c = d(p1,p0). Using the triangle inequality, we find for m > n that

d(pm,pn) ≤
m−1∑

k=n

d(pk+1,pk) ≤ c
m−1∑

k=n

αk = c
αn − αm

1 − α
<

c

1 − α
αn.
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Since αn → 0 as n → ∞, this inequality shows that {pn} is a Cauchy

sequence. But S is complete, so there is a point p in S such that pn → p.

By continuity of f ,

f(p) = f
(

lim
n→∞

pn

)

= lim
n→∞

f(pn) = lim
n→∞

pn+1 = p.

so p is a fixed point of f . This completes the proof. �

4.5 Iterative Methods for Ax = b, A Square

The solution methods for Ax = b, A ∈ R
m×m, considered so far are

called direct methods. They compute the exact answer after m steps

(in the absence of roundoff error). As to the arithmetic operations, the

Gaussian elimination and the Cholesky factorization require O(1
3
m3) and

O(1
6m

3) flops, respectively.

In many real-life problems m, the size of A, is in the thousands or even

in the tens of thousands. To solve problems of this size with direct methods

is practically impossible. However, the emerging matrices tend to be very

sparse and the number of nonzeros is usually in a manageable order of

magnitude.

If elimination steps are applied to a sparse matrix, it is typical that,

as a result of the transformations, positions which were zeros will become

nonzeros. This phenomenon is called fill-in. Fill-in can be so heavy that the

whole triangular matrix may become full. So, the advantages of sparsity

can disappear during the elimination process. For such cases something

better is needed.
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As opposed to direct methods, there are iterative methods for solving

Ax = b. They start with an approximate solution x(0) and generate a

sequence of approximations x(1),x(2), . . . ,x(k), . . . such that {x(k)} con-

verges to the solution x of the original system. The iterative methods

have the advantage that they work with fixed matrices throughout and,

therefore, do not generate fill-in. As such, they are ideally suited for solv-

ing large sparse problems that otherwise would produce heavy fill-in with

a direct method.

4.5.1 Paradigm of iterative methods

A splitting of a square matrix A is defined as M = A − N where M

is a nonsingular matrix. Splitting yields an iterative method as follows.

Rewriting Ax = b, we have: Ax = Mx + Nx = b, which implies

Mx = b − Nx and x = M−1b − M−1Nx. Denoting G = −M−1N

and c = M−1b, we get x = Gx + c and can take

x(k+1) = Gx(k) + c (70)

as our iterative method. Based on our knowledge of convergent sequences,

we can investigate the convergence of the sequence generated by (70).

Theorem 6 Let ‖· ‖ be any matrix norm. If ‖G ‖ < 1, then x(k+1) =

Gx(k) + c converges for any starting point x(0).

Proof. Subtract x = Gx + c from x(k+1) = Gx(k) + c to get x(k+1) −
x = G(x(k) − x). For the norm: ‖x(k+1) − x ‖ ≤ ‖G ‖ ‖x(k) − x ‖ ≤
‖G ‖2 ‖x(k−1) − x ‖ ≤ · · · ≤ ‖G ‖k+1‖x(0) − x ‖, which converges to 0

since ‖G ‖ < 1. �

Let λi, i = 1, . . . , m, denote the eigenvalues of G. The spectral radius

of G is ρ(G) = maxi{|λi|}.
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Theorem 7 Let G be defined as above. Any of the following conditions

is sufficient for the convergence of (70):

1. lim
k→∞

Gk = 0.

2. lim
k→∞

Gkx = 0, ∀x ∈ R
m.

3. ρ(G) < 1.

Proof is omitted here. The important thing is that we have three more

sufficient criteria to ensure convergence. If any of them can be verified for

a given problem then the iterative method will converge.

The next issue of interest is the rate (speed) of the convergence. The

rate of convergence of x(k+1) = Gx(k)+c is defined as r(G) = − log10 ρ(G).

This can be interpreted as the increase in the number of correct decimal

places in the solution per iteration. The smaller is ρ(G) the higher is

the rate of convergence, i.e., the greater is the number of correct decimal

places computed per iteration.

(70) defines a family of iterative methods. The actual choice of G and

c results in specific computational algorithms. Our goal is to choose a

splitting A = M + N so that both

1. Gx = −M−1Nx and c = M−1b are easy to compute, and

2. ρ(G) is small.

