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Abstract

We present a new model of geometric computation
which supports the design of robust algorithms for ex-
act real number input as well as for input with uncer-
tainty, i.e. partial input. In this framework, we show
that the convex hull of N computable real points in R?
is indeed computable. We provide a robust algorithm
which, given any set of IV partial inputs, i.e. N dyadic or
rational rectangles, approximating these points, com-
putes the partial convex hull in time O(N log N) in 2d
and 3d. As the rectangles are refined to the IV points,
the sequence of partial convex hulls converges effec-
tively both in the Hausdorff metric and the Lebesgue
measure to the convex hull of the N points.

1 Introduction

Despite a huge number of algorithms and articles
published on robustness issues related to the convex
hull of a finite number of points in R? [4, 2, 3, 7, 25,
26, 28], the question of computability of the convex
hull for general exact real number inputs has never
been addressed in the literature.

Robustness problems arise from the discrep-
ancy between the unrealistic real RAM machine
model [24], used to prove the correctness of algo-
rithms, and real computers which are only able to
deal with finite data. This problem is particularly
serious in computational geometry in which com-
binatorial computations usually rely on numerical
ones: small numerical inaccuracies turn into fa-
tal inconsistencies in the combinatorial part of the
computation. This is related to the fact that, while
basic arithmetic operators and analytic functions
on real numbers are Turing-computable, compari-
son of two real numbers is only semi-decidable [30].

Computing with uncertain inputs is unavoidable
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in physical modeling [9, 22]. In applications such
as robotics or solid modeling, actual geometric in-
puts are measurement, of physical objects, and as
such, they are inherently uncertain and can only be
represented for example using intervals of numbers.

In brief, one can classify existing approaches to
robustness into two main categories. The first is
the so called exact computation model. It is based
on simulating a real RAM by restricting real com-
putations to a countable subfield of R, usually the
rational numbers or a subfield of algebraic num-
bers [8, 6, 5, 13, 1, 14, 31, 20] for which the com-
parison predicate is computable. The second cat-
egory, as for example in e-geometry [16] or in in-
terval geometry [29, 18, 17], tries to devise cor-
rect predicates from imprecise data and computa-
tions [27, 21].

Since the output of an algorithm often may have
to be used again as the input of a new one, the
depth of computation can be a priori unknown. In
such cases, even in the exact methods, some form
of rounding, with loss of information, to prevent an
unrealistic growth in the size of the data is unavoid-
able [15].

Our new approach, which may be put in the sec-
ond category, provides a general model of compu-
tation in which provably correct algorithms match
naturally with feasible programs.

In this paper, aimed at the computational geom-
etry community, we focus on practical algorithms
and will only briefly describe the underlying math-
ematical model given in [11] that relies on recur-
sion theory and domain theory [23, 10, 12]. We
illustrate our model of computation for the non-
continuous, and hence non-computable, sign pred-
icate s : R — {—,0,+} that gives the sign of a real
number.

In order to define the best Turing-computable
approximation of this predicate, we first introduce
the set IR of real intervals. The information or-
der C on real intervals is reverse inclusion. [a,b] C



[Cad] = def [a7 b] 2 [C7d]' Thus, [U‘J b] C [C7d]
means that [¢,d] refines (or has more information
than) the information given by [a,b]. The partial
order IR is a complete partial order (cpo or do-
main), in which every increasing sequence has a
supremum, namely the intersection of all the com-
pact intervals in the sequence. The set D of dyadic
numbers is the set of rational numbers whose de-
numerator is a power of 2, in other words, whose
binary expansion is finite. A dyadic interval is a
closed interval whose ends are dyadic numbers. The
countable set ID of dyadic intervals, is said to form
a basis of IR. Alternatively, we can work with the
basis IQ of rational intervals.

The supremum of an increasing! sequence of
dyadic intervals is a real interval, namely the inter-
section of all the dyadic intervals in the sequence.
The maximal real intervals [z, z] are identified with
real numbers. A real interval [a, b] is computable if
there is an effective increasing sequence of basis el-
ements who supremum (i.e. intersection) is [a,b],
i.e. there is a program which with input n outputs
the nt? element of the sequence of basis elements.

For an interval [a, b], define the sign predicate:

— ifb<O,
s(a,b) ={ 1 ifa<0<b, (1)
+ ifa>0.

Here L stands for “any value from {—,0,+}” and
the range of s is the three element partial order
{—,+, L}, which is denoted by {—, +}, in which +
and — are incomparable and L is the least element.

