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Abstract. We introduce, in Part I, a number representation suitable for
exact real number computation, consisting of an exponent and a man-
tissa, which is an infinite stream of signed digits, based on the interval
[—1,1]. Numerical operations are implemented in terms of linear frac-
tional transformations (LFT’s). We derive lower and upper bounds for
the number of argument digits that are needed to obtain a desired num-
ber of result digits of a computation, which imply that the complexity
of LFT application is that of multiplying n-bit integers. In Part II, we
present an accessible account of a domain-theoretic approach to com-
putational geometry and solid modelling which provides a data-type for
designing robust geometric algorithms, illustrated here by the convex
hull algorithm.

Part I: The LFT Aproach to Real Number Computation

1 Introduction

Computing with real numbers is one of the main applications of “computers”.
Yet real numbers are infinite mathematical objects (digit sequences, Cauchy
sequences, nested sequences of intervals, or the like). Within finite time, one
may only hope to obtain a finite part of a real number, giving an approximation
to some accuracy.

This also means that comparison on real numbers is undecidable. Consider
the predicate > 0 applied to the number z represented as the nested sequence of
intervals ([—+, 1]),,>0. Within finite time, only a finite number of these intervals
can be inspected, which always contain positive as well as negative numbers so
that no decision on the sign of x is possible.



The problems mentioned above can be avoided by restricting attention to
some subset of real numbers which can be finitely described. An obvious choice
are the rational numbers, but this means that operations such as square root
or tangent are not possible. A larger such set consists of the algebraic numbers,
i.e., the roots of integer polynomials. With algebraic numbers, square roots and
higher roots are possible, but trigonometric functions such as sine, cosine or
tangent are still not supported.

Usually, a different approach is chosen. A finite set of machine-representable
floating-point numbers is singled out, and fast operations are provided which
approximate the standard operations and functions: if, say, the square root of
a floating-point number is computed, then the resulting floating-point number
is usually not the exact mathematical answer, but a number very close to it.
The errors introduced by these approximations are known as round-off errors,
and the easiest approach is to simply ignore them because they are so small.
Yet in certain situations, round-off errors may accumulate to yield a big error.
An example where this happens is the following number sequence defined by
Jean-Michel Muller (found in [40]):

11 61 1130 — 3202
00:?’ alzﬁ, an—H:lll_T.
With the Unix program bc, one can compute with an arbitrary, but fixed number
of decimal places. Let a;’“) be the sequence element a,, computed with an accu-
racy of k decimal places. Computing with 5 decimal places yields the following
results (rounded to 3 places for presentation):

a$”|5.500 a{”| 5.648 a{”|103.738
a{” |5.545 al”| 5.242 a$™|100.209
al”|5.590 al”|-3.241 a{?)(100.012
a{”|5.632 al”| 283.1 a{?]100.001

From this, one gets the impression that the sequence converges to 100. To
confirm this impression, we compute the number a19¢p with an increasing number
of decimal places:

aloy |100.0'1 a{bi?1100.0792 ...
al5y [100.0%1 a{t2”|-3.790 ...

a8 1100.0°7997 a{t30(5.978697 . ..
alty”[100.01708 ... a5 9787925 .

Here, the “exponents” indicate the number of repetitions; for instance, 100.0%1
means 100.00001. As expected, the computations with 5, 30, and 60 decimal
places show that ajgg is close to the presumable limit 100. They are consistent
in their result value, and it is tempting to think “I know that round-off errors



may lead to wrong results, but if I increase the precision from 30 to 60 and the
result obtained with 30 digits is confirmed, then it must be accurate.” Yet the
computations with 100 and 110 decimal places indicate that aiqg is less close to
100 than expected, and worse, the computations with 120, 130, and 140 decimal
places show that all the decimals obtained from the less precise computations
were wrong. Or do the more precise computations yield wrong answers? What
is the correct answer after all? Using the approach to exact real arithmetic pre-
sented in the sequel, one can verify that the number a%ﬁo) computed with 140
decimal places is an accurate approximation of the real value of ai9p (and with
a bit of mathematical reasoning, one can show that the sequence converges to
6, not to 100). Thus, on the positive side, we see that there is a precision (140)
which yields the right answer for a1g9, but in programs such as bc, one has to fix
this precision in advance, and without a detailed analysis of the problem, it is
unclear which precision will be sufficient (all precisions up to 110 give completely
wrong, but consistent answers near 100).

In the approach to Exact Real Arithmetic presented here, one need not spec-
ify a fixed precision in advance. Instead, a real number is set up by some oper-
ations and functions, and then one may ask the system to evaluate this number
up to a certain precision. The result will be an interval which approximates the
real number with the required precision, and it is actually guaranteed that the
number really is contained in this interval: with this arithmetic, it is impossible
to get wrong answers (well, sometimes it may take very long to get an answer,
but once the answer is there, it is trustworthy).

1.1 Overview

In Section 2, we introduce a number representation suitable for our purposes,
consisting of an exponent and a mantissa, which is an infinite stream of signed
digits. A few simple operations like —z and |z| are implemented directly on this
representation. All other operations are implemented in terms of linear fractional
transformations (LFT’s). Individual LFT’s act on number representations and
digit streams in a uniform way which is fixed once and for all. Thus they provide
a high-level framework for implementing functions without the need to think
about their action on the low-level digit streams.

LFT’s and basic LFT operations are introduced in Section 3. Section 4 studies
monotonicity properties of general functions, in particular LFT’s. Such proper-
ties are useful in the design and analysis of algorithms. In Section 5, we char-
acterize those LFT’s which map the base interval [—1,1] into itself (refining
LFT’s). The action of refining LFT’s on digit streams is defined in Section 6:
the absorption of argument digits into an LFT, and the emission of result digits
from an LFT. Absorption and emission are the main ingredients of an algorithm
that computes the result of applying an LFT to a real number (Section 6.3).
Section 6.5 contains some example runs of this algorithm.

In Section 7, we derive lower and upper bounds for the number of argu-
ment digits that are needed to obtain a desired number of result digits of an
LFT application. This information is complemented by information about the



complexity of individual absorptions and emissions (Section 8). Taken together,
these results imply that LFT application is quadratic in the number n of emit-
ted digits—provided that digits are absorbed and emitted one by one. If many
digits are absorbed and emitted at once, the complexity can be reduced to that
of multiplying n-bit integers (Section 9).

All basic arithmetic operations are special instances of LFT application. In
Section 10, the results about general LET application are specialized to addition,
multiplication, and reciprocal 1/z. Transcendental functions can be implemented
as infinite LFT expansions. Section 11 defines the semantics of such expansions,
and shows how they can be derived from Taylor expansions (Section 11.4) or
continued fraction expansions (Section 11.5). In Section 12, this knowledge is
used to implement exponential function and natural logarithm; other functions
are handled in the exercises.

Sections 13—18 present a domain-theoretic framework for computational ge-
ometry. Section 19 contains historical remarks to both parts, and Section 20
contains exercises.

2 Digit Streams

In the approach to real number computation presented here, (computable) real
numbers are represented as potentially infinite streams of digits. At any time, a
finite prefix of this stream has already been evaluated, e.g., 7 = 3.14159 - - -, and
there is a method to compute larger finite prefixes on demand.

A finite prefix of the digit stream denotes an interval, namely the set of all real
numbers whose digit streams start with this prefix. For instance, the prefix 3.14
denotes the interval [3.14, 3.15] since all numbers starting with 3.14 are between
3.14000 - - - and 3.14999 - - - = 3.15. The longer the prefix, the smaller the interval,
e.g., 3.141 denotes [3.141, 3.142]. In this way, the digit stream denotes by means
of its prefixes a nested sequence of intervals whose intersection contains exactly
one number, namely the real number given by the digit stream.

The closed intervals of IR form a domain when ordered under opposite inclu-
sion. A nested sequence of intervals is an increasing chain in this domain, with
its intersection as the least upper bound. The real numbers themselves are in
one-to-one correspondence to the maximal elements of this domain, namely the
degenerate intervals [z,z]. The Scott topology of the interval domain induces
the usual topology on IR via this embedding.

2.1 The Failure of Standard Number Systems

The examples above are based on the familiar decimal system, which is actually
unsuitable for exact arithmetic (Brouwer [10]). We shall demonstrate this by
means of an example, and note that similar examples exist for bases different
from 10, i.e., this is a principal problem affecting all standard positional number
systems.



Consider the task of computing the product y = 3 -z where z is given by the
decimal representation £ = 0.333 - - -. Mathematically, the result is given by the
decimal representation n = 0.999 - - -, but is it possible to compute this result?
Recall that at any time, only a finite prefix of £ is known, and this finite prefix
is the only source of information available to produce a finite prefix of the result
n.

