
Hopfield Networks



The Hebbian rule
I Donald Hebb hypothesised in 1949 how neurons are

connected with each other in the brain: “When an axon of
cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or
metabolic change takes place in one or both cells such that
A’s efficiency, as one of the cells firing B, is increased.”

I In experiments in 1966 and 1973, Long Term
Potentiation (LTP) was established as a main paradigm in
neuroscience, confirming Hebb’s insight. The simple
slogan to describe LTP is: “Neurons that fire together, wire
together. Neurons that fire out of sync, fail to link.”

I The neural network stores and retrieves associations,
which are learned as synaptic connection.



Human learning

I Learning is to associate two events with each other.
I In the Hebbian type of learning, both presynaptic and

postsynaptic neurons are involved.
I The main brain organ for learning/explicit memory is the

hippocampus (of the limbic system) using Hebbian type.



Explicit learning
I An event in the hippocampus is sculpted by a group of

firing neurons.
I Consider two events “Dark Cloud” and “Rain”, represented

for simplicity by two groups of 7 neurons below.
I Dark Cloud is represented by the firing of neurons 2, 4, 5,

7 in the first group whereas Rain is represented by the
firing of neurons 1, 3, 4, 7.

Dark Cloud: 

Rain:

[  0        1        0         1         1        0         1  ]

      ][  1         0        1          1       0          0        1

I Every (solid or dashed) line represents a synaptic
connection from the terminal of a neuron in the first group
to the dendrite of a neuron in the second.

I In Hebbian learning, synaptic modification only occurs
between two firing neurons. In this case, these learning
synaptic connections are given by the solid lines.

I When a dark cloud and rain happen together, the two sets
of neurons fire and the learning synapses are
strengthened.



Human memory

I Human memory thus works in an associative or
content-addressable way.

I There is no location in the neural network in the brain for a
particular memory say of an individual.

I Rather, the memory of the individual is retrieved by a string
of associations about the physical features, personality
characteristics and social relations of that individual, which
are dealt with by different parts of the brain.

I Using advanced imaging technique, a sophisticated
pattern of activation of various neural regions is observed
in the process of recalling an individual.

I Human beings are also able to fully recall a memory by
first remembering only particular aspects or features of that
memory.



The Hopfield network I
I In 1982, John Hopfield introduced an artificial neural

network to store and retrieve memory like the human brain.
I Here, a neuron either is on (firing) or is off (not firing), a

vast simplification of the real situation.
I The state of a neuron (on: +1 or off: -1) will be renewed

depending on the input it receives from other neurons.
I A Hopfield network is initially trained to store a number of

patterns or memories.
I It is then able to recognise any of the learned patterns by

exposure to only partial or even some corrupted
information about that pattern, i.e., it eventually settles
down and returns the closest pattern or the best guess.

I Thus, like the human brain, the Hopfield model has stability
in pattern recognition.

I With over 14,000 citations, Hopfield’s original paper is the
precursor of BM, RBM and DBN.



The Hopfield network II
I A Hopfield network is single-layered and recurrent

network: the neurons are fully connected, i.e., every
neuron is connected to every other neuron.

I Given two neurons i and j there is a connectivity weight wij
between them which is symmetric wij = wji with zero
self-connectivity wii = 0.

I Below three neurons i = 1,2,3 with values xi = ±1 have
connectivity wij ; any update has input xi and output yi .



Updating rule
I Assume N neurons = 1, · · · ,N with values xi = ±1
I The update rule is for the node i is given by:

If hi ≥ 0 then 1← xi otherwise − 1← xi

where hi =
∑N

j=1 wijxj + bi is called the field at i , with
bi ∈ R a bias.

I Thus, xi ← sgn(hi), where sgn(r) = 1 if r ≥ 0, and
sgn(r) = −1 if r < 0.

I We put bi = 0 for simplicity as it makes no difference to
training the network with random patterns.

I We therefore assume hi =
∑N

j=1 wijxj .
I There are now two ways to update the nodes:
I Asynchronously: At each point in time, update one node

chosen randomly or according to some rule.
I Synchronously: Every time, update all nodes together.
I Asynchronous updating is more biologically realistic.



Hopfield Network as a Dynamical system

I Take X = {−1,1}N so that each state x ∈ X is given by
xi ∈ {−1,1} for 1 ≤ i ≤ N.