In our model, a real number x is given by an
infinite increasing sequence of dyadic intervals xy.
Applying (1) to each zx would give a sequence by, of
combinatorial (boolean) answers which converge in
{—,+}.. The sign predicate is Scott continuous?
and an implementation of this predicate would con-
sist in computing (1) on dyadic intervals which is
possible on an integer RAM machine?

lie. increasing with respect to the information order C.

2A monotone (i.e. information order preserving) map f
between cpo’s is Scott continuous, if for any increasing se-
quence Tn, we have f(sup,>q(zn)) = sup,>o(f(zn)). Thus,
it is enough to compute f on basis elements to obtain an al-
gorithm that computes approximations which converge to
f(x) for any z.

3In this paper, we assume as machine model of com-
putation a RAM (Random Access Memory) machine able
to perform usual integer (and hence rational and dyadic)

In subsequent sections, we apply this model of
computation to the problem of computing the con-
vex hull of n points in IR?. The set ID¢ of all
rectangles with dyadic vertices, is a basis for the
domain IR?. Using the same scheme as for the sign
predicate, it is enough to compute the convex hull
for a set of n dyadic interval points, that is points
in ID?.

In our framework, geometric objects, i.e. subsets
of R¢, are captured by elements of the solid do-
main SR?, which are called partial solids or par-
tial geometric objects [11]. A geometric object is
represented by a pair (I, E) of disjoint open sets,
representing respectively the interior I and the ex-
terior? E of the object. The information ordering
is componentwise inclusion, i.e. (I, E) C (I', E") iff
ICI' and E C E'. The geometric object (I, E) is
maximal in SR? iff I = (E°)° and E = (I¢)°, where
X° and X¢ denote respectively the interior and the
complement of a set X. The collection of pairs of
interiors of dyadic (or rational) polytopes forms a
basis for SR?. Any geometric object (I, E) can be
obtained as the union of these basis elements. And
(I, E) is computable if there exists an increasing ef-
fective sequence of these basis elements with union
(I,E).

2 Convex hull on (IR%)¥

We define the partial convex hull map:

f: IRHN - SR
R ~ (I,E)

where R = (Ry,... , Rn) represents an ordered list
of N rectangles. The open sets I and E stand, re-
spectively, for the interior and the exterior of the
partial convex hull of R. In fact, E is the set of
points that are surely in the exterior of the convex
hull of any N points selected one from each rectan-
gle, whereas I is the set of points that are surely in
the interior of any such convex hull.

Let C be the classical convex hull map taking a
set of points to the convex hull of them, considered
as a compact subset of R%.

arithmetic. As regards computability, this machine model is
equivalent to a universal Turing machine.
4The exterior of a set is the interior of its complement.



C: (RH)N — CR?
(o1, on)
(SN nm | SN A =1 with A > 0}

where CR? is the set of all non-empty compact sets.
For a given ordered list of N d-rectangles R in
(IR?)N define

P(R) ={(p1,---

to be the set of all possible N-tuples of points of
the d-rectangles.
We now define:

,pN) |pj€Rj fOrj=1,...,N},

LE)=(1 N cwr.l U cwr

pEP(R) peP(R)

For a rectangle R € IR? and an index
(1y---, ja) € {—,+}? let Ri1i2-Ja € D! be the
corner of R whose k" coordinate is the lower (re-
spectively upper) end of the k" coordinate of R if
Jr = — (respectively ji = +). For example in the
plane (d = 2), R~ is the lower left corner of the
rectangle R.

The following expression gives finite algorithms
for the computation of I and E when the input is a
list of N dyadic (or rational) rectangles, i.e. when
we restrict f to the basis (ID4)Y (or (IQ?)V):

N

(15 ria) E{—>+}4

I=| C{RY 7k =1,...,N}]°

E = [C({R"7%|(ju, ... ,ja) € {—, +}%,
k=1,...,N}D°

While the complexity of computing the exterior part
E is clearly the same as for the convex hull in the stan-
dard model, the optimal complexity of computing the
interior part I for dimensions d > 3 is still open. We,
however, have the following bounds.

Theorem 2.1 For dimension d < 3, I and E can
be computed in time O(Nlog(N)). For dimension
d > 3, E can be computed in time O(N'/2). For
d > 3, a set of O(N'2) linear half-spaces with
intersection I can be computed in time O(N'?/2]);
whereas the set of O(N'Y2) non-redundant linear half-
spaces with intersection I can be computed in time

oWt Tar

Ld/2j+1)Ld/leogO(l)(N)).