Assume we know the prefix 0.333 of &. Is this sufficient to determine the
first digit of n?7 Unfortunately not, because the prefix 0.333 denotes the interval
[0.333,0.334], which gives [0.999,1.002] when multiplied by 3. So we know that
n should start with 0. or 1., but we do not yet know which is the right one,
since neither the interval [0, 1] denoted by 0. nor the interval [1,2] denoted by
1. covers the output interval [0.999,1.002]. Worse, it is easy to see that this
happens with all prefixes of the form 0.33 - - - 3. Hence if £ is the stream 0.333 - - -
with ‘3’ forever, we can never output the first digit of n since no finite amount
of information from ¢ is sufficient to decide whether n should start with 0. or 1..

A solution to this problem is to admit negative digits (=1, ..., —9 in base
10). If we now find that £ begins with 0.333, we may safely output ‘1.” (even
1.00) as a prefix of 5 since we can compensate by negative digits if it turns
out later that the number represented by & is less than 1/3, and so the result
is actually smaller than 1. More formally, the interval denoted by the prefix
0.333 is now [0.332,0.334], since the smallest possible extension of 0.333 is no
longer 0.33300 - - -, but 0.333(—9)(—9) - - -. This interval yields [0.996, 1.002] when
multiplied by 3, which is contained in the interval [0.99, 1.01] represented by the
prefix 1.00, i.e., we can safely output 1.00 as the beginning of the output stream.

2.2 Signed Positional Systems

Signed positional systems are variants of standard positional systems which ad-
mit negative as well as positive digits. Like the standard systems, they are char-
acterised by a base r, which is an integer > 2. Once the base is fixed, the set
of possible digits is taken as D, = {d € ZZ | |d| < r}. For r = 10, we obtain
Dyy = {-9,-8,...,0,1,...,9} (signed decimal system), but the signed binary
system with r = 2 and Dy = {—1,0,1} is practically more important. Most
of these lecture notes deal with the case of base 2, which will therefore be the
default case when the index r is omitted.

To avoid a special notation for the “decimal” (or “binary”) point, let’s assume
it is always at the beginning of the digit stream. Then an (infinite) digit stream
& =(dy,ds,ds, - --) with d; € D, represents the real number [¢], = Zfil d;r—t as
usual. A finite digit sequence 4 represents the set [d], of all numbers [§£], which
are represented by extensions of ¢ to an infinite stream. For 6 = (d;,ds, - -+, d,),
this set can be determined as the interval [8], =[S, dir~—r™", Y0 dir i+
r~"] of length 2r~™. Note that the empty prefix () (n = 0) denotes the interval
[—1, 1], which is the set of all real numbers representable by now. For the other
ones, see Section 2.3 below.

In the sequel, we shall usually omit the parentheses and commas in digit
sequences to obtain a more compact notation. Instead, we shall write concrete



examples of digits and digit sequences in a special style, e.g., 4711 for (4,7,1,1),
to distinguish these sequences as syntactic objects from the numbers they denote.
For further notational convenience, the minus sign becomes a bar within digit
sequences, e.g., we write 1101 for the sequence (1,—1,0,1). The digit sequence
which results from attaching a single digit d to a sequence £ will be written as
d: & (like “cons” in the lazy functional languages Haskell and Miranda). Unlike
these languages, we shall abbreviate d; : ds : € by dids : €.

What is then the proper semantic meaning of this “cons” operation? For
infinite streams, we may calculate

[digl, =d-r 4+ &ar ' = %<d+25iri> = %(d+[§]r)-
=2 =1

Hence, we have [d : &], = A}([¢],) where A]; denotes the affine function with
Af(z) = 22 A similar calculation can be done for finite digit sequences de-
noting intervals; the result is again [d : &], = AJ([¢]-), but this time, both
sides are intervals, and for an interval I, A}(I) is the image of I under A},
which may as well be obtained as A ([u,v]) = [A}(u), A}(v)]. For finite digit se-
quences, these considerations lead to an alternative characterisation of [dy - - - d ]
as A (- A7 ((=1,1])--).

In contrast to the “cons” operation, the “tail” operation (omitting the first
digit) has no semantic meaning. In base 2, 010... and 110... both represent
the number %, but their tails 10... and 10... represent two different numbers

(3 and —1).

Let’s now consider the practically important case r = 2, D = {—1,0, 1} more
closely. Here, we have (suppressing the index 2) A;(z) = (z — 1), 4o(z) = 3z,
and A; (z) = 5(z+1). All possible digit sequences up to length 2 and the intervals

denoted by them are given by the following table:

1] = [4,1]
1] = [0,1] 10] = [3,2]
01] = [1i] = [0,}]
] =[-11] 0] = [-4,4] 00] =[]
) 01] = [i1] = [-4,0
[i] = [-1,0] i0] = [-3,-14]
11 = [-1,-4]

We see that the intervals overlap considerably, and some intervals are outright
equal, e.g., [11] and [01]. The latter observation can be strengthened to the
fact that for all finite or infinite digit sequences J, the sequences 11 : § and
01 : ¢ are equivalent in the sense that they denote the same interval (finite
case) or the same real number (infinite case). The semantic reason for this is
Ay oA = A4go Ay = (z — 1(z +1)). Similarly, 11 : § and 01 : § are always
equivalent.

Therefore, most real numbers have several (often infinitely many) different
digit stream representations. This redundancy, or more precisely the overlapping



which causes it is important for computability: if an output range crosses the
border point 0 of [1] and [1] and is sufficiently small, then it will be contained
in [0], i.e., the digit 0 may be output. This observation may be strengthened as
follows:

— If an interval J C [—1,1] has length ¢(J) < i, then it is contained in (at
least) one of the three digit intervals [1], [0], [1].

An interval J with 2 < ¢(J) < 1 may or may not fit into one of the three digit
intervals; consider [—e¢, 2 + €] which does not fit for e > 0, and [0,] which fits
into [1] = [0,1] for I < 1. Finally, an interval J with £(J) > 1 cannot fit into any
of the three digit intervals.

These observations can be generalised to digit sequences of length greater
than 1 and arbitrary bases r as follows:

Proposition 2.1. Let J C [—1,1] be an interval.

1. If 6(J) < r~™, then J C [d], for some digit sequence § of length n in base r.
2. If J C [0], for some digit sequence § of length n in base r, then £(J) < 2r—".

2.3 Exponents

We have seen that a signed positional number system as defined above can only
represent numbers x with |z| < 1 by digit streams. To obtain representations for
real numbers z of any size, one may write z as r¢ -’ where r° is a power of the
base and z' satisfies |2'| < 1 so that it can be represented by a digit stream. In
principle, exponents e > 0 are sufficient, but allowing arbitrary e € ZZ has its
virtues. Thus, we arrive at representations (e | £) where e is an integer (called
exponent) and ¢ is a digit stream (called mantissa), and (e | &) represents
[(e] &]r = r°® - [€]r- Semantically, the attachment of the exponent can again be
captured by an affine map, namely [(e | £)], = E([€].), where ET is given by
Er'(xz) =r¢-z.

The resulting number representation is similar to the familiar exponent-
mantissa representation. The differences are that the mantissa is (potentially)
infinite and may contain negative digits, and that no leading sign is required to
represent negative numbers. (A further syntactic difference is that the exponent
comes first; this reflects the fact that all algorithms deal with the exponent first
before working with the mantissa.)

Clearly, the exponent in the number representation is not unique. Since
[0: ], = L[¢]r, a representation (e | ) can always be replaced by (e+1 0:¢€),
or more generally by (e + k | 0% : £), where 0% : ¢ means that k 0-digits are at-
tached to the beginning of £. On the other hand, we may remove leading 0-digits
from & and reduce (refine) the exponent accordingly: [(e | 0: &), = [(e—=1] ]r,
or more generally [(e | 0F : €)], = [(e = k | €)]»-

Note that 0-digits may be squeezed out of a digit stream even if it does not
begin with a 0-digit. For instance, in base r = 2, we have seen that 11 : ¢ and
01 : £ are equivalent, and so are 11 : € and 01 : £. Thus, we have [(e | 11 : &)] =

[(e—1]1:9]and [(e [ 11:&)] =[(e—1]T:¢)].



Refinement of the exponent is no longer possible iff the mantissa ¢ starts with
one of 10, 11, 10, or 11. We call a representation with this property normalised.
A normalised mantissa represents a number z with 3 <|z| < 1. All real numbers
except 0 have normalised representations, but in contrast to the familiar case of
unsigned digits, the exponents of two normalised representations for the same
number may still differ by 1, e.g., + = [(—=1 | (10)*)] = [(0 | 1(01)~)].

The computation of a real number y (more exactly, one of its representations)
generally proceeds in the following stages:

1. Obtain an upper bound for the exponent of y.

2. Refine the exponent until it is sufficiently small or the representation is
normalised.

3. Compute prefixes of the mantissa according to the required precision.

In simple cases, the exponent of the result is immediately known, but sometimes,
considerable work is to be done in the first two stages.

2.4 Calculations with Digit Streams

Suppose we want to implement a function f : IR — IR which takes real numbers
to real numbers. Then we need to find a corresponding function ¢ on representa-
tions, i.e., a function ¢ that maps representations (e | £) of x into representations
(€' | ) of f(x). Often, this function will be based on some function ¢g that maps
digit streams into digit streams. Algorithms for such stream functions can usually
be specified recursively in the spirit of a lazy functional programming language
such as Haskell or Miranda.