I 2N possible states or configurations of the network.
I Define a metric on X by using the Hamming distance

between any two states:

H(x , y) = #{i : xi 6= yi}

I H is a metric with 0 ≤ H(x , y) ≤ N: it is clearly reflexive
and symmetric, check the triangular inequality!

I With either the asynchronous or synchronous updating
rule, we get a discrete time dynamical system:

I The updating rule Up : X → X defines a map.
I And Up : X → X is trivially continuous; check!
I Interested in the long term behaviour of orbits, as before.



A simple example

I Suppose we only have two neurons: N = 2.
I Then there are essentially two non-trivial choices for

connectivities (i) w12 = w21 = 1 or (ii) w12 = w21 = −1.
I Asynchronous updating: In the case of (i) there are two

attracting fixed points namely [1,1] and [−1,−1]. All orbits
converge to one of these. For (ii), the attracting fixed points
are [−1,1] and [1,−1] and all orbits converge to one of
these. Therefore, in both cases, the network is sign blind:
for any attracting fixed point, swapping all the signs gives
another attracting fixed point.

I Synchronous updating: In both cases of (i) and (ii),
although there are fixed points, none attract nearby points,
i.e., they are not attracting fixed points. There are also
orbits which oscillate forever.



Energy function
I Hopfield networks have an energy function which

decreases or is unchanged with asynchronous updating.
I For a given state x ∈ {−1,1}N of the network and for any

set of connection weights wij with wij = wji and wii = 0, let

E = −1
2

N∑
i,j=1

wijxixj

I We update xm to x ′
m and denote the new energy by E ′.

I Exercise: Show that E ′ − E = (xm − x ′
m)
∑

i 6=m wmixi .
I Using the above equality, if xm = x ′

m then we have E ′ = E .
I If xm = −1 and x ′

m = 1, then xm − x ′
m = −2 and

hm =
∑

i wmixi ≥ 0. Thus, E ′ − E ≤ 0.
I Similarly if xm = 1 and x ′

m = −1, then xm − x ′
m = 2 and

hm =
∑

i wmixi < 0. Thus, E ′ − E < 0.
I Note: If xm flips then E ′ − E = 2xmhm.



Neurons pull in or push away each other

I Consider the connection weight wij = wji between two
neurons i and j .

I If wij > 0, the updating rule implies:
I when xj = 1 then the contribution of j in the weighted sum,

i.e. wijxj , is positive. Thus xi is pulled by j towards its value
xj = 1;

I when xj = −1 then wijxj , is negative, and xi is again pulled
by j towards its value xj = −1.

I Thus, if wij > 0, then i is pulled by j towards its value. By
symmetry j is also pulled by i towards its value.

I If wij < 0 however, then i is pushed away by j from its value
and vice versa.

I It follows that for a given set of values xi ∈ {−1,1} for
1 ≤ i ≤ N, the choice of weights taken as wij = xixj for
1 ≤ i ≤ N corresponds to the Hebbian rule.



Training the network: one pattern (bi = 0)
I Suppose the vector ~x = (x1, . . . , xi , . . . , xN) ∈ {−1,1}N is a

pattern we like to store in the memory of a Hopfield
network.

I To construct a Hopfield network that remembers ~x , we
need to choose the connection weights wij appropriately.

I If we choose wij = ηxixj for 1 ≤ i , j ≤ N (i 6= j), where η > 0
is the learning rate, then the values xi will not change
under updating as we show below.

I We have

hi =
N∑

j=1

wijxj = η
∑
j 6=i

xixjxj = η
∑
j 6=i

xi = η(N − 1)xi

I This implies that the value of xi , whether 1 or −1 will not
change, so that ~x is a fixed point.

I Note that −~x also becomes a fixed point when we train the
network with ~x confirming that Hopfield networks are sign
blind.



Training the network: Many patterns
I More generally, if we have p patterns ~x`, ` = 1, . . . ,p, we

choose wij =
1
N
∑p

`=1 x`
i x`

j .
I This is called the generalized Hebbian rule.
I We will have a fixed point ~xk for each k iff sgn(hk

i ) = xk
i for

all 1 ≤ i ≤ N, where

hk
i =

N∑
j=1

wijxk
j =

1
N

N∑
j=1

p∑
`=1

x`
i x`

j xk
j

I Split the above sum to the case ` = k and the rest:

hk
i = xk

i +
1
N

N∑
j=1

∑
6̀=k

x`
i x`

j xk
j

I If the second term, called the crosstalk term, is less than
one in absolute value for all i , then hk

i will not change and
pattern k will become a fixed point.

