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omAbstra
t. We introdu
e, in Part I, a number representation suitable forexa
t real number 
omputation, 
onsisting of an exponent and a man-tissa, whi
h is an in�nite stream of signed digits, based on the interval[�1; 1℄. Numeri
al operations are implemented in terms of linear fra
-tional transformations (LFT's). We derive lower and upper bounds forthe number of argument digits that are needed to obtain a desired num-ber of result digits of a 
omputation, whi
h imply that the 
omplexityof LFT appli
ation is that of multiplying n-bit integers. In Part II, wepresent an a

essible a

ount of a domain-theoreti
 approa
h to 
om-putational geometry and solid modelling whi
h provides a data-type fordesigning robust geometri
 algorithms, illustrated here by the 
onvexhull algorithm.Part I: The LFT Aproa
h to Real Number Computation1 Introdu
tionComputing with real numbers is one of the main appli
ations of \
omputers".Yet real numbers are in�nite mathemati
al obje
ts (digit sequen
es, Cau
hysequen
es, nested sequen
es of intervals, or the like). Within �nite time, onemay only hope to obtain a �nite part of a real number, giving an approximationto some a

ura
y.This also means that 
omparison on real numbers is unde
idable. Considerthe predi
ate x > 0 applied to the number x represented as the nested sequen
e ofintervals ([� 1n ; 1n ℄)n�0. Within �nite time, only a �nite number of these intervals
an be inspe
ted, whi
h always 
ontain positive as well as negative numbers sothat no de
ision on the sign of x is possible.



The problems mentioned above 
an be avoided by restri
ting attention tosome subset of real numbers whi
h 
an be �nitely des
ribed. An obvious 
hoi
eare the rational numbers, but this means that operations su
h as square rootor tangent are not possible. A larger su
h set 
onsists of the algebrai
 numbers,i.e., the roots of integer polynomials. With algebrai
 numbers, square roots andhigher roots are possible, but trigonometri
 fun
tions su
h as sine, 
osine ortangent are still not supported.Usually, a di�erent approa
h is 
hosen. A �nite set of ma
hine-representable
oating-point numbers is singled out, and fast operations are provided whi
happroximate the standard operations and fun
tions: if, say, the square root ofa 
oating-point number is 
omputed, then the resulting 
oating-point numberis usually not the exa
t mathemati
al answer, but a number very 
lose to it.The errors introdu
ed by these approximations are known as round-o� errors,and the easiest approa
h is to simply ignore them be
ause they are so small.Yet in 
ertain situations, round-o� errors may a

umulate to yield a big error.An example where this happens is the following number sequen
e de�ned byJean-Mi
hel Muller (found in [40℄):a0 = 112 ; a1 = 6111 ; an+1 = 111� 1130� 3000an�1an :With the Unix program b
, one 
an 
ompute with an arbitrary, but �xed numberof de
imal pla
es. Let a(k)n be the sequen
e element an 
omputed with an a

u-ra
y of k de
imal pla
es. Computing with 5 de
imal pla
es yields the followingresults (rounded to 3 pla
es for presentation):a(5)0 5:500a(5)1 5:545a(5)2 5:590a(5)3 5:632 a(5)4 5:648a(5)5 5:242a(5)6 �3:241a(5)7 283:1 a(5)8 103:738a(5)9 100:209a(5)10 100:012a(5)11 100:001From this, one gets the impression that the sequen
e 
onverges to 100. To
on�rm this impression, we 
ompute the number a100 with an in
reasing numberof de
imal pla
es:a(5)100 100.041a(30)100 100.0291a(60)100 100.057997a(100)100 100.01798 . . . a(110)100 100.0792 . . .a(120)100 �3:790 : : :a(130)100 5.978697 . . .a(140)100 5.9787925 . . .Here, the \exponents" indi
ate the number of repetitions; for instan
e, 100.041means 100.00001. As expe
ted, the 
omputations with 5, 30, and 60 de
imalpla
es show that a100 is 
lose to the presumable limit 100. They are 
onsistentin their result value, and it is tempting to think \I know that round-o� errors



may lead to wrong results, but if I in
rease the pre
ision from 30 to 60 and theresult obtained with 30 digits is 
on�rmed, then it must be a

urate." Yet the
omputations with 100 and 110 de
imal pla
es indi
ate that a100 is less 
lose to100 than expe
ted, and worse, the 
omputations with 120, 130, and 140 de
imalpla
es show that all the de
imals obtained from the less pre
ise 
omputationswere wrong. Or do the more pre
ise 
omputations yield wrong answers? Whatis the 
orre
t answer after all? Using the approa
h to exa
t real arithmeti
 pre-sented in the sequel, one 
an verify that the number a(140)100 
omputed with 140de
imal pla
es is an a

urate approximation of the real value of a100 (and witha bit of mathemati
al reasoning, one 
an show that the sequen
e 
onverges to6, not to 100). Thus, on the positive side, we see that there is a pre
ision (140)whi
h yields the right answer for a100, but in programs su
h as b
, one has to �xthis pre
ision in advan
e, and without a detailed analysis of the problem, it isun
lear whi
h pre
ision will be suÆ
ient (all pre
isions up to 110 give 
ompletelywrong, but 
onsistent answers near 100).In the approa
h to Exa
t Real Arithmeti
 presented here, one need not spe
-ify a �xed pre
ision in advan
e. Instead, a real number is set up by some oper-ations and fun
tions, and then one may ask the system to evaluate this numberup to a 
ertain pre
ision. The result will be an interval whi
h approximates thereal number with the required pre
ision, and it is a
tually guaranteed that thenumber really is 
ontained in this interval: with this arithmeti
, it is impossibleto get wrong answers (well, sometimes it may take very long to get an answer,but on
e the answer is there, it is trustworthy).1.1 OverviewIn Se
tion 2, we introdu
e a number representation suitable for our purposes,
onsisting of an exponent and a mantissa, whi
h is an in�nite stream of signeddigits. A few simple operations like �x and jxj are implemented dire
tly on thisrepresentation. All other operations are implemented in terms of linear fra
tionaltransformations (LFT's). Individual LFT's a
t on number representations anddigit streams in a uniform way whi
h is �xed on
e and for all. Thus they providea high-level framework for implementing fun
tions without the need to thinkabout their a
tion on the low-level digit streams.LFT's and basi
 LFT operations are introdu
ed in Se
tion 3. Se
tion 4 studiesmonotoni
ity properties of general fun
tions, in parti
ular LFT's. Su
h proper-ties are useful in the design and analysis of algorithms. In Se
tion 5, we 
har-a
terize those LFT's whi
h map the base interval [�1; 1℄ into itself (re�ningLFT's). The a
tion of re�ning LFT's on digit streams is de�ned in Se
tion 6:the absorption of argument digits into an LFT, and the emission of result digitsfrom an LFT. Absorption and emission are the main ingredients of an algorithmthat 
omputes the result of applying an LFT to a real number (Se
tion 6.3).Se
tion 6.5 
ontains some example runs of this algorithm.In Se
tion 7, we derive lower and upper bounds for the number of argu-ment digits that are needed to obtain a desired number of result digits of anLFT appli
ation. This information is 
omplemented by information about the




omplexity of individual absorptions and emissions (Se
tion 8). Taken together,these results imply that LFT appli
ation is quadrati
 in the number n of emit-ted digits|provided that digits are absorbed and emitted one by one. If manydigits are absorbed and emitted at on
e, the 
omplexity 
an be redu
ed to thatof multiplying n-bit integers (Se
tion 9).All basi
 arithmeti
 operations are spe
ial instan
es of LFT appli
ation. InSe
tion 10, the results about general LFT appli
ation are spe
ialized to addition,multipli
ation, and re
ipro
al 1=x. Trans
endental fun
tions 
an be implementedas in�nite LFT expansions. Se
tion 11 de�nes the semanti
s of su
h expansions,and shows how they 
an be derived from Taylor expansions (Se
tion 11.4) or
ontinued fra
tion expansions (Se
tion 11.5). In Se
tion 12, this knowledge isused to implement exponential fun
tion and natural logarithm; other fun
tionsare handled in the exer
ises.Se
tions 13{18 present a domain-theoreti
 framework for 
omputational ge-ometry. Se
tion 19 
ontains histori
al remarks to both parts, and Se
tion 20
ontains exer
ises.2 Digit StreamsIn the approa
h to real number 
omputation presented here, (
omputable) realnumbers are represented as potentially in�nite streams of digits. At any time, a�nite pre�x of this stream has already been evaluated, e.g., � = 3:14159 � � �, andthere is a method to 
ompute larger �nite pre�xes on demand.A �nite pre�x of the digit stream denotes an interval, namely the set of all realnumbers whose digit streams start with this pre�x. For instan
e, the pre�x 3.14denotes the interval [3:14; 3:15℄ sin
e all numbers starting with 3.14 are between3:14000 � � � and 3:14999 � � � = 3:15. The longer the pre�x, the smaller the interval,e.g., 3.141 denotes [3:141; 3:142℄. In this way, the digit stream denotes by meansof its pre�xes a nested sequen
e of intervals whose interse
tion 
ontains exa
tlyone number, namely the real number given by the digit stream.The 
losed intervals of IR form a domain when ordered under opposite in
lu-sion. A nested sequen
e of intervals is an in
reasing 
hain in this domain, withits interse
tion as the least upper bound. The real numbers themselves are inone-to-one 
orresponden
e to the maximal elements of this domain, namely thedegenerate intervals [x; x℄. The S
ott topology of the interval domain indu
esthe usual topology on IR via this embedding.2.1 The Failure of Standard Number SystemsThe examples above are based on the familiar de
imal system, whi
h is a
tuallyunsuitable for exa
t arithmeti
 (Brouwer [10℄). We shall demonstrate this bymeans of an example, and note that similar examples exist for bases di�erentfrom 10, i.e., this is a prin
ipal problem a�e
ting all standard positional numbersystems.



Consider the task of 
omputing the produ
t y = 3 �x where x is given by thede
imal representation � = 0:333 � � �. Mathemati
ally, the result is given by thede
imal representation � = 0:999 � � �, but is it possible to 
ompute this result?Re
all that at any time, only a �nite pre�x of � is known, and this �nite pre�xis the only sour
e of information available to produ
e a �nite pre�x of the result�. Assume we know the pre�x 0:333 of �. Is this suÆ
ient to determine the�rst digit of �? Unfortunately not, be
ause the pre�x 0:333 denotes the interval[0:333; 0:334℄, whi
h gives [0:999; 1:002℄ when multiplied by 3. So we know that� should start with 0. or 1., but we do not yet know whi
h is the right one,sin
e neither the interval [0; 1℄ denoted by 0. nor the interval [1; 2℄ denoted by1. 
overs the output interval [0:999; 1:002℄. Worse, it is easy to see that thishappens with all pre�xes of the form 0:33 � � �3. Hen
e if � is the stream 0:333 � � �with `3' forever, we 
an never output the �rst digit of � sin
e no �nite amountof information from � is suÆ
ient to de
ide whether � should start with 0. or 1. .A solution to this problem is to admit negative digits (�1, . . . , �9 in base10). If we now �nd that � begins with 0:333, we may safely output `1:' (even1:00) as a pre�x of � sin
e we 
an 
ompensate by negative digits if it turnsout later that the number represented by � is less than 1=3, and so the resultis a
tually smaller than 1. More formally, the interval denoted by the pre�x0:333 is now [0:332; 0:334℄, sin
e the smallest possible extension of 0.333 is nolonger 0:33300 � � �, but 0:333(�9)(�9) � � �. This interval yields [0:996; 1:002℄ whenmultiplied by 3, whi
h is 
ontained in the interval [0:99; 1:01℄ represented by thepre�x 1:00, i.e., we 
an safely output 1:00 as the beginning of the output stream.2.2 Signed Positional SystemsSigned positional systems are variants of standard positional systems whi
h ad-mit negative as well as positive digits. Like the standard systems, they are 
har-a
terised by a base r, whi
h is an integer r � 2. On
e the base is �xed, the setof possible digits is taken as Dr = fd 2 ZZ j jdj < rg. For r = 10, we obtainD10 = f�9;�8; : : : ; 0; 1; : : : ; 9g (signed de
imal system), but the signed binarysystem with r = 2 and D2 = f�1; 0; 1g is pra
ti
ally more important. Mostof these le
ture notes deal with the 
ase of base 2, whi
h will therefore be thedefault 
ase when the index r is omitted.To avoid a spe
ial notation for the \de
imal" (or \binary") point, let's assumeit is always at the beginning of the digit stream. Then an (in�nite) digit stream� = hd1; d2; d3; � � �i with di 2 Dr represents the real number [�℄r =P1i=1 dir�i asusual. A �nite digit sequen
e Æ represents the set [Æ℄r of all numbers [Æ�℄r whi
hare represented by extensions of Æ to an in�nite stream. For Æ = hd1; d2; � � � ; dni,this set 
an be determined as the interval [Æ℄r = [Pni=1 dir�i�r�n; Pni=1 dir�i+r�n℄ of length 2r�n. Note that the empty pre�x hi (n = 0) denotes the interval[�1; 1℄, whi
h is the set of all real numbers representable by now. For the otherones, see Se
tion 2.3 below.In the sequel, we shall usually omit the parentheses and 
ommas in digitsequen
es to obtain a more 
ompa
t notation. Instead, we shall write 
on
rete



examples of digits and digit sequen
es in a spe
ial style, e.g., 4711 for h4; 7; 1; 1i,to distinguish these sequen
es as synta
ti
 obje
ts from the numbers they denote.For further notational 
onvenien
e, the minus sign be
omes a bar within digitsequen
es, e.g., we write 1�101 for the sequen
e h1;�1; 0; 1i. The digit sequen
ewhi
h results from atta
hing a single digit d to a sequen
e � will be written asd : � (like \
ons" in the lazy fun
tional languages Haskell and Miranda). Unlikethese languages, we shall abbreviate d1 : d2 : � by d1d2 : �.What is then the proper semanti
 meaning of this \
ons" operation? Forin�nite streams, we may 
al
ulate[d : �℄r = d � r�1 + 1Xi=2 �i�1r�i = 1r  d+ 1Xi=1 �ir�i! = 1r (d+ [�℄r) :Hen
e, we have [d : �℄r = Ard([�℄r) where Ard denotes the aÆne fun
tion withArd(x) = x+dr . A similar 
al
ulation 
an be done for �nite digit sequen
es de-noting intervals; the result is again [d : �℄r = Ard([�℄r), but this time, bothsides are intervals, and for an interval I , Ard(I) is the image of I under Ard,whi
h may as well be obtained as Ard([u; v℄) = [Ard(u); Ard(v)℄. For �nite digit se-quen
es, these 
onsiderations lead to an alternative 
hara
terisation of [d1 � � � dn℄ras Ard1(� � �Ardn([�1; 1℄) � � �).In 
ontrast to the \
ons" operation, the \tail" operation (omitting the �rstdigit) has no semanti
 meaning. In base 2, 010 : : : and 1�10 : : : both representthe number 14 , but their tails 10 : : : and �10 : : : represent two di�erent numbers( 12 and � 12 ).Let's now 
onsider the pra
ti
ally important 
ase r = 2, D = f�1; 0; 1gmore
losely. Here, we have (suppressing the index 2) A�1(x) = 12 (x� 1), A0(x) = 12x,and A1(x) = 12 (x+1). All possible digit sequen
es up to length 2 and the intervalsdenoted by them are given by the following table: [11℄ = [ 12 ; 1℄[1℄ = [0; 1℄ [10℄ = [ 14 ; 34 ℄[01℄ = [1�1℄ = [0; 12 ℄[ ℄ = [�1; 1℄ [0℄ = [� 12 ; 12 ℄ [00℄ = [� 14 ; 14 ℄[0�1℄ = [�11℄ = [� 12 ; 0℄[�1℄ = [�1; 0℄ [�10℄ = [� 34 ;� 14 ℄[�1�1℄ = [�1;� 12 ℄We see that the intervals overlap 
onsiderably, and some intervals are outrightequal, e.g., [1�1℄ and [01℄. The latter observation 
an be strengthened to thefa
t that for all �nite or in�nite digit sequen
es Æ, the sequen
es 1�1 : Æ and01 : Æ are equivalent in the sense that they denote the same interval (�nite
ase) or the same real number (in�nite 
ase). The semanti
 reason for this isA1 Æ A�1 = A0 Æ A1 = (x 7! 14 (x + 1)). Similarly, �11 : Æ and 0�1 : Æ are alwaysequivalent.Therefore, most real numbers have several (often in�nitely many) di�erentdigit stream representations. This redundan
y, or more pre
isely the overlapping



whi
h 
auses it is important for 
omputability: if an output range 
rosses theborder point 0 of [�1℄ and [1℄ and is suÆ
iently small, then it will be 
ontainedin [0℄, i.e., the digit 0 may be output. This observation may be strengthened asfollows:{ If an interval J � [�1; 1℄ has length `(J) � 12 , then it is 
ontained in (atleast) one of the three digit intervals [�1℄, [0℄, [1℄.An interval J with 12 < `(J) � 1 may or may not �t into one of the three digitintervals; 
onsider [��; 12 + �℄ whi
h does not �t for � > 0, and [0; l℄ whi
h �tsinto [1℄ = [0; 1℄ for l � 1. Finally, an interval J with `(J) > 1 
annot �t into anyof the three digit intervals.These observations 
an be generalised to digit sequen
es of length greaterthan 1 and arbitrary bases r as follows:Proposition 2.1. Let J � [�1; 1℄ be an interval.1. If `(J) � r�n, then J � [Æ℄r for some digit sequen
e Æ of length n in base r.2. If J � [Æ℄r for some digit sequen
e Æ of length n in base r, then `(J) � 2r�n.2.3 ExponentsWe have seen that a signed positional number system as de�ned above 
an onlyrepresent numbers x with jxj � 1 by digit streams. To obtain representations forreal numbers x of any size, one may write x as re � x0 where re is a power of thebase and x0 satis�es jx0j � 1 so that it 
an be represented by a digit stream. Inprin
iple, exponents e � 0 are suÆ
ient, but allowing arbitrary e 2 ZZ has itsvirtues. Thus, we arrive at representations (e jj �) where e is an integer (
alledexponent) and � is a digit stream (
alled mantissa), and (e jj �) represents[(e jj �)℄r = re � [�℄r. Semanti
ally, the atta
hment of the exponent 
an again be
aptured by an aÆne map, namely [(e jj �)℄r = Ere ([�℄r), where Ere is given byEre (x) = re � x.The resulting number representation is similar to the familiar exponent-mantissa representation. The di�eren
es are that the mantissa is (potentially)in�nite and may 
ontain negative digits, and that no leading sign is required torepresent negative numbers. (A further synta
ti
 di�eren
e is that the exponent
omes �rst; this re
e
ts the fa
t that all algorithms deal with the exponent �rstbefore working with the mantissa.)Clearly, the exponent in the number representation is not unique. Sin
e[0 : �℄r = 1r [�℄r, a representation (e jj �) 
an always be repla
ed by (e+1 jj 0 : �),or more generally by (e+ k jj 0k : �), where 0k : � means that k 0-digits are at-ta
hed to the beginning of �. On the other hand, we may remove leading 0-digitsfrom � and redu
e (re�ne) the exponent a

ordingly: [(e jj 0 : �)℄r = [(e�1 jj �)℄r,or more generally [(e jj 0k : �)℄r = [(e� k jj �)℄r .Note that 0-digits may be squeezed out of a digit stream even if it does notbegin with a 0-digit. For instan
e, in base r = 2, we have seen that 1�1 : � and01 : � are equivalent, and so are �11 : � and 0�1 : �. Thus, we have [(e jj 1�1 : �)℄ =[(e� 1 jj 1 : �)℄ and [(e jj �11 : �)℄ = [(e� 1 jj �1 : �)℄.