These are conflicting requirements and we need to find some compromise

between the following extreme cases:

• M = I serves goal 1 extremely well but may not make ρ(G) < 1.

• M = A and N = 0 are good for goal 2 but probably bad for 1.
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Some of the most important iterative methods for solving Ax = b are

discussed in the subsequent sections. The methods share the following

notations. Assuming that the diagonal of A is zero free, we write

A = D − L̃ − Ũ = D(I − L − U),

where D is the diagonal of A, −L̃ is the strictly lower triangular part of

A with DL = L̃ and −Ũ is the strictly upper triangular part of A with

DU = Ũ.

Example 46

A =





2 −4 2

−3 1 −5

6 −2 2



 =





2

1

2



−





0

3 0

−6 2 0



−





0 4 −2

0 5

0



 ,

from where

D =





2

1

2



 , L̃ =





0

3 0

−6 2 0



 , Ũ =





0 4 −2

0 5

0





and because L = D−1L̃ and U = D−1Ũ, we have

L =





0

3 0

−3 1 0



 , U =





0 2 −1

0 5

0



 .
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Finally:

A =





2 −4 2

−3 1 −5

6 −2 2



 =





2

1

2













1

1

1



−





0

3 0

−3 1 0





−





0 2 −1

0 5

0








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4.5.2 Jacobi method

Assuming that the diagonal of A is zero free means D is nonsingular. The

Jacobi method is defined as follows. Let M = D = diag(a11, a22, . . . , amm)

and N = A − D. In this case D−1 = diag(1/a11, 1/a22, . . . , 1/amm).

Now, Ax = b becomes Dx + Nx = b. Matrices D and N are

D =








a11

a22
. . .

amm








and N =








0 a12 · · · a1m

a21 0 · · · a2m
... ... . . . ...

am1 am2 · · · 0








.

Multiplying by D−1 and rearranging, we obtain x = D−1b − D−1Nx.

Denoting G = −D−1N and c = D−1b, we obtain x = Gx + c from

which the following sequence can be defined:

x(k+1) = Gx(k) + c, k = 0, 1, 2, . . . with some choice of x(0).

From this, we obtain the following expression for row i:

x
(k+1)
i =

1

aii



bi −
∑

j 6=i

aijx
(k)
j



 .

Calculating the new value of xi requires access only to row i of the

matrix. This simple fact suggests that this method is extremely suitable

for parallel computing since data and work can be distributed well and little

communication is needed per iteration.
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4.5.3 Gauss-Seidel method

The motivation for this method is that at the ith step of an iteration of the

Jacobi method, we have the improved values of the first i− 1 components

of the solution, so we can use them in the current sum. This modification

is the Gauss-Seidel method which has the following general step in iteration

k:

x
(k+1)
i =

1

aii









bi −
i−1∑

j=1

aijx
(k+1)
j

︸ ︷︷ ︸
updated x’s

−
m∑

j=i+1

aijx
(k)
j

︸ ︷︷ ︸
x’s of previous iteration









(71)

To derive the matrix form of this method, first (71) is rearranged:

i∑

j=1

aijx
(k+1)
j = −

m∑

j=i+1

aijx
(k)
j + bi.

This can further be rewritten as (D− L̃)x(k+1) = Ũx(k) + b, or

x(k+1) = (D− L̃)−1Ũx(k) + (D − L̃)−1b

= (I − L)−1Ux(k) + (I − L)−1D−1b

= Gx(k) + c.

The Gauss-Seidel method is not specifically suitable for parallel implemen-

tation (look at (71)).
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4.5.4 Successive over-relaxation, SOR(ω)

While the Gauss-Seidel (G-S) method was an improvement of the Jacobi

method, SOR(ω) is a generalization of the G-S. This is achieved by taking

an appropriate weighted average of the newly computed x
(k+1)
i and the

previous x
(k)
i :

x
(k+1)
i := (1 − ω)x

(k)
i + ωx

(k+1)
i ,

where ω is called the relaxation parameter and ‘:=’ is the assignment

operator.

Step i of an SOR(ω) iteration is

x
(k+1)
i = (1 − ω)x

(k)
i +

ω

aii



bi −
i−1∑

j=1

aijx
(k+1)
j −

m∑

j=i+1

aijx
(k)
j



 .