We are now ready to present the implementations of a few simple functions
(and constants), always assuming base r = 2. We shall usually not distinguish
between a stream £ and its denotation [£], nor between a function f and its
representation .

Zero may be represented by (0 | 0¥), and one by (0] 1¢) or (1 | 10%).

Negation —x can be implemented by leaving the exponent alone, and negating
(the number represented by) the mantissa: —(e | &) = (e | —=§).
The latter can be done by flipping all digits around:

—(1:6) =1:(=§), —(0:4 =0:(=¢, —(1:8 =1:(=9).

Absolute value |x| can also be realised by acting on the mantissa:

(el O = (e [€D)-

As long as the leading digit of £ is 0, we do not know whether [¢] is positive or
negative. But because of [0 : {] = £[¢] and |$z| = 1|z| we can safely output a
0-digit for every 0-digit we meet: [0:&] = 0:]¢].

Once the first non-zero digit has been found, we know [{] > 0 or [¢] < 0, and
can switch to the identity stream function or negation:

18 =1:6  |T:¢ = 1:(=9).



Other operations.  Implementations of the minimum function min(z,y) and
addition z + y in this framework are straightforward (see also Exercise 1). Mul-
tiplication is a bit more difficult, but division already requires some ingenuity,
and there is no immediate way to obtain functions like square root, exponential,
logarithm, etc. Fortunately, linear fractional transformations (LFT’s) provide a
high-level framework that makes the implementation of such real number oper-
ations much easier. Individual LFT’s act on number representations and digit
streams in a uniform way which is fixed once and for all. The desired real num-
ber operations may then be implemented in terms of LFT expressions, without
the need to think about their action on the low-level digit streams. (Another
approach was used by Plume [42] who worked on digit streams using auxiliary
representations and an auxiliary limit function. These also provide an abstrac-
tion from the underlying digit streams.)

3 Linear Fractional Transformations (LFT’s)

We have already seen that the semantic meaning of digits and exponents can be
captured by certain affine transformations: [d : €], = A}([€],) with A%(z) = 22,
and [(e | &)]» = EL([€]») with ET(xz) = r¢ - 2. The general form of these affine
transformations is A(z) = az+ b with two fixed parameters a and b. Considering
affine transformations would already be sufficient to obtain some useful results,
but to handle division and certain transcendental functions, one needs the more

general linear fractional transformations or LFT’s.

3.1 One-Dimensional LFT’s (1-LFT’s) and Matrices

A one-dimensional linear fractional transformation (1-LFT), also called Mébius
transformation, is a function of the form L(x) = g‘;”i; with four fixed parameters
a, b, ¢, and d. In general, these parameters are arbitrary real (or even complex)
numbers, but we shall usually only consider 1-LFT’s with integer parameters.
The notion of 1-LFT includes that of affine transformation. A 1-LFT g‘;”i;
is affine if and only if b = 0; in this case it becomes Sz + 4.
For ease of notation, we abbreviate the function z — 22£¢ by <Z 2) The

bx+d

following are some examples of 1-LFT’s:

T—T <(1) (1)> T - <7(1) (1)>

r—x+1 <(1) }) x— 3z <g(1)>

01 x 23

T (¥ o) x'_)ixig (13)

2 Af@) == (31 e B =ra (7))
The notation <‘; 2) for 1-LFT’s looks similar to a 2-2-matrix M = (‘Z ;) In-
deed, any such matrix M = (¢ ) defines a 1-LFT, namely (M) = (7 9), with



(M)(x) = $2£5. Yet this correspondence is not one-to-one: in a 1-LFT, common

factors of the four parameters do not matter; (§ §) and <’,ZZ ’,;2> are the same

1-LFT if k is a non-zero number. Thus, we have (M) = (kM) for k # 0. In fact,
the opposite direction also holds: if (M) = (Ms), then M; and M, differ only
by a non-zero multiplicative factor. In particular, we have (M) = (—M). As a
slight normalisation, we usually present 1-LFT’s in a way such that the lower
right entry is non-negative (d > 0).

The matrix-like notation for 1-LFT’s carries mathematical meaning because
of the following;:

Proposition 3.1. The composition of two 1-LFT’s Ly and Ls is again a 1-LFT.
Composition of 1-LFT’s corresponds to matriz multiplication: (My) o (M) =
(M - M) (Exercise 2).

Recall from linear algebra how two matrices are multiplied:
(a C) a ¢\ _ (ad +cb'  ac +cd (1)
b d b d)  \ba +db bc +dd
If b =o' = 0, then also ba’ +db’ = 0, hence affinity is preserved by multiplication.
The neutral element of matrix multiplication is the identity matriz E = (1 0),

01
whose 1-LFT (j ) is the identity function. Recall further the important notion
of the determinant of a matrix

det(z 2) — ad - be (2)

and its basic properties:
detE = 1 det(A-B) = det A-detB det(kM) = k? -det M (3)

Because of the last equation above, the determinant is not a well-defined prop-
erty of a 1-LFT (remember that (kM) = (M) for k # 0). Yet the sign of the
determinant is a perfect 1-LFT property because for k # 0, det(kM) % 0 iff

det M 2 0.
A matrix M is non-singular iff det M # 0. The inverse of a non-singular
matrix M = (3 5) is given by (5 5)7" = gy (4 5). For 1-LFT's, the

factor m does not matter, and we may define the pseudo inverse M* instead:

a c\* d —c
(5 5) = 4)
b d —b a
Note that the pseudo inverse of an integer matrix is again an integer matrix,

and affinity (b = 0) is preserved as well. The following are the main properties
of this notion (in the matrix world):

E* = E (M*)* = M
(k-M)* = k- M* (A-B) = B* . A* (5)
det M* = det M M-M* = M*-M = det M -E



Since non-zero factors do not matter for 1-LFT’s, the last property gives the
1-LFT equation (M*)o (M) = (M) o (M*) = id for det M # 0, i.c., (M*) is the
inverse function of (M).

3.2 Two-Dimensional LFT’s (2-LFT’s) and Tensors

The 1-LFT’s defined above are functions of one argument, and as such, not
suitable to capture the standard binary operations of addition =+ y, subtraction
x —y, multiplication z -y, and division x/y. For this purpose, we introduce LFT’s
of two arguments (two-dimensional LFT’s, shortly 2-LFT’s).

A two-dimensional linear fractional transformation (2-LFT) is a function of

the form L(z,y) = % with eight fixed parameters a, b, ¢, d, e, f, g,

and h. For ease of notation, we write this function as <Z 4 Ji Z> The following
are some examples of 2-LFT’s:

0110 01 10

(z,y) >z +y <0001> (,y) >z —y <00 01>
(z,9) = z-y (0001 (z,9) = z/y (8010
+ 0110 2243 0203

(z,y) = 1x—xyy <—1 00 1> (z,y) — yrTER: (0 045)

The notation < Z 2 ; fb> for 2-LFT’s looks similar to a 2-4-matrix T = (Z 2 ; ,gl)

called tensor. The relation between tensors and 2-LFT’s is similar to the rela-
tion between matrices and 1-LFT’s. Any tensor T defines a 2-LFT (T'). Two
tensors define the same 2-LFT if and only if their entries differ by a non-zero
multiplicative factor. Thus, (T') = (kT) for k # 0; in particular (T") = (—T"). We
usually present 2-LFT’s in a way such that the lower right entry is non-negative
(h > 0).

If the second argument of a 2-LFT F = <‘; g ; fL> is a fixed number y, then

F|¥ is a function in one argument, given by

viy _(ay+c)z+(ey+g) _ Jay+c ey+g
F|(z) = F(z,y) (by + d)z + (fy + h) < >(a:).

n by+d fy+h

A similar calculation can be done if the first argument is a fixed number =z,
leading to another 1-LFT F|,. Thus, if we define for tensors T = (“ P g)

bdfh
ar+e cr+g ay+c ey+g
T = d T)Y =
| <m+f @+h> and T <@+d m+h> (6)

then (T],)(y) = T(z,y) and (T|")(x) = T(z,y).

While there is no obvious way to compose two 2-LFT’s in the framework
presented here, there are several ways to compose a 2-LFT and a 1-LFT (or to
multiply a tensor and a matrix). Let for the following M be a matrix and T a
tensor.