Re�nement of the exponent is no longer possible i� the mantissa � starts withone of 10, 11, �10, or �1�1. We 
all a representation with this property normalised.A normalised mantissa represents a number x with 14 � jxj � 1. All real numbersex
ept 0 have normalised representations, but in 
ontrast to the familiar 
ase ofunsigned digits, the exponents of two normalised representations for the samenumber may still di�er by 1, e.g., 13 = [(�1 jj (10)!)℄ = [(0 jj 1(0�1)!)℄.The 
omputation of a real number y (more exa
tly, one of its representations)generally pro
eeds in the following stages:1. Obtain an upper bound for the exponent of y.2. Re�ne the exponent until it is suÆ
iently small or the representation isnormalised.3. Compute pre�xes of the mantissa a

ording to the required pre
ision.In simple 
ases, the exponent of the result is immediately known, but sometimes,
onsiderable work is to be done in the �rst two stages.2.4 Cal
ulations with Digit StreamsSuppose we want to implement a fun
tion f : IR! IR whi
h takes real numbersto real numbers. Then we need to �nd a 
orresponding fun
tion ' on representa-tions, i.e., a fun
tion ' that maps representations (e jj �) of x into representations(e0 jj �) of f(x). Often, this fun
tion will be based on some fun
tion '0 that mapsdigit streams into digit streams. Algorithms for su
h stream fun
tions 
an usuallybe spe
i�ed re
ursively in the spirit of a lazy fun
tional programming languagesu
h as Haskell or Miranda.We are now ready to present the implementations of a few simple fun
tions(and 
onstants), always assuming base r = 2. We shall usually not distinguishbetween a stream � and its denotation [�℄, nor between a fun
tion f and itsrepresentation '.Zero may be represented by (0 jj 0!), and one by (0 jj 1!) or (1 jj 10!).Negation �x 
an be implemented by leaving the exponent alone, and negating(the number represented by) the mantissa: �(e jj �) = (e jj ��).The latter 
an be done by 
ipping all digits around:�(1 : �) = �1 : (��); �(0 : �) = 0 : (��); �(�1 : �) = 1 : (��):Absolute value jxj 
an also be realised by a
ting on the mantissa:j(e jj �)j = (e jj j�j).As long as the leading digit of � is 0, we do not know whether [�℄ is positive ornegative. But be
ause of [0 : �℄ = 12 [�℄ and j 12xj = 12 jxj we 
an safely output a0-digit for every 0-digit we meet: j0 : �j = 0 : j�j.On
e the �rst non-zero digit has been found, we know [�℄ � 0 or [�℄ � 0, and
an swit
h to the identity stream fun
tion or negation:j1 : �j = 1 : �; j�1 : �j = 1 : (��) :



Other operations. Implementations of the minimum fun
tion min(x; y) andaddition x+ y in this framework are straightforward (see also Exer
ise 1). Mul-tipli
ation is a bit more diÆ
ult, but division already requires some ingenuity,and there is no immediate way to obtain fun
tions like square root, exponential,logarithm, et
. Fortunately, linear fra
tional transformations (LFT's) provide ahigh-level framework that makes the implementation of su
h real number oper-ations mu
h easier. Individual LFT's a
t on number representations and digitstreams in a uniform way whi
h is �xed on
e and for all. The desired real num-ber operations may then be implemented in terms of LFT expressions, withoutthe need to think about their a
tion on the low-level digit streams. (Anotherapproa
h was used by Plume [42℄ who worked on digit streams using auxiliaryrepresentations and an auxiliary limit fun
tion. These also provide an abstra
-tion from the underlying digit streams.)3 Linear Fra
tional Transformations (LFT's)We have already seen that the semanti
 meaning of digits and exponents 
an be
aptured by 
ertain aÆne transformations : [d : �℄r = Ard([�℄r) with Ard(x) = x+dr ,and [(e jj �)℄r = Ere ([�℄r) with Ere (x) = re � x. The general form of these aÆnetransformations is A(x) = ax+b with two �xed parameters a and b. ConsideringaÆne transformations would already be suÆ
ient to obtain some useful results,but to handle division and 
ertain trans
endental fun
tions, one needs the moregeneral linear fra
tional transformations or LFT's.3.1 One-Dimensional LFT's (1-LFT's) and Matri
esA one-dimensional linear fra
tional transformation (1-LFT), also 
alled M�obiustransformation, is a fun
tion of the form L(x) = ax+
bx+d with four �xed parametersa, b, 
, and d. In general, these parameters are arbitrary real (or even 
omplex)numbers, but we shall usually only 
onsider 1-LFT's with integer parameters.The notion of 1-LFT in
ludes that of aÆne transformation. A 1-LFT ax+
bx+dis aÆne if and only if b = 0; in this 
ase it be
omes adx+ 
d .For ease of notation, we abbreviate the fun
tion x 7! ax+
bx+d by 
 ab 
d�. Thefollowing are some examples of 1-LFT's:x 7! x 
 10 01� x 7! �x D�10 01Ex 7! x+ 1 
 10 11� x 7! 3x 
 30 01�x 7! 1x 
 01 10� x 7! 2x+34x+5 
 24 35�x 7! Ard(x) = x+dr D 10 drE x 7! Ere (x) = re � x D re0 01EThe notation 
ab 
d� for 1-LFT's looks similar to a 2-2-matrix M = �ab 
d�. In-deed, any su
h matrix M = �ab 
d� de�nes a 1-LFT, namely hMi = 
 ab 
d�, with



hMi(x) = ax+
bx+d . Yet this 
orresponden
e is not one-to-one: in a 1-LFT, 
ommonfa
tors of the four parameters do not matter; 
ab 
d� and Dkakb k
kdE are the same1-LFT if k is a non-zero number. Thus, we have hMi = hkMi for k 6= 0. In fa
t,the opposite dire
tion also holds: if hM1i = hM2i, then M1 and M2 di�er onlyby a non-zero multipli
ative fa
tor. In parti
ular, we have hMi = h�Mi. As aslight normalisation, we usually present 1-LFT's in a way su
h that the lowerright entry is non-negative (d � 0).The matrix-like notation for 1-LFT's 
arries mathemati
al meaning be
auseof the following:Proposition 3.1. The 
omposition of two 1-LFT's L1 and L2 is again a 1-LFT.Composition of 1-LFT's 
orresponds to matrix multipli
ation: hM1i Æ hM2i =hM1 �M2i (Exer
ise 2).Re
all from linear algebra how two matri
es are multiplied:�ab 
d� ��a0b0 
0d0� = �aa0 + 
b0ba0 + db0 a
0 + 
d0b
0 + dd0� (1)If b = b0 = 0, then also ba0+db0 = 0, hen
e aÆnity is preserved by multipli
ation.The neutral element of matrix multipli
ation is the identity matrix E = � 10 01�,whose 1-LFT 
 10 01� is the identity fun
tion. Re
all further the important notionof the determinant of a matrixdet�ab 
d� = ad� b
 (2)and its basi
 properties:det E = 1 det(A � B) = detA � detB det(kM) = k2 � detM (3)Be
ause of the last equation above, the determinant is not a well-de�ned prop-erty of a 1-LFT (remember that hkMi = hMi for k 6= 0). Yet the sign of thedeterminant is a perfe
t 1-LFT property be
ause for k 6= 0, det(kM) >=< 0 i�detM >=< 0.A matrix M is non-singular i� detM 6= 0. The inverse of a non-singularmatrix M = �ab 
d� is given by �ab 
d��1 = 1detM � d�b �
a�. For 1-LFT's, thefa
tor 1detM does not matter, and we may de�ne the pseudo inverse M� instead:�ab 
d�� = � d�b �
a� (4)Note that the pseudo inverse of an integer matrix is again an integer matrix,and aÆnity (b = 0) is preserved as well. The following are the main propertiesof this notion (in the matrix world):E� = E (M�)� = M(k �M)� = k �M� (A �B)� = B� �A�detM� = detM M �M� = M� �M = detM � E (5)



Sin
e non-zero fa
tors do not matter for 1-LFT's, the last property gives the1-LFT equation hM�i Æ hMi = hMi Æ hM�i = id for detM 6= 0, i.e., hM�i is theinverse fun
tion of hMi.3.2 Two-Dimensional LFT's (2-LFT's) and TensorsThe 1-LFT's de�ned above are fun
tions of one argument, and as su
h, notsuitable to 
apture the standard binary operations of addition x+y, subtra
tionx�y, multipli
ation x �y, and division x=y. For this purpose, we introdu
e LFT'sof two arguments (two-dimensional LFT's, shortly 2-LFT's).A two-dimensional linear fra
tional transformation (2-LFT) is a fun
tion ofthe form L(x; y) = axy+
x+ey+gbxy+dx+fy+h with eight �xed parameters a, b, 
, d, e, f , g,and h. For ease of notation, we write this fun
tion as Dab 
d ef ghE. The followingare some examples of 2-LFT's:(x; y) 7! x+ y 
 00 10 10 01� (x; y) 7! x� y D 00 10 �10 01E(x; y) 7! x � y 
 10 00 00 01� (x; y) 7! x=y 
 00 10 01 00�(x; y) 7! x+y1�xy D 0�1 10 10 01E (x; y) 7! 2x+34y+5 
 00 20 04 35�The notation Dab 
d ef ghE for 2-LFT's looks similar to a 2-4-matrix T = �ab 
d ef gh�,
alled tensor. The relation between tensors and 2-LFT's is similar to the rela-tion between matri
es and 1-LFT's. Any tensor T de�nes a 2-LFT hT i. Twotensors de�ne the same 2-LFT if and only if their entries di�er by a non-zeromultipli
ative fa
tor. Thus, hT i = hkT i for k 6= 0; in parti
ular hT i = h�T i. Weusually present 2-LFT's in a way su
h that the lower right entry is non-negative(h � 0).If the se
ond argument of a 2-LFT F = Dab 
d ef ghE is a �xed number y, thenF jy is a fun
tion in one argument, given byF jy(x) = F (x; y) = (ay + 
)x+ (ey + g)(by + d)x + (fy + h) = �ay + 
by + d ey + gfy + h� (x) :A similar 
al
ulation 
an be done if the �rst argument is a �xed number x,leading to another 1-LFT F jx. Thus, if we de�ne for tensors T = �ab 
d ef gh�T jx = �ax+ ebx+ f 
x+ gdx+ h� and T jy = �ay + 
by + d ey + gfy + h� (6)then hT jxi(y) = T (x; y) and hT jyi(x) = T (x; y).While there is no obvious way to 
ompose two 2-LFT's in the frameworkpresented here, there are several ways to 
ompose a 2-LFT and a 1-LFT (or tomultiply a tensor and a matrix). Let for the following M be a matrix and T atensor.



First, the fun
tion F de�ned by F (x; y) = hMi(hT i(x; y)) is again a 2-LFT,namely F = hMT i, where MT is an instan
e of ordinary matrix multipli
ation:�a0b0 
0d0��ab 
d ef gh� = �a0a+ 
0bb0a+ d0b a0
+ 
0db0
+ d0d a0e+ 
0fb0e+ d0f a0g + 
0hb0g + d0h� (7)Se
ond, the fun
tion G de�ned by G(x; y) = hT i(hMi(x); y) is again a 2-LFT,namely G = hT L
Mi, where T L
M is a spe
ial purpose operation de�ned by�ab 
d ef gh� L
�a0b0 
0d0� = �aa0 + eb0ba0 + fb0 
a0 + gb0da0 + hb0 a
0 + ed0b
0 + fd0 

0 + gd0d
0 + hd0�(8)Third, the fun
tion H de�ned by H(x; y) = hT i(x; hMi(y)) is again a 2-LFT,namely H = hT R
Mi, where T R
M is a spe
ial purpose operation de�ned by�ab 
d ef gh� R
�a0b0 
0d0� = �aa0 + 
b0ba0 + db0 a
0 + 
d0b
0 + dd0 ea0 + gb0fa0 + hb0 e
0 + gd0f
0 + hd0�(9)All these operations are 
onne
ted by various algebrai
 laws:(M1 �M2) � T = M1 � (M2 � T ) (T L
M1) R
M2 = (T R
M2) L
M1 (10)(M1 � T ) L
M2 = M1 � (T L
M2) (M1 � T ) R
M2 = M1 � (T R
M2) (11)(T L
M1) L
M2 = T L
 (M1 �M2) (T R
M1) R
M2 = T R
 (M1 �M2) (12)3.3 Zero-Dimensional LFT's (0-LFT's) and Ve
torsIn analogy to 1-LFT's whi
h take one argument and 2-LFT's whi
h take twoarguments, there are also 0-LFT's 
ab � whi
h take no argument at all, but deliverthe 
onstant ab .The notation 
ab � for 0-LFT's looks similar to a ve
tor �ab �. Clearly, twove
tors 
orrespond to the same 0-LFT if and only if they di�er by a non-zeromultipli
ative fa
tor.A 1-LFT 
ab 
d� 
an be applied to a 0-LFT 
uv � resulting in a new 0-LFTDau+
vbu+dvE. If the �rst argument of a 2-LFT F = Dab 
d ef ghE is a �xed 0-LFT w =
uv �, then F jw is the 1-LFT Dau+evbu+fv 
u+gvdu+hvE. Similarly, F jw = Dau+
vbu+dv eu+gvfu+hvE.These absorption rules 
an be used to deal with rational numbers in thereal arithmeti
. An expression like 13� 
an be set up as 
 10 00 00 01� (
 13� ; �) usingthe tensor for multipli
ation, and then simpli�ed to 
 10 03� (�). If only rationaloperations on rational numbers are performed, this is equivalent to a rationalarithmeti
, with the disadvantage that in general, denominators double in theirbit size in every addition and multipli
ation. Alternatively, a rational number
an be treated like any real number and transformed into a digit stream.



4 Monotoni
ityBy interval, we always mean a 
losed interval [u; v℄ with u � v in IR. If I is aninterval and f : I ! IR a 
ontinuous fun
tion, then its image f(I) is again aninterval. To a
tually determine the end points of f(I), it is useful to know aboutthe monotoni
ity of f .A fun
tion f : I ! IR is{ in
reasing if x � y in I implies f(x) � f(y),{ de
reasing if x � y in I implies f(x) � f(y),{ stri
tly in
reasing if x < y in I implies f(x) < f(y),{ stri
tly de
reasing if x < y in I implies f(x) > f(y),{ monotoni
 if it is in
reasing (on the whole of I) or de
reasing (on the wholeof I).For monotoni
 fun
tions, we also speak of their monotoni
ity type, whi
h is" for in
reasing fun
tions, and # for de
reasing fun
tions. Clearly, f([u; v℄) =[f(u); f(v)℄ for in
reasing f , and f([u; v℄) = [f(v); f(u)℄ for de
reasing f . Hen
efor monotoni
 f , f([u; v℄) is the interval spanned by the two values f(u) andf(v), extending from their minimum to their maximum. If J is another interval,then f([u; v℄) � J if and only if both f(u) and f(v) are in J .Let hMi be a 1-LFT su
h that the denominator bx + d of hMi(x) = ax+
bx+dis non-zero for all x in an interval I . We 
all su
h a 1-LFT bounded on I sin
eit avoids the value 1 whi
h formally o

urs as a fra
tion with denominator 0.Analogous notions 
an be introdu
ed for 2-LFT's.A 1-LFT f = hMi whi
h is bounded on I is a 
ontinuous fun
tion f : I ! IR,given by f(x) = ax+
bx+d . Clearly, this fun
tion is di�erentiable with derivativef 0(x) = ad�b
(bx+d)2 . In this fra
tion, the denominator is always greater than 0 (it
annot be 0 sin
e f was supposed to be bounded on I), while the numerator isa 
onstant, namely detM . Thus, the monotoni
ity behaviour of hMi dependsonly on the sign of detM (whi
h is a meaningful notion for a 1-LFT):{ If detM > 0, then hMi0(x) > 0 for all x in I , hen
e hMi is stri
tly in
reasing.{ If detM < 0, then hMi0(x) < 0 for all x in I , hen
e hMi is stri
tly de
reasing.{ If detM = 0, then hMi0(x) = 0 for all x in I , hen
e hMi is 
onstant on I .In any 
ase, hMi is monotoni
, and therefore, the remarks on monotoni
 fun
-tions given above apply. All this relies on the fa
t that we let the 1-LFT a
t onan interval; for instan
e, 
 01 10� = (x 7! 1x ) with det � 01 10� = �1 is de
reasing on[1; 2℄ and on [�2;�1℄, but not on [�1; 1℄ n f0g.We now turn to fun
tions of two arguments. Let I and J be two intervals.Geometri
ally, their produ
t set I � J is a re
tangle. For a fun
tion F : I � J !IR, we de�ne F jx : J ! IR for �xed x in I by F jx(y) = F (x; y), and duallyF jy : I ! IR for �xed y in J by F jy(x) = F (x; y); these fun
tions are these
tions of F .A fun
tion F : I � J ! IR is monotoni
 if all its se
tions F jx for x 2 I andF jy for y 2 J are monotoni
. Re
all that all the se
tions of a 2-LFT are 1-LFT's,



and therefore monotoni
 by the results above. Hen
e, every 2-LFT is monotoni
on every re
tangle where it is bounded (i.e., its denominator avoids 0).Proposition 4.1. If F : [u1; u2℄ � [v1; v2℄ ! IR is 
ontinuous and monotoni
,then its image F ([u1; u2℄ � [v1; v2℄) is the interval spanned by the four 
ornervalues F (u1; v1), F (u1; v2), F (u2; v1), and F (u2; v2), i.e., it extends from thesmallest of these values to the largest.Corollary 4.2. If F : [u1; u2℄� [v1; v2℄! IR is 
ontinuous and monotoni
, thenfor all intervals J , the in
lusion F ([u1; u2℄� [v1; v2℄) � J holds if and only if allthe 
orner values F (u1; v1), F (u1; v2), F (u2; v1), and F (u2; v2) are in J .If F : I�J ! IR is monotoni
, then it may happen that some of the se
tionsF jy are in
reasing, while some other se
tions F jy are de
reasing. We say F isin
reasing in the �rst argument if all se
tions F jy for y 2 J are in
reasing.The properties to be de
reasing in the �rst (or se
ond) argument are de�nedanalogously. We say F has type ("; #) if F is in
reasing in the �rst argument andde
reasing in the se
ond. The 3 other types ("; "), (#; "), and (#; #) are de�nedsimilarly.Let's 
onsider some examples. On I0�I0 = [�1; 1℄2, addition F (x; y) = x+yhas type ("; "), subtra
tion F (x; y) = x� y has type ("; #), while multipli
ationF (x; y) = x�y is of 
ourse monotoni
 like all other 2-LFT's, but does not have anyof the four types. For, F j1(x) = x is in
reasing, but F j�1(x) = �x is de
reasing.5 Bounded and Re�ning LFT'sLater, we shall apply LFT's to arguments given by digit streams. Of 
ourse,this makes only sense if the LFT is well-de�ned for arguments from the \baseinterval" I0 = [�1; 1℄, i.e., is bounded in the sense that its denominator avoids 0for arguments from I0. If we want the result to be represented by a digit streamas well, then the LFT should moreover be re�ning, i.e., map I0 into itself.In this se
tion, we shall derive some 
riteria for LFT's to be bounded andre�ning, and prove some properties of these notions. These proofs involve somemanipulations of absolute values, so that it is worthwhile to establish someproperties of absolute values in the beginning. Re
alljxj = max(x;�x) � jxj = min(x;�x) (13)for real numbers x. The following lemma will be useful in dealing with sums.Lemma 5.1.max(jx+ yj; jx� yj) = jxj+ jyj and jx+ yj+ jx� yj = 2max(jxj; jyj).5.1 Bounded 1-LFT'sA 1-LFT 
 ab 
d� is bounded i� the denominator D(x) = bx+ d is non-zero for allx 2 I0. Sin
e I0 is an interval and D is 
ontinuous, this means either D(x) > 0



for all x in I0, or D(x) < 0 for all x in I0. Under the general assumption d � 0,the se
ond 
ase is ruled out be
ause D(0) = d. To 
he
k D(x) > 0 for all x 2 I0,it suÆ
es to 
onsider the minimal value of D on [�1; 1℄. For b � 0, this isD(�1) = d � b, and for b � 0, it is D(1) = d + b. In any 
ase, the minimum isd� jbj. Therefore, we obtain:Proposition 5.2. 
ab 
d� with d � 0 is bounded if and only if d > jbj. In this
ase, the denominator bx+ d is positive for all x in I0.5.2 Bounded 2-LFT'sFor a 2-LFT F = Dab 
d ef ghE, the denominator is D(x; y) = bxy+dx+fy+h. Wesay F is bounded if D avoids 0 for (x; y) in I20 . Under the general assumptionh = D(0; 0) � 0, this is again equivalent to positivity of D on I20 . Fun
tionD is monotoni
; this is most easily seen by noting that D = D b0 d0 f0 h1E is a2-LFT. Hen
e, the range of possible values of D on I20 is spanned by the four
orner values D(�1;�1). Thus, F is bounded i� the four values b + d + f + h,�b� d+ f +h, �b+ d� f +h, and b� d� f +h are positive. Equivalently, thismeans h > max(b+ d� f; b� d+ f;�b+ d+ f;�b� d� f) : (14)In 
ase of b = 0, the 
ondition 
an be simpli�ed to h > jdj+ jf j with the help ofLemma 5.1.Proposition 5.3. If Dab 
d ef ghE with h � 0 is bounded, then h > max(jbj; jdj; jf j).Proof. We start with (14). Adding the two relations h > b+d�f and h > b�d+fgives 2h > 2b, and adding h > �b+ d+ f and h > �b� d� f yields 2h > �2b.Together, h > jbj follows. In a similar way, h > jdj and h > jf j 
an be derived.ut5.3 Re�ning 1-LFT'sA bounded 1-LFT f = 
ab 
d� is re�ning if f(I0) � I0. Sin
e f is monotoni
, thisis equivalent to the two 
onditions f(�1) 2 I0 and f(1) 2 I0, or jf(�1)j � 1and jf(1)j � 1. With the assumption d � 0, the denominator of f(x) = ax+
bx+d ispositive. Hen
e, the two 
onditions 
an be reformulated as j
 � aj � d � b andj
+aj � d+ b, or d � max(j
�aj+ b; j
+aj� b) = max(
+a� b; 
�a+ b;�
+a+ b;�
� a� b).Note the similarity of this 
ondition to the 
ondition for a 2-LFT to bebounded (14); the only di�eren
e lies in the variable names and the relationsymbol. Hen
e everything what has been said about bounded 2-LFT's holdshere as well in an analogous way:Proposition 5.4.An aÆne 1-LFT 
a0 
d� with d > 0 is re�ning if and only if d � jaj+ j
j.Proposition 5.5. If 
 ab 
d� with d � 0 is re�ning, then d � max(jaj; jbj; j
j).



5.4 Re�ning 2-LFT'sA bounded 2-LFT F = Dab 
d ef ghE is re�ning if F (I20 ) � I0. Sin
e F is mono-toni
, this is equivalent to the 
ondition that all four 
orner values F (�1;�1)are in I0, or jF (�1;�1)j � 1. With the assumption h � 0, all denominators arepositive. Hen
e, the four 
onditions 
an be reformulated asja+ 
+ e+ gj � b+ d+ f + hja� 
� e+ gj � b� d� f + h j�a� 
+ e+ gj � �b� d+ f + hj�a+ 
� e+ gj � �b+ d� f + h (15)We now show that the lower right entry h of a re�ning 2-LFT dominates all otherones (under the assumption h � 0). First, we know from Prop. 5.3 that h >jbj; jdj; jf j. Adding the two equations in the �rst 
olumn of (15) gives max(ja+gj; j
 + ej) � h + b with the help of Lemma 5.1. Similarly, adding the se
ond
olumn yields max(ja � gj; j
 � ej) � h � b. Next, adding ja + gj � h + b andja� gj � h� b gives max(jaj; jgj) � h, and adding the other two relations yieldsmax(j
j; jej) � h.Proposition 5.6. If Dab 
d ef ghE with h � 0 is re�ning, then h � jaj; j
j; jej; jgjand h > jbj; jdj; jf j.6 LFT's and Digit StreamsNow we 
onsider the appli
ation of (re�ning) LFT's to arguments from I0. TheLFT's will be represented by matri
es, and the arguments and results by digitstreams (exponents are handled later). We take the freedom to o

asionally iden-tify LFT's and their representing matri
es, and thus to apply the LFT notionsbounded, re�ning, monotoni
 et
. to the representing matri
es as well.6.1 Absorption of Argument DigitsAbsorption into Matri
es. Let f = hMi be a 1-LFT to be applied to a digitstream. Remember that a digit k in base r 
orresponds to an aÆne transfor-mation Ark with Ark(x) = x+kr . This is a spe
ial 
ase of a 1-LFT, with matrixArk = �10 kr�. Using this matrix, we may 
al
ulatehMi([k : �℄r) = hMi(hArki([�℄r)) = hM �Arki([�℄r):Thus, we may absorb the �rst digit of the argument stream into the matrix Mby multiplying M with Ark from the right:{ Absorption: M(k : �) = (M � Ark) (�).An expli
it formula for the produ
t M � Ark may be obtained by spe
ialisingEquation (1): M � Ark = �ab 
d� � �10 kr� = �ab r
+ kard+ kb� (16)



For the following, let M = �ab 
d� and M 0 =M �Ark = �a0b0 
0d0�, where the a
tualvalues of a0 et
. are given by (16).1. If M is bounded with positive denominator, then so is M 0.Proof: Let D(x) = bx + d be the denominator of M , and D0(x) = b0x + d0the denominator of M 0. Both D and D0 are 1-LFT's, namely D = � b0 d1�and D0 = � b0 rd+kb1 �. By (16), D � Ark is D00 = � b0 rd+kbr �. By hypothesis,D(x) > 0 for all x in I0. Hen
e, D(x) > 0 for all x 2 Ark(I0) � I0, andtherefore, D00(x) = D(Ark(x)) > 0 for all x in I0. From this, positivity ofD0(x) = r �D00(x) immediately follows.2. If M is re�ning, then so is M 0.Proof: If M(I0) � I0, then M 0(I0) =M(Ark(I0)) �M(I0) � I0.3. If M is in
reasing (de
reasing), then so is M 0.Proof: M 0 is M 
omposed with the in
reasing fun
tion Ark.Absorption into Tensors. The absorption of a digit into a tensor T rests ona similar semanti
 foundation. It 
omes in two versions, depending on whetherthe digit is taken from the left or the right argument.{ Left absorption: T (k : �; �) = (T L
 Ark) (�; �).{ Right absorption: T (�; k : �) = (T R
 Ark) (�; �).Expli
it formulae for the produ
ts T L
 Ark and T R
 Ark may be obtained byspe
ialising (8) and (9):T L
 Ark = �ab 
d ef gh� L
�10 kr� = �ab 
d re+ karf + kb rg + k
rh+ kd� (17)T R
 Ark = �ab 
d ef gh� R
 �10 kr� = �ab r
+ kard+ kb ef rg + kerh+ kf� (18)For the following, let T 0 = T L
 Ark or T 0 = T R
Ark.1. If T is bounded with positive denominator, then so is T 0.2. If T is re�ning, then so is T 0.3. If T has a monotoni
ity type, e.g., ("; "), then T 0 has the same type.The proofs of these statements are analogous to the 
orresponding ones formatri
es.6.2 Emission of Result DigitsOf 
ourse, absorption is not enough; we also need a method to emit digits of theoutput stream representing the result of a 
omputation.