Again, to obtain the matrix form of the iterative scheme, we first rearrange

the above equation:

aiix
(k+1)
i + ω

i−1∑

j=1

aijx
(k+1)
j = (1 − ω)aiix

(k)
i − ω

m∑

j=i+1

aijx
(k)
j + ωbi

and write

(D − ωL̃)x(k+1) = ((1 − ω)D + ωŨ)x(k) + ωb,

which gives

x(k+1) = (D− ωL̃)−1((1 − ω)D + ωŨ)x(k) + ω(D − ωL̃)−1b

= (I − ωL)−1((1 − ω)I + ωU)x(k) + ω(I − ωL)−1D−1b

= Gx(k) + c.

Depending on the value of ω, we distinguish three cases: ω = 1 is

equivalent to the G-S method, ω < 1 is called underrelaxation, and ω > 1

is called overrelaxation. Useful values for ω are discussed in the next

section.
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4.5.5 Convergence of the methods

In this section, a number of criteria are given that guarantee the con-

vergence of the iterative methods just discussed. To present them, some

definitions are needed.

A square matrix A is strictly row diagonally dominant if |aii| >
∑

j 6=i |aij|
for all i. A square matrix A is weakly row diagonally dominant if |aii| ≥
∑

j 6=i |aij| for all i, with strict inequality at least once.

There will be a criterion which refers to a special nonzero pattern of

the matrix. A square matrix A is said to be irreducible if, by symmetric

permutation of rows and columns, it cannot be brought to the following

partitioned form
[

A11 A12

0 A22

]

,

where A11 and A22 are square submatrices.

Now, we state the results (proofs omitted except one case) relevant to

our iterative methods.

1. If A is strictly row diagonally dominant then the Jacobi and the G-S

methods both converge, and the G-S method is faster. The advantage

of this criterion is that it is easy to check. However, it is not always

applicable. It is important to note that this is a sufficient condition

only. There can be cases when this is not satisfied but the method

still converges. Therefore, if it fails, it is worth checking some other

conditions.

In case of the Jacobi method the statement is: If A of Ax = b

is a strictly row diagonally dominant matrix then the Jacobi method

converges. It can be proved in the following way.

We prove that ‖G ‖∞ < 1 which implies convergence.
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Reminder: in case of Jacobi G = −D−1N,

G = −








1/a11

1/a22
. . .

1/amm















0 a12 . . . a1m

a21 0 . . . a2m
... . . . ...

am1 am2 . . . 0








= −















0
a12

a11
. . .

a1m

a11

a21

a22
0 . . .

a2m

a22

... . . . ...

am1

amm

am2

amm
. . . 0















But, strict row diagonal dominance means that for every row

|ai1| + · · · + |ai,i−1| + |ai,i+1| + · · · + |aim| < |aii|.
Dividing both sides by |aii| > 0 we obtain

∑

j 6=i

|aij|
|aii|

=
∑

j 6=i

∣
∣
∣
∣

aij

aii

∣
∣
∣
∣
< 1.

It means the absolute row sum of G is < 1 for each row, thus it

also holds for the largest sum which is the ℓ∞ norm of G. There-

fore, ‖G ‖∞ < 1, thus the sequence generated by the Jacobi method

converges.

2. If A is weakly row diagonally dominant and is irreducible then the

Jacobi and the G-S methods both converge, and again, the G-S method

is faster.
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3. In case of SOR(ω), 0 < ω < 2 is necessary for the convergence. If A

is positive definite this condition is also sufficient for the convergence.

There is one more open question to be answered: What is a/the stopping

criterion of these iterative methods? In other words: When can we say

that the solution is good enough?

Usually, we are satisfied with a good approximation instead of the (some-

times hopeless) exact solution. Therefore, if subsequent iterations make

little change in x(k) then we can stop. To be more specific, we prescribe

a certain level of accuracy, say δ, and stop the iterations when for the

absolute error ‖x(k+1) − x(k) ‖ < δ. This criterion is problem and scale

dependent. A much better criterion is to stop if

‖x(k+1) − x(k) ‖
1 + ‖x(k) ‖ < δ,

an expression similar to the mixed error measure. Typical values for δ are

10−10 ≤ δ ≤ 10−6, depending on the desired relative accuracy.
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4.5.6 Iterative refinement of a ‘direct’ solution

Detailed error analysis of the Gaussian elimination (not presented here)

shows that the error of the computed solution of Ax = b can be as large

as εκ(A), where κ(A) = cond(A) is the condition number of A and ε is

the relative accuracy of the number representation which is ≈ 10−16 in case

of IEEE double precision arithmetic. It implies that the computed solution

(which is now denoted by x(0)) may not be accurate enough. If κ(A)

is not extremely large then x(0) can be taken as the starting approximate

solution which we can try to improve. In such a case the following iterative

procedure, for k = 0, 1, 2, . . . , will help.