First, the function F defined by F(z,y) = (M)((T)(x,y)) is again a 2-LFT,
namely F = (MT), where MT is an instance of ordinary matrix multiplication:

a ¢ a ¢c e g\ _[da+tcb dc+cdd de+cf dg+ch 7)
vod)\bd fn) \Vatdb be+dd Ve+df bg+dh

Second, the function G defined by G(z,y) = (T)((M)(z),y) is again a 2-LFT,
namely G = (T ©® M), where T ® M is a special purpose operation defined by

ace g\ a '\ _ (ad +eb ca +gb ac +ed cc + gd

b d f h v od)  \ba +fb da' +ht bc+ fd dc + hd
(8)
Third, the function H defined by H(z,y) = (T)(z,(M)(y)) is again a 2-LFT,
namely H = (T ® M), where T ® M is a special purpose operation defined by

a c e g a '\ _ (ad +cb ad+cd ed +gb  ec +gd
bd fh pod) " \ba+dd bl +dd  fa + by fd + hd
(9)

All these operations are connected by various algebraic laws:
(My - My)-T = My-(My-T) (T®M)® My, = (T® M2) © My (10)

(My - T)© My = M; - (T © M) (M -T)® My = M, - (T ® M) (11)

(TOM)OM, = TO (M, -My) (T®M)®M, = T® (M, - M) (12)

3.3 Zero-Dimensional LFT’s (0-LFT’s) and Vectors

In analogy to 1-LFT’s which take one argument and 2-LFT’s which take two
arguments, there are also O-LFT’s <z> which take no argument at all, but deliver
the constant ¢.

The notation <‘Z> for O-LFT’s looks similar to a vector (‘;) Clearly, two
vectors correspond to the same 0-LFT if and only if they differ by a non-zero
multiplicative factor.

A 1-LFT (} 3) can be applied to a 0-LFT () resulting in a new 0-LFT

<Z;‘i§2 > If the first argument of a 2-LFT F = <Z i }9L> is a fixed 0-LFT w =

u . autev cu+t+gv o _ au+tcv eu+t+gv
(), then F|, is the 1-LFT <bu+fv du+hv>. Similarly, F|* = <bu+dv fu+hv>.

These absorption rules can be used to deal with rational numbers in the
real arithmetic. An expression like 27 can be set up as (§ o o 1) ((1), ) using

000 1/\3
the tensor for multiplication, and then simplified to (} J) (7). If only rational

03
operations on rational numbers are performed, this is equivalent to a rational
arithmetic, with the disadvantage that in general, denominators double in their
bit size in every addition and multiplication. Alternatively, a rational number

can be treated like any real number and transformed into a digit stream.



4 Monotonicity

By interval, we always mean a closed interval [u,v] with u < v in IR. If I is an
interval and f : I — IR a continuous function, then its image f(I) is again an
interval. To actually determine the end points of f(I), it is useful to know about
the monotonicity of f.

A function f: T - R is

— increasing if x <y in I implies f(z) < f(y),

— decreasing if © <y in I implies f(z) > f(y),

— strictly increasing if x <y in I implies f(z) < f(y),

— strictly decreasing if x < y in I implies f(x) > f(y),

— monotonic if it is increasing (on the whole of I) or decreasing (on the whole
of I).

For monotonic functions, we also speak of their monotonicity type, which is
1 for increasing functions, and | for decreasing functions. Clearly, f([u,v]) =
[f(u), f(v)] for increasing f, and f([u,v]) = [f(v), f(u)] for decreasing f. Hence
for monotonic f, f([u,v]) is the interval spanned by the two values f(u) and
f(v), extending from their minimum to their maximum. If .J is another interval,
then f([u,v]) C J if and only if both f(u) and f(v) are in J.

Let (M) be a 1-LFT such that the denominator bx + d of (M)(z) = g‘;”i;
is non-zero for all z in an interval I. We call such a 1-LFT bounded on I since
it avoids the value oo which formally occurs as a fraction with denominator 0.
Analogous notions can be introduced for 2-LFT’s.

A 1-LFT f = (M) which is bounded on I is a continuous function f : I — R,

given by f(z) = Z;”j_‘; Clearly, this function is differentiable with derivative

fl(z) = %. In this fraction, the denominator is always greater than 0 (it
cannot be 0 since f was supposed to be bounded on I), while the numerator is
a constant, namely det M. Thus, the monotonicity behaviour of (M) depends
only on the sign of det M (which is a meaningful notion for a 1-LFT):

— If det M > 0, then (M)'(x) > 0 for all z in I, hence (M) is strictly increasing.
— Ifdet M < 0, then (M)'(x) < Ofor all z in I, hence (M) is strictly decreasing.
— If det M = 0, then (M)'(z) =0 for all = in I, hence (M) is constant on I.

In any case, (M) is monotonic, and therefore, the remarks on monotonic func-
tions given above apply. All this relies on the fact that we let the 1-LFT act on
an interval; for instance, <(1) (1)> =(z— %) with det ((1) (1)) = —1 is decreasing on
[1,2] and on [-2, —1], but not on [—1,1] \ {0}.

We now turn to functions of two arguments. Let I and J be two intervals.
Geometrically, their product set I x J is a rectangle. For a function F': [ x J —
R, we define F|, : J = R for fixed z in I by F|,(y) = F(z,y), and dually
Fl¥ : I - R for fixed y in J by F|¥(z) = F(x,y); these functions are the
sections of F.

A function F : I x J — IR is monotonic if all its sections F|, for z € I and
F|¥ for y € J are monotonic. Recall that all the sections of a 2-LFT are 1-LFT’s,



and therefore monotonic by the results above. Hence, every 2-LFT is monotonic
on every rectangle where it is bounded (i.e., its denominator avoids 0).

Proposition 4.1. If F : [uj,us] X [v1,v2] = IR is continuous and monotonic,
then its image F([u1,us] X [v1,v2]) is the interval spanned by the four corner
values F(uy,v1), F(ui,v2), F(u2,v1), and F(us,vs), i.e., it extends from the
smallest of these values to the largest.

Corollary 4.2. If F : [uy, us] X [v1,v2] = R is continuous and monotonic, then
for all intervals J, the inclusion F([u1,us] X [v1,v2]) C J holds if and only if all
the corner values F(uy,v1), F(uy,vs), F(uz,v1), and F(uz,v2) are in J.

If F: I xJ — IR is monotonic, then it may happen that some of the sections
F|¥ are increasing, while some other sections F'|Y are decreasing. We say F' is
increasing in the first argument if all sections F|Y for y € J are increasing.
The properties to be decreasing in the first (or second) argument are defined
analogously. We say F' has type (1,1) if F is increasing in the first argument and
decreasing in the second. The 3 other types (1,1), (J,1), and (},]) are defined
similarly.

Let’s consider some examples. On Iy x Iy = [—1,1]?, addition F(x,y) = r+y
has type (1, 1), subtraction F(z,y) = x — y has type (1, }), while multiplication
F(z,y) = x-y is of course monotonic like all other 2-LFT’s, but does not have any
of the four types. For, F|!(z) = z is increasing, but F|~!(z) = —z is decreasing.

5 Bounded and Refining LFT’s

Later, we shall apply LFT’s to arguments given by digit streams. Of course,
this makes only sense if the LFT is well-defined for arguments from the “base
interval” Iy = [—1,1], i.e., is bounded in the sense that its denominator avoids 0
for arguments from I. If we want the result to be represented by a digit stream
as well, then the LFT should moreover be refining, i.e., map Iy into itself.

In this section, we shall derive some criteria for LFT’s to be bounded and
refining, and prove some properties of these notions. These proofs involve some
manipulations of absolute values, so that it is worthwhile to establish some
properties of absolute values in the beginning. Recall

|| = max(z,—x) — |z| = min(z, —z) (13)
for real numbers x. The following lemma will be useful in dealing with sums.

Lemma 5.1.
max(|z +yl, |z —y|) = |z|+|y| and |z +y|+]|z—y| = 2max(z|,|y|)-
5.1 Bounded 1-LFT’s

A 1-LFT (§ §) is bounded iff the denominator D(z) = bz + d is non-zero for all
x € Iy. Since I is an interval and D is continuous, this means either D(z) > 0



for all z in Iy, or D(z) < 0 for all  in Iy. Under the general assumption d > 0,
the second case is ruled out because D(0) = d. To check D(z) > 0 for all z € Iy,
it suffices to consider the minimal value of D on [—1,1]. For b > 0, this is
D(—1) =d —b, and for b < 0, it is D(1) = d + b. In any case, the minimum is
d — |b|. Therefore, we obtain:

Proposition 5.2. (§ ) with d > 0 is bounded if and only if d > |b|. In this
case, the denominator bx + d is positive for all © in I.

5.2 Bounded 2-LFT’s
For a 2-LFT F = <[bl 4 Ji Z>, the denominator is D(z,y) = bxy+dz+ fy+h. We

say F is bounded if D avoids 0 for (z,y) in I3. Under the general assumption
h = D(0,0) > 0, this is again equivalent to positivity of D on I?. Function

D is monotonic; this is most easily seen by noting that D = <8 g g '1L> is a

2-LFT. Hence, the range of possible values of D on I is spanned by the four
corner values D(+1,+1). Thus, F' is bounded iff the four values b+ d + f + h,
—b—d+ f+h,—b+d— f+h,and b—d— f + h are positive. Equivalently, this
means

h>max(b+d— f,b—d+ f,-b+d+ f,—-b—d—-f). (14)

In case of b = 0, the condition can be simplified to h > |d| + | f| with the help of
Lemma 5.1.

Proposition 5.3. If<z a7 Z> with h > 0 is bounded, then h > max(|b|,|d|, |f])-

Proof. We start with (14). Adding the two relations h > b+d— f and h > b—d+ f

gives 2h > 2b, and adding h > —b+d+ f and h > —b — d — f yields 2h > —2b.