Emission from Matri
es. Let M be a matrix and � a digit stream. To emita digit k of hMi([�℄r), we must transform this value into the form [k : �℄r =hArki([�℄r). This 
an be done by writing M as produ
t Ark �M 0 for some matrixM 0. The equation M = Ark �M 0 yields M 0 = Ark� �M using the inverse of Ark.Thus, emission is performed by M(�) = k : (Ark� �M)(�).An expli
it formula for the produ
t Ark� �M is obtained by spe
ialising (1):Ark� �M = �r0 �k1 � � �ab 
d� = �ra � kbb r
� kdd � (19)Of 
ourse, we 
annot emit an arbitrary digit. If the output stream is to beginwith k, then the result of the 
omputation should be in the 
orresponding digitinterval [k℄r; otherwise the method would be unsound. Thus, we 
an only emitk from M(�) if we know that its value is 
ontained in [k℄r. Without looking into�, we know nothing about it. Thus, the 
ondition M(�) 2 [k℄r must hold for alldigit streams �, whi
h is equivalent to M(I0) � [k℄r.{ Emission: M(�) = k : (Ark� �M)(�).This operation is permitted only if M(I0) � [k℄r.For the following invarian
e properties, let M 0 = Ark� �M .1. If M is bounded with positive denominator, then so is M 0.Proof: This is obvious sin
e M and M 0 have the same denominator.2. IfM is re�ning and the emission leading toM 0 was permitted, thenM 0 is re-�ning again. Proof: IfM(I0) � [k℄r = Ark(I0), thenM 0(I0) = Ark�(M(I0)) �Ark�(Ark(I0)) = I0.3. If M is in
reasing (de
reasing), then so is M 0.Proof: M 0 is M 
omposed with the in
reasing fun
tion Ark�.Emission from Tensors. Emission from a tensor works similar to emissionfrom a matrix:{ Emission: T (�; �) = k : (Ark� � T )(�; �).This operation is permitted only if T (I20 ) � [k℄r.An expli
it formula for the produ
t Ark� � T is obtained by spe
ialising (7):�r0 �k1 � � �ab 
d ef gh� = �ra� kbb r
� kdd re� kff rg � khh � (20)This variant of emission satis�es invarian
e properties 1{3 analogous to thosefor matri
es.6.3 Sket
h of an AlgorithmWe are now able to sket
h an algorithm for applying a re�ning 1-LFT given bya matrix M to a digit stream:



Algorithm 1Let M0 =M . Then for every n � 0 do:If there is a digit k su
h that Mn(I0) � [k℄r,then output digit k and let Mn+1 = Ark� �Mn,else read the next digit k from the input stream and let Mn+1 =Mn �Ark.The matri
es M0, M1, et
. represent the internal state of the algorithm. Hen
e,we refer to them 
olle
tively as the state matrix. (In an imperative language,they would all o

upy the same variable.)For tensors an additional problem 
omes up: if no emission is possible, shouldwe absorb a digit from the left argument or from the right? A simple strategyis to alternate between left and right absorption, while a more sophisti
atedstrategy 
ould look into the tensor to see whi
h absorption is more likely to leadto a subsequent emission.6.4 The Emission ConditionsAlgorithm 1 was not very spe
i�
 on how to �nd a digit k su
h that the imageof the LFT is 
ontained in [k℄r, or to �nd out that su
h a digit does not exist.These questions will be handled for base r = 2 only sin
e this 
ase allows for asimple solution: try the 3 possibilities k = 1;0;�1 in turn. (An idea of what todo for a general base 
an be obtained by looking at Se
tion 9.3 below.)The a
tual 
omputation is simpli�ed if we know some properties of the statematrix (or tensor) in question. Remember that some LFT properties are pre-served by absorptions and permitted emissions. Thus, if the initial matrix isre�ning and bounded with positive denominator, then so will be all state ma-tri
es en
ountered in Alg. 1. Moreover, if the initial matrix has some spe
i�
monotoni
ity property, then all state matri
es will have this property. Thus,for the following, we always assume a re�ning bounded matrix with positivedenominator, and we shall try to exploit monotoni
ity as far as possible.Base 2: Matri
es. Let M be a re�ning bounded matrix with positive de-nominator. First, we 
onsider the 
ase that M is in
reasing, so that M(I0) =[M(�1);M(1)℄. Sin
e M is re�ning, we know M(I0) � I0, or M(�1) � �1 andM(1) � 1. Then M(I0) � [1℄2 = [0; 1℄ i� M(�1) � 0 and M(1) � 1, where these
ond 
ondition is redundant. The �rst 
ondition reads �a+
�b+d � 0. Sin
e thedenominator is positive, this is equivalent to a � 
. Similarly, M(I0) � [�1℄2 =[�1; 0℄ i� M(�1) � �1 and M(1) � 0, where the �rst 
ondition is redundant.The se
ond 
ondition reads a+
b+d � 0. Sin
e the denominator is positive, this isequivalent to �a � 
.Finally, M(I0) � [0℄2 = [� 12 ; 12 ℄ i� M(�1) � � 12 and M(1) � 12 , where no
ondition is redundant. The �rst 
ondition reads �a+
�b+d � � 12 , or 2(
�a) � b�d.The se
ond 
ondition reads a+
b+d � 12 , or 2(
 + a) � b + d. Che
king these two
onditions be
omes more eÆ
ient if they 
ontain 
ommon subexpressions that
an be evaluated ahead. Indeed, the �rst 
ondition 
an be transformed into



b� 2
 � d� 2a, and the se
ond into 2
� b � d� 2a. Hen
e, the two 
onditionsmay be even 
ombined into one, namely j2
� bj � d� 2a.If M is de
reasing, the roles of M(1) and M(�1) are inter
hanged. Thismeans that in the emission 
onditions, a and b have to be repla
ed by �a and�b, respe
tively, while 
 and d remain un
hanged. Thus, the 
ondition a � 
 foremission of 1 be
omes �a � 
, the 
ondition �a � 
 for emission of �1 be
omesa � 
, and �nally, the 
ondition j2
� bj � d� 2a be
omes j2
+ bj � d+ 2a. All
onditions are summarised in the following table:Type 1 �1 0" a � 
 �a � 
 j2
� bj � d� 2a# �a � 
 a � 
 j2
+ bj � d+ 2aSin
e the 
ondition for 0 is more 
ompli
ated than the other two, we proposeto 
he
k the 
onditions in the order 1, �1, 0. This has the additional advantagethat there is a situation where some tests 
an be avoided be
ause they are boundto fail. Suppose the 
he
ks of the emission 
onditions for 1 and �1 both failed, butthe 
he
k for 0 su

eeded. Then the digit 0 is emitted, and the 
urrent matrix�ab 
d� is repla
ed by � 2ab 2
d � a

ording to (19). Yet the relationship between�2a and 2
 is the same as between �a and 
, whi
h means that the emission
onditions for 1 and �1 will again fail; therefore, only the 
ondition for 0 needsto be 
he
ked again.Base 2: Tensors. Now let T be a re�ning bounded tensor with positive de-nominator. First, we 
onsider the 
ase that T is of type ("; "), so that T (I20 ) =[T (�1;�1); T (1; 1)℄. Then T (I20 ) � [1℄2 = [0; 1℄ i� T (�1;�1) � 0; the other 
on-dition T (1; 1) � 1 holds anyway sin
e T is re�ning. The relevant 
ondition readsa�
�e+gb�d�f+h � 0. Sin
e the denominator is positive, this is equivalent to 
+e � g+a.Similarly, T (I20 ) � [�1℄2 = [�1; 0℄ i� T (1; 1) = a+
+e+gb+d+f+h � 0, whi
h is equivalentto 
+ e � �(g + a).Finally, T (I20 ) � [0℄2 = [� 12 ; 12 ℄ i� T (�1;�1) � � 12 and T (1; 1) � 12 . The�rst 
ondition reads a�
�e+gb�d�f+h � � 12 , or �2(a� 
� e+ g) � b� d� f + h. These
ond 
ondition reads a+
+e+gb+d+f+h � 12 , or 2(a + 
+ e+ g) � b+ d + f + h. The�rst 
ondition 
an be transformed into d+f �2a�2g � h+ b�2
�2e, and these
ond into 2a+ 2g � d� f � h+ b� 2
� 2e. Again, these two 
onditions 
anbe 
ombined into one, namely j2(g+a)� (d+ f)j � (h+ b)� 2(
+ e). Note thatg + a and 
+ e also o

ur in the tests for 1 and �1; they need only be evaluatedon
e.If T is of type ("; #) instead, then T (�1;�1) must be repla
ed by T (�1; 1),and T (1; 1) by T (1;�1). This 
orresponds to negation of a, b, e, f , while theother four parameters are un
hanged. The other two monotoni
ity types 
an behandled by similar negations. The results are 
olle
ted in the following table:



Type 1 �1 0("; ") 
+ e � g + a 
+ e � �(g + a) j2(g + a)� (d+ f)j � (h+ b)� 2(
+ e)("; #) 
� e � g � a 
� e � �(g � a) j2(g � a)� (d� f)j � (h� b)� 2(
� e)(#; ") e� 
 � g � a e� 
 � �(g � a) j2(g � a)� (f � d)j � (h� b)� 2(e� 
)(#; #) �
� e � g + a �
� e � �(g + a) j2(g + a) + (d+ f)j � (h+ b) + 2(
+ e)If T is of unknown monotoni
ity type or does not have any type at all, then the
onjun
tion of the four 
onditions in ea
h 
olumn must be 
onsidered. The four
onditions for 1 
an be 
ombined into the two 
onditions j
 + ej � g + a andj
� ej � g � a, and similarly for �1, while no simpli�
ation seems to be possiblein 
ase of 0.Again, the 
onditions for 0 are more 
ompli
ated then the other two. If theorder 1, �1, 0 is 
hosen, then as in the matrix 
ase, 1 and �1 need not be 
he
kedagain after emission of 0.6.5 ExamplesExample 6.1. Let's �rst 
onsider the matrix M = � 30 04� whi
h means multipli-
ation by 34 . The d-entry 4 is positive, and the determinant 12 is positive aswell. The fun
tion is bounded (d = 4 > jbj = 0), and re�ning ([M(�1);M(1)℄ =[� 34 ; 34 ℄ � I0). Therefore, we 
an use the emission 
onditions in the " row ofthe matrix table. Generally, we 
he
k the 
onditions in the order 1, �1, 0, ex
eptafter emission of 0, where the 
onditions for 1 and �1 are skipped be
ause theyare known to fail as pointed out above. We also take any opportunity to 
an
el
ommon fa
tors of the four parameters of the state matrix. Let's assume thedigit sequen
e denoting the argument starts with 101.Start: M = � 30 04�a � 
, 3 � 0 fails, �a � 
, �3 � 0 fails, j2
� bj � d� 2a, 0 � �2 fails.Absorb 1 and set M to � 30 38�.a � 
, 3 � 3 su

eeds.Emit 1 and set M to �60 �28�. Can
el a fa
tor of 2 so that M = � 30 �14�.a � 
, 3 � �1 fails, �a � 
, �3 � �1 fails, j2
� bj � d� 2a, 2 � �2 fails.Absorb 0 and set M to �30 �28�.a � 
, 3 � �2 fails, �a � 
, �3 � �2 fails, j2
� bj � d� 2a, 4 � 2 fails.Absorb 1 and set M to � 30 �116 �.a � 
, 3 � �1 fails, �a � 
, �3 � �1 fails,but j2
� bj � d� 2a, 2 � 10 su

eeds.Emit 0 and set M to � 60 �216 �. Can
el a fa
tor of 2 so that M = � 30 �18�.j2
� bj � d� 2a, 2 � 2 su

eeds.Emit 0 and set M to �60 �28�. Can
el a fa
tor of 2 so that M = � 30 �14�.j2
� bj � d� 2a, 2 � �2 fails.Now, we should absorb a new digit, but we only assumed the pre�x 101 to beknown. Thus, the algorithm transforms the argument pre�x 101 into the result



pre�x 100. Note that [101℄ = [ 12 ; 34 ℄ and 100 = [ 38 ; 58 ℄ � [ 38 ; 916 ℄ = M([ 12 ; 34 ℄),as it should be. In pra
ti
e, a demand for more output digits will automati
allygenerate a demand for more input digits, whi
h will be 
omputed by the pro
ess
omputing the argument.Example 6.2. Let's 
onsider another example whi
h involves something more
ompli
ated than multipli
ation by 34 , namely 
omputing 1x+2 . In 
ontrast to34x, it is not immediate how a digit stream for 1x+2 
an be 
omputed from a digitstream for x. Yet the algorithm developed above provides the answer.The fun
tion x 7! 1x+2 is a 1-LFT with matrix � 01 12�. The entry d = 2 ispositive, but the determinant �1 is negative. The fun
tion is bounded (d = 2 >jbj = 1), and re�ning ([M(1);M(�1)℄ = [ 13 ; 1℄ � I0). Thus, the algorithm 
an beapplied|with the emission 
onditions from the # row of the table for matri
es.Start: M = � 01 12��a � 
, 0 � 1 su

eeds. Emit 1 and set M to ��11 02�.�a � 
, 1 � 0 fails, a � 
, �1 � 0 fails, j2
+ bj � d+ 2a, 1 � 0 fails.Absorb 1 and set M to ��11 �15�.�a � 
, 1 � �1 fails, a � 
, �1 � �1 su

eeds.Emit �1 and set M to ��11 35�.�a � 
, 1 � 3 su

eeds. Emit 1 and set M to ��31 15�.�a � 
, 3 � 1 fails, a � 
, �3 � 1 fails, j2
+ bj � d+ 2a, 3 � �1 fails.Absorb 0 and set M to ��31 210�.�a � 
, 3 � 2 fails, a � 
, �3 � 2 fails, j2
+ bj � d+ 2a, 5 � 4 fails.Absorb 1 and set M to ��31 121�.�a � 
, 3 � 1 fails, a � 
, �3 � 1 fails, j2
+ bj � d+ 2a, 3 � 15 su

eeds.Emit 0 and set M to ��61 221�.j2
+ bj � d+ 2a, 5 � 9 su

eeds. Emit 0 and set M to ��121 421�.j2
+ bj � d+ 2a, 9 � �3 fails.Thus, the algorithm maps the input pre�x 101, whi
h denotes the interval [ 12 ; 34 ℄,into the output pre�x 1�1100, whi
h denotes the interval [ 1132 ; 1332 ℄. This intervalreally 
ontains M([ 12 ; 34 ℄) = [ 411 ; 25 ℄ as it should be.Note that in Example 6.1, a 
ommon fa
tor of 2 
ould o

asionally be 
an-
elled, while in Example 6.2, no 
an
ellation was possible. We will return to thispoint in Se
tion 8.1. Note further the way in whi
h absorptions (A) and emis-sions (E) alternate. In the �rst example, the sequen
e is AEAAEE, and in these
ond, it is EAEEAAEE. In both 
ases, the next would be an A. There appearsto be some randomness in these sequen
es, but it is not too bad; there seem tobe no strings of 3 
onse
utive A's or E's.The question how many absorptions are needed to a
hieve a 
ertain numberof emissions is important for the performan
e of the algorithm. We would not



like situations where a large number of absorptions is needed before the nextemission is possible. The worst possibility were a situation where the algorithmkeeps on absorbing for ever without ever being able to emit something (like inthe problem of 
omputing 3�0:333 � � � in ordinary de
imal notation). Fortunately,we 
an prove that this 
annot happen; apart from some �nite start-up phase inthe beginning, absorptions and emissions will approximately alternate. This willbe shown in the next se
tion.7 Contra
tivity and ExpansivityOur next goal is to derive bounds for the number of absorptions that are requiredto a
hieve a 
ertain number of emissions. Su
h bounds 
an be obtained frombounds of the derivative(s) of the LFT. In fa
t, we are able to obtain theoreti
albounds for an even larger 
lass of fun
tions.7.1 Fun
tions of One ArgumentLet I be an interval (as always 
losed) and F : I ! IR a C1-fun
tion, i.e., a
ontinuous fun
tion whi
h is di�erentiable with 
ontinuous derivative F 0. Themean value theorem of analysis states that for all x, y in I , there is some zbetween x and y (hen
e in I) su
h that F (x) � F (y) = F 0(z) � (x � y). Thisproperty gives bounds for the length of the interval F (I). First, we have forI = [u; v℄`(F (I)) � jF (v)� F (u)j � infz2I jF 0(z)j � (v � u) = expI F � `(I) (21)where expI F = infz2I jF 0(z)j is the expansivity of F on I .Se
ond, we have`(F (I)) = supx;y2I jF (x)�F (y)j � supz2I jF 0(z)j � supx;y2I jx�yj = 
onI F �`(I) (22)where 
onI F = supz2I jF 0(z)j is the 
ontra
tivity of F on I . Sin
e F 0 : I ! IRis 
ontinuous, the 
ontra
tivity is always �nite, and so we have 0 � expI F �
onI F < 1 :Together with Prop. 2.1, the bounds derived above will provide informationabout possible emissions. Assume F is a C1-fun
tion de�ned on the base intervalI0 = [�1; 1℄ with F (I0) � I0. We now look for theoreti
al lower and upper boundsfor the number of digits required from a digit stream � representing an argumentx if we want to 
ompute a 
ertain number n of digits of a stream representingthe result F (x). We work with a general base r � 2.If a pre�x Æ of length m of the argument stream � is known, then x is inthe interval I = [Æ℄r of length `(I) = 2r�m. Hen
e, F (x) is in the intervalF (I), whose length l is bounded by expI F � 2r�m � l � 
onI F � 2r�m. Thedependen
e on the a
tual interval I 
an be removed by repla
ing expI F byexpI0 F � expI F , and 
onI F by 
onI0 F � 
onI F . Dropping the index I0, we



obtain expF � 2r�m � l � 
onF � 2r�m. (Yet note for later that we may workwith expJ F and 
onJ F instead, if we are interested in arguments taken from asubinterval J � I0.)By Prop. 2.1, we know that (at least) n result digits 
an be emitted if l � r�n.Hen
e, n digits 
an be emitted if 
onF � 2r�m � r�n, or rm � 2 
onF � rn,or m � logr(2 
onF ) + n. Thus, to emit n output digits, we need at mostdlogr(2 
onF )e+n input digits. This statement even applies to the 
ase 
onF =0, where the logarithm is �1. For, in this 
ase, F is 
onstant, and any numberof output digits 
an be obtained without looking at the input at all.By Prop. 2.1, we also know that l � 2r�n if (at least) n result digits 
an beemitted. Thus, expF � 2r�m � 2r�n, or m � logr(expF ) + n if n result digits
an be emitted. Hen
e, we need at least dlogr(expF )e+n input digits to obtainn result digits. In 
ase of expF = 0 where the logarithm is �1, this statementstill holds (trivially), but does not yield any useful information.Theorem 7.1. Let F be a C1-fun
tion de�ned on the base interval I0. To obtainn digits of F (x) for x in I0, one needs at least 
< + n and at most 
>+ n digitsof x, where 
< = dlogr(expF )e and 
> = dlogr(2 
onF )ewhere r is the base of the number system, expF = infx2I0 jF 0(x)j and 
onF =supx2I0 jF 0(x)j.For fun
tions with 
onF � expF > 0, the theorem implies that asymptot-i
ally, the number of absorptions and emissions will be equal, i.e., on the longrun and on average, one absorption is required for every emission. Lo
ally, wesee that for n emissions, at least 
< + n absorptions are needed, while for n+ 1emissions, at most 
> + n + 1 are required. Hen
e, after any emission, we needat most 
> � 
< + 1 absorptions, before the next emission is permitted. In par-ti
ular, it 
an never happen that an in�nite amount of absorptions does not leadto any emission.For aÆne F , i.e., F (x) = ax + b, F 0 is 
onstant and so expF and 
onF
oin
ide. In this 
ase, the two bounds in Theorem 7.1 are 
lose together: Forbase 2, they always di�er by one, while for large bases, they are even identi
alin most 
ases, allowing the exa
t predi
tion of the number of required argumentdigits. For non-aÆne F , expF and 
onF may di�er 
onsiderably, leading to lessa

urate estimations.Let's now 
onsider the 
ase that F is a 1-LFT whi
h is bounded on I0, givenby a matrix M = �ab 
d� with non-negative d. Re
all from Se
tion 4 that M isC1 with M 0(x) = detM(bx+d)2 . From Prop. 5.2 and its proof, we know that bx+ d ispositive for x 2 I0, with least value d� jbj. It is not hard to see that its largestvalue is d+ jbj, and therefore
onM = j detM j(d� jbj)2 and expM = j detM j(d+ jbj)2 : (23)For aÆne matri
es (b = 0), both expressions simplify to jadjd2 = jajd .