1. Compute r = Ax(k) − b.

2. Solve Ad = r for d.

3. Set x(k+1) = x(k) − d as the new approximation.

In step 2, a system of equations has to be solved involving matrix A.

If we used the LU factorization form of the Gaussian elimination to solve

Ax = b in the first place then solving Ad = r in step 2 requires a forward

and a back substitution only.

Under some relatively mild conditions (not presented here) this method

can improve the solution quite considerably in very few (2−10) and cheap

iterations. The stopping criterion can be determined in a similar way as

for other iterative methods discussed above.
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5 Functions of Several Variables

There are functional relationships where several independent variables de-

termine the value of the function. For instance, we can consider the tem-

perature in an arena as a function of the three space coordinates, like

t = f(x, y, z).

More generally, we can have n independent variables, x1, . . . , xn, that

determine the function. This is written as f(x) = f(x1, . . . , xn). Function

f may be defined only on a subset of R
n. We assume that the value of a

function is a real number and say that f is a real-valued function.

A real-valued function f defined on a subset of R
n is said to be continu-

ous at x if x(k) → x implies f(x(k)) → f(x). Equivalently, f is continuous

at x if for any given ǫ > 0 there is a δ > 0 such that ‖y − x ‖ < δ implies

|f(y) − f(x)| < ǫ, i.e., for points y close enough to x the function values

f(y) and f(x) are also close (within a predetermined arbitrary accuracy

ǫ).

5.1 Partial Differentiation, The Gradient, The Hessian

Let f(x) = f(x1, . . . , xn). If n − 1 variables are kept constant and just

one is allowed to vary then we have a function of one variable. If this

function is differentiable we can determine its derivative in the usual way.

Let xi be the selected variable. The partial differentiation of f with respect

to xi is denoted by
∂f(x)

∂xi
. The C1 function class is defined to be the

set of functions that have continuous partial derivatives with respect to all

variables.
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Example 47 Let f(x, y, z) = x2− 2xyz + y2 + z2/2. The partial deriva-

tives are:

∂f(x, y, z)

∂x
= 2x − 2yz (everything kept constant except x),

∂f(x, y, z)

∂y
= −2xz + 2y,

∂f(x, y, z)

∂z
= −2xy + z.

If f ∈ C1 is a real-valued function on R
n, f(x) = f(x1, . . . , xn), the

gradient of f is defined to be the row vector

∇f(x) =

[
∂f(x)

∂x1
,
∂f(x)

∂x2
, . . . ,

∂f(x)

∂xn

]

.

It is important to remember that in matrix calculations the gradient is

always considered to be a row vector and the transpose sign is omitted.

Though the entries of the gradient are functions, for any given x they

determine a row vector of numerical values.

Example 48 Let f(x) = (x1 − 2x2)
3 − 3x3

3. Then

∇f(x) =
[
3(x1 − 2x2)

2, −6(x1 − 2x2)
2, −9x2

3

]
.

At point x = [1, 1,−1/3]T we have ∇f(x) = [3,−6,−1].

If f ∈ C2 (partial second derivatives exist) then we define the Hessian

of f at x to be the n × n matrix, denoted by ∇2f(x) or H(x) as

H(x) =

[
∂2f(x)

∂xi∂xj

]n

i,j=1

.

Since
∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
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it is obvious that the Hessian is symmetric. The
∂2f

∂xi∂xi
term is denoted

by
∂2f

∂x2
i

. Though the entries of the Hessian are functions, for any given x

they determine a matrix of numerical values.

Example 49 Let again f(x) = (x1 − 2x2)
3 − 3x3

3. Then

H(x) =





6(x1 − 2x2) −12(x1 − 2x2) 0

−12(x1 − 2x2) 24(x1 − 2x2) 0

0 0 −18x3



 .

At point x = [1, 1,−1/3]T

H(x) =





−6 12 0

12 −24 0

0 0 6



 .