The partial convex hull map f is computable; this
means, in particular, that if the input is a list of N
computable rectangles then the output (I, E) will be a
computable geometric object.

We now examine the computation of combi-
natorial predicates. Given N points z;,...,ZN
in R?, consider, for 1 < k < N, the predi-
cate: “Does zj, lie on the boundary of the con-
vex hull of these N points?” With uncertain in-
put, i.e. for N input rectangles, the answer is ei-
ther “surely yes” (tt), or “surely no” (ff) or “no
idea”(L). More formally, we have a Scott con-
tinuous predicate P, : (IR)V — {tt,ff} . For
R = (Ry,...,Rn) € IRY)N let R(k) € (IR})N-1
be the ordered list of the NV —1 dyadic interval ver-
tices: R(k‘) = (Rl, cooy Re—1, Rg1, - - - ,RN). We
have:

tt if Ry C E(R(k)),
P.(R) =< ff if R, CI(R),
1 otherwise.

2)

For the two-dimensional case (d = 2), the combi-
natorial structure of the polytope is the cyclic order
of the contributing vertices which can be computed

by finding the vertices R; with P;(R) = tt.

3 Convex Hull on (R?)Y

We now explain the behaviour of the output of
the previous computations when the input dyadic
rectangles are all refined to real points in R?. Let
R; = (Rj1,... ,Rjn) (j > 0) be an increasing (i.e.
refining) sequence of N-tuples of dyadic interval
vertices defining an N-tuple T = (21,...,zn) of
points in R?, i.e. Nj>o0 Rjr = {zx}-

We have the following results. The two increas-
ing sequences (I(R;));>0 and (E(R;));>0 converge
respectively to the interior and the exterior of the
convex hull C(Z), which form a maximal element
of SR?:

UI®) = (@)

>0

U E®)) = (C@))".

>0

Moreover, this convergence is effective in the Haus-
dorff distance and Lebesgue measure, which means,
in particular, that there is an algorithm that, given
an integer m as input, can compute n such that



whenever j > n the Hausdorff distance (respec-
tively the volume, or Lebesgue measure of the set-
theoretic difference) between C(z) and I(R;) is
bounded by 27 (and a similar relation on the ex-

terior part E).

Consider now the combinatorial predicate Py in-
troduced in the previous section. If a point z; does
not lie on the convex hull boundary, there is a value
n such that whenever j > n, the j** approxima-
tion confirms it: Py(R;) = ff. If a point zy is a
non-degenerate vertex of the convex hull, i.e. it is
strictly extremum on one edge of the boundary®,
then there is a value n such that whenever j > n,

Pr(R;) = tt. For degenerate boundary points the
answer will be L forever (undecidable).

4 Implementation

A full implementation of this model of computa-
tion with dyadic numbers would require an inte-
ger data type allowing arbitrary long binary ex-
pansions. However one can implement a more effi-
cient (but with limited accuracy) version restricted
to bounded binary expansions (as 32 bits integers
for example). In any case, one still has to carry
out the analysis of an important step: geometric
rounding. If input coordinates are approximated by
b-bit dyadic numbers, the coordinates of the coeffi-
cients of the contributing half-spaces would require
[db + 21ogo(d)]-bit expansions for an exact integer
representation. In order to keep a reasonable bit ex-
pansion, one needs a rounding scheme on half-space
coefficients such that the polytopes round(I) and
round(E) defined by the rounded coefficients give
an object with less information, i.e. round(I) C I
and round(E) C E. For arbitrary accurate im-
plementation, one needs to check further that the
chosen rounding scheme preserves the convergence
when the input bit size increases.

Another kind of geometric rounding consists of
removing some half-spaces in the representation.
Within a given rounding scheme, it is possible to
analyse the bit-complexity of the algorithms.

5In other words, there exists y € R% such that x is a
strict maximum of y - £z on the convex hull.

5 Conclusion

This new model of computation addresses the prob-
lem of robust computation with uncertain inputs
in a framework that is mathematically sound and
supports a realistic modeling of the physical world.
Instead of designing a real RAM algorithm and
considering separately the problem of number data
types, we address directly the geometric computa-
tion within a realistic machine model. As we have
shown, this point of view gives rise to interesting
new issues in algorithm analysis and implementa-
tions.

Future work will focus on devising efficient
rounding scheme and considering more elaborate
geometric operators such as Boolean operations or
Minkowski sum on polyhedra or curved objects in
this new context.
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