With these values, Theorem 7.1 not only des
ribes the theoreti
al 
omplexityof obtaining M(x), but also the a
tual 
omplexity of Algorithm 1. For, thealgorithm dete
ts an opportunity for emission as soon as it arises be
ause itstests are logi
ally equivalent to the emission 
ondition.In Example 6.1, we have M = � 30 04�, hen
e expM = 
onM = 34 , and so
< = dlog2 34e = 0 and 
> = dlog2 32e = 1. Hen
e, between n and n+1 absorptionsare needed for n emissions, and the maximum number of absorptions betweenany two emissions is 1� 0 + 1 = 2.In Example 6.2, we have M = � 01 12�, hen
e expM = 19 and 
onM = 1, andso 
< = dlog2 19e = �3 and 
> = dlog2 2e = 1. Hen
e, between n� 3 and n+ 1absorptions are needed for n emissions, and the maximum number of absorptionsbetween any two emissions is 1� (�3) + 1 = 5.Note that for 1-LFT's M , we have expM = 0 i� 
onM = 0 i� detM = 0i� M is a 
onstant fun
tion. Hen
e, there are only two 
ases: if detM 6= 0, thenumber of absorptions and emissions is asymptoti
ally equal, while for detM =0, any number of digits 
an be emitted without absorbing anything.7.2 Fun
tions of Two ArgumentsLet I and J be two intervals (as always 
losed) and F : I � J ! IR a C1-fun
tion, i.e., a 
ontinuous fun
tion whi
h is di�erentiable in both argumentswith 
ontinuous derivatives �F�x and �F�y . Thus, for �xed x in I , F jx : J ! IRwith F jx(y) = F (x; y) is a C1-fun
tion on J , and for �xed y in J , F jy : I ! IRwith F jy(x) = F (x; y) is a C1-fun
tion on I .Let's �rst derive a lower bound for `(F (I; J)). For every y in J , (21) implies`(F (I � J)) � `(F jy(I)) � expI(F jy) � `(I) � expLI;J F � `(I) (24)where expLI;J F = infy2J expI(F jy) = infx2I;y2J j�F�x (x; y)j (25)is the left expansivity of F on I � J . Dually, we have`(F (I�J)) � expRI;J F � `(J) where expRI;J F = infx2I;y2J j�F�y (x; y)j (26)is the right expansivity of F on I � J .For an upper bound, 
onsider x1; x2 2 I and y1; y2 2 J . With (22), we obtainjF (x1; y1)� F (x2; y2)j � jF (x1; y1)� F (x2; y1)j+ jF (x2; y1)� F (x2; y2)j� 
onI (F jy1) � `(I) + 
onJ (F jx2) � `(J)� 
onLI;J F � `(I) + 
onRI;J F � `(J) (27)where 
onLI;J F = supy2J 
onI(F jy) = supx2I;y2J j�F�x (x; y)jand 
onRI;J F = supx2I 
onJ (F jx) = supx2I;y2J j�F�y (x; y)j:



Note that these numbers are �nite be
ause the partial derivatives are 
ontinuous.Finally, Relation (27) yields `(F (I � J)) =supx1;x22I supy1;y22J jF (x1; y1)�F (x2; y2)j � 
onLI;J F � `(I) + 
onRI;J F � `(J) : (28)Assume now F is a C1-fun
tion de�ned on I20 = [�1; 1℄�[�1; 1℄ with F (I20 ) �I0. Assume further that F (x1; x2) is to be 
omputed where ea
h xi is given by adigit stream �i, and we want to �nd out how many argument digits are neededto obtain n digits of the result F (x1; x2).If a pre�x Æi of length mi of the argument stream �i is known, then xi is inthe interval Ii = [Æi℄r of length `(Ii) = 2r�mi . Hen
e, F (x1; x2) is in the intervalF (I1; I2), whose length l is bounded by l< � l � l>, wherel< = max (expLI1;I2 F � 2r�m1 ; expRI1;I2 F � 2r�m2)l> = 
onLI1;I2 F � 2r�m1 + 
onRI1;I2 F � 2r�m2Again, the dependen
e on the a
tual intervals I1 and I2 
an be removed byenlarging both of them to I0. We 
all the resulting bounds l� and l�. For easeof notation, we drop the indi
es in expLI0;I0 , et
.By Prop. 2.1, we know that (at least) n result digits 
an be emitted if l �r�n, whi
h is the 
ase if l� � r�n. Hen
e, n digits 
an be emitted if 
onL F �2r�m1 � 12r�n and 
onR F � 2r�m2 � 12r�n. The �rst 
ondition is equivalent torm1 � 4 
onL F � rn, or m1 � logr(4 
onL F ) + n. Thus, to emit n output digits,dlogr(4 
onL F )e+n digits from the left argument and dlogr(4 
onR F )e+n digitsfrom the right argument are suÆ
ient.By Prop. 2.1, we also know that l � 2r�n if (at least) n result digits 
anbe emitted. Thus, if n digits 
an be emitted, then l� � 2r�n, or expL F �2r�m1 � 2r�n and expR F � 2r�m2 � 2r�n, or m1 � logr(expL F ) + n andm2 � logr(expR F ) + n. These relations indi
ate how many digits from the twoarguments are at least needed to obtain n result digits.Theorem 7.2. Let F be a C1-fun
tion with two arguments de�ned on I20 . Toobtain n digits in base r of F (x1; x2) for x1, x2 in I0, one needs at least 
<L + ndigits of x1 and 
<R + n digits of x2, where
<L = dlogr(expL F )e and 
<R = dlogr(expR F )e :On the other hand, 
>L + n digits of x1 and 
>R + n digits of x2 are suÆ
ient toobtain (at least) n output digits, where
>L = dlogr(4 
onL F )e and 
>R = dlogr(4 
onR F )e :For fun
tions with expL F > 0 and expR F > 0, the theorem implies that onthe long run and on average, one absorption from ea
h argument is required forevery emission. Analogously to the 
ase of one argument, one 
an show that it
an never happen that an in�nite amount of absorptions from both sides doesnot lead to any emission.



Unlike the 
ase of matri
es, there are no simple formulae for the left andright 
ontra
tivities and expansivities of a general tensor. The reason is that thegeneral forms of the partial derivatives are too 
ompli
ated. Yet for some spe
ialtensors, 
on
rete bounds 
an be obtained easily.The tensor for addition is not re�ning, but T = � 00 10 10 02� with T (x; y) =12 (x+ y) is re�ning. Sin
e �T�x (x; y) = �T�y (x; y) = 12 , we have expL T = expR T =
onL T = 
onR T = 12 . Hen
e in base 2, at least n� 1 digits and at most n+ 1digits must be absorbed from both sides to obtain n output digits. (In pra
ti
e,n� 1 digits are not suÆ
ient.)The tensor T = � 10 00 00 01� with T (x; y) = xy is re�ning. Sin
e �T�x (x; y) = yand �T�y (x; y) = x, we have expL T = expR T = 0 and 
onL T = 
onR T = 1.Hen
e in base 2, n + 2 digits from both sides are suÆ
ient to obtain n outputdigits, but we do not get useful lower bounds. Indeed, we have (0 : �) � � =0 : (� � �), and therefore, an arbitrary number of output digits 
an be obtainedwithout looking at the se
ond argument if the �rst argument is 0!.8 The Size of the EntriesWhen a non-singular re�ning matrix is applied to a digit stream, we know fromTheorem 7.1 that between 
< + 2n and 
> + 2n transa
tions (absorptions plusemissions) are needed to obtain n output digits. At �rst glan
e, these transa
tions(and the emission tests) seem to require only 
onstant time (see (16) and (19)),but we need to take into a

ount the size of the four entries of the state matrix. InExample 6.2, the entries seem to grow during the 
ourse of the 
omputation, andthe time required by the integer operations in the transa
tions and tests (mainlyaddition and 
omparison) is linear in the bit size of the involved numbers. Thus,we should try to obtain bounds for the entries of the state matrix (or tensor) inorder to obtain proper 
omplexity results.8.1 Common Fa
torsCan
ellation of 
ommon fa
tors of the entries of the state matrix 
ould help tokeep the entries small. In Example 6.1, a 
ommon fa
tor of 2 
ould o

asionallybe 
an
elled, while there were no 
ommon fa
tors at all in Example 6.2.We �rst show that the range of possible 
ommon fa
tors is quite limited.Proposition 8.1. Let M be a matrix or tensor in lowest terms (i.e., no non-trivial 
ommon fa
tors in the entries), and letM 0 be the result of performing onetransa
tion in base r (absorption or emission) at M . Then any 
ommon fa
torof M 0 divides r.Proof. LetM = �ab 
d� as usual. IfM 0 results from absorbing digit k, thenM 0 =�ab r
+kard+kb�. Any 
ommon fa
tor g of a, b, r
+ ka, and rd+ kb is also a 
ommonfa
tor of ra, rb, r
, and rd. Sin
e a, b, 
, and d are relatively prime by assumption,g must divide r. The arguments for emission, where M 0 = � ra�kbb r
�kdd �, andfor tensors are similar. ut



Even the limited amount of 
an
ellation admitted by Prop. 8.1 does not showup in most 
ases. Note that without 
an
ellation of 
ommon fa
tors, neitherabsorption nor emission a�e
t the b-entry of the state matrix or tensor. If b isodd like in Example 6.2, then it remains odd for ever, and there will never be any
ommon fa
tors in base 2. If b is even and non-zero, then 
ommon fa
tors mayo

ur, but only as often as the exponent of the largest power of 2 
ontained in b.After this amount of 
ommon fa
tors has been 
an
elled out, the resulting valueof b will be odd, and no further 
an
ellations will be possible. Only if b = 0, anunlimited number of 
an
ellations may o

ur. In the following two subse
tions,we study the two 
ases b = 0 and b 6= 0 for matri
es more 
losely.8.2 AÆne Matri
esFor an aÆne matrix (b = 0), the transa
tions simplify a bit:�a0 
d� �Ark = �a0 r
+ kard � Ark� � �a0 
d� = �ra0 r
� kdd � (29)Hen
e, the result of �rst absorbing k and then emitting l, or the other way round,is Arl � � �a0 
d� �Ark = �ra0 r2
+ rka� rldrd � (30)whi
h has a 
ommon fa
tor of r. After 
an
elling it, we obtain �a0 r
+ka�ldd �,whi
h is the same as the original matrix, ex
ept for the 
-entry. Similarly, weobtain a 
ommon fa
tor rk after performing k absorptions and k emissions inany order, and 
an
elling rk will produ
e a matrix with the same a and d entriesas the original one. The d-entry will only in
rease if there is an ex
ess of absorp-tions over emissions; this in
rease 
onsists of a fa
tor of r for every additionalabsorption.By Theorem 7.1, we know that at most 
> + n absorptions are needed for nemissions. Thus, immediately before the last of these n emissions, n�1 emissionsand at most 
> + n absorptions have happened; the maximal possible ex
ess istherefore 
>+1. Re
all 
> = dlogr(2 
onM)e = dlogr(2 jajd )e. By Prop. 5.4, jaj �d holds, when
e 
> � 1. Therefore, the maximal possible ex
ess of absorptionsover emissions is 2.Theorem 8.2. Let M0 = �a00 
0d0� be an aÆne re�ning matrix with d0 � 0,and (Mn)n�0 the sequen
e of matri
es whi
h results from Algorithm 1, with theadditional provision that after ea
h step, all 
ommon fa
tors are 
an
elled out.Then all entries of Mn are bounded by r2 � d0.This bound is sharp as 
an be seen from Example 6.1: The starting value isd0 = 4, and so the theoreti
al upper bound is 22 � 4 = 16, whi
h indeed o

ursafter four transa
tions. But Theorem 8.2 ensures that it 
annot get worse.Be
ause of the 
onstant upper bound in Theorem 8.2, the additions and
omparisons needed to exe
ute the algorithm take only 
onstant time.



Corollary 8.3. If an aÆne re�ning 1-LFT is applied to a digit stream, ea
htransa
tion (absorption or emission) takes only 
onstant time. Hen
e, n outputdigits 
an be 
omputed in time O(n).8.3 Non-AÆne Matri
esRemember that b in �ab 
d� is invariant under absorptions and emissions. Hen
ein 
ase b 6= 0, all 
ommon fa
tors that may appear during the 
al
ulation arefa
tors of b, and thus, 
an
ellation of 
ommon fa
tors 
an only lead to a 
onstantsize redu
tion. (In the spe
ial 
ase jbj = 1, there will be no non-trivial 
ommonfa
tors at all.)Let us 
onsider entry d, whi
h is an upper bound for all other entries byProp. 5.5. Emission does not a�e
t d, while absorption of Ark transforms d intod0 = rd + kb. Be
ause of jkj � r � 1, one obtains d0 � rd + (r � 1)jbj andd0 � rd�(r�1)jbj, whi
h lead to d0+jbj � r(d+jbj) and d0�jbj � r(d�jbj): Theseestimations 
an easily be iterated. Taking into a

ount possible 
an
ellations by
ommon fa
tors in the lower bound, one obtains:Theorem 8.4. Let M0 = �ab 
d� be a re�ning matrix with d � 0 and b 6= 0,and let Mm = �ambm 
mdm� be a matrix whi
h results from M0 by m absorptions inbase r, any number of emissions, and 
an
ellation of all 
ommon fa
tors. Thendm � d�jbjjbj rm + 1 and dm � (d+ jbj)rm � jbj holds (where the 
oeÆ
ients of rmare positive by Prop. 5.2).For the matrix � 01 12� of Example 6.2, we obtain in base 2 the estimations 2m+1 �dm � 3 � 2m � 1. For m = 0; : : : ; 3, the lower bounds are 2, 3, 5, 9, the upperbounds 2, 5, 11, 23, and the observed values of dm are 2, 5, 10, 21, 
lose to theupper bounds.On the positive side, Theorem 8.4 ensures that the bit size of the d-entry(and with it all other entries by Prop. 5.5) is at most linear in the number ofabsorptions. On the negative side, it indi
ates that it really has linear bit size;the in
rease of the size of the d-entry 
annot be avoided. The a- and 
-entriesmay grow as well, but they need not, while b is guaranteed to remain smallbe
ause it is invariant.Theorem 8.4 also has a negative e�e
t on eÆ
ien
y. Remember (Theorem 7.1)that n emissions require O(n) absorptions, and thus lead to a d-entry of bit sizeO(n). The next exe
ution of the loop in Algorithm 1 will thus need time O(n)be
ause it requires the 
al
ulation of either 2
 � d (emission of 1), or 2
 + d(emission of �1), or d� 2a (in the test whether 0 
an be emitted). Therefore weobtain:Theorem 8.5. The 
al
ulation of the �rst n digits of the result of applying anon-aÆne re�ning 1-LFT to a digit stream needs time O(n2) if Algorithm 1 isused.



8.4 Size Bounds for TensorsFor tensors, similar results hold, but their proofs are mu
h more involved. Here,we present only the main results.Proposition 8.6. Let T0 = �ab 
d ef gh� be a re�ning tensor with h � 0, and letTm be a tensor whi
h results from T0 by m absorptions in base r, any number ofemissions, and 
an
ellation of all 
ommon fa
tors. Then all entries of Tm arebounded by rm(h+ jf j+ jdj+ jbj).Proposition 8.7. For every re�ning tensor T0 = �ab 
d ef gh� with h � 0, thereis an integer m0 � 0 su
h that after m � m0 absorptions, any number of emis-sions, but no 
an
ellations, the lower right entry h0 of the resulting tensor sat-is�es h0 � rm�m0 .8.5 Can
ellation in TensorsFrom (17), (18), and (20), it follows that the entry b in �ab 
d ef gh� is invariantunder emissions and absorptions. Hen
e, only a �nite amount of 
an
ellation ispossible if b 6= 0, and so, h will have size �(rm) after m absorptions. Only in the
ase b = 0, an in�nite amount of 
an
ellations is possible. The result of emittingArk from �a0 
d ef gh� is�ra0 r
�kdd re�kff rg�khh � :The results of left and right absorption of Ark into �a0 
d ef gh� are the tensors�a0 
d re+ karf rg + k
rh+ kd� and �a0 r
 + kard ef rg + kerh+ kf � :These three tensors reveal that the three entries a, d, and f either remain thesame or are multiplied by r. Hen
e|under the 
ondition b = 0|the three 
ondi-tions a = 0, d = 0, and f = 0 are invariant under absorptions and emissions, i.e.,zeros at these positions will stay for ever. Yet the three tensors do not exhibitany opportunity for 
an
ellation in themselves.In the 
ase of matri
es, the opportunity for 
an
elling r appears only if anabsorption and an emission are 
onsidered together. Analogously, we now 
on-sider the 
ombined e�e
t of absorbing k1 from the left and k2 from the right,and emitting l at �ab 
d ef gh� (a round). The result, whi
h does not depend onthe temporal order of these three transa
tions, has a 
ommon fa
tor of r in its8 entries. Can
elling this fa
tor leads to�a0 r
+ k2a� ldd re+ k1a� lff Grh+ k1d+ k2f � (31)



where G = r2g + rk1
+ rk2e+ k1k2a� rlh� k1ld� k2lf .Thus, in ea
h round, a fa
tor of r 
an be 
an
elled. Yet this is not enough: sin
ea round 
ontains two absorptions, the lower right entry in
reases by a fa
tor ofapproximately r2 in ea
h round, i.e., with the 
an
ellation, it still in
reases byapproximately r. At least, it will be only half as big (in terms of bit size) as inthe 
ase b 6= 0. Note also that a, d, and f attain their original values after around with 
an
ellation. On the positive side, this means that these three entriesare bounded, redu
ing both spa
e and time 
omplexity of the 
al
ulations. Onthe negative side, it implies that if at least one of these three values is non-zero,then only a �nite amount of further 
an
ellations is possible (none at all if atleast one of a, d, f is 1 or �1). Thus, we may only hope for a further in�niteamount of 
an
ellations if a = d = f = 0. Under this assumption, there is indeedanother 
ommon fa
tor of r in Tensor (31). Its 
an
ellation leads to�00 
0 e0 rg + k1
+ k2e� lhh � (32)Hen
e, the entries 
, e, and h attain their original values. As h is the dominantentry, one may argue further as in the 
ase of matri
es that all entries arebounded during the 
al
ulation. Summarising, we have the following three 
asesfor �ab 
d ef gh� if all possible 
an
ellations are performed:1. If b 6= 0, then there are only �nitely many 
an
ellations possible. After mrounds, h has bit size 2m+O(1).2. If b = 0, then it stays 0 for ever, and so do ea
h of a, d, f in this 
ase. If notall of a, d, f are zero, then a fa
tor of r 
an be 
an
elled in ea
h round, butapart from these, there are only �nitely many 
an
ellations possible. Afterm rounds, h has bit size m+O(1).3. If b = a = d = f = 0, then this remains true for ever, and a fa
tor of r2 
anbe 
an
elled in ea
h round. All entries of the tensor have size O(1).Like in the 
ase of matri
es, these results imply that a 
al
ulation with a tensorT needs quadrati
 time, unless b = a = d = f = 0 or expL T = 0 or expR T = 0.9 Handling Many Digits at On
eThe 
omplexity analysis given above has shown that apart from some ex
eptional
ases, the 
omputation of n output digits from M(x) or T (x; y) needs quadrati
time O(n2)|if Algorithm 1 is used whi
h works digit by digit, handling ea
hindividual digit by a transa
tion. In this se
tion, we show that handling manydigits at on
e leads to a redu
tion in the 
omplexity.9.1 Multi-DigitsThe key observation is that the produ
t of two (and hen
e many) digit matri
esis again a digit matrix, in a bigger base. The produ
t of two digit matri
es�10 k1r1� � �10 k2r2� = �10 k1r2 + k2r1r2 � (33)



looks like a digit matrix again; indeed, the 
onditions jkij � ri � 1 implyjk1r2 + k2j � (r1 � 1) r2 + (r2 � 1) = r1r2 � 1so that the result really is a digit matrix in base r1r2. Iterating (33) yieldsArk1 � : : : �Arkn = ARK where R = rn and K = nXi=1 kirn�i : (34)Thus, instead of 
onsidering the digit sequen
e k1 : : : kn, one may instead 
on-sider the single number K and the length n of the sequen
e. The number K withjKj � rn � 1 will be 
alled an n-multi-digit in base r.If a real number x 2 I0 is given, then we may ask for the �rst n digitsof a possible digit stream representation of x; this request is written as n?x.A

ording to the 
onsiderations above, we may a

ept that the answer is notgiven as a digit stream of length n, but as an n-multi-digit K. The number Kwith jKj � rn � 1 is a 
orre
t answer to the request n?x i� x is in [K�1rn ; K+1rn ℄.We write K = n?x if K is a 
orre
t answer for n?x (but note that there areusually two di�erent 
orre
t answers, e.g., 1? 13 has the 
orre
t answers 0 and 1).9.2 Multi-Digit ComputationAssume we are given a re�ning non-singular matrix M and an argument x inI0, and we are asked for n digits of M(x) in base 2. Theorem 7.1 provides twointegers 
< and 
> su
h that at least 
< + n and at most 
> + n digits from xare needed to obtain n digits of M(x). Thus we must ask for some number m ofdigits of x, but we only know 
< + n � m � 
> + n. There are two strategiesthat 
an be used:1. Ask for m = 
< + n digits from x and let K = m?x. Absorb A2mK into Mand 
he
k whether n digits 
an be emitted from the resulting matrix M 0. Ifyes, then do the emission, but if not, absorb one more digit from x, 
he
kagain, et
. Alternatively, one may determine the number 
0< belonging toM 0 and ask for 
0<� 
< more digits from x, absorb these new digits intoM 0and 
he
k again whether n digits 
an be emitted, et
.2. Ask for m = 
>+n digits from x and let K = m?x. Absorb A2mK intoM andemit n digits from the resulting matrix (whi
h is guaranteed to be possible).Strategy (1) ensures that as few as possible digits are read from x, but it is al-gorithmi
ally more involved than strategy (2) sin
e it involves 
he
king whetherthe emission is possible, and if this fails, either degenerates to the old digit-by-digit algorithm, or involves �nding out how many more argument digits are atleast needed. Here, we shall follow strategy (2), whi
h is easier to des
ribe.Assume M = �ab 
d� is given where the four entries are small. We need todetermine 
> = dlog2(2 
onM)e = dlog2( 2j detM j(d�jbj)2 )e. The rounded logarithm
an be obtained by 
ounting how often the denominator (d � jbj)2 must be



doubled until it is bigger than the numerator, or the other way round, dependingon whi
h is bigger in the beginning. Alternatively, the 
al
ulation may be basedon bit sizes. Clearly, it is suÆ
ient to 
ompute 
> on
e for M to serve severalrequests n?M(x) with di�erent n and x.To handle a request n?M(x), we 
ompute m = 
>+n and ask for K = m?x.Then we absorb A2mK into M :M � A2mK = �ab 
d� ��10 K2m� = �ab 2m
+Ka2md+Kb� (35)Sin
e the original entries are assumed to be small and 2m and K have a bit sizeof O(m) = O(n), the 
omputations in (35) 
an be done in linear time O(n). Letthe result be M 0 = �ab CD� with small a and b, and big C and D.The next step is to �nd a suitable integer L with jLj � 2n� 1 su
h that A2nL
an be emitted from M 0, whi
h is possible i� M 0(I0) � [L�12n ; L+12n ℄. If M andhen
eM 0 are in
reasing, thenM 0(I0) = [C�aD�b ; C+aD+b ℄, and ifM is de
reasing, thenM 0(I0) = [C+aD+b ; C�aD�b ℄. Anyway, we know what M 0(I0) is. In the next subse
tion,we shall show how to determine a suitable L from this information.Before we 
ome to this, we 
onsider the 
ase of tensors. Assume we are givena re�ning tensor T and two arguments x1 and x2 in I0, and we are asked to
ompute the �rst n digits of a representation of the result T (x1; x2). Althoughwe did not show how to do this, it is in prin
iple possible to 
ompute the twointegers 
>L = dlog2(4 
onL T )e and 
>R = dlog2(4 
onR T )e from Theorem 7.2.Then we may request m1 = 
>L + n digits from x1 and m2 = 
>R + n digitsfrom x2 whi
h will be delivered as multi-digits K1 = m1?x1 and K2 = m2?x2.Absorbing these multi-digits into T = �ab 
d ef gh� yieldsT 0 = �ab CD EF GH� = T L
 A2m1K1 R
 A2m2K2where T 0 is given by�ab 2m2
 +K2a2m2d +K2b 2m1e +K1a2m1f +K1b 2m1+m2g + 2m1K2e + 2m2K1
 +K1K2a2m1+m2h+ 2m1K2f + 2m2K1d +K1K2b�(36)In 
ontrast to the matrix 
ase, we do not get away with a linear 
omputation. Theprodu
t K1K2 is a produ
t of two n-bit integers whi
h needs time  (n) > O(n).Currently, the best known algorithms yield  0(n) = O(n logn log logn), butmany software pa
kages for big integer arithmeti
 
ome up with a multipli
ationwhi
h needs more time than  0(n), but is still more eÆ
ient than O(n2).Apart from the produ
t K1K2, all other operations, in
luding multipli
ationby the powers of 2, 
an be performed in linear time O(n). Thus we still havelinear time if a = b = 0; in this 
ase, some power of 2 may be 
an
elled.Again, the next step is to �nd a suitable L with jLj � rn � 1 su
h thatArnL 
an be emitted from T 0, whi
h is possible i� T 0(I20 ) � [L�12n ; L+12n ℄. The twoend points of T 0(I20 ) are the smallest and the largest of the four 
orner values