The partial derivatives of an n-variable function f(x) can characterize

the extreme points of the function. It can be proved that for a point x0

to be an extreme point, a necessary condition is that the gradient in this

point vanishes, i.e., ∇f(x0) = 0. If, in this point, the Hessian exists and

is positive definite this condition is sufficient and f has a minimum in x0.

Similarly, if the Hessian exists and is negative definite, x0 is a maximizer.

As an interesting application of this observation, we develop the normal

equations of the least squares problems.

Recall that the least squares problem was formulated as min ‖b− Ax ‖2.

This is equivalent to the minimization of the square of the 2-norm:

min ‖b− Ax ‖2
2.

If the square of the norm in an arbitrary point x is denoted by f(x), i.e.,

f(x) = (b − Ax)T(b− Ax),
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then what we want to find is the minimum of f(x). To this end, we must

find a point where the partial derivatives vanish and verify that in this

point the Hessian is positive definite. Writing out f , we obtain:

f(x) = (b − Ax)T(b− Ax) =

m∑

i=1

[bi − (ai1x1 + · · · + ainxn)]
2 .

From this,

∂f

∂x1
= −2

m∑

i=1

[bi − (ai1x1 + · · · + ainxn)] ai1 = 0

... ... ...
∂f

∂xn
= −2

m∑

i=1

[bi − (ai1x1 + · · · + ainxn)] ain = 0

After simplification and rearrangement and remembering that

A = [a1, a2, . . . , an] =








a1

a2

...

am








we obtain

m∑

i=1

ai1(
aix

︷ ︸︸ ︷
ai1x1 + · · · + ainxn) =

m∑

i=1

ai1bi (72)

...
m∑

i=1

ain(
aix

︷ ︸︸ ︷
ai1x1 + · · · + ainxn) =

m∑

i=1

ainbi (73)
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Recalling the definitions of vector and matrix operations, (ai1x1 + · · ·+
ainxn) in the sum on the left hand side is the dot product of row i of A

and x, i.e., aix. So, the left hand side of (72) is

m∑

i=1

ai1(a
ix) = a11(a

1x) + a21(a
2x) + · · · + am1(a

mx) = aT
1 (Ax).

Obviously, the last row, i.e., the left hand side of (73), is aT
n (Ax). There-

fore, the sums in the rows are the dot products of the columns of A and

the vector Ax: aT
1Ax, . . . , aT

nAx. But they are the components of the

vector ATAx. So, the left hand side is ATAx. The expressions on the

right hand side are aT
1b, . . . , aT

nb which are the components of the ATb

product. We conclude that an x to minimize the least squares must satisfy

ATAx = ATb,

which is the well known set of normal equations (see section 3.7).

We still need the positive definiteness of the Hessian. From the above,

it can be seen that the Hessian is a constant matrix in the whole domain

and is equal to ATA which is positive definite if the columns of A linearly

independent. Therefore, the solution indeed minimizes function f(x), the

least squares.

5.2 Taylor Expansion

A group of important results of multivariate analysis are often referred to

under the general heading of Taylor’s Theorem. It enables us to approx-

imate a function with an m-degree polynomial in a domain if it satisfies

certain conditions.
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First, we demonstrate the expansion for a function f(x) with m = 1

(linear approximation). If f is twice differentiable in an [x0, x] interval

then

f(x) = f(x0) + (x − x0)f
′(x0) +

1

2
(x − x0)

2f ′′(ξ).

where f ′ and f ′′ denote the first and second derivatives, respectively, and

ξ lies in the [x0, x] interval. The 1
2(x − x0)

2f ′′(ξ) part is the error term

which is small if x is close to x0 and the second derivative is bounded in

the interval. From this formula, the Newton method for finding the root

of an algebraic equation can be derived.

For a quadratic approximation we have to assume that f is three times

differentiable. Details are not discussed here.

For a function f(x), x ∈ R
n, the first order version of the theorem

(linear approximation) assumes that f ∈ C1 in a region containing the

line segment [x0,x]. It states that in this case there exists a θ, 0 ≤ θ ≤ 1,

such that

f(x) = f(x0) + ∇f(θx0 + (1 − θ)x)(x − x0).

Verbally, the function at x can be expressed as its value at x0 plus the

gradient evaluated at some point in the line segment of [x0,x] (which

is given as a convex linear combination of the two end points) times the

difference of x and x0. This formula can be used to estimate the behaviour

of the function in the neighbourhood of a given point (x0, in this case)

when we have some information about the gradient.