Together, h > |b| follows. In a similar way, h > |d| and h > |f| can be derived.
O

5.3 Refining 1-LFT’s

A bounded 1-LFT f = (¢ 9) is refining if f(Io) C Io. Since f is monotonic, this
is equivalent to the two conditions f(—1) € Iy and f(1) € Iy, or |f(-1)] <1
and |f(1)] < 1. With the assumption d > 0, the denominator of f(z) = % is
positive. Hence, the two conditions can be reformulated as |¢c — a| < d — b and
|c+a| < d+b,or d> max(lc—al+b,|c+a|l| —b) =max(c+a—bc—a+b,—c+
a+b,—c—a-—b).

Note the similarity of this condition to the condition for a 2-LFT to be
bounded (14); the only difference lies in the variable names and the relation
symbol. Hence everything what has been said about bounded 2-LFT’s holds
here as well in an analogous way:

Proposition 5.4.
An affine 1-LFT ({ ) with d > 0 is refining if and only if d > |a| + |c|.

Proposition 5.5. If (§ ) with d > 0 is refining, then d > max(|al, |b],|c|).



5.4 Refining 2-LFT’s

A bounded 2-LFT F = <‘; a7 Z> is refining if F(I3) C Iy. Since F is mono-
tonic, this is equivalent to the condition that all four corner values F(£1,+1)
are in Iy, or |F(£1,£1)| < 1. With the assumption h > 0, all denominators are

positive. Hence, the four conditions can be reformulated as

la+c+e+g| < b+d+f+h |-a—c+e+g|l < -b—d+f+h

15
la—c—e+yg|l < b—d—f+h |-a+c—e+g| < —b+d—f+h (15)

We now show that the lower right entry h of a refining 2-LFT dominates all other
ones (under the assumption h > 0). First, we know from Prop. 5.3 that h >
|b], |d],|f|. Adding the two equations in the first column of (15) gives max(|a +
gls|e +e]) < h+ b with the help of Lemma 5.1. Similarly, adding the second
column yields max(|a — g|,|c — e]) < h —b. Next, adding |a + g| < h + b and
la — g| < h — b gives max(|al,|g|) < h, and adding the other two relations yields
max(ll, lel) < .

Proposition 5.6. If <‘; 4 Ji Z> with h > 0 is refining, then h > |al,|c|, €], |g]
and h > |b], |d], | f].

6 LFT’s and Digit Streams

Now we consider the application of (refining) LFT’s to arguments from Iy. The
LFT’s will be represented by matrices, and the arguments and results by digit
streams (exponents are handled later). We take the freedom to occasionally iden-
tify LFT’s and their representing matrices, and thus to apply the LFT notions
bounded, refining, monotonic etc. to the representing matrices as well.

6.1 Absorption of Argument Digits

Absorption into Matrices. Let f = (M) be a 1-LFT to be applied to a digit
stream. Remember that a digit £ in base r corresponds to an affine transfor-
mation A} with A} (z) = ZEE. This is a special case of a 1-LFT, with matrix

Ay = (1 :f) Using this matrix, we may calculate

0
(M)([k - €]) = (M)([(AR)([E)r)) = (M - AL)([€]r)-

Thus, we may absorb the first digit of the argument stream into the matrix M
by multiplying M with A} from the right:

— Absorption: M(k:§) = (M- A}) (§).
An explicit formula for the product M - A} may be obtained by specialising

Equation (1):
a c 1 k a rc+ka
M . AT = . = ]_
k (b d) <0 r> <b rd+kb> (16)



1

For the following, let M = (‘; 2) and M' = M- A}, = (Z, g), where the actual

values of a' etc. are given by (16).

1. If M is bounded with positive denominator, then so is M’.
Proof: Let D(z) = bz + d be the denominator of M, and D'(x) = b’z + d'

the denominator of M'. Both D and D’ are 1-LFT’s, namely D = (8 f)
and D' = (g "df’“’). By (16), D - AL is D" = ({; "“’“”). By hypothesis,

N
D(z) > 0 for all z in Iy. Hence, D(z) > 0 for all z € Aj(Iy) C Ip, and
therefore, D"(z) = D(A}(x)) > 0 for all & in Iy. From this, positivity of
D'(z) =r - D"(x) immediately follows.

2. If M is refining, then so is M'.

Proof: If M(Io) g Io, then M’(IO) = M(AZ(IO)) Q M(Io) g I().

3. If M is increasing (decreasing), then so is M'.

Proof: M'is M composed with the increasing function Aj.

Absorption into Tensors. The absorption of a digit into a tensor T rests on
a similar semantic foundation. It comes in two versions, depending on whether
the digit is taken from the left or the right argument.

— Left absorption: Tk:&n) = (TOA})En).
— Right absorption: T, k:n) (T® A}) (& n).

Explicit formulae for the products T’ ® A} and T ® A} may be obtained by
specialising (8) and (9):

a c e g 1 k a ¢ re+ka rg+ke
T®O® A, = = 1
© A <b d f h>®<0 r> <b d rf+kb rh+kd (7)

a c e g 1 k a rct+ka e rg+ke
T® A, = = 1
© A <b f h>®<0 r> <b rd+kb f rh+kf (18)

For the following, let 7' =T ® A} or T' =T ® Aj,.

S

1. If T is bounded with positive denominator, then so is T".
2. If T is refining, then so is T".
3. If T has a monotonicity type, e.g., (1,1), then 7" has the same type.

The proofs of these statements are analogous to the corresponding ones for
matrices.
6.2 Emission of Result Digits

Of course, absorption is not enough; we also need a method to emit digits of the
output stream representing the result of a computation.



Emission from Matrices. Let M be a matrix and ¢ a digit stream. To emit
a digit k of (M)([¢],), we must transform this value into the form [k : n],. =
(A7Y([n]r)- This can be done by writing M as product A}, - M’ for some matrix
M'. The equation M = A} - M' yields M' = A}* - M using the inverse of A}.
Thus, emission is performed by M (&) =k : (A" - M)(E).

An explicit formula for the product A},* - M is obtained by specialising (1):

r —k a c ra—kb rc—kd
AT* M = : ( ) - 19
k (0 1 ) b d < b d ) (19)
Of course, we cannot emit an arbitrary digit. If the output stream is to begin
with &, then the result of the computation should be in the corresponding digit
interval [k],; otherwise the method would be unsound. Thus, we can only emit
k from M (&) if we know that its value is contained in [k],. Without looking into

¢, we know nothing about it. Thus, the condition M (§) € [k], must hold for all
digit streams &, which is equivalent to M (Iy) C [k];.

— Emission: M (§) =k : (A" - M)(§).
This operation is permitted only if M (Ip) C [k],.

For the following invariance properties, let M' = A}* - M.

1. If M is bounded with positive denominator, then so is M’.

Proof: This is obvious since M and M’ have the same denominator.

2. If M is refining and the emission leading to M’ was permitted, then M’ is re-
fining again. Proof: If M (Iy) C [k], = A}(Iy), then M'(Iy) = A" (M (p)) C
AT (AL (1)) = L.

3. If M is increasing (decreasing), then so is M'.

Proof: M"is M composed with the increasing function A}*.

Emission from Tensors. Emission from a tensor works similar to emission
from a matrix:

— Emission: T(&,n) =k: (A" -T)(&,n).
This operation is permitted only if T(I3) C [k].

An explicit formula for the product A},* - T' is obtained by specialising (7):

r —k a ce g\ (ra—kb rc—kd re—kf rg—kh (20)
0 1 bdf h) b d f h
This variant of emission satisfies invariance properties 1-3 analogous to those
for matrices.

6.3 Sketch of an Algorithm

We are now able to sketch an algorithm for applying a refining 1-LFT given by
a matrix M to a digit stream:



Algorithm 1
Let Mo = M. Then for every n > 0 do:
If there is a digit k such that M, (Io) C [k],
then output digit k and let M, 1 = A" - My,
else read the next digit k from the input stream and let M, = M, - A},.

The matrices My, My, etc. represent the internal state of the algorithm. Hence,
we refer to them collectively as the state matriz. (In an imperative language,
they would all occupy the same variable.)

For tensors an additional problem comes up: if no emission is possible, should
we absorb a digit from the left argument or from the right? A simple strategy
is to alternate between left and right absorption, while a more sophisticated
strategy could look into the tensor to see which absorption is more likely to lead
to a subsequent, emission.

6.4 The Emission Conditions

Algorithm 1 was not very specific on how to find a digit k such that the image
of the LFT is contained in [£],, or to find out that such a digit does not exist.
These questions will be handled for base » = 2 only since this case allows for a
simple solution: try the 3 possibilities ¥ = 1,0, 1 in turn. (An idea of what to
do for a general base can be obtained by looking at Section 9.3 below.)