T 0(�1;�1), respe
tively. If the monotoni
ity type of T and hen
e of T 0 is known,then it is 
lear whi
h of the 
orner values are the smallest and the largest.9.3 Multi-Digit EmissionThe treatment in the previous se
tion has left us with the following problem:given an integer n > 0 and a rational interval [u; v℄ � I0, whi
h arose as M 0(I0)or T 0(I20 ), �nd an integer L su
h that jLj � 2n � 1 and [u; v℄ � [L�12n ; L+12n ℄.Be
ause we used the upper bounds for absorption, we know that su
h an Lexists, but for the sake of generality, we also derive a 
ondition for the existen
eof L.The interval in
lusion above 
an be written as u � L�12n and v � L+12n , whi
his equivalent to 2nv� 1 � L � 2nu+1. Sin
e L is required to be an integer, thisin turn is equivalent to v0 � L � u0, where v0 = d2nv � 1e and u0 = b2nu+ 1
.Note that v0 and u0 are integers.Thus, the following seems to be the appropriate method: Compute the inte-gers v0 and u0. If v0 > u0, then the emission of n digits is not possible. Otherwise,any integer L with v0 � L � u0 
an be emitted, for instan
e L = v0 or L = u0.There is one remaining diÆ
ulty though: as an n-multi-digit, the 
hoseninteger L should satisfy jLj � 2n � 1. Yet if u = 1, then u0 = 2n + 1, and if1 � 2�n � u < 1, then u0 = 2n; in both 
ases, the 
hoi
e L = u0 is forbidden.Similarly, v0 = �2n� 1 or v0 = �2n may happen if v � �1+2�n, rendering the
hoi
e L = v0 unsuitable.These problems may be solved as follows: remember u � �1, when
e u0 ��2n + 1. Hen
e, u0 is a suitable 
hoi
e if u0 � 2n � 1. This 
ondition 
an beexpressed in terms of u as follows:u0 = b2nu+ 1
 � 2n � 1 () 2nu+ 1 < 2n () u < 1� 2�n : (37)Sin
e n > 0, this is 
ertainly the 
ase if u � 0. Analogously, one may show thatv0 is suitable if v � 0. Sin
e u � v, one of these two 
onditions is always satis�ed.A
tually, the de
ision whi
h of u0 and v0 to take 
an be based on the sign of anyelement w 2 [u; v℄; for, w � 0 implies u � 0, and w � 0 implies v � 0.Algorithm 2Input: An integer n > 0 and a rational interval [u; v℄ � I0.Output: An n-multi-digit L whi
h 
an be emitted, or the information that su
ha digit does not exist.Method:u0 = b2nu+ 1
; v0 = d2nv � 1e;if u0 < v0 then no su
h digit existselse if w � 0 then L = v0 else L = u0(where w is any 
onvenient test value from [u; v℄).This algorithm is suÆ
ient to deal with the various 
ases of LFT's whi
hhave been handled in the previous se
tion. Sin
e we followed strategy (2) and



absorbed suÆ
iently many digits to guarantee the emission, the test u0 < v0 
anbe omitted.In the matrix 
ase, we have [u; v℄ = M 0(I0) where M 0 = �ab CD�. If M 0 isin
reasing, then u = C�aD�b and v = C+aD+b . A simple test value w in-between isM 0(0) = C=D. The test C=D � 0 is equivalent to C � 0 sin
e D > 0 byour general assumption. Hen
e, we obtain the following algorithm (whi
h alsoin
ludes the absorption phase):Algorithm 3Input: A re�ning in
reasing matrix M = �ab 
d� with 
>, an argument x, andthe desired number n > 0 of output digits.Output: An n-multi-digit L = n?M(x).Method:m = 
> + n;if m > 0 then K = m?x; C = 2m
+Ka; D = 2md+Kbelse C = 
; D = d;if C � 0 then L = l 2n(C+a)D+b m� 1 else L = j 2n(C�a)D�b k+ 1 .For a de
reasing matrix, the algorithm has to be suitably modi�ed.The two numbers j 2n(C�a)D�b k and l2n(C+a)D+b m are obtained by integer divisionsof the 2n-bit integers 2n(C � a) by the n-bit integers D � b, resulting in n-bitintegers. The 
omplexity of su
h a division is the same as the 
omplexity  (n) ofmultiplying two n-bit integers. Apart from the two divisions, all other operations,in
luding multipli
ation by 2n, 
an be performed in linear time O(n). Thus, wehave managed to de
rease the time needed to obtain n output digits from O(n2)(for non-aÆne matri
es) to  (n).But what about aÆne matri
es (b = 0) where the single digit algorithmalready performed in time O(n)? Well, if b = 0, the fra
tions 2n(C�a)D�b simplify to2n(C�a)2md , where a power of 2 
an be 
an
elled before the quotients are 
omputed.After 
an
ellation, these are divisions of an n bit integer by a small integer whi
h
an be done in linear time O(n).For tensors of known monotoni
ity type, similar variants of the general Al-gorithm 2 
an be developed. For general tensors, the algorithm be
omes more
ompli
ated.10 Algebrai
 OperationsThese are the basi
 arithmeti
 operations like addition and multipli
ation. Forea
h operation, we shall show how exponents 
an be handled, and how its a
-tion on mantissas 
an be implemented by LFT's. The general algorithm formulti-digits (Alg. 2) 
an be spe
ialised to the various 
ases (here only shownfor addition). These spe
ialised multi-digit operations will not depend on LFT'sany more. Later, we 
onsider trans
endental fun
tions like exponential and log-arithm, where LFT's will be indispensable.



10.1 Addition x1 + x2Exponents. If both arguments happen to have the same exponent, it 
an be takenout sin
e 2ex1+2ex2 = 2e(x1+x2). If the exponents are di�erent, then the smallerone 
an be in
reased be
ause of [�℄2 = 2e[0e : �℄2. If the exponents have beensu

essfully handled, we are left with adding the mantissas. Unfortunately, thebase interval [�1; 1℄ is not 
losed under addition, but writing x1+x2 as 2(x1�x2)with x1 � x2 = x1+x22 solves the problem. Hen
e the exponent handling 
an bedone as follows:(e1 jj�1)+ (e2 jj�2) = (e+1 jj (0e�e1 : �1) � (0e�e2 : �2)) where e = max(e1; e2).Single-digit algorithm. The operation `�' is a re�ning 2-LFT T = �00 10 10 02� oftype ("; "). By the analysis in Se
tion 8.5 we know that the zeros written as 0are persistent, and that there are suÆ
ient opportunities for 
an
ellation so thatthe entries remain bounded. Thus, the single-digit algorithm for addition 
an berun with tensors of the form �00 
0 e0 gh�, i.e., four parameters whi
h are smallintegers. Sin
e the entries are bounded, only �nitely many tensors may show upduring the single-digit algorithm. Hen
e, the algorithm 
an be turned into thea
tion of a �nite state transdu
er operating on digits as pure symbols.Multi-digit algorithm. Algorithm 2 
an be adapted to the spe
ial 
ase of addition.Be
ause of �T�x (x; y) = �T�y (x; y) = 12 , we know 
onL T = 
onR T = 12 , when
e
>L = 
>R = 1. Thus, n+1 digits from the two arguments are suÆ
ient to obtainn result digits. With Ki = (n+ 1)? �i for i = 1; 2, we have u = K1�12n+1 � K2�12n+1 =K1+K2�22n+2 and v = K1+K2+22n+2 . A 
onvenient test value w in-between is K1+K22n+2 ;the 
ondition w � 0 is equivalent to K1 +K2 � 0. The two integer 
andidatesare u0 = b2nu+1
 = b(K1 +K2 +2)=4
 and v0 = d(K1 +K2 � 2)=4e. Thus, thealgorithm looks as follows:For L = n? (�1 � �2) do:K1 = (n+ 1)? �1; K2 = (n+ 1)? �2; K = K1 +K2;if K � 0 then L = d(K � 2)=4e else L = b(K + 2)=4
 .Subtra
tion is very similar to addition and not in
luded here.10.2 Multipli
ation x1 � x2Exponents: (e1 jj �1) � (e2 jj �2) = (e1 + e2 jj �1 � �2).Zero digits. Multipli
ation `�' is a re�ning 2-LFT T = � 10 00 00 01� whi
h has nomonotoni
ity type sin
e �1 � �2 is in
reasing in �1 for �2 � 0, but de
reasing for�2 � 0. If �2 starts with 1 or �1, we are in one of these two 
ases, but 0 doesnot provide the ne
essary information. Yet we may push out any zero digitswithout bothering about monotoni
ity and without 
hanging the state tensor:(0 : �1) � �2 = 0 : (�1 � �2); �1 � (0 : �2) = 0 : (�1 � �2):This pro
ess requires only linear time in the number of emitted digits. It ends ifenough digits have been emitted or both arguments are normalised.



Single-digit algorithm. If there are no more zero digits to be emitted, then thesigns of the arguments 
an be read o� from their �rst non-zero digits. Fromthese signs, the monotoni
ity type to be used in the rest of the 
omputation 
anbe determined, e.g., �1 � 0 and �2 � 0 implies type (#; "). By the analysis inSe
tion 8.5 we know that � 10 00 00 01� has three persistent zeros and belongs tothe medium 
lass of tensors that permit one 
an
ellation in every round, whi
hdoes not suÆ
e to obtain bounded entries. The general form of the state tensorwill be � a0 C0 E0 GH � with small a and big C, E, G, and H . The algorithm 
annotbe optimised to a �nite state transdu
er, but some optimisations are possiblebe
ause of the persistent zero entries. (Kone
ny [39℄ 
hara
terized the fun
tionsthat 
an be 
omputed by �nite state transdu
ers. Multipli
ation is not amongthese fun
tions.)10.3 Re
ipro
al 1=xThis operation presents the diÆ
ulty that it is unde�ned for x = 0. To 
ompute1=x, we �rst need to normalise the argument x by squeezing out zeros from themantissa and redu
ing the exponent a

ordingly (see Se
tion 2.3). This pro
essdoes not terminate for x = 0 and may take very long for x � 0. A possiblesolution is to provide a lower bound for the exponent and to indi
ate a \potentialdivision by 0" if this bound is rea
hed.If normalisation terminates, we know x 6= 0 and 14 � j�j � 1 for the �nalmantissa of x. Then 1 � 1j�j � 4, when
e j 14� j � 1. This shows how to pro
eedafter normalisation:1=(e jj �) = (�e+ 2 jj R(�)) where R(�) = 14�Fun
tion R is a 1-LFT, R = � 04 10�. It is de
reasing, bounded and re�ning onthe two intervals [ 14 ; 1℄ and [�1;� 14 ℄. This is suÆ
ient to use the single-digitalgorithm for 
omputing R(�). Pra
ti
ally, this 
an be done by �rst absorbingthe initial two digits of �, whi
h are 11, 10, �10, or �1�1 be
ause of normalisation.Absorption of 11 leads to � 01 13� (after 
an
ellation), absorption of 10 leads to� 01 12� et
. These matri
es are ordinary de
reasing re�ning matri
es as requiredby the single-digit algorithm (� 01 12� is exa
tly the matrix used in Example 6.2).11 In�nite LFT Expressions11.1 In�nite Matrix Produ
tsWe shall later see that many familiar 
onstants like � or e 
an be written as(formal) in�nite produ
ts Q1n=0Mn of matri
es with integer entries. This is ageneralisation of the in�nite sequen
es (or produ
ts) of digit matri
es that wehave already seen. Moreover, fun
tions like ex 
an be realised as in�nite produ
tsof matri
es whose entries depend on the argument x.



Before we 
ontinue, we need to 
larify what su
h an in�nite produ
t a
tuallymeans. As �nite produ
ts of matri
es are again matri
es, one should expe
t thesame for an in�nite produ
t. The standard way to de�ne the in�nite produ
tQ1n=0Mn would be that it is the limit of the �nite produ
tsQmn=0Mn as m goesto in�nity. Yet su
h a de�nition would involve a notion of limit for matri
es,or rather 1-LFT's. While it is not impossible to de�ne su
h a limit notion, itis beyond the s
ope of these notes. To avoid this problem, we only de�ne theresults of applying in�nite produ
ts to arguments (numbers or intervals); theprodu
t itself remains meaningless and is 
onsidered mainly as another way topresent a sequen
e of matri
es.Given a real number argument y0, it is straightforward to de�neQ1n=0Mn(y0)as the limit of the sequen
e of real numbers yn =M0 � � �Mn�1(y0), provided allthe numbers yn are well-de�ned (no division by 0) and the limit exists. Usingthis new notion, we obtain for instan
e the real number y = P1i=1 di2�i de-noted by the digit stream d1d2 � � � as Q1n=1Adn(0), be
ause Ad1 � � �Adn(0) =(Pni=1 di2n�i)=2n 
onverges to y. A
tually, the argument 0 
an be repla
ed byany real number y0 sin
e Ad1 � � �Adn(y0) = (y0+Pni=1 di2n�i)=2n also 
onvergesto y.Now we repla
e the argument y0 by an interval J0. In analogy to the number
ase we 
onsider the intervalsJn = M0 � � �Mn�1(J0): (38)The sequen
e (Jn)n�0 of intervals is nested if Jn � Jn+1 for all n � 1 (thisdoes not in
lude the in
lusion J0 � J1 whi
h is disregarded deliberately). Thein
lusion Jn � Jn+1 means M0 � � �Mn�1(J0) � M0 � � �Mn(J0). If the matri
esM0, . . . , Mn�1 are non-singular, this is equivalent to Mn(J0) � J0. Therefore inthe non-singular 
ase, the sequen
e of intervals is nested i� all LFT's Mn withn � 1 are re�ning w.r.t. the interval J0. Note that M0 need not be re�ning,but it should be bounded on J0 so that J1 =M0(J0) and all other intervals arewell-de�ned.Following these 
onsiderations, an in�nite produ
t Q1n=0Mn(J0) is 
alledre�ning if M0 is bounded on J0 and all Mn for n � 1 are re�ning for J0. Thisin
ludes the sequen
es of our signed number representation, where M0 is anexponent matrix, whi
h is bounded on the base interval I0, and the remainingmatri
es are digit matri
es, whi
h are re�ning for I0.We say that the re�ning produ
t Q1n=0Mn(J0) has as value the real numbery if the interse
tion of the nested sequen
e of intervals J1 � J2 � � � � is the sin-gleton set fyg. For instan
e, the produ
t EeQ1n=1Adn(I0) 
orresponding to thenumber representation (e jj d1d2 : : :) has as value the real number 2e �P1i=1 di2�idenoted by the representation.Appli
ation of an in�nite produ
t to a number and to an interval are 
learlyrelated. If y = Q1n=0Mn(J0), then also y = Q1n=0Mn(y0) for all y0 in J0. Onthe other hand, the interval notion is more restri
ted and hen
e more powerfulthan the point notion be
ause it in
ludes the fa
t that the interval sequen
e isnested, whi
h provides lower and upper bounds for all sequen
es (yn)n�0 
omingfrom arguments y0 2 J0.



11.2 Convergen
e CriteriaA nested sequen
e of intervals Jn = [un; vn℄ 
onverges to some single point i�`(Jn) = vn � un ! 0 as n ! 1. This single point is then the 
ommon limit of(un)n�1 and (vn)n�1. Be
ause of this observation, a 
onvergen
e 
riterion maybe obtained from the notion of 
ontra
tivity. Iterating Relation (22) yields`(Jn) = `((M0 � � �Mn�1)(J0)) � 
onJ0 M0 � : : : � 
onJ0 Mn�1 � `(J0) :Thus, we obtain the following:Theorem 11.1.A re�ning in�nite produ
t Q1n=0Mn(J0) 
onverges if Q1n=0 
onJ0 Mn = 0.Usually, we shall not dire
tly apply this 
riterion, but the following 
orollary:Corollary 11.2. If Q1n=0Mn(J0) is a re�ning in�nite produ
t with the propertylimn!1 
onJ0 Mn < 1, then the produ
t 
onverges to a real number.11.3 Transformation of In�nite Produ
ts(Formal) in�nite produ
ts 
an be transformed by algebrai
 manipulation withthe hope that the result of the transformation has better 
onvergen
e propertiesthan the original produ
t.Given Q1n=0Mn, sele
t a sequen
e (Un)n�1 of non-singular matri
es. Then�nite produ
ts 
an be transformed as follows:M0 � � �Mn�1Un = M0U1 U�1 M1 U2 � � �U�n�1Mn�1Un = fM0 fM1 � � �fMn�1(39)using the new matri
esfM0 = M0 U1 and fMn = U�nMnUn+1 for n � 1: (40)Be
ause any in�nite produ
t Q1n=0Mn of non-singular matri
es 
an be trans-formed into any other produ
t Q1n=0 fMn by 
hoosing U1 =M�0fM0 and Un+1 =M�nUnfMn, one needs separate arguments for the 
onvergen
e of the new produ
tto the same value as the old one.If the original produ
t is applied to a real number y0, then its value is thelimit of the sequen
e yn = M0 � � �Mn�1(y0). If there is a real number ey0 su
hthat Un(ey0) = y0 for all n � 1, then the number sequen
e indu
ed by the newmatri
es at ey0 is the same as the sequen
e indu
ed by the old matri
es at y0be
ause of fM0 � � �fMn�1(ey0) = M0 � � �Mn�1Un(ey0) = yn using (39). Hen
ewe obtain:Proposition 11.3. IfQ1n=0 fMn results from transformingQ1n=0Mn with (Un)n�1and y0 and ey0 are two real numbers satisfying Un(ey0) = y0 for all n � 1, thenQ1n=0 fMn(ey0) =Q1n=0Mn(y0) (this means, the �rst expression 
onverges if andonly if the se
ond 
onverges, and if they 
onverge, they have the same value).



11.4 In�nite Produ
ts from Taylor SeriesWe want to implement trans
endental fun
tions by in�nite produ
ts, and sowe need methods to obtain su
h produ
ts from more familiar representations.One su
h representation is the Taylor power series f(x) = P1n=0 anxn, e.g.,ex =P1n=0 xnn! .There are several ways to transform Taylor series into in�nite produ
ts.Among the methods explored so far, the one des
ribed in the sequel turned outto be the most useful one for the intended appli
ations [29℄. It 
an be appliedwhenever an 6= 0 for n � 1 and uses the matri
esM0 = �a1x0 a0 + a1x1 � and Mn = �x0 xqn� for n � 1 (41)where qn = anan+1 . To show that these matri
es 
orrespond to the Taylor series,we 
laim that their �nite produ
ts have the following form (up to s
aling):Pn = M0 � � �Mn�1 = �anxn0 Pni=0 aixi1 � (42)This 
laim 
an be veri�ed by indu
tion. For n = 1, we have P1 = M0, whi
h
learly has the 
laimed form. For the step from n to n+1, we 
ompute Pn+1 =PnMn = �anxn0 Pni=0 aixi1 ��x0 xqn� = �anxn+10 anxn+1 + qn(Pni=0 aixi)qn �Dividing all four entries by qn 6= 0 yields the required form be
ause of an=qn =an+1.From (42), Pn(0) =Pni=0 aixi follows. Hen
e, the produ
t Q1n=0Mn(0) 
on-verges if and only if the Taylor series 
onverges, and yields the desired valueP1i=0 aixi.Of 
ourse, we do not want to apply the produ
t to the real number 0, but tothe base interval I0 = [�1; 1℄ of our number representation. Clearly, all matri
esMn are bounded (under the assumption an 6= 0 for n � 1). The matri
es �x0 xqn�are re�ning i� jxj + jxj � jqnj (Prop. 5.4). Hen
e, Q1n=0Mn(I0) is re�ning forjxj � q=2, where q = infn�1 jqnj. The 
ontra
tivity of Mn is jxj=jqnj � jxj=q,whi
h is at most 1=2 for jxj � q=2. Thus, for jxj � q=2,Q1n=0Mn(I0) is a re�ning
onvergent produ
t. Sin
e I0 
ontains 0, its value 
oin
ides with Q1n=0Mn(0) =P1n=0 anxn as desired.11.5 In�nite Produ
ts from Continued Fra
tionsAnother, less familiar sour
e of in�nite produ
ts are 
ontinued fra
tion expan-sions. A 
ontinued fra
tion is an in�nite expressiona0 + b1a1 + b2::: (43)



parameterised by numbers (an)n�0 and (bn)n�1. It denotes the limit of the se-quen
e of partial 
ontinued fra
tionsa0; a0 + b1a1 ; a0 + b1a1 + b2a2 ; : : :provided that this limit exists. For ease of notation, the in�nite expression (43)is written as ha0; b1; a1; b2; a2; : : :i.Like for Taylor series, there are several ways to turn a 
ontinued fra
tion intoan in�nite produ
t. We use the following:M0 = �10 a01 � and Mn = �01 bnan� for n � 1: (44)Sin
e M0(y) = a0 + y and Mn(y) = bnan+y , the partial produ
ts M0 � � �Mn�1(0)are exa
tly the partial 
ontinued fra
tions so that Q1n=0Mn(0) 
onverges if andonly if the 
ontinued fra
tion 
onverges, and yields the same value.In pra
ti
al appli
ations, this in�nite produ
t must usually be transformedinto a more appropriate one before the argument 
an su