If f ∈ C2 then the second order version (quadratic approximation) says

that there exists a θ, 0 ≤ θ ≤ 1, such that

f(x) = f(x0) + ∇f(x0)(x− x0) +
1

2
(x − x0)

TH(θx0 + (1 − θ)x)(x − x0),

where H denotes the Hessian of f .
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5.3 Newton’s Method for min f(x)

The idea behind Newton’s method is that the function f(x), f ∈ C2,

to be minimized is approximated locally by a quadratic function and this

approximate function is minimized exactly. Thus, near a point xk we can

approximate f(x) by the truncated Taylor series (omitting error term)

f(x) = f(xk) + ∇f(xk)(x − xk) +
1

2
(x − xk)

TH(xk)(x − xk).

The necessary condition for a local minimum is that the gradient of f(x)

vanishes

∇f(x) = ∇f(xk) + (x − xk)
TH(xk) = 0T,

which gives

x = xk − H−1(xk) (∇f(xk))
T .

This leads to the following iterative scheme:

xk+1 = xk − H−1(xk) (∇f(xk))
T ,

which is the pure form of Newton’s method. If {xk} → x∗ and at x∗ the

Hessian H(x∗) is positive definite then function f(x) has a local minimum

at x∗. This method has an excellent (quadratic) convergence rate in the

neighbourhood of a local minimum. To make it convergent in a wider

radius, some more involved study is necessary.

5.4 Quadratic Forms and Linear Systems

In this section we show how the solution of Ax = b can be associated

with the minimization of a convex quadratic function. As a result, a very

efficient iterative algorithm will be developed for solving Ax = b in the

case when A is positive definite. It will also be shown that, with a little
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trick, the method can be used to solve systems Ax = b where A is not

positive definite, not symmetric, and not even square.

The iterates will be denoted by xk, k = 0, 1, 2, . . . , the corresponding

residuals by rk = b − Axk. Error is defined as hk = xk − x, where x

denotes the solution of Ax = b.

5.4.1 The quadratic form

A quadratic form is a real valued quadratic function of a vector x:

f(x) =
1

2
xTAx − bTx + c (74)

where A ∈ R
m×m, x,b ∈ R

m and c is a scalar. We can try to minimize

f(x) by setting the gradient f ′(x) = ∇f(x) = 0. It can be shown that

(∇f(x))T =
1

2
ATx +

1

2
Ax − b. (75)

If A is symmetric, i.e., AT = A, (75) reduces to

(∇f(x))T = Ax − b. (76)

Setting (76) equal to 0 we obtain Ax = b. It is easy to see that the

constant matrix A is the Hessian of f(x) for any x. Therefore, if it is

positive definite then the solution of Ax = b minimizes f(x) in the global

sense. Conversely, if x minimizes f(x) then it also solves Ax = b.

Since ∇f(x) points to the direction of greatest increase of f(x), its

negation −(∇f(x))T = b − Ax is the direction of the greatest decrease

of f(x).
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5.4.2 Iterative methods with search direction

A large family of iterative methods for minimizing a function f(x) work

in the following way. Identify a search direction, say d, along which f

starts to descend and move from the current iterate into this direction.

The steplength of the movement, say α, is usually determined such that it

gives the largest possible improvement of the value of f(x) in this direction.

So, the following sequence is generated:

xk+1 = xk + αkdk.

Therefore, these methods involve two main steps per iteration: (i) finding

a search direction and (ii) determining the steplength.

5.4.3 The Steepest Descent Method (SDM)

The Steepest Descent Method (SDM) is an iterative method with search

direction for finding the minimum of quadratic form (74). It also solves

Ax = b if A is positive definite.

In each iteration k, SDM chooses the direction in which f decreases most

quickly which is the negative of the gradient: −(∇f(xk))
T = b − Axk.

It is nothing but the residual rk = b − Axk. It means that the search

direction is the residual vector. Thus the next iterate is computed as

xk+1 = xk + αkrk.

In this direction f is a function of αk

f(xk + αkrk)

We want to determine the value of αk that minimizes f (line search). It

can be achieved by setting the directional derivative
df(xk+1)

dαk
equal to
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zero. By the chain rule we obtain

df(xk+1)

dαk
= f ′(xk+1)

dxk+1

dαk
= ∇f(xk+1)rk = −rT

k+1rk = 0.