The actual computation is simplified if we know some properties of the state
matrix (or tensor) in question. Remember that some LFT properties are pre-
served by absorptions and permitted emissions. Thus, if the initial matrix is
refining and bounded with positive denominator, then so will be all state ma-
trices encountered in Alg. 1. Moreover, if the initial matrix has some specific
monotonicity property, then all state matrices will have this property. Thus,
for the following, we always assume a refining bounded matrix with positive
denominator, and we shall try to exploit monotonicity as far as possible.

Base 2: Matrices. Let M be a refining bounded matrix with positive de-
nominator. First, we consider the case that M is increasing, so that M (Iy) =
[M(—1), M(1)]. Since M is refining, we know M (Iy) C Iy, or M(—1) > —1 and
M (1) < 1. Then M(Iy) C [1]> = [0,1] iff M(—1) > 0 and M (1) < 1, where the
second condition is redundant. The first condition reads :Z_T_; > 0. Since the
denominator is positive, this is equivalent to a < ¢. Similarly, M (Iy) C [1]s =
[-1,0] iff M(—1) > —1 and M(1) < 0, where the first condition is redundant.
The second condition reads ‘;%‘2 < 0. Since the denominator is positive, this is
equivalent to —a > c.

Finally, M (Io) C [0], = [-31, 3] iff M(—1) > —1 and M (1) < i, where no

T2 2 2
condition is redundant. The first condition reads :zj_'g > —1,or2(c—a)>b—d.
The second condition reads zT"'; < %, or 2(¢ + a) < b+ d. Checking these two

conditions becomes more efficient if they contain common subexpressions that
can be evaluated ahead. Indeed, the first condition can be transformed into



b — 2¢ < d — 2a, and the second into 2¢ — b < d — 2a. Hence, the two conditions
may be even combined into one, namely |2¢ — b| < d — 2a.

If M is decreasing, the roles of M (1) and M(—1) are interchanged. This
means that in the emission conditions, a and b have to be replaced by —a and
—b, respectively, while ¢ and d remain unchanged. Thus, the condition a < ¢ for
emission of 1 becomes —a < ¢, the condition —a > ¢ for emission of 1 becomes
a > ¢, and finally, the condition |2¢ — b| < d — 2a becomes |2¢ + b| < d + 2a. All
conditions are summarised in the following table:

Type|| 1 1 0
0 a<c—a>cl2c—b <d-2a
Il ||—a<el a>c|]2¢+b <d+2a

Q

Since the condition for 0 is more complicated than the other two, we propose
to check the conditions in the order 1, 1, 0. This has the additional advantage
that there is a situation where some tests can be avoided because they are bound
to fail. Suppose the checks of the emission conditions for 1 and 1 both failed, but
the check for 0 succeeded. Then the digit 0 is emitted, and the current matrix
(¢ 9) is replaced by (2; Qdc) according to (19). Yet the relationship between
+2a and 2c is the same as between +a and ¢, which means that the emission
conditions for 1 and 1 will again fail; therefore, only the condition for 0 needs
to be checked again.

Base 2: Tensors. Now let T be a refining bounded tensor with positive de-
nominator. First, we consider the case that T is of type (1, 1), so that T(I2) =
[T(~1,-1),T(1,1)]. Then T(I2) C [1], = [0, 1] iff T(—1,—1) > 0; the other con-
dition T'(1,1) < 1 holds anyway since T is refining. The relevant condition reads
% > 0. Since the denominator is positive, this is equivalent to c+e < g+a.
Similarly, T'(I3) C [1]s = [-1,0] iff T(1,1) = % < 0, which is equivalent
toct+e< —(g+a).

Finally, T(I3) C [0], = [-1, 3] :
first condition reads % >—1 or—2(a—c—e+g)<b—d— f+h. The
second condition reads % <i1,or2a+c+e+g) <b+d+ f+h. The
first condition can be transformed into d+ f —2a —2g < h+b—2c — 2e, and the
second into 2a + 2g —d — f < h 4+ b — 2¢ — 2e. Again, these two conditions can
be combined into one, namely |2(g+a) — (d+ f)| < (h+b) —2(c+e). Note that
g+ a and ¢+ e also occur in the tests for 1 and 1; they need only be evaluated
once.

If T is of type (1,]) instead, then T'(—1,—1) must be replaced by T'(—1,1),
and T'(1,1) by T'(1,—1). This corresponds to negation of a, b, e, f, while the
other four parameters are unchanged. The other two monotonicity types can be
handled by similar negations. The results are collected in the following table:

iff T(—=1,-1) > —% and T(1,1) < L. The



Type 1 1 0

GOl cre<gial cies GraPara - @rAI<Gil _2ero
|| cme<g—al cme<—(g—a)2g—a)—(d— Pl < (h—b) - 2e—c)
UD|| e—c<g—al e—c<—(g—a)|2g—a)— (f — D] < (h—b) - 2e — o)
Dl|=c—c<gtal—c—e<—(gra)2(g+a)t @t Hl<(hrb)t2ete

If T is of unknown monotonicity type or does not have any type at all, then the
conjunction of the four conditions in each column must be considered. The four
conditions for 1 can be combined into the two conditions |c + e| < g + a and
|e — e|] < g — a, and similarly for 1, while no simplification seems to be possible
in case of 0.

Again, the conditions for 0 are more complicated then the other two. If the
order 1, 1, 0 is chosen, then as in the matrix case, 1 and 1 need not be checked
again after emission of 0.

6.5 Examples

Ezample 6.1. Let’s first consider the matrix M = ({ () which means multipli-

cation by %. The d-entry 4 is positive, and the determinant 12 is positive as
well. The function is bounded (d =4 > |b| = 0), and refining ([M(-1), M (1)] =
[—3,2] C Iy). Therefore, we can use the emission conditions in the 1 row of
the matrix table. Generally, we check the conditions in the order 1, 1, 0, except
after emission of 0, where the conditions for 1 and 1 are skipped because they
are known to fail as pointed out above. We also take any opportunity to cancel
common factors of the four parameters of the state matrix. Let’s assume the

digit sequence denoting the argument starts with 101.

Start: M = (g 2)
a<c&3<L0fails, —a>ce —3 >0 fails, [2¢ — b < d—2a < 0 < -2 fails.
Absorb 1 and set M to (g 2)
a < c¢<& 3 < 3 succeeds.
3 —1

Emit 1 and set M to (g f). Cancel a factor of 2 so that M = (0 4).

a<ce3< —1fails, —a>ce —3 > —1fails, |2¢— b < d—2a & 2 < -2 fails.

Absorb 0 and set M to (g _g).

a<c&3< —2fails, —a>c& —3 > -2 fails, [2¢ — b| < d —2a & 4 <2 fails.
Absorb 1 and set M to (g Ig)

a<c& 3< —1fails, —a > c& —3 > —1 fails,

but [2¢ — b] < d — 2a & 2 < 10 succeeds.

Emit 0 and set M to (g ;62) Cancel a factor of 2 so that M = (g 7;).
|2¢ — b] < d—2a & 2 < 2 succeeds.

Emit 0 and set M to (g _2). Cancel a factor of 2 so that M = (g _i).
[2¢ = b <d —2a & 2 < -2 fails.

Now, we should absorb a new digit, but we only assumed the prefix 101 to be
known. Thus, the algorithm transforms the argument prefix 101 into the result




prefix 100. Note that [101] = [3,3] and 100 = [2,2] D [3, 2] = M([3},3]),
as it should be. In practice, a demand for more output digits will automatically
generate a demand for more input digits, which will be computed by the process

computing the argument.

Ezample 6.2. Let’s consider another example which involves something more
complicated than multiplication by 2, namely computing ++5- In contrast to

iaz it is not immediate how a digit stream for +2 can be computed from a digit
stream for z. Yet the algorithm developed above provides the answer.

The function = — ﬁ_Q is a 1-LFT with matrix (1 2) The entry d = 2 is
positive, but the determinant —1 is negative. The function is bounded (d = 2 >
|b| = 1), and refining ([M (1), M(—1)] = [£,1] C Iy). Thus, the algorithm can be

applied—with the emission conditions from the | row of the table for matrices.

Start: M = (0 1)

12
—a <c4 0<1succeeds. Emit 1 and set M to (7} g

—a<ce 1<0fails,a>ce —1 >0 fails, [2¢+b] < d+2a <1 <0 fails.

Absorb 1 and set M to ( ! _é)

—a<c& 1< —1fails, a>cs —1 > —1 succeeds.

Emit 1 and set M to (*} g)

—a < cs 1 <3succeeds. Emit 1 and set M to ({1" é)

—a<ce 3<fails,a>ce —3 > 1fails, |2¢+ b < d+ 2a < 3 < —1 fails.

Absorb 0 and set M to ( 1 13)

—a<ce 3<2fails,a>ce —3 > 2fails, [2¢4+ b < d+2a < 5 < 4 fails.
Absorb 1 and set M to ( 1 2})
—a<ce 3<1fails,a>ce -3 > 1 fails, |2¢+ b| < d + 2a & 3 < 15 succeeds.