I In this situation every pattern ~xk becomes a fixed point and
we have an associative or content-addressable memory.



Pattern Recognition



Stability of the stored patterns
I How many random patterns can we store in a Hopfield

network with N nodes?
I In other words, given N, what is an upper bound for p, the

number of stored patterns, such that the crosstalk term
remains small enough with high probability?

I Multiply the crosstalk term by −xk
i to define:

Ck
i := −xk

i
1
N

N∑
j=1

∑
` 6=k

x`
i x`

j xk
j

I If Ck
i is negative, then the crosstalk term has the same

sign as the desired xk
i and thus this value will not change.

I If, however, Ck
i is positive and greater than 1, then the sign

of hi will change, i.e., xk
i will change, which means that

node i would become unstable.
I We will estimate the probability that Ck

i > 1.



Distribution of Ck
i

I For 1 ≤ i ≤ N, 1 ≤ ` ≤ p with both N and p large, consider
x`

i as purely random with equal probabilities 1 and −1.
I Thus, Ck

i is 1/N times the sum of (roughly) Np
independent and identically distributed (i.i.d.) random
variables, say ym for 1 ≤ m ≤ Np, with equal probabilities
of 1 and −1.

I Note that 〈ym〉 = 0 with variance 〈y2
m − 〈ym〉2〉 = 1 for all m.

I Central Limit Theorem: If zm is a sequence of i.i.d.
random variables each with mean µ and variance σ2 then
for large n

Xn =
1
n

n∑
m=1

zm

has approximately a normal distribution with mean
〈Xn〉 = µ and variance 〈X 2

n − 〈Xn〉2〉 = σ2/n.
I Thus for large N, the random variable p( 1

Np
∑Np

m=1 ym), i.e.,
Ck

i , has approximately a normal distribution N (0, σ2) with
mean 0 and variance σ2 = p2(1/(Np)) = p/N.



Storage capacity

I Therefore if we store p patterns in a Hopfield network with
a large number of N nodes, then the probability of error,
i.e., the probability that Ck

i > 1, is:

Perror = P(Ck
i > 1) ≈ 1√

2πσ

∫ ∞

1
exp(−x2/2σ2)dx

=
1
2
(1− erf(1/

√
2σ2)) =

1
2
(1− erf(

√
N/2p))

where the error function erf is given by:

erf(x) =
2√
π

∫ x

0
exp(−s2)ds.

I Therefore, given N and p we can find out the probability
Perror of error for a single neuron of a stored pattern.



Storage capacity

0 1

Ci
k

i

P(C i
k

)

P
error

p/N   σ=        

Perror p/N
0.001 0.105
0.0036 0.138
0.01 0.185
0.05 0.37
0.1 0.61

I The table shows the error for some values of p/N.
I A long and sophisticated analysis of the stochastic

Hopfield network shows that if p/N > 0.138, small errors
can pile up in updating and the memory becomes useless.

I The storage capacity is p/N ≈ 0.138.



Spurious states

I Therefore, for small enough p, the stored patterns become
attractors of the dynamical system given by the
synchronous updating rule.

I However, we also have other, so-called spurious states.
I Firstly, for each stored pattern ~xk , its negation −~xk is also

an attractor.
I Secondly, any linear combination of an odd number of

stored patterns give rise to the so-called mixture states,
such as

~xmix = ±sgn(±~xk1 ± ~xk2 ± ~xk3)

I Thirdly, for large p, we get local minima that are not
correlated to any linear combination of stored patterns.

I If we start at a state close to any of these spurious
attractors then we will converge to them. However, they will
have a small basin of attraction.



Energy landscape
Energy

States

. . .
.

.

. . .. .

stored patterns

spurious states

I Using a stochastic version of the Hopfield model one can
eliminate or reduce the spurious states.



Strong Patterns
I So far we have been implicitly assuming that each pattern

in the Hopfield network is learned just once.
I In fact, this assumption follows from the condition that the

stored patterns are random.
I A strong pattern is one that is multiply learned in the

network.
I The degree of a pattern is its multiplicity.
I Thus, strong patterns have degree greater than 1.
I A pattern with degree 1 is called a simple pattern.
I Strong patterns are strongly stable and have large basins

of attraction compared to simple patterns.
I Strong patterns are used to model behavioural and

cognitive prototypes.
I We now consider the behaviour of Hopfield networks when

both simple and strong patterns are present.