The latter suggests that αk must be determined such that rk+1 becomes

orthogonal to rk. This observation enables us to find this value as a result

of the following simple development:

rT
k+1rk = 0

(b − Axk+1)
Trk = 0

(b− A(xk + αkrk))
Trk = 0

(b − Axk)
Trk − αk(Ark)

Trk = 0

αk(Ark)
Trk = (b − Axk)

Trk

αk(Ark)
Trk = rT

krk

αk =
rT
krk

rT
kArk

.

Now we are ready to state the first version of the Steepest Descent

algorithm:

rk = b − Axk (77)

αk =
rT
krk

rT
kArk

(78)

xk+1 = xk + αkrk. (79)

These operations are performed in each iteration. Iterations are repeated

until xk converges. The algorithm in its current form requires two matrix-

vector multiplications per iteration. With a little trick, one of them can

be eliminated. Namely, by premultiplying both sides of (79) by −A and
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adding b, we obtain:

b − Axk+1 = (b− Axk) − αkArk

rk+1 = rk − αkArk. (80)

In this way, (77) is needed only for k = 0 to start the algorithm. In subse-

quent iterations (80) can be used instead. The product Ark which occurs

in both (78) and (80) has to be computed only once per iteration. This

observation is generally helpful because Steepest Descent is dominated by

matrix-vector products. However, as floating point computational errors

accumulate it is worthwhile to periodically recompute the residual from its

definition rk = b− Axk.

Below, we give a step-by-step description of the Steepest Descent Method

for solving Ax = b if A is an m × m positive definite matrix. In the

description, for simpler presentation, we omit the iteration count k and

use “:=” as an assignment operator.

Inputs to the algorithm are: A, b, an initial guess of the solution x, the

maximum number of iterations kmax and an error tolerance 0 < ǫ < 1.
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k := 0

r := b − Ax

δ := rTr

δ0 := δ

While k < kmax and δ > ǫ2δ0 do

q := Ar

α :=
δ

rTq
x := x + αr

If k is divisible by 50 then

r := b − Ax

else

r := r − αq

end if

δ := rTr

k := k + 1

end do

The algorithm terminates when the maximum number of iterations kmax

has been reached, or sooner if in iteration k we observe that ||rk||22 ≤
ǫ2||r0||22.

The residual is updated using the fast formula in (80). However, once

in every 50 iterations the exact residual is recalculated to get rid of accu-

mulated floating point error. This recomputation frequency can also be an

input parameter to the algorithm. If the tolerance ǫ is close to the rela-

tive accuracy of the floating point precision of the processor, a test should

be added after δ is evaluated to check if δ ≤ ǫ2δ0, and if this test holds

true, the exact residual should also be recomputed and δ reevaluated. This

prevents procedure from terminating early due to floating point round-off
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error.

This algorithm is generally good if the spectral radius ρ(A) < 1. How-

ever, in some cases it can take a zigzagging path with small steps. The

reason for it is that each search direction is orthogonal to the previous one

and search directions can repeat.

5.4.4 The Method of Conjugate Directions (MCD)

To get around the problem of repeating search directions one could use

predetermined directions that are orthogonal to all earlier ones. While

the coordinate axes are natural candidates for this they do not lead to

computationally useful formulae. However, there is a remedy.

Conjugacy is a generalization of the idea of orthogonality of two m-

vectors. Orthogonality of u and v was defined as uTv = 0. By inserting

the identity matrix: uTIv = 0. If I is replaced by an m × m matrix A

then we say that the two vectors, u and v, are A-orthogonal or conjugate

(with respect to A) if

uTAv = 0.

Example 50 Let

A =

[
3 2

2 6

]

and u1 =

[
1

−1

]

, v1 =

[
4

1

]

, then uT
1Av1 = 0,

i.e., u1 and v1 are A-orthogonal (but not orthogonal). Similarly, u2 =

[2,−3]T and v2 = [1, 0]T are also A-orthogonal with the same A but

u3 = [1, 0]T and v3 = [0, 1]T are not.