essfully be extendedto the base interval I0. Often, the transformation matri
es are 
hosen as Un =� 10 0un�. Sin
e 0 is a �xed point of these matri
es (Un(0) = 0), the transformedin�nite produ
t still has the value of the 
ontinued fra
tion when applied to 0by Prop. 11.3. For the a
tual transformation, it is useful to note that�ab 
d��10 0un+1� = �ab 
 un+1d un+1� (45)�10 0un�� �ab 
d��10 0un+1� = �un ab un 
 un+1d un+1 � (46)11.6 The Evaluation of In�nite Produ
tsBefore we 
ome to the implementation of the various trans
endental fun
tionsby in�nite produ
ts, we give hints on how to use the produ
ts in a pra
ti
alimplementation. For simpli
ity, we only 
onsider re�ning produ
ts applied tothe base interval [�1; 1℄.If all the matri
es in Q1n=0Mn(I0) have integer entries, there is a 
hoi
e ofseveral di�erent evaluation algorithms. We only 
onsider single digit approa
hes,but 
orresponding multi-digit realisations do exist. Generally, one has to assumethat a matrixMn 
an be 
reated from its index n. First, the matri
es may be putinto a list whi
h initially 
ontains only M0. In this list, ea
h matrix absorbs thedigits that are emitted from its right neighbour. Whenever the rightmost matrixMn needs to absorb a digit, the next matrix Mn+1 is 
reated and appended tothe list.Se
ond, the algorithm may be run with a state matrix whi
h initially is M0.Whenever the state matrix 
annot emit a digit, it absorbs the next matrix Mn



down the list of matri
es whi
h has not been absorbed before. This next matrixis 
reated on the 
y from its index n. Thus, only one matrix must be stored (andthe index of the next one to be absorbed), while in the �rst method, a wholelist of matri
es must be maintained. On the other hand, the upper bounds forspa
e and time 
omplexity of the ordinary single-digit algorithm do not holdhere, sin
e the matri
es that are absorbed are usually mu
h more 
ompli
atedthan the simple digit matri
es.Usually, the matri
es in the in�nite produ
t depend on an argument x, likein the produ
t derived from the Taylor series expansion. If the argument is agiven rational, the matri
es 
an be 
onverted into integer matri
es by suitables
aling, and we are ba
k to the previous 
ase. In the general 
ase of an arbitraryreal argument, this 
annot be done; instead, the matri
es must be 
onvertedinto tensors. This is always possible if their four entries depend linearly on x, byusing (6): �ax+ ebx+ f 
x+ gdx+ h� = �ab 
d ef gh�����xIf Tn is the tensor belonging to Mn, the produ
t f(x) =Q1n=0Mn(I0) be
omesthe in�nite tensor expression f(x) = T0(x; T1(x; : : :)). Su
h an expression 
anonly be evaluated by the �rst method indi
ated above: a list of tensors mustbe maintained whi
h initially 
onsists of T0 only. Ea
h tensor absorbs argumentdigits from the left, and from the right the digits emitted from the next tensor.If the last tensor needs a digit from its right argument, a new tensor is 
reatedand added to the list. This algorithm works if the tensors are suÆ
iently 
on-tra
tive so that (almost) ea
h tensor needs stri
tly less than n digits from itsright argument to emit n digits.12 Trans
endental Fun
tions12.1 Exponential Fun
tionArgument redu
tion. The in�nite produ
ts derived below will only behave wellfor jxj � 1, whi
h is equivalent to the exponent of x being at most 0. Yet anarbitrary real argument 
an be brought into this region by exploiting the fa
te2x = (ex)2. Hen
e, an exponent n � 0 may be handled by e(njj�) = Sn(e�)where Sn means n appli
ations of the squaring operation S. (Admittedly, this
an be
ome quite ineÆ
ient for larger exponents.) Negative exponents n < 0 
anbe handled by putting the 
orresponding number of zero digits in front of themantissa: e(njj�) = e�0 where �0 = 0jnj : �.Taylor series realisation. The well-known Taylor series for ex is P1n=0 xnn! . All
oeÆ
ients an = 1=n! are non-zero, so that the method of Se
tion 11.4 
an beapplied. The quotient qn = an=an+1 is n+ 1, so that q = infn�1 jqnj = 2. Thuswe have ex = �x0 x+ 11 � 1Yn=1�x0 xn+ 1� (I0) for jxj � 1: (47)



All Mn with n � 1 have 
ontra
tivity jxjn+1 � 1n+1 .As already mentioned, a representation su
h as (47) is open to two di�erentinterpretations. For rational arguments x, it is (equivalent to) an in�nite prod-u
t of integer matri
es, e.g., e = � 10 21�Q1n=1 � 10 1n+1� (I0). For general (real)arguments however, representation (47) should be turned into the in�nite tensorexpression ex = T0(x; T1(x; T2(x; : : :))) withT0 = � 10 10 00 11� and Tn = � 10 10 00 0n+ 1�where ea
h tensor has 3 persistent zeros, indi
ated by 0 .The tensors Tn for n � 0 realise the fun
tions Tn(x; y) = x(y + 1)=(n + 1)whi
h are in
reasing in x be
ause y + 1 � 0 for y 2 I0, but are not monotoni
in y. They 
an be handled similar to multipli
ation: leading zero digits of x 
anbe pushed out without 
hanging the tensor, and then the �rst non-zero digitde
ides the monotoni
ity behaviour.The front tensor T0(x; y) = x(y + 1) + 1 has the same monotoni
ity be-haviour, but 
annot be handled immediately in the same way; noti
e also thatit is bounded, but not re�ning, so that it must emit an exponent matrix �rst.{ For x 2 [0; 1℄ (leading digit 1), T0 has type ("; ") and image [1; 3℄, so thatthe appropriate exponent is 2 (and 10 
an be emitted after emitting theexponent matrix).{ For x 2 [�1; 0℄ (leading digit �1), T0 has type ("; #) and image [�1; 1℄, so thatthe appropriate exponent is 0.{ For x 2 [� 12 ; 12 ℄ (leading digit 0), T0 has image [0; 2℄, so that the appropriateexponent is 1, and 1 
an be emitted after the exponent matrix. The ten-sor resulting from these emissions is (up to s
aling) T 00 = � 10 10 00 01� withT 00(x; y) = x(y + 1). Hen
e, all leading zeros of x 
an be pushed out with-out modifying T 00, and the �rst non-zero digit de
ides the monotoni
ity be-haviour.Continued fra
tion realisation. A 
ontinued fra
tion for the exponential fun
tionis ex = h1; x; 1� x2 ; x216 � 12 � 4 ; 1; x216 � 22 � 4 ; 1; : : :i:It 
orresponds to the produ
t representationex = �10 11��01 x1� x=2� 1Yn=1�01 x2=(16n2 � 4)1 � (0):The produ
t of the �rst two matri
es is (up to s
aling) M0 = � 22 2+x2�x�. Thein�nite produ
t 
annot dire
tly be extended to the base interval I0 = [�1; 1℄sin
e the denominators of the matri
es Mn = � 01 x2=(16n2�4)1 � be
ome 0 at �1.This problem is solved by transforming the produ
t with the matri
es Un =



� 10 04(2n�1)� (n � 1), whi
h have the form 
onsidered in Se
tion 11.5. By (45),the new front matrix isfM0 = �22 4(2 + x)4(2� x)� �= �11 4 + 2x4� 2x�whi
h is bounded on I0 for jxj � 1. By (46), the other matri
es arefMn =  01 x2 16(2n�1)(2n+1)4(2n�1)(2n+1)4(2n+ 1) ! = �01 4x24(2n+ 1)�These matri
es are re�ning on I0 for jxj � 1. By (23), the 
ontra
tivity of fMn is4x2(8n+3)2 � x216n2 whi
h is better (i.e., smaller) than the value jxjn+1 � 1n+1 a
hievedby the Taylor expansion. Therefore, Q1n=0 fMn(I0) 
onverges, and sin
e 0 2 I0,it 
onverges to Q1n=0 fMn(0) =Q1n=0Mn(0) = ex.Like the Taylor produ
t, the 
ontinued fra
tion produ
t 
onsists of integermatri
es for rational arguments, e.g., e = � 11 62�Q1n=1 � 01 48n+4� (I0). In 
ontrastto the Taylor 
ase, these matri
es are not aÆne and hen
e more diÆ
ult tohandle, but they have better 
ontra
tivity.For general (real) arguments, the representation must be turned into thein�nite tensor expression ex = T0 (x; T1 (x2; T2 (x2; : : :))) whi
h uses both xand x2. The tensors areT0 = �00 2�2 11 44� and Tn = �00 40 01 08n+ 4�where ea
h tensor ex
ept T0 has 3 persistent zeros, indi
ated by 0 . Taking intoa

ount that their left argument x2 is � 0, the tensors Tn for n � 1 have type("; #). Leading zero digits of x are doubled by squaring and 
an be pushed outof Tn without modifying it. Moreover, ea
h Tn 
an emit 1 after reading 1 fromx2. The front tensor T0 is a bit more 
ompli
ated, but 
an be handled essentiallylike the front tensor of the Taylor expansion.12.2 LogarithmDe�nition. Natural logarithm lnx is the inverse of the exponential fun
tion.Thus it is only de�ned for arguments x > 0. To deal with negative arguments,we propose to a
tually 
ompute the fun
tion f(x) = ln jxj, whi
h is the anti-derivative (inde�nite integral) of the re
ipro
al fun
tion 1=x.Argument normalisation. Like the re
ipro
al itself, f is still unde�ned for 0. Thehandling of this spe
ial 
ase is similar to the handling of 1=0 in Se
tion 10.3:To 
ompute f(x), we �rst normalise the argument x by squeezing out zerosfrom the mantissa and redu
ing the exponent a

ordingly (see Se
tion 2.3). Ifnormalisation terminates, we know x 6= 0 and 14 � j�j � 1 for the �nal mantissaof x. This mantissa will start with the digit 1 or �1. The following des
riptiontells what to do in the positive 
ase; the negative 
ase is dual.



Argument redu
tion. Here, we use the fa
t that a (positive) normalised mantissastarts with 10 or 11: ln(e jj 1 : �) = ln(2e �(�+1)=2) = (e�1)�ln 2 + ln(1+�).For the 
onstant ln 2 see below. The �rst digit of � is 0 or 1; hen
e � 2 [� 12 ; 1℄.Continued fra
tion expansion. A 
ontinued fra
tion for the fun
tion ln(1+x) ish0; x; 1; x=2; 1; v1; 1; w1; 1; v2; 1; w2; 1; : : :iwhere vn = nx4n+2 and wn = (n+1)x4n+2 . We now write this 
ontinued fra
tion as anin�nite produ
t like in Se
tion 11.5, and immediately transform this produ
t byUn = � 10 04�, using (45) and (46) in the step marked by `T='. In the last step, thematri
es are 
onverted into tensors.ln(1 + x) = �10 01��01 x1��01 x=21 � 1Yn=1�01 vn1 ��01 wn1 � (0)= �x1 xx=2 + 1� 1Yn=1�vn1 vnwn + 1� (0)= �2x2 2xx+ 2� 1Yn=1� nx4n+ 2 nx(n+ 1)x+ 4n+ 2� (0)T= �2x2 2x � 4(x+ 2) � 4� 1Yn=1� 4 � nx4n+ 2 4 � nx � 4((n+ 1)x+ 4n+ 2) � 4� (0)= �x1 4x2x+ 4� 1Yn=1� 2nx2n+ 1 8nx(2n+ 2)x+ 8n+ 4� (0)= � 10 42 01 04�����x 1Yn=1 �2n0 8n2n+ 2 02n+ 1 08n+ 4�����x (0)The tensors in the last line will be 
alled Tn (n � 0), and the 
orrespondingmatri
es in the se
ond but last line Mn (n � 0). All tensors Tn exhibit onepersistent zero, in the lower left 
orner. They are bounded on I20 sin
e the rightentry in their se
ond line is bigger than the sum of the two middle entries. Thedeterminants of the matri
es are detM0 = 2x2 � 0 and detMn = 4n(n+1)x2 �0 for n � 1. Hen
e, all tensors are in
reasing in their se
ond argument, for anyx. For y 2 I0, one may also verify det(Tnjy) � 0, i.e., all the tensors have type("; ") in I20 . They are not re�ning for I0, but remember that we only 
onsiderx 2 [� 12 ; 1℄. For su
h x, the matri
es Mn with n � 1 are re�ning. By (23), the
ontra
tivity of these matri
es is4n(n+ 1)x2((2n+ 2)x+ 6n+ 3)2 n!1�! 4x2(2x+ 6)2 = � xx+ 3�2For x = � 12 ; 0; 12 ; 1, this gives 125 ; 0; 149 ; 116 , respe
tively.



The 
onstant ln 2 
an be derived from the general 
ase asln(1 + 1) = �11 46� 1Yn=1� 2n2n+ 1 8n10n+ 6� (I0)with 
ontra
tivity 116 (in the limit). Another possibility is to exploit the fa
tln 2 = � ln( 12 ) = � ln(1� 12 ), whi
h leads to a produ
t with 
ontra
tivity 125 (inthe limit): ln 2 = �12 46� 1Yn=1� �n2n+ 1 �4n7n+ 3� (I0) :Part II:A Domain Framework for Computational Geometry13 Introdu
tionIn Part I we presented a framework for exa
t real number 
omputation, where wedeveloped a data type for real numbers and presented algorithms for 
omputingelementary fun
tions. We now turn our attention to 
omputational geometry,where we are interested in 
omputing geometri
 obje
ts, su
h as lines, 
urves,planes, surfa
es, 
onvex hulls and Voronoi diagrams. In a broad sense, we 
ansay that this represents an extension of exa
t arithmeti
 in that we now needto 
ompute a subset of the Eu
lidean spa
e rather than just a real number. Infa
t, the unde
idability of 
omparison of real numbers in exa
t arithmeti
 hasa 
lose 
ounterpart in 
omputational geometry, namely the unde
idability ofthe membership predi
ate for proper subsets of the Eu
lidean spa
e. Thus, in
omputational geometry one has to deal with somewhat similar problems as inexa
t arithmeti
. However, there are some other fundamental new issues whi
hare not en
ountered in exa
t arithmeti
, making 
omputational geometry anindependent subje
t of its own.Computational geometry and solid modelling, as in Computer Aided Design(CAD), are fundamental in the design and manufa
turing of all physi
al obje
ts.However, these dis
iplines su�er from the la
k of a proper and sound data-type. The 
urrent frameworks in these subje
ts are based, on the one hand, ondis
ontinuous predi
ates and Boolean operations, and, on the other hand, on
omparison of real numbers, whi
h is unde
idable. These essential foundationsof the existing theory and implementations are both unjusti�ed and unrealisti
;they give rise to unreliable programs in pra
ti
e.Topology and geometry, as mainstream mathemati
al dis
iplines, have beendeveloped to study 
ontinuous transformations on spa
es. It is therefore an ironythat the main building blo
ks in these subje
ts, namely the membership pred-i
ate of a set, the subset in
lusion predi
ate, and the basi
 operations su
h asinterse
tion are generally not 
ontinuous and therefore non-
omputable.



For example, in any Eu
lidean spa
e IRn the membership predi
ate 2S ofany subset S � IRn de�ned as2S : IRn ! ftt;�gx 7! � tt if x 2 S� if x =2 Swith the dis
rete topology on ftt;�g is 
ontinuous if and only if S is both openand 
losed, i.e. if S is either empty or the whole spa
e. In fa
t, the membershippredi
ate of any proper subset of IRn is dis
ontinuous at the boundary of thesubset.Similarly, 
onsider the interse
tion operator as a binary operator on the 
ol-le
tion C(IRn) of 
ompa
t subsets of IRn equipped with the Hausdor� distan
edH de�ned on 
losed subsets bydH(C;D) = max (supd2D inf
2C j
� dj; sup
2C infd2D j
� dj);with the 
onvention that dH(;; ;) = 0 and for C 6= ;, dH (;; C) =1:� \ � : C(IRn)� C(IRn)! C(IRn)(A;B) 7! A \ BThen, � \ � is dis
ontinuous whenever A and B just tou
h ea
h other.The non-
ontinuity of the basi
 predi
ates and operations 
reates a founda-tional problem in 
omputation, whi
h has so far been essentially negle
ted. Infa
t, in order to 
onstru
t a sound 
omputational model for solids and geometry,one needs a framework in whi
h these elementary building blo
ks are 
ontinuousand 
omputable.In pra
ti
e, 
orre
tness of algorithms in 
omputational geometry is usuallyproved using the Real RAMma
hine model of 
omputation, in whi
h 
omparisonof real numbers is 
onsidered to be de
idable. Sin
e this model is not realisti
,
orre
t algorithms, when implemented, turn into unreliable programs.A simple example is provided by 
omputing, in any 
oating point format,�rst the interse
tion point x in the plane of two straight lines L1 and L2 meetingunder a small angle, and then 
omputing the minimum distan
e d(x; L1) andd(x; L2) from x to ea
h of the two lines. In general, d(x; L1) and d(x; L2) areboth positive and distin
t.A more sophisti
ated example is given by the implementation in 
oatingpoint of any algorithm to 
ompute the 
onvex hull of a �nite number of pointsin the plane. If there are three nearly 
ollinear points A;B;C as in the pi
ture,then depending upon the 
oating point format, the program 
an give, insteadof the two edges AB and BC, any of the following:(i) AB only.(ii) AC only.(iii) BC only.(iv) none of them.
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Fig. 1. The 
onvex hull of a �nite number of points (top pi
ture) and four possibleerrors arising from 
oating point implementations.



In any of the above four 
ases, we get a logi
al in
onsisten
y as the edgesreturned by the program do not give the 
orre
t 
onvex hull and in the 
ases (i),(iii) and (iv) do not give a 
losed polygon at all.In CAGD modelling operators, the e�e
t of rounding errors on 
onsisten
yand robustness of a
tual implementations is an open question, whi
h is handledin industrial software by various heuristi
s.The solid modelling framework provided by 
lassi
al analysis, whi
h allowsdis
ontinuous behaviour and 
omparison of exa
t real numbers, is not realisti
as a model of our intera
tion with the physi
al world in terms of measurementand manufa
turing. Nor is it realisti
 as a basis for the design of algorithms im-plemented on realisti
 ma
hines, whi
h 
an only deal with �nite data. Industrialsolid modelling software used for CAGD (Computer Aided Geometri
 Design),CAM (Computer Aided Manufa
turing) or roboti
s is therefore infe
ted by thedisparity between the 
lassi
al analysis paradigm and feasible 
omputations.This disparity, as well as the representation of un
ertainties in the geometry ofthe solid obje
ts, is handled 
ase by 
ase, by various expensive and unsatisfa
-tory \up to epsilon" ad-ho
 heuristi
s. It is diÆ
ult, if at all possible, to improveand generalise these te
hniques, sin
e their relatively poor su

ess depends onthe skill and experien
e of software engineers rather than on a well formalisedmethodology. In pra
ti
e, the maintenan
e 
ost of some 
entral geometri
 oper-ators su
h as the Boolean operations or some spe
i�
 variants of the Minkowskisum has always remained 
riti
al.A robust algorithm is one whose 
orre
tness is proved with the assumptionof a realisti
 ma
hine model. Re
ursive analysis de�nes pre
isely what it means,in the 
ontext of the realisti
 Turing ma
hine model of 
omputation, to 
omputeobje
ts belonging to non-
ountable sets su
h as the set of real numbers.Here, we use a domain-theoreti
 approa
h to re
ursive analysis to developthe foundation of an e�e
tive framework for solid modelling and 
omputationalgeometry. It is based on the work of the se
ond author with Andr�e Lieutier. Infa
t these notes form an abridged version of two papers [14, 15℄; full details ofproofs and many other results 
an be obtained from these papers.We present the 
ontinuous domain of solid obje
ts whi
h gives a 
on
retemodel of 
omputation on solids 
lose to the a
tual pra
ti
e of CAD engineers.In this model, the basi
 predi
ates, su
h as membership and subset in
lusion,and operations, su
h as union and interse
tion, are 
ontinuous and 
omputable.The set-theoreti
 aspe
ts of solid modelling are revisited, leading to a theoreti-
ally motivated model. Within this model, some unavoidable limitations of solidmodelling 
omputations are shown and a sound framework to design spe
i�
a-tions for feasible modelling operators is provided. Moreover, the model is ableto 
apture the un
ertainties of input data in a
tual CAD situations.We need the following requirements for the mathemati
al model:1. the notion of 
omputability of solids has to be well de�ned,2. the model has to re
e
t the observable properties of real solids,3. it has to be 
losed under the Boolean operations and all basi
 predi
ates andoperations have to be 
omputable,



4. non-regular sets1 have to be 
aptured by the model as well as regular solids,5. the model has to support a design methodology for a
tual robust algorithms.A general methodology for the spe
i�
ation of feasible operators and thedesign of robust algorithms should rely on a sound mathemati
al model. Thisis why the domain-theoreti
 approa
h is a powerful framework both to modelpartial or un
ertain data and to guide the design of robust software.14 The Solid DomainIn this se
tion, we introdu
e the solid domain, a mathemati
al model for repre-senting rigid solids. The reader should refer to the Appendix for a basi
 introdu
-tion to the domain-theoreti
 notions required in the rest of this arti
le. We fo
ushere on the set-theoreti
 aspe
ts of solid modelling. Our model is motivated byrequirements 1 to 5 given above.We �rst re
all some basi
 notions in topology. For any subset A of a topolog-i
al spa
e X , the 
losure, A, of A is the interse
tion of all 
losed sets 
ontainingA, the interior, AÆ, of A is the union of all open sets 
ontained in A and theboundary, �A, of A is the set of points x 2 X su
h that any neighbourhood of x(i.e. any open set 
ontaining x) interse
ts both A and its 
omplement A
. Re
allthat an open set is regular if it is the interior of its 
losure; dually, a 
losed setis regular if it is the 
losure of its interior. The 
omplement of a regular openset then is a regular 
losed set and vi
e versa. A subset C � X is 
ompa
t if forevery 
olle
tion of open subsets hOiii2I with C � Si2I Oi there exists a �niteset J � I with C � Si2J Oi. A subset of IRd is 
ompa
t i� it is bounded and
losed.Given any proper subset S � IRn, the 
lassi
al membership predi
ate 2S :IRn ! ftt;�g is 
ontinuous ex
ept on �S. Re
all that a predi
ate is semi-de
idable if there is an algorithm to 
on�rm in �nite time that it is true wheneverthe predi
ate is a
tually true. For example, membership of a point in an openset in IRn is semi-de
idable, sin
e if the point is given in terms of a shrinkingsequen
e of rational re
tangles, then in �nite time one su
h rational re
tanglewill be 
ompletely inside the open set. On the other hand, if S is an open or
losed set, then its boundary has empty interior and it is not semi-de
idable thata point is on the boundary. For example if n = 1 and S is the set of positivenumbers, then a real number x 2 IR is on the boundary of S i� x = 0 whi
h is notde
idable in 
omputable analysis. It therefore makes sense from a 
omputationalviewpoint to rede�ne the membership predi
ate as the 
ontinuous fun
tion:20S : IRn ! ftt;�g?x 7! 8<: tt if x 2 SÆ� if x 2 S
Æ? otherwise.1 An open set is regular if it is the interior of its 
losure.