Strong Patterns

I Experiment with smiley faces with six basic emotions, i.e.,
angry, disgusted, fearful, happy, sad and surprised:

I We will create brains that interpret events usually with a
particular emotion, for example in a sad or a happy way.



I Store the sad face three times and up to 800 random
patterns in a network with 650 nodes.

I Exposing the network with any random pattern will with
retrieve the sad face with negligible error (wrt the Hamming
distance).

I Note that 803/(650× 0.138) ≈ 8.95 ≈ 9 = 32.
I Now, in addition, store the happy face five times in the

network.
I Any random pattern now retrieves the happy face with

negligible error.
I In fact, we can store a total of 2248 random patterns and

still retrieve the happy face with negligible error.
I Note that 2248/(650× 0.138) ≈ 25.06 ≈ 25 = 52

I It seems that a strong pattern of degree d can be retrieved
in the presence of up to N × 0.138× d2.

I This means that the capacity of the Hopfield network to
retrieve a strong pattern to increases by the square of the
degree of the strong pattern.



I A typical updating sequence for a network with 5 copies of
the happy face, 3 copies of the sad face and 2200 random
patterns:



Learning strong patterns
I Assume we have p0 distinct patterns ~x` where 1 ≤ ` ≤ p0

with degrees d` for 1 ≤ ` ≤ p0 respectively.
I Assume

∑p0
`=1 d` = p, i.e., we still have a total of p patterns

counting their multiplicity.
I The Hebbian rule now gives: wij =

1
N
∑p0

`=1 d`x`
i x`

j .
I As before, we have a fixed point ~xk for each k iff

sgn(hk
i ) = xk

i for all 1 ≤ i ≤ N, where

hk
i =

N∑
j=1

wijxk
j =

1
N

N∑
j=1

p0∑
`=1

d`x`
i x`

j xk
j

I Again split the above sum to the case ` = k and the rest:

hk
i = dkxk

i +
1
N

N∑
j=1

∑
6̀=k

d`x`
i x`

j xk
j

I Now if the second term, the crosstalk term, is small relative
to dk for all i , then hk

i will not change and pattern k will
become a fixed point.



Stability of the strong patterns

I We proceed as in the case of simple patterns.
I Multiplying the crosstalk term by −xk

i :

Ck
i := −xk

i
1
N

N∑
j=1

∑
6̀=k

d`x`
i x`

j xk
j

I If Ck
i is less than dk , then the crosstalk term has the same

sign as the desired xk
i and thus this value will not change.

I If, however, Ck
i is greater than dk , then the sign of hi will

change, i.e., xk
i will change, which means that node i

would become unstable.
I We will estimate the probability that Ck

i > dk .



Distribution of Ck
i

I As in the case of simple patterns, for j 6= i and ` 6= k the
random variables d`x`

i x`
j xk

j /N are independent.
I But now they are no longer identically distributed and we

cannot invoke the Central Limit Theorem (CLT).
I However, we can use a theorem of Lyapunov’s which gives

a generalisation of the CLT when the random variables are
independent but not identically distributed. This gives:

Ck
i ∼ N

0,
∑
6̀=k

d2
` /N


I Assuming only ~x1 is strong, we get C1

i ∼ N (0, (p− d1)/N).
If in addition d1 � p, the probability of error in retrieving ~x1

would be:

Prerror ≈
1
2

(
1− erf(d1

√
N/2p

)



A square law of attraction for strong patterns
I We can rewrite the error probability in this case as

Prerror ≈
1
2

(
1− erf(

√
Nd2

1/2p
)

I The error probability is thus constant if d2
1/p is fixed.

I For d1 = 1, we are back to the standard Hopfield model
where p = 0.138N is the capacity of the network.

I It follows that for d1 > 1 with d1 � p the capacity of the
network to retrieve the strong pattern ~x1 is

p ≈ 0.138d2
1 N

which gives an increase in the capacity proportional to the
square of the degree of the strong pattern.

I As we have seen this result is supported by computer
simulations. It is also proved rigorously using the
stochastic Hopfield networks.

I This justifies strong patterns to model behavioural/cognitive
prototypes in psychology and psychotherapy.