2
Emit 0 and set M to ( 1 21)

[2¢ +b] < d+2a < 5 < 9 succeeds. Emit 0 and set M to (71f 2‘11).
|2¢ +b| < d+2a < 9 < -3 fails.
Thus, the algorithm maps the input prefix 101, which denotes the interval [1

into the output preﬁx 11100 which denotes the interval [, 43
really contains M ([$,3]) = 2] as it should be.

2 Z ’
]. This interval

11’5

Note that in Example 6.1, a common factor of 2 could occasionally be can-
celled, while in Example 6.2, no cancellation was possible. We will return to this
point in Section 8.1. Note further the way in which absorptions (A) and emis-
sions (E) alternate. In the first example, the sequence is AEAAEE, and in the
second, it is EAEEAAEE. In both cases, the next would be an A. There appears
to be some randomness in these sequences, but it is not too bad; there seem to
be no strings of 3 consecutive A’s or E’s.

The question how many absorptions are needed to achieve a certain number
of emissions is important for the performance of the algorithm. We would not



like situations where a large number of absorptions is needed before the next
emission is possible. The worst possibility were a situation where the algorithm
keeps on absorbing for ever without ever being able to emit something (like in
the problem of computing 3-0.333 - - - in ordinary decimal notation). Fortunately,
we can prove that this cannot happen; apart from some finite start-up phase in
the beginning, absorptions and emissions will approximately alternate. This will
be shown in the next section.

7 Contractivity and Expansivity

Our next goal is to derive bounds for the number of absorptions that are required
to achieve a certain number of emissions. Such bounds can be obtained from
bounds of the derivative(s) of the LFT. In fact, we are able to obtain theoretical
bounds for an even larger class of functions.

7.1 Functions of One Argument

Let I be an interval (as always closed) and F : I — IR a C!-function, i.e., a
continuous function which is differentiable with continuous derivative F'. The
mean value theorem of analysis states that for all z, y in I, there is some z
between z and y (hence in I) such that F(z) — F(y) = F'(z) - (x — y). This
property gives bounds for the length of the interval F(I). First, we have for
I= [U,U]

(FD) > [F) - F) > nf [F'G)]- 0 —w) = e F-((D) (21)
z
where exp! F' = inf.c7 |F'(2)| is the expansivity of F on I.
Second, we have

(F(I)) = sup |F(z)=F(y)| < sup|F'(z)| sup |z—y| = con’ F-£(I) (22)
z,yel z€eIl z,yel

where con! F' = sup,; |F'(2)| is the contractivity of F on I. Since F' : I - R
is continuous, the contractivity is always finite, and so we have 0 < exp! F <
con' F < oo.

Together with Prop. 2.1, the bounds derived above will provide information
about possible emissions. Assume F is a C'-function defined on the base interval
Iy = [-1,1] with F(Ip) C Iy. We now look for theoretical lower and upper bounds
for the number of digits required from a digit stream & representing an argument,
x if we want to compute a certain number n of digits of a stream representing
the result F'(x). We work with a general base r > 2.

If a prefix ¢ of length m of the argument stream ¢ is known, then z is in
the interval I = [0], of length ¢(I) = 2r—™. Hence, F(x) is in the interval
F(I), whose length [ is bounded by exp! F'- 2r—™ < [ < con! F - 2r~™. The
dependence on the actual interval I can be removed by replacing exp! F by
exp® F < exp! F, and con’ F' by con’c F > con’ F. Dropping the index I, we



obtain exp F' - 2r~™ < | < con F - 2r~™. (Yet note for later that we may work
with exp’ F' and con”’ F instead, if we are interested in arguments taken from a
subinterval J C Ij.)

By Prop. 2.1, we know that (at least) n result digits can be emitted if I < r—™.
Hence, n digits can be emitted if con F - 2r=™ < ¢~ " or r™ > 2conF - r",
or m > log,.(2con F) + n. Thus, to emit n output digits, we need at most
[log, (2 con F')] +n input digits. This statement even applies to the case con F' =
0, where the logarithm is —oo. For, in this case, F' is constant, and any number
of output digits can be obtained without looking at the input at all.

By Prop. 2.1, we also know that [ < 2r—™ if (at least) n result digits can be
emitted. Thus, exp F' - 2r="™ < 2r=", or m > log,(exp F') + n if n result digits
can be emitted. Hence, we need at least [log,(exp F')] + n input digits to obtain
n result digits. In case of exp F' = 0 where the logarithm is —oo, this statement
still holds (trivially), but does not yield any useful information.

Theorem 7.1. Let F' be a C'-function defined on the base interval Iy. To obtain
n digits of F(x) for = in Iy, one needs at least c< +n and at most ¢ + n digits
of x, where

c< = [log,(expF)] and ¢ = [log.(2con F)]

where r is the base of the number system, exp F' = infyey, |F'(z)| and con F =
Sup,er, [F7(2)].

For functions with con F > exp F' > 0, the theorem implies that asymptot-
ically, the number of absorptions and emissions will be equal, i.e., on the long
run and on average, one absorption is required for every emission. Locally, we
see that for n emissions, at least ¢< + n absorptions are needed, while for n + 1
emissions, at most ¢” + n + 1 are required. Hence, after any emission, we need
at most ¢ — ¢< + 1 absorptions, before the next emission is permitted. In par-
ticular, it can never happen that an infinite amount of absorptions does not lead
to any emission.

For affine F, i.e., F(z) = ax + b, F' is constant and so exp F' and con F'
coincide. In this case, the two bounds in Theorem 7.1 are close together: For
base 2, they always differ by one, while for large bases, they are even identical
in most cases, allowing the exact prediction of the number of required argument,
digits. For non-affine F', exp F' and con F' may differ considerably, leading to less
accurate estimations.

Let’s now consider the case that F'is a 1-LFT which is bounded on I, given
by a matrix M = (§ §) with non-negative d. Recall from Section 4 that M is
C! with M'(z) = %. From Prop. 5.2 and its proof, we know that bz + d is
positive for z € Iy, with least value d — |b|. It is not hard to see that its largest
value is d + |b|, and therefore

| det M|
(d — [b])?

| det M|

M = .
eon (d+[b])?

and expM = (23)

For affine matrices (b = 0), both expressions simplify to % = %.



With these values, Theorem 7.1 not only describes the theoretical complexity
of obtaining M |(z), but also the actual complexity of Algorithm 1. For, the
algorithm detects an opportunity for emission as soon as it arises because its
tests are logically equivalent to the emission condition.

In Example 6.1, we have M = (g 2), hence exp M = con M = %, and so
c< = [log, 2] = 0 and ¢> = [log, 2] = 1. Hence, between n and n+1 absorptions
are needed for n emissions, and the maximum number of absorptions between
any two emissionsis 1 — 0+ 1 = 2.

In Example 6.2, we have M = ((1) ;), hence exp M = % and con M =1, and
so ¢< = [log, ] = =3 and ¢ = [log, 2] = 1. Hence, between n — 3 and n + 1
absorptions are needed for n emissions, and the maximum number of absorptions
between any two emissions is 1 — (—3) + 1 = 5.

Note that for 1-LFT’s M, we have exp M = 0 iff conM = 0 iff det M = 0
iff M is a constant function. Hence, there are only two cases: if det M # 0, the
number of absorptions and emissions is asymptotically equal, while for det M =
0, any number of digits can be emitted without absorbing anything.

7.2 Functions of Two Arguments

Let I and J be two intervals (as always closed) and F : I x J — R a C!-

function, i.e., a continuous function which is differentiable in both arguments

with continuous derivatives % and %. Thus, for fixed z in I, F|, : J - R

with F|,(y) = F(z,y) is a C'-function on J, and for fixed y in J, F|¥ : I - R
with F|¥(z) = F(x,y) is a C'-function on I.
Let’s first derive a lower bound for ¢(F(I,.J)). For every y in J, (21) implies

UF(IxJ)) > (FPI) > exp!(FIY)-€(I) > expy W F-0(1)  (24)

where

exp, "' F = inf exp! (F|Y) = zeilngejlf’a—lj(:v,y)l (25)

is the left ezpansivity of F on I x J. Dually, we have

(F(Ix.J) > expg’? F-(J) where expg’/ F = inf |%—F(az,y)| (26)
z€lyeJ “Y

is the right expansivity of F on I x J.
For an upper bound, consider z;,x2 € I and y;,y»> € J. With (22), we obtain

|F'(z1,y1) — F(22,y2)| < |F(21,91) — F(22,91)| + |F(22,91) — F(22,92)]
< con! (F|¥*) - (I) + con”(F|,,) - £(J)

< con, " F-0(I) + cong”’ F-¢(J) (27)
where  conp”’ F = sup con! (F|Y) = sup %(m,yﬂ
yeJ zel,yeJ
and cong"? F = sup con’ (F|,) = sup %(:ﬂ,yﬂ.

zel zel,yeJ



Note that these numbers are finite because the partial derivatives are continuous.
Finally, Relation (27) yields £(F(I x J)) =

sup  sup |F(z1,y1) — F(x2,y2)| < conp,”’ F-£(I) +cong’’ F-£(J). (28)
z1,22€1 y1,y2€J

Assume now F is a C'-function defined on I = [—1,1]x[—1,1] with F(I3) C
Iy. Assume further that F'(z1,xz2) is to be computed where each x; is given by a
digit stream &;, and we want to find out how many argument digits are needed
to obtain n digits of the result F(z1,zs).