Here, ftt;�g? is the three element poset with least element ? and two in
om-parable elements tt and �. In the S
ott topology fttg and f�g are open sets butf?g is not open. We 
all this the 
ontinuous membership predi
ate. Then, twosubsets, or two solid obje
ts, are equivalent if and only if they have the same 
on-tinuous membership predi
ate, i.e. if they have the same interior and the sameexterior (interior of 
omplement). By analogy with general set theory for whi
ha set is 
ompletely de�ned by its membership predi
ate, we 
an de�ne a solidobje
t in IRn to be any 
ontinuous map of type IRn ! ftt;�g?. The de�nitionof the solid domain is then 
onsistent with requirement 1 sin
e a 
omputablemembership predi
ate has to be 
ontinuous.Note that a solid obje
t, given by a 
ontinuous map f : IRn ! ftt;�g?,is determined pre
isely by two disjoint open sets, namely f�1(tt) and f�1(�).Moreover, the interior (f�1(tt) [ f�1(�))
Æ of the 
omplement of the union ofthese two open sets 
an be non-empty. If we now 
onsider a se
ond 
ontinuousfun
tion g : IRn ! ftt;�g? with f v g, then we have f�1(tt) � g�1(tt) andf�1(�) � g�1(�). This means that a more de�ned solid obje
t has a larger inte-rior and a larger exterior. We 
an think of the pair f�1(tt); f�1(�) as the pointsof the interior and the exterior of a solid obje
t as determined at some �nitestage of 
omputation. At a later stage, we obtain a more re�ned approximationg whi
h gives more information about the solid obje
t, i.e. more points of itsinterior and more points of its exterior.De�nition 14.1. The solid domain (SIRn;v) of IRn is the set of ordered pairs(A;B) of disjoint open subsets of IRn endowed with the information order:(A1; B1) v (A2; B2) () A1 � A2 and B1 � B2.An element (A;B) of SIRn is 
alled a partial solid. The sets A and B areintended to 
apture, respe
tively, the interior and the exterior (interior of the
omplement) of a solid obje
t, possibly, at some �nite stage of 
omputation.Note that (SIRn;v) is a dire
ted 
omplete partial order with Fi2I(Ai; Bi) =(Si2I Ai;Si2I Bi) and is isomorphi
 with the fun
tion spa
e IRn ! ftt;�g?. Byduality of open and 
losed sets, (SIRn;v) is also isomorphi
 with the 
olle
tionof ordered pairs (A;B) of 
losed subsets of IRn with A [ B = IRn with theinformation ordering: (A1; B1) v (A2; B2) () A2 � A1 and B2 � B1.Proposition 14.2. The partial solid (A;B) 2 (SIRn;v) is a maximal elementi� A = B
Æ and B = A
Æ.Proof. Let (A;B) be maximal. Sin
e A and B are disjoint open sets, it followsthat A � B
Æ. Hen
e, (A;B) v (B
Æ; B) and thus A = B
Æ. Similarly, B = A
Æ.This proves the \only if" part. For the \if" part, suppose that A = B
Æ andB = A
Æ. Then, any proper open superset of A will have non-empty interse
tionwith B and any proper open superset of B will have non-empty interse
tion withA. It follows that (A;B) is maximal. utCorollary 14.3. If (A;B) is a maximal element, then A and B are regularopen sets. Conversely, for any regular open set A, the partial solid (A;A
Æ) ismaximal.



Proof. For the �rst part, note that A is the interior of the 
losed set B
 andis, therefore, regular; similarly B is regular. For the se
ond part, observe thatA
Æ
Æ = (A)Æ = A. utWe de�ne (A;B) 2 SIRn to be a 
lassi
al solid obje
t if A [ B = IRn.Proposition 14.4. Any maximal element is a 
lassi
al solid obje
t.Proof. Suppose (A;B) is maximal. Then IRn = A [ �A [ A
Æ = A [ B, sin
eA = A [ �A and A
Æ � A
Æ = B. utClassi
al solid obje
ts form a larger family than the maximal elements, i.e. regu-lar solids. For example, if A = fz 2 IR2 j jzj � 1g [ f(x; 0) 2 IR2 j jxj � 2g, thenA is represented in our model by the 
lassi
al (non-regular) obje
t (AÆ; A
).Theorem 14.5. The solid domain (SIRn;v) is a bounded 
omplete !-
ontinuousdomain and (A1; B1) � (A2; B2) i� A1 and B1 are 
ompa
t subsets of A2 andB2 respe
tively.Proof. To 
hara
terise the way-below relation, �rst assume that A1 and B1 are
ompa
t subsets of A2 and B2 respe
tively. If A2 � Si2I Ui and B2 � Si2I Vi,where the unions are assumed to be dire
ted, then we get A1 � A2 � Si2I Uiand B1 � B2 � Si2I Vi. By 
ompa
tness of A1 and B1 it follows that there existsi 2 I with B1 � Ui and B2 � Vi. Conversely, assume that (A1; B1) � (A2; B2).There exist dire
ted 
olle
tions of open sets (Ui)i2I and (Vi)i2I with union A2and B2 respe
tively su
h that Ui and Vi are 
ompa
t subsets of A2 and B2for ea
h i 2 I . By the de�nition of the way-below relation, there exists i 2 Iwith A1 � Ui and B1 � Vi from whi
h it follows that A1 and B1 are 
ompa
tsubsets of A2 and B2 respe
tively. Every open subset of IRn 
an be obtained asthe union of an in
reasing sequen
e of open rational polyhedra (i.e. polyhedrawhose verti
es have rational 
oordinates) way-below the open set. The 
olle
tionof all pairs of disjoint open rational polyhedra thus provides a 
ountable basisfor SIRn. utIn pra
ti
e, we are often interested in the subdomain SbIRn of bounded partialsolids whi
h is de�ned as SbIRn = f(A;B) 2 SIRn j B
 is boundedg [ f(;; ;)g,ordered by in
lusion. It is easy to see that SbIRn is a subd
po of SIRn. Moreover,it is left as an exer
ise to show that:Proposition 14.6. The d
po SbIRn is !-
ontinuous with the way-below relationgiven by (A1; B1)� (A2; B2) i� A1 � A2 and B
2 � B1
Æ.We say (A;B) 2 S[�a; a℄n is a proper element if (A;B) 6= (;; [�a; a℄n) and(A;B) 6= ([�a; a℄n; ;). Consider the 
olle
tion R([�a; a℄n) of non-empty regular
losed subsets of [�a; a℄n with the metri
 given by,d(A;B) = max(dH(A;B); dH (A
; B
);where dH is the Hausdor� metri
.



Theorem 14.7. The 
olle
tion of proper maximal elements of S[�a; a℄n is the
ontinuous image of the spa
e (R([�a; a℄n); d) of the non-empty regular 
losedsubsets of [�a; a℄n.Proof. It is 
onvenient to work with the representation of S[�a; a℄n by pairs(A;B) of 
losed subsets of [�a; a℄n, with A [ B = [�a; a℄n, ordered by reversein
lusion. Any pair of open sets (U; V ) of [�a; a℄n provides a basi
 S
ott open setO(U;V ) of S[�a; a℄n given by O(U;V ) = f(A;B) 2 S[�a; a℄n j A � U &B � V g.Now 
onsider the map � : R([�a; a℄n) ! S[�a; a℄n de�ned by � (A) = (A;A
).Clearly, � is a fun
tion onto the set of proper maximal elements of S[�a; a℄n.To show that it is 
ontinuous, suppose (A;A
) 2 O(U;V ), i.e. A � U and A
 �V . Let k = min(r(A;U 
); r(A
; V 
)) where r(Y; Z) is the minimum distan
ebetween 
ompa
t sets Y and Z. Then for D 2 R([�a; a℄n) with d(C;D) < k,the inequalities dH(C;D) < k and dH (C
; D
) < k imply D � U and D
 � V .This shows that � is 
ontinuous. utWe 
an de�ne a metri
 on the non-empty 
losed subsets of IRn by putting:d0H(A;B) = max(dH (A;B); 1). We leave it as an exer
ise for the reader to showthat the 
olle
tion of proper maximal elements of SIRn is the 
ontinuous imageof the spa
e (R(IRn); d0) of the non-empty regular 
losed subsets of IRn with themetri
 de�ned by d0(A;B) = max(d0H (A;B); d0H (A
; B
)): (48)15 Predi
ates and Operations on SolidsOur de�nition is also 
onsistent with requirement 2 in a 
losely related way.We 
onsider the idealisation of a ma
hine used to measure me
hani
al parts.Two parts 
orresponding to equivalent subsets 
annot be distinguished by su
ha ma
hine. Moreover, partial solids, and, more generally, domain-theoreti
allyde�ned data types allow us to 
apture partial, or un
ertain input data en
oun-tered in realisti
 CAD situations. In order to be able to 
ompute the 
ontinu-ous membership predi
ate, we extend it to the interval domain IIRn and de�ne� 2 � : IIRn � SIRn ! ftt;�g? with:C 2 (A;B) = 8<: tt if C � A� if C � B? otherwise(see Figure 2). Note that we use the in�x notation for predi
ates and Booleanoperations.We de�ne the predi
ate � � � : SbIRn � SIRn ! ftt;�g?, by(A;B) � (C;D) = 8<: tt if B [ C = IRn� if A \D 6= ;? otherwise



(A,B)

B

A

 ff

 ⊥⊥

 tt

 ⊥⊥

 ⊥⊥

Fig. 2. The membership predi
ate of a partial solid obje
t of the unit square.The restri
tion to SbIRn will ensure that � � � is 
ontinuous, as we will see inone of the exer
ises below. Starting with the 
ontinuous membership predi
ate,the natural de�nition for the 
omplement would be to swap the values tt and �.This means that the 
omplement of (A;B) is (B;A), 
f. requirement 3.As for requirement 4, Figure 3 represents a subset S of [0; 1℄2 that is not reg-ular. Its regularization removes both the external and internal \dangling edge".Here and in subsequent �gures, the two 
omponents A and B of the partial solidare, for 
larity, depi
ted separately below ea
h pi
ture.
(A,B)

A B

Fig. 3. Representation of a non-regular solid.Bearing in mind that for a partial solid obje
t (A;B), the open sets A andB respe
tively 
apture the interior and the exterior of the solid, we 
an dedu
e



the de�nition of Boolean operators on partial solids:(A1; B1) [ (A2; B2) = (A1 [ A2; B1 \ B2)(A1; B1) \ (A2; B2) = (A1 \ A2; B1 [ B2):One 
an likewise de�ne the m-ary union and the m-ary interse
tion of partialsolids. Note that, given two partial solids representing adja
ent boxes, theirunion would not represent the set-theoreti
 union of the boxes, as illustrated inFigure 4.
(A2,B2)

A2 B2

(A1,B1)

A1 B1

(A1,B1)∪(A2,B2)

A1∪A2
B1∩B2

Fig. 4. The union operation on the solid domain.Theorem 15.1. The following maps are 
ontinuous:(i) The predi
ate � 2 � : IIRn � SIRn ! ftt;�g?.(ii) The binary union �[� : SIRn�SIRn ! SIRn and more generally the m-aryunion S : (SIRn)m ! SIRn:(iii) The binary interse
tion �\� : SIRn�SIRn ! SIRn and more generally them-ary interse
tion T : (SIRn)m ! SIRn.Proof. (i) A fun
tion of two variables on domains is 
ontinuous i� it is 
ontinuousin ea
h variable separately when the other variable is �xed. From this, we obtainthe required 
ontinuity by observing that a non-empty 
ompa
t set is 
ontainedin the union of an in
reasing sequen
e of open sets i� it is 
ontained in one su
hopen set.(ii) This follows from the distributivity of [ over \.(iii) Follows from (ii) by duality. ut



15.1 The Minkowski OperatorWe now introdu
e the Minkowski sum operation for partial solids of IRn. Re
allthat the Minkowski sum of two subsets S1; S2 � IRn is de�ned asS1 � S2 = fx+ y j x 2 S1; y 2 S2gwhere x+ y is the ve
tor addition in IRn. For 
onvenien
e we will use the samenotation � for the Minkowski sum on the solid domain, whi
h is de�ned as afun
tion ��� : (SbIRn)� (SIRn)! SIRn by:(A1; B1)� (A2; B2) = ((A1 �A2); (B
1 �B
2)
):It 
an be shown that � � � : (SbIRd) � (SIRd) ! SIRd is well-de�ned and
ontinuous.16 Computability on the Solid DomainWe 
an provide an e�e
tive stru
ture for SIRn as follows. Consider the 
olle
tionof all pairs of disjoint open rational polyhedra of the form K = (L1; L2). Takean e�e
tive enumeration (Ki)i2! with Ki = (�1(Ki); �2(Ki)) of this 
olle
tion.We say (A;B) is a 
omputable partial solid if there exists a total re
ursivefun
tion � : IN! IN su
h that (A;B) = (Sn2! �1(K�(n));Sn2! �2(K�(n))).One 
an similarly de�ne an e�e
tive stru
ture on IIRn, by taking an e�e
tiveenumeration of rational intervals.It follows from the general domain-theoreti
 de�nition (see the Appendix)that a fun
tion F : (SIRn)2 ! SIRn is 
omputable if the relation f(i; j; k) j Kk �F (Ki;Kj)g is r.e.. The de�nition extends in the natural way to fun
tions of othertypes. A sequen
e ((An; Bn))n2! of partial solids is 
omputable if there existsa total re
ursive fun
tion � : IN � IN ! IN su
h that (An; Bn) = Fi2!K�(n;i),with (K�(n;i))i2! an in
reasing 
hain for ea
h n 2 !. For domains in general, it
an be shown that a fun
tion is 
omputable i� it sends 
omputable sequen
es to
omputable sequen
es.Proposition 16.1. The following fun
tions are 
omputable with respe
t to thee�e
tive stru
tures on IIRn, SIRn and S[�a; a℄n.(i) � 2 � : IIRn � SIRn ! ftt;�g?:(ii) � [ � : SIRn � SIRn ! SIRn.(iii) � \ � : SIRn � SIRn ! SIRn.(iv) � � � : S[�a; a℄n � S[�a; a℄n ! ftt;�g?.Proof. We show (ii) and leave the rest as exer
ise. We have to show that therelation Kk � Ki [Kj is r.e. Writing this relation in detail, it redu
es to(�1(Kk); �2(Kk))� (�1(Ki) [ �1(Kj); �2(Ki) \ �2(Kj));i.e. �1(Kk) � �1(Ki) [ �1(Kj) and �2(Kk) � �2(Ki) \ �2(Kj), whi
h are bothde
idable. ut



17 Lebesgue and Hausdor� ComputabilityOur domain-theoreti
 notion of 
omputability so far has the essential weaknessof la
king a quantitative measure for the rate of 
onvergen
e of basis elementsto a 
omputable element. This short
oming 
an be redressed by enri
hing thedomain-theoreti
 notion of 
omputability with an additional requirement whi
hallows a quantitative degree of approximation. We will see in this se
tion thatthis 
an be done in at least two di�erent ways. The reader should refer to theappendix for various notions of 
omputability in this se
tion.17.1 Lebesgue ComputabilityThe Lebesgue measure � in IRn, whi
h measures the volume of subsets of IRn,gives us a notion of approximation whi
h is stable under Boolean operations. Forsimpli
ity, we 
on�ne ourselves to the solid domain of a large 
ube in IRn. We saythat (A;B) 2 S[�a; a℄n is Lebesgue 
omputable if there exists a total re
ursivefun
tion � : IN! IN su
h that (A;B) = (Sn2! �1(K�(n));Sn2! �2(K�(n))) with�(A) � �(�1(K�(n))) < 2�n and �(B) � �(�2(K�(n))) < 2�n. The de�nitionextends naturally to 
omputable elements of (SX)m for any positive integer m.Proposition 17.1. If a is a 
omputable real number and (A;B) 2 S[�a; a℄n isa 
omputable maximal element with �(�A) = 0, then (A;B) is Lebesgue 
om-putable.The sequen
e ((An; Bn))n2! is said to be Lebesgue 
omputable if it is 
om-putable and if (�(An))n2! and (�(Bn))n2! are 
omputable sequen
es of realnumbers. As for 
omputable elements, the de�nition extends naturally to 
om-putable sequen
es of (SX)m for any positive integer m.A 
omputable fun
tion f : (SX)m ! SX is said to be Lebesgue 
omputableif it takes any Lebesgue 
omputable sequen
e of m-tuples of partial solids toa Lebesgue 
omputable sequen
e of partial solids. The main result here is thefollowing.Theorem 17.2. Boolean operations are Lebesgue 
omputable.17.2 Hausdor� ComputabilityAnother appropriate form for the quantitative degree of approximation of solidsis provided by the Hausdor� distan
e. We say (A;B) 2 S[�a; a℄n is Hausdor�
omputable if there exists a total re
ursive fun
tion � : IN ! IN su
h that(A;B) = (Sn2! �1(K�(n));Sn2! �2(K�(n))) with dH(�1(K�(n)); A) < 2�n anddH(�2(K�(n)); B) < 2�n.We 
an de�ne the notion of a Hausdor� 
omputable map similar to the waywe de�ned a Lebesgue 
omputable map. The Hausdor� distan
e provides a goodway of approximating solids; in fa
t, obje
ts with small Hausdor� distan
e withea
h other are visually 
lose. However, it 
an be shown by a non-trivial examplethat the binary Boolean operations do not preserve Hausdor� 
omputability.The main positive result is the following.



Theorem 17.3. A 
omputable maximal element of S[�a; a℄n is Hausdor� 
om-putable.18 The Convex HullWe have already seen that points of IRn 
an be modelled using the domain IIRnof the 
ompa
t re
tangles in IRn ordered by reverse in
lusion. Using the domain-theoreti
 model, one 
an 
onstru
t other basi
 notions in geometry, su
h as linesegments, lines and hyperplanes. We demonstrate this by des
ribing the simplestnon-trivial geometri
 obje
t, namely a line segment.We de�ne the partial line segment map f : (IIRn)2 ! SIRn with f(x1; x2),
alled the partial line segment through the partial points x1 and x2, given byf(x1; x2) = (;; E) where the exterior E is the empty set if x1 \ x2 6= ; and isotherwise the 
omplement of the 
onvex hull of the 2 � 2n verti
es of x1 andx2; see Figure 5. It is easy to 
he
k that f is S
ott 
ontinuous and 
omputable.Likewise, one 
an de�ne S
ott 
ontinuous maps for partial lines through twopartial points, and other basi
 geometri
 obje
ts.

Fig. 5. A partial line segmentWe will now des
ribe an algorithm to 
ompute the 
onvex hull of a �nitenumber of points in the plane in the 
ontext of the solid domain. Assume wehave m points in the plane. Ea
h of these points is approximated by a shrinkingnested sequen
e of rational re
tangles; at ea
h �nite stage of 
omputation wehave approximations to the m points by m rational re
tangles, 
onsidered asimpre
ise points, as in Figure 6.For these m rational re
tangles we obtain a partial solid obje
t with aninterior open rational polygon, whi
h is 
ontained in the interior of the 
onvexhull of the m points, and an exterior open rational polygon, whi
h is 
ontainedin the exterior of the 
onvex hull of the m points. The union of the interior(respe
tively, the exterior) open rational polygons obtained for all �nite stagesof 
omputation gives the interior (respe
tively, the exterior) of the 
onvex hullof the m points.



Fig. 6. The 
onvex hull problem for re
tangles.More formally, we de�ne a map Cm : (IIR2)m ! SIR2, where IIR2 is thedomain of the planar re
tangles, the 
olle
tion of all re
tangles of the planepartially ordered by reverse in
lusion. Let C(IR2) be the 
olle
tion of non-empty
ompa
t subsets of IR2 with the Hausdor� metri
 and let Hm : (IR2)m ! C(IR2)be the 
lassi
al fun
tion whi
h sends any m-tuple of planar points to its 
onvexhull regarded as a 
ompa
t subset of the plane.We �rst de�ne Cm on the basis (IQ2)m of (IIR2)m 
onsisting of m-tuplesof rational re
tangles. Let x = (R1; R2; � � � ; Rm) 2 (IQ2)m be an m-tuple ofrational re
tangles. Ea
h re
tangle Ri has four verti
es denoted, anti-
lo
kwisestarting with the bottom left 
orner, by R1i , R2i , R3i and R4i . We de�ne Cm(x) =(Im(x); Em(x)) withEm(x) = (H4m((R1i ; R2i ; R3i ; R4i ))mi=1)
; Im(x) = ( \1�j�4Hm(Rji )mi=1)Æ:In words, Em(x) is the 
omplement of the 
onvex hull of the 4m verti
es of allre
tangles (Figure 7), whereas Im(x) is the interior of the interse
tion of the4 
onvex hulls of the bottom left, bottom right, top right and top left verti
es(Figure 8). Sin
e the interse
tion of 
onvex sets is 
onvex, Im(x) as well as Em(x)are both 
onvex open rational polygons.With more a

urate input data about the planar points, the boundaries ofthe inner and outer 
onvex hulls get 
loser to ea
h other as in Figure 9. In thelimit, the inner and outer 
onvex hulls will be simply the interior and the exteriorof the 
onvex hull of the planar points (Figure 10).Sin
e we work 
ompletely with rational arithmeti
, we will not en
ounter anyround-o� errors and, as 
omparison of rational numbers is de
idable, we will notget in
onsisten
ies.Clearly the 
omplexity of these algorithms to 
ompute Im(x) and Em(x) isO(m logm) ea
h. We have therefore obtained a robust algorithm for the 
onvex



Fig. 7. The exterior 
onvex hull of re
tangles.

Fig. 8. The interior 
onvex hull of re
tangles.



Fig. 9. Convergen
e of the interior and exterior 
onvex hulls.

Fig. 10. Limit of interior and exterior 
onvex hulls.hull whi
h has the same 
omplexity as the non-robust 
lassi
al algorithm. More-over, the algorithm extends in the obvious way to IRd. In 3d, we still have the
omplexity O(m logm); see [15℄ for the 
omplexity in higher dimension.We now de�ne Ĉm : (IIR2)m ! SIR2 on tuples of re
tangles y 2 (IIR2)mby putting Ĉm(y) = FfC(x) j x 2 (IQ)m with x � yg. It 
an be 
he
ked thatĈm(x) = Cm(x) for x 2 (IQ2)m, and that, therefore, we 
an simply write Ĉm asCm whi
h will be a 
ontinuous fun
tion between domains.The map Cm 
omputes the 
onvex hull of m planar points as follows. Notethat a maximal element x = (Ri)mi=1 of (IIR2)m 
onsists of an m-tuple of de-generate re
tangles, i.e., an m-tuple of planar points (ri)mi=1, where Rji = ri,for j = 1; 2; 3; 4. It 
an be shown that, for su
h maximal x, we have Cm(x) =(Im(x); Em(x)) where Im(x) = (Hm((ri)mi=1))Æ and Em(x) = (Hm((ri)mi=1))
.Theorem 18.1. The map Cm is Lebesgue 
omputable and Hausdor� 
omputable.