It can be shown that if A is positive definite then there are m A-

orthogonal (conjugate) vectors d0,d1, . . . ,dm−1 so that dT
iAdj = 0 for

all 0 ≤ i, j ≤ m − 1, i 6= j . They are actually directions because any

nonzero scalar multiples of the vectors are also conjugate.
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Using these directions, we still need to perform line search to determine

the steplength αk. This is achieved by setting the directional derivative

equal to 0 as in the case of Steepest Descent. Omitting the similar details,

finally we obtain

αk =
dT

krk

dT
kAdk

Note that if the search vector were the residual, this formula would be

identical to the one used in SDM.

Now the problem is ‘reduced’ to finding m conjugate directions. This,

in itself, would require a procedure equivalent to the Gaussian elimination.

However, taking advantage of the properties of conjugacy, there is a way

(details not presented here) to determine the directions ‘on-the-fly’ using

the Gram-Schmidt conjugation procedure. This results in the first version

of the Method of Conjugate Directions:

d0 = r0 = b − Ax0 (81)

αk =
rT
krk

dT
kAdk

(82)

xk+1 = xk + αkdk (83)

rk+1 = rk − αkAdk (84)

βk+1 =
rT
k+1rk+1

rT
krk

(85)

dk+1 = rk+1 + βk+1dk. (86)

This algorithm is also known as conjugate gradient (CG) method though

this name is slightly misleading. It finds the minimum of f(x) which will,

at the same time, solve Ax = b.
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After some refinements, the Method of Conjugate Directions can be

stated in the following way. The algorithm can be used to solve Ax = b

if A is an m × m positive definite matrix. Again, in the description “:=”

is used as an assignment operator while the iteration index k is omitted.

Inputs to the algorithm are: A, b, an initial guess of the solution x, the

maximum number of iterations kmax and an error tolerance 0 < ǫ < 1.

k := 0

r := b− Ax

d := r

δ
new

:= rTr

δ0 := δ
new

While k < kmax and δ
new

> ǫ2δ0 do

q := Ad

α :=
δ

new

dTq
x := x + αd

If k is divisible by 50 then

r := b − Ax

else

r := r − αq

end if

δ
old

:= δ
new

δ
new

:= rTr

β :=
δ

new

δ
old

d := r + βd

k := k + 1

end do

The same comments apply to this algorithm as given at the end of the
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Steepest Descent Method.

It can be shown that MCD finds the minimum of f(x) defined in (74)

and, therefore, solves Ax = b in not more than m iterations if A is

positive definite. In such a case it is not a real iterative method since the

number of steps is known in advance.

5.4.5 MCD for general Ax = b

In this section, for notational convenience, the system of linear equations

will be represented as Gx = g. If matrix G is not symmetric, not posi-

tive definite or not even square we can attempt to find an x vector that

minimizes

f(x) = ‖Gx − g ‖2
2,

which is the already known least squares problem. If at the minimum

f(x) = 0 we have a solution to Gx = g. Otherwise, we have a solution

that satisfies the equations with the least error (in ℓ2 sense). The minimum

of f(x) is attained where the gradient vanishes: ∇f(x) = 0, from which

we obtain the normal equations:

GTGx = GTg.

Now, we have a system of linear equations with positive definite matrix

GTG (assuming linear independence of the columns of G which is very

likely the case for overdetermined systems: m > n). As such, MCD can

be applied to it by substituting GTG for A and GTg for b. The only

concern in using this method is that the condition number of GTG is the

square of that of G and if it is a large number then convergence can be

slow.
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There is an important computational aspect to be considered. GTG

is never computed explicitly. The reason is that G is usually very sparse

in case of large scale problems. However, if GTG is formed it can be

completely dense rendering the method computationally unattractive. The

remedy is to interpret Adk of (84) as GTGdk = GT(Gdk) and first

compute Gdk (sparse matrix-vector product) then multiply the result by

GT (sparse product, again). Similarly, for the same reasons, dT
kAdk in

(82) can be computed as (dT
kG

T)(Gdk).

5.4.6 MCD for arbitrary nonlinear f(x)

The Method of Conjugate Directions can be used not only to find the

minimum point of a quadratic form but also to minimize any continuous

function f(x) for which the gradient f ′(x) = ∇f(x) can be computed.

The principles are similar to the quadratic case but the derivation is more

complicated and is beyond the scope of this course. It is still important to

note that the nonlinear MCD is the method of choice in many applications

where optimization problems are to be solved, such as engineering design,

neural net training, and nonlinear regression.
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