If a prefix §; of length m; of the argument stream &; is known, then z; is in
the interval I; = [d;], of length £(I;) = 2r—™:. Hence, F'(z1,x2) is in the interval
F(I,I,), whose length [ is bounded by < < [ < [”, where

IS = max (exp;, 2 F - 2r=™  expg 2 F - 2r7m2)

[ = cony, V2 F.op™ 4 conRIl’I2 F.2pm2

Again, the dependence on the actual intervals I; and I can be removed by
enlarging both of them to I. We call the resulting bounds [ and [”. For ease
of notation, we drop the indices in exp; /o0 etc.

By Prop. 2.1, we know that (at least) n result digits can be emitted if [ <
r~", which is the case if > < r~". Hence, n digits can be emitted if cony, F -
2r=™ < 1r™" and cong F - 2r~—™2 < i7", The first condition is equivalent to
r™ > 4cong, F - r™, or my > log,.(4cony, F') + n. Thus, to emit n output digits,
[log, (4 cony, F)]+n digits from the left argument and [log, (4 cong F')] +n digits
from the right argument are sufficient.

By Prop. 2.1, we also know that | < 2r=" if (at least) n result digits can
be emitted. Thus, if n digits can be emitted, then [< < 2r=" or expp F -
2r=™ < 27" and expgr F - 2r~™2 < 2r7" or my > log,(exp;, F) + n and
ma > log,(expg F) + n. These relations indicate how many digits from the two
arguments are at least needed to obtain n result digits.

Theorem 7.2. Let F be a Cl-function with two arguments defined on 12. To
obtain n digits in base r of F(x1,22) for x1, x2 in Iy, one needs at least cf +n
digits of 1 and c§ + n digits of x>, where

e = [log,.(expy, F)] and cg = [log,(expg F)] .
On the other hand, ¢ + n digits of 1 and cg +n digits of z2 are sufficient to
obtain (at least) n output digits, where

¢ = [log,.(4cony, F)] and cf = [log,(4cong F)].

For functions with exp;, F > 0 and expg F' > 0, the theorem implies that on
the long run and on average, one absorption from each argument is required for
every emission. Analogously to the case of one argument, one can show that it
can never happen that an infinite amount of absorptions from both sides does
not lead to any emission.



Unlike the case of matrices, there are no simple formulae for the left and

right contractivities and expansivities of a general tensor. The reason is that the
general forms of the partial derivatives are too complicated. Yet for some special
tensors, concrete bounds can be obtained easily.
) The tfensor f.or adfiitior; is not refining, but T' = (8 (1) (1) g) with T'(z,y) =
5(x +y) is refining. Since 8—£(x,y) = g—z;(x,y) = %, we have exp;, T =expr T =
cony, T = cong T = % Hence in base 2, at least n — 1 digits and at most n + 1
digits must be absorbed from both sides to obtain n output digits. (In practice,
n — 1 digits are not sufficient.)

The tensor T' = ((1) 8 g (1)) with T'(z,y) = wzy is refining. Since %(az,y) =y
and %(w,y) = z, we have exp;, T = expg T = 0 and con;, T = cong 7' = 1.
Hence in base 2, n 4+ 2 digits from both sides are sufficient to obtain n output
digits, but we do not get useful lower bounds. Indeed, we have (0 : £) - n =
0 : (¢ n), and therefore, an arbitrary number of output digits can be obtained

without looking at the second argument if the first argument is 0“.

8 The Size of the Entries

When a non-singular refining matrix is applied to a digit stream, we know from
Theorem 7.1 that between ¢< + 2n and ¢ + 2n transactions (absorptions plus
emissions) are needed to obtain n output digits. At first glance, these transactions
(and the emission tests) seem to require only constant time (see (16) and (19)),
but we need to take into account the size of the four entries of the state matrix. In
Example 6.2, the entries seem to grow during the course of the computation, and
the time required by the integer operations in the transactions and tests (mainly
addition and comparison) is linear in the bit size of the involved numbers. Thus,
we should try to obtain bounds for the entries of the state matrix (or tensor) in
order to obtain proper complexity results.

8.1 Common Factors

Cancellation of common factors of the entries of the state matrix could help to
keep the entries small. In Example 6.1, a common factor of 2 could occasionally
be cancelled, while there were no common factors at all in Example 6.2.

We first show that the range of possible common factors is quite limited.

Proposition 8.1. Let M be a matriz or tensor in lowest terms (i.e., no non-
trivial common factors in the entries), and let M' be the result of performing one
transaction in base r (absorption or emission) at M. Then any common factor
of M'" divides r.

Proof. Let M = (§ ) as usual. If M’ results from absorbing digit k, then M’ =

b d
(Z :21"2‘;) Any common factor g of a, b, rc + ka, and rd + kb is also a common

factor of ra, rb, r¢, and rd. Since a, b, ¢, and d are relatively prime by assumption,
g must divide r. The arguments for emission, where M' = (m;kb ’”c;kd), and
for tensors are similar. O



Even the limited amount of cancellation admitted by Prop. 8.1 does not show
up in most cases. Note that without cancellation of common factors, neither
absorption nor emission affect the b-entry of the state matrix or tensor. If b is
odd like in Example 6.2, then it remains odd for ever, and there will never be any
common factors in base 2. If b is even and non-zero, then common factors may
occur, but only as often as the exponent of the largest power of 2 contained in b.
After this amount of common factors has been cancelled out, the resulting value
of b will be odd, and no further cancellations will be possible. Only if b = 0, an
unlimited number of cancellations may occur. In the following two subsections,
we study the two cases b = 0 and b # 0 for matrices more closely.

8.2 Affine Matrices

For an affine matrix (b = 0), the transactions simplify a bit:

a ¢ a rc+ka a c ra rc—kd

AT = AT = 29
(Od)’c (0 rd) ’“(Od) (0 d>()
Hence, the result of first absorbing k& and then emitting [, or the other way round,

is

a ¢ ra ric+rka—rld
AT . AT =

! (0 d) k ( 0 rd ) (30)

which has a common factor of r. After cancelling it, we obtain (“ T”k“*ld),

0 d
which is the same as the original matrix, except for the c-entry. Similarly, we
obtain a common factor r* after performing k absorptions and k emissions in
any order, and cancelling ¥ will produce a matrix with the same a and d entries
as the original one. The d-entry will only increase if there is an excess of absorp-
tions over emissions; this increase consists of a factor of r for every additional
absorption.

By Theorem 7.1, we know that at most ¢ + n absorptions are needed for n
emissions. Thus, immediately before the last of these n emissions, n —1 emissions
and at most ¢~ + n absorptions have happened; the maximal possible excess is
therefore ¢ + 1. Recall ¢ = [log,(2con M)] = [logr(Ql%l)]. By Prop. 5.4, |a| <
d holds, whence ¢~ < 1. Therefore, the maximal possible excess of absorptions
over emissions is 2.

Theorem 8.2. Let My = (“00 2‘;) be an affine refining matriz with dy > 0,

and (My,)n>0 the sequence of matrices which results from Algorithm 1, with the
additional provision that after each step, all common factors are cancelled out.
Then all entries of M,, are bounded by r> - dy.

This bound is sharp as can be seen from Example 6.1: The starting value is
dy = 4, and so the theoretical upper bound is 22 - 4 = 16, which indeed occurs
after four transactions. But Theorem 8.2 ensures that it cannot get worse.
Because of the constant upper bound in Theorem 8.2, the additions and
comparisons needed to execute the algorithm take only constant time.



Corollary 8.3. If an affine refining 1-LFT is applied to a digit stream, each
transaction (absorption or emission) takes only constant time. Hence, n output
digits can be computed in time O(n).

8.3 Non-Affine Matrices

Remember that b in (§ ) is invariant under absorptions and emissions. Hence
in case b # 0, all common factors that may appear during the calculation are
factors of b, and thus, cancellation of common factors can only lead to a constant
size reduction. (In the special case |b] = 1, there will be no non-trivial common
factors at all.)

Let us consider entry d, which is an upper bound for all other entries by
Prop. 5.5. Emission does not affect d, while absorption of A}, transforms d into
d = rd + kb. Because of |k| < r — 1, one obtains d' < rd + (r — 1)|b] and
d'" > rd—(r—1)|b|, which lead to d'+1b| < r(d+1b|) and d'—|b| > r(d—|b|). These
estimations can easily be iterated. Taking into account possible cancellations by
common factors in the lower bound, one obtains:

Theorem 8.4. Let My = (§ ) be a refining matriz with d > 0 and b # 0,

and let M,, = (‘;m ;’“) be a matriz which results from My by m absorptions in

base r, any number of emissions, and cancellation of all common factors. Then

dm > dTb‘lblrm +1 and dy, < (d+ |b])r™ — |b] holds (where the coefficients of r