We 
an also study the domain-theoreti
 version of the following 
lassi
alquestion: Given N points x1; : : : ; xN in IR2, does xk, for 1 � k � N , lie on theboundary of the 
onvex hull of these N points? With impre
ise input, i.e. for Ninput re
tangles, the answer is either \surely yes", or \surely not" or \
annotsay". More pre
isely, we de�ne the boundary re
tangle predi
ate Pk : (IIR2)N !ftt;�g?. For R = (R1; : : : ; RN) 2 (IIR2)N , let R(k) 2 (IIR2)N�1 be the orderedlist of the N � 1 dyadi
 interval verti
es: R(k) = (R1; : : : ; Rk�1; Rk+1; : : : ; RN ).We have: Pk(R) =8<: tt if Rk � E(R(k));� if Rk � I(R);? otherwise: (49)Theorem 18.2. The predi
ate Pk is S
ott 
ontinuous and 
omputable for ea
hk = 1; : : : ; N .Finally, we note that domain-theoreti
 algorithms for Voronoi diagram and De-launay triangulation have also been developed; see [38℄.19 Histori
al Remarks and Pointers to Literature19.1 Real Number ComputationIn the late 1980's, two frameworks for exa
t real number 
omputation were proposed.In the approa
h of Boehm and Cartwright [5, 6℄, a 
omputable real number is approx-imated by rational numbers of the form K=rn where r is the base and K is a (usu-ally big) integer. This approa
h was further developed and implemented by Val�erieM�enissier-Morain [40℄. For any basi
 fun
tion in analysis a feasible algorithm has beenpresented in order to produ
e an approximation to the value of the fun
tion at a given
omputable real number up to any threshold of a

ura
y. However, the 
omputationis not in
remental in the sense that to obtain a more a

urate approximation one hasto 
ompute from s
rat
h. Furthermore, the algorithms are 
onstru
ted using variousad-ho
 te
hniques and therefore, ex
ept for the simplest arithmeti
 operations, it israther diÆ
ult to verify their 
orre
tness. A
tually, this method is not so di�erentfrom the multi-digit approa
h presented here, ex
ept that our trans
endental opera-tions are based on LFT's, whi
h provide a general underlying framework that simpli�esthe �nding of the algorithms and makes the proofs of their 
orre
tness automati
.Vuillemin [57℄ proposed a representation of 
omputable real numbers by 
ontinuedfra
tions and presented various in
remental algorithms for basi
 arithmeti
 operationsusing the earlier work of Gosper [24℄, and for some trans
endental fun
tions. However,this representation is rather 
ompli
ated and the resulting algorithms are relativelyineÆ
ient.Plume [42℄ studied and implemented Exa
t Real Arithmeti
 based on the numberrepresentation of Se
tion 2 (exponent plus a stream of signed binary digits). His di-vision algorithm employs an auxiliary representation with dyadi
 rationals as digits.Trans
endental fun
tions are based on an auxiliary fun
tion 
omputing the real num-ber de�ned by a (
omputable) nested sequen
e of real intervals whose lengths tendto 0.In the early and mid 90's Di Gianantonio [12, 13℄ and Es
ard�o [20℄ studied exten-sions of the theoreti
al language PCF with a real number data type based on domain



theory. At Imperial College, a new approa
h was then developed whi
h is almost en-tirely based on LFT's and 
ombines domain theory and the digit approa
h with 
ontin-ued fra
tion algorithms [45, 16, 46, 43, 44℄. Within this approa
h, Peter Potts derivedalgorithms for trans
endental fun
tions from 
ontinued fra
tion expansions. He alsodeveloped the single-digit approa
h with the absorption and emission of digit matri
es,and made �rst steps towards a multi-digit approa
h. The approa
h was implemented infun
tional languages su
h as Miranda, Haskell and CAML, and in imperative languagessu
h as C. The LFT framework for real number 
omputation has also been studied inthe 
ontext of extensions of PCF with a real number data type by Edalat, Es
ard�o,Potts and S�underhauf [47, 17℄.In 
ontrast to the notes at hand, Potts and Edalat used the base interval [0;1℄,and a

ordingly, digit matri
es whi
h were di�erent from the ones presented here. Thisapproa
h in
ludes 1 with the same rights as any �nite real number. The number1 represents both +1 and �1. Its presen
e makes the re
ipro
al fun
tion total by10 =1 and 11 = 0. Yet on the other hand, addition and multipli
ation, whi
h are totalif 1 is ex
luded, be
ome partial with 1 sin
e 1+1 and 0 � 1 are not de�ned.In this approa
h, exponent matri
es 
annot be used. Instead, ea
h number rep-resentation begins with a sign matrix. There are four sign matri
es, for numbers inthe intervals [0;1℄, [�1; 1℄, [1; 0℄, and [1;�1℄ = fxjjxj � 1g. Edalat and Potts nametwo advantages of [0;1℄: First, the image M [0;1℄ of [0;1℄ under a non-singular LFTM = �ab 
d� 
an be easily obtained from the entries ofM :M [0;1℄ = [ 
d ; ab ℄ if detM > 0,and [ab ; 
d ℄ if detM < 0. In 
ontrast, the 
al
ulation ofM [�1; 1℄ requires some additions.Se
ond, a matrix or tensor is re�ning for [0;1℄ i� all its entries are non-negative and allits 
olumn sums are positive (if the matrix or tensor is weakly normalised so that thesum of its entries is non-negative). This 
ondition is mu
h simpler than the 
onditionswe have derived for re�nement w.r.t. [�1; 1℄ in Se
tion 5. The emission 
onditions forthe two base intervals are similar, but the a
tual emissions and absorptions are simplerin [�1; 1℄. A huge pra
ti
al advantage of [�1; 1℄ are the persistent zeros whi
h 
an befound in basi
ally all the tensors for the standard operations. With [0;1℄, there areno persistent zeros at all, and no entries whi
h are invariant under absorption andemission.On the theoreti
al side as well, the base interval [�1; 1℄ has 
lear advantages. Itavoids the troublesome value1 that poses diÆ
ulties in algebrai
 transformations andsize estimations. Furthermore, one may work with the standard metri
 (`([u; v℄) = v�u)and standard derivatives in [�1; 1℄, while working with [0;1℄ ex
ludes the standardmetri
. In fa
t, [16, 43, 28℄ use a metri
 on [0;1℄ that is derived from the standardmetri
 on [�1; 1℄. Here, working in [�1; 1℄ dire
tly drasti
ally simpli�es the reasoning.Results on the growth of the entries of matri
es and tensors were presented in [26,27℄|for the base interval [0;1℄. With this base interval, matri
es �ab 
d� 
annot be
lassi�ed a

ording to b = 0 and b 6= 0 as in Se
tion 8; the 
ru
ial value is instead(
+d)� (a+ b). Given this, it is not surprising that a 
omplete 
lassi�
ation of tensorsw.r.t. the opportunities for 
an
ellations was never found under the reign of [0;1℄. The
lassi�
ation presented in Se
tion 8.5 of these notes was re
ently found by ReinholdHe
kmann and never published before.The 
ontra
tivity was already studied by Potts, and 
onsidered in greater detail byHe
kmann in [28℄ (for [0;1℄). In [30℄, He
kmann swit
hed over to [�1; 1℄ and studied
ontra
tivity there.Peter Potts was a master in the derivation of in�nite produ
ts from 
ontinuedfra
tions (for [0;1℄). The few derivations presented here are new be
ause of the new



base interval. They start from the same 
ontinued fra
tions, but are generally shorter.The derivation of produ
ts from Taylor series is taken from [29℄.19.2 Computational GeometryThe quest for reliable geometri
 algorithms in re
ent years has been a most 
hallengingproblem. In the words of C. M. Ho�mann, a leading expert in 
omputational geometry:\Despite the pressing need, devising a

urate and robust geometri
 algorithms hasproved elusive for many important s
ien
e and engineering appli
ations"[31℄.In the existing frameworks and implementations of geometri
 algorithms, greate�orts are required to use various, often ad ho
, te
hniques in order to avoid poten-tial in
onsisten
ies and degenera
ies. These methods in
lude: (i) the so-
alled exa
tarithmeti
 approa
h [41, 37, 51, 23, 52, 3, 61, 9, 8, 22, 11℄, 
ombined with lazy implemen-tation [4, 53℄ and symboli
 perturbation [19, 51, 60℄ in whi
h numeri
al 
omputationsare performed to a high degree of a

ura
y in order to ensure the 
orre
t logi
al andtopologi
al de
isions; (ii) the logi
al and topologi
al oriented te
hnique [52, 55, 56℄,whi
h seeks to pla
e the highest priority on the 
onsisten
y of the logi
al and topologi
alproperties of geometri
 algorithms, using numeri
al results only when they are 
onsis-tent with these properties; and, (iii) the intermediate methods, su
h as �-geometry [25℄,the interval arithmeti
 te
hnique [49, 32{34℄ and the toleran
e approa
h [50, 21, 36℄,whi
h determine an upper bound for the numeri
al error whenever a 
omputationtakes pla
e in order to de
ide if a 
omputation is reliable or not. While there are prosand 
ons for ea
h of these methods in any given 
ategory of algorithms [54℄; no singlemethod gives an overall satisfa
tory solution for geometri
 modelling as a whole.The traditional frameworks for geometri
 modelling are not founded on 
omputableanalysis: there is no referen
e to a notion of data type or 
omputability in the standardliterature of 
omputational geometry or geometri
 modelling. Indeed, these frameworksare all based on 
lassi
al topology and geometry in whi
h the basi
 predi
ates andBoolean operations are not 
ontinuous, and hen
e not 
omputable, the sour
e of non-robustness of the resulting algorithms.Brattka and Weihrau
h [7℄ have studied the question of 
omputability of 
lassi
alsubsets of the Eu
lidean spa
e in the type two theory of 
omputability [59℄ but it is notat all 
lear how their framework 
an be used in any pra
ti
al geometri
 
omputation.The domain-theoreti
 framework for solid modelling and 
omputational geometrywas �rst formulated in [14℄ and algorithms for the 
onvex hull and for Voronoi di-agram/Delaunay triangulation in the domain-theoreti
 setting were presented in [15℄and [38℄ respe
tively. Continuous geometri
 operations have also been dis
ussed in [35℄.20 Exer
ises20.1 Real Arithmeti
Exer
ise 20.1. Implement addition x+y dire
tly on the number representationsby exponents and signed binary digit streams (
f. Se
tion 2.4). Deal �rst withexponents and use the mean value operation x� y = x+y2 on mantissas.Exer
ise 20.2. Prove Prop. 3.1 (using Equation (1)).Exer
ise 20.3. Let M0 = � 01 13�.



a) What is the fun
tion represented by M0?b) Compute detM0 (Equation (2)) and dedu
e the monotoni
ity type of M0(Se
tion 4).
) Che
k that M0 is bounded (Prop. 5.2) and re�ning (Se
tion 5.3) on I0.d) Assuming that the digit stream � starts with 101, determine the �rst fourdigits of M0(�) as in Se
tion 6.5.e) Compute expM0 and 
onM0 (23) and derive the numbers 
< and 
> ofTheorem 7.1.f) Redo part (d) in the multi-digit approa
h, i.e., answer the request 4?M0(�).Run Algorithm 3, but 
onsider the monotoni
ity type of M0. Use the fa
tthat � begins with 101 to �nd the answer of the required request to �.g) Compare the results of parts (d) and (f), but remember that there are oftentwo possible answers to a request, di�ering by 1.Exer
ise 20.4. Let T = � 00 10 01 13�.a) What is the fun
tion represented by T ?b) Compute det(T jx) and det(T jy) (Equations (6)) and dedu
e the monotoni
-ity type of T for arguments x; y 2 I0 (Se
tion 4).
) Che
k that T is bounded (14) and re�ning on I0. For the latter, you mayuse (15) or Cor. 4.2, taking the monotoni
ity type into a

ount.d) Determine 
onL T and 
onR T and derive the numbers 
>L and 
>R of Theo-rem 7.2.Exer
ise 20.5. Let T = � 00 10 11 01�. Given x � 0, solve the equation y = T (x; y)for y � 0. (Thus you see how an important fun
tion 
an be implemented. Theequation y = T (x; y) 
an be 
onsidered as an in�nite produ
t y = T (x; T (x; : : :)),or more eÆ
iently, as a feed-ba
k loop where everything emitted from T is fedba
k into T via its right argument.)Exer
ise 20.6. (Taylor series)Use the method presented in Se
tion 11.4 to derive an in�nite produ
t for the
osine fun
tion from the Taylor series 
osx =P1n=0 (�1)n(2n)! (x2)n. (By writing thisin terms of x2 instead of x, zero 
oeÆ
ients are avoided.) Determine for whi
hx this produ
t is valid, and 
al
ulate the 
ontra
tivities of its matri
es.20.2 Computational Geometry and Solid ModellingExer
ise 20.7. Show that the map � � � : SbIRn� SIRn ! ftt;�g? is 
ontinu-ous.Exer
ise 20.8. Prove Proposition 14.6.Hint: Use the following fa
t for Eu
lidean spa
es. For an open set O and ade
reasing sequen
e of 
ompa
t subsets hCiii! , the relation Ti2! Ci � O impliesthe existen
e of i 2 ! with Ci � O.



Exer
ise 20.9. Show that the 
olle
tion of proper maximal elements of SIRn isthe 
ontinuous image of the spa
e (R(IRn); d0) of the non-empty regular 
losedsubsets of IRn with the metri
 de�ned by Equation 48.Hint: Follow the steps of proof in Theorem 14.7 and note that in the represen-tation of SIRn by 
losed sets ordered by reverse in
lusion we have: (A1; B1) �(A2; B2) i� A2 and B2 are 
ompa
t subsets of AÆ1 and BÆ1 respe
tively.Exer
ise 20.10. Draw the inner and outer 
onvex hulls of the following threere
tangles. R1 = f(�2; 0); (�1; 0); (�1;�1); (�2;�1)gR2 = f(�1; 3); (0; 3); (0; 2); (�1; 2)gR3 = f(1; 1); (2; 1); (2; 0); (1; 0)g:Exer
ise 20.11. In the domain-theoreti
 
onvex hull algorithm, 
ompute theboundary re
tangle predi
ate Pk for 1 � k � 11.R1 = f(�7=2;�3); (�7=2;�2); (�5=2;�2); (�5=2;�3)gR2 = f(�7=2;�1); (�7=2;�1=2); (�3;�1=2); (�3;�1)gR3 = f(�4; 4=3); (�4; 5=3); (�3; 5=3); (�3; 4=3)gR4 = f(�2;�4); (�2;�7=2); (�3=2;�7=2); (�3=2;�4)gR5 = f(�2; 3); (�2; 7=2); (�3=2; 7=2); (�3=2; 3)gR6 = f(0;�4); (0;�7=2); (1=2;�7=2); (1=2;�4)gR7 = f(0; 0); (0; 1); (1; 1); (1; 0)gR8 = f(0; 4); (0; 5); (1; 5); (1; 4)gR9 = f(4;�3); (4;�2); (5;�2); (5;�3)gR10 = f(5;�1); (5;�1=2); (27=5;�1=2); (27=5;�1)gR11 = f(5; 2); (5; 3); (6; 3); (6; 2)g:Hint: Note that a re
tangle is a boundary re
tangle if it lies 
ompletely insidethe exterior 
onvex hull of the other re
tangles.Appendix: Basi
 Domain TheoryWe give here the formal de�nitions of a number of notions in domain theoryused in these notes; see [1, 2, 18℄ for more detail. We think of a partially orderedset (poset) (P;v) as the set of output of some 
omputation su
h that the partialorder is an order of information: in other words, a v b indi
ates that a hasless information than b. For example, the set f0; 1g1 of all �nite and in�nitesequen
es of bits 0 and 1 with a v b if the sequen
e a is an initial segmentof the sequen
e b is a poset and a v b simply means that b has more bits ofinformation than a. A non-empty subset A � P is dire
ted if for any pair ofelements a; b 2 A there exists 
 2 A su
h that a v 
 and b v 
. A dire
ted



set is therefore a 
onsistent set of output elements of a 
omputation: for everypair of output a and b, there is some output 
 with more information than aand b. A dire
ted 
omplete partial order (d
po) or a domain is a partial order inwhi
h every dire
ted subset has a least upper bound (lub). We say that a d
pois pointed if it has a least element whi
h is denoted by ? and is 
alled bottom.For two elements a and b of a d
po we say a is way-below or approximates b,denoted by a� b, if for every dire
ted subset A with b v FA there exists 
 2 Awith a v 
. The idea is that a is a �nitary approximation to b: whenever the lubof a 
onsistent set of output elements has more information than b, then alreadyone of the input elements in the 
onsistent set has more information than a. Inf0; 1g1, we have a� b i� a v b and a is a �nite sequen
e. The 
losed subsets ofthe S
ott topology of a domain are those subsets C whi
h are downward 
losed(i.e. x 2 C & y v x ) y 2 C) and 
losed under taking lub's of dire
ted subsets(i.e. for every dire
ted subset A � C we have FA 2 C).A basis of a domain D is a subset B � D su
h that for every element x 2 Dof the domain the set Bx = fy 2 B j y � xg of elements in the basis way-below x is dire
ted with x = FBx. An (!)-
ontinuous domain is a d
po witha (
ountable) basis. In other words, every element of a 
ontinuous domain 
anbe expressed as the lub of the dire
ted set of basis elements whi
h approximateit. In a 
ontinuous d
po D, subsets of the form ""a = fx 2 D j a � xg, fora 2 D, form a basis for the S
ott topology. A domain is bounded 
omplete ifevery bounded subset has a lub; in su
h a domain every non-empty subset hasan in�mum or greatest lower bound.It 
an be shown that a fun
tion f : D ! E between d
po's is 
ontinuouswith respe
t to the S
ott topology if and only if it is monotone (i.e. a v b )f(a) v f(b)) and preserves lub's of dire
ted sets i.e. for any dire
ted A � D, wehave f(Fa2A a) = Fa2A f(a). Moreover, if D is an !-
ontinuous d
po, then fis 
ontinuous i� it is monotone and preserves lub's of in
reasing sequen
es (i.e.f(Fi2! xi) = Fi2! f(xi), for any in
reasing (xi)i2!).The 
olle
tion, D ! E, of 
ontinuous fun
tions f : D ! E between d
po's Dand E 
an be ordered pointwise: f v g i� 8x 2 D: f(x) v g(x). With this partialorder, D ! E be
omes a d
po with Fi2I fi given by (Fi2I fi)(x) = Fi2I fi(x).Moreover, if D and E are bounded 
omplete !-
ontinuous d
po's, so is D ! E.The interval domain I[0; 1℄n of the unit box [0; 1℄n � IRn is the set of allnon-empty n-dimensional sub-re
tangles in [0; 1℄n ordered by reverse in
lusion.A basi
 S
ott open set is given, for every open subset O of IRn, by the 
olle
tionof all re
tangles 
ontained in O. The map x 7! fxg : [0; 1℄n ! I[0; 1℄n is anembedding onto the set of maximal elements of I[0; 1℄n. Every maximal elementfxg 
an be obtained as the least upper bound (lub) of an in
reasing 
hain ofelements, i.e. a shrinking, nested sequen
e of sub-re
tangles, ea
h 
ontaining fxgin its interior and thereby giving an approximation to fxg or equivalently to x.The set of sub-re
tangles with rational 
oordinates provides a 
ountable basis.One 
an similarly de�ne, for example, the interval domain IIRn of IRn.An important feature of domains, in the 
ontext of these notes, is that they
an be used to obtain 
omputable approximations to operations whi
h are 
las-



si
ally non-
omputable. For example, 
omparison of a real number with 0 is not
omputable. However, the fun
tion N : I[�1; 1℄! ftt;�g? withN([a; b℄) = 8<: tt if b < 0� if 0 < a? otherwiseis the 
omputable approximation to the 
omparison predi
ate. Here, ftt;�g? isthe lift of ftt;�g, i.e. the three element pointed domain with two in
omparablemaximal elements tt and �.An !-
ontinuous domain D with a least element ? is e�e
tively given wrtan e�e
tive enumeration b : IN ! B of a 
ountable basis B if the set fhm;ni jbm � bng is re
ursive, where h:; :i : IN� IN! IN is the standard pairing fun
tioni.e. the isomorphism (x; y) 7! (x+y)(x+y+1)2 + x. This means that for ea
h pairof basis elements (bm; bn), it is possible to de
ide in �nite time whether or notbm � bn. We say x 2 D is 
omputable if the set fnjbn � xg is r.e. This isequivalent to say that there is a master program whi
h outputs exa
tly this set.It is also equivalent to the existen
e of a re
ursive fun
tion g su
h that (bg(n))n2!is an in
reasing 
hain in D with x = Fn2! bg(n). If D is also e�e
tively givenwrt to another basis B0 = fb00; b01; b02; � � �g su
h that the sets fhm;ni j bm � b0ngand fhm;ni j b0m � bng are both de
idable, then x will be 
omputable wrt B i�it is 
omputable wrt B0. We say that B and B0 are re
ursively equivalent.We 
an de�ne an e�e
tive enumeration � of the set D
 of all 
omputableelements of D. Let �n, n 2 !, be the nth partial re
ursive fun
tion. It 
an beshown [18℄ that there exists a total re
ursive fun
tion � su
h that � : IN ! D
with �n := Fi2! b��(n)(i), with (b��(n)(i))i2! an in
reasing 
hain for ea
h n 2 !, isan e�e
tive enumeration of D
. A sequen
e (xi)i2! is 
omputable if there existsa total re
ursive fun
tion h su
h that xi = �h(i) for all i 2 !.We say that a 
ontinuous map f : D ! E of e�e
tively given !-
ontinuousdomains D (with basis fa0; a1 � � �g) and E (with basis fb0; b1 � � �g) is 
omputableif the set fhm;ni j bm � f(an)g is r.e. This is equivalent to say that f maps
omputable sequen
es to 
omputable sequen
es. Computable fun
tions are stableunder 
hange to a re
ursively equivalent basis. Every 
omputable fun
tion 
anbe shown to be a 
ontinuous fun
tion [58, Theorem 3.6.16℄. It 
an be shown [18℄that these notions of 
omputability for the domain IIR of intervals of IR indu
ethe same 
lass of 
omputable real numbers and 
omputable real fun
tions as inthe 
lassi
al theory [48℄.We also need the following 
lassi
al de�nitions for sequen
es of real numbers.A sequen
e (ri)i2! of rational numbers is 
omputable if there exist three totalre
ursive fun
tions a, b, and s su
h that b(i) 6= 0 for all i 2 ! andri = (�1)s(i) a(i)b(i) :A 
omputable double sequen
e of rational numbers is de�ned in a similar way.A sequen
e (xi)i2! of real numbers is 
omputable if there exists a 
omputable



double sequen
e (rij)i;j2! of rational numbers su
h thatjrij � xij � 2�j for all i and jA 
omputable double sequen
e of real numbers is de�ned analogously. If (xnk)n;k2!is a 
omputable double sequen
e of real numbers whi
h 
onverges to a se-quen
e (xn)n2! e�e
tively in k and n (i.e. there exists a total re
ursive fun
tione : IN � IN ! IN su
h that jxnk � xnj � 2�N for all k � e(n;N)), then thesequen
e (xn)n2! is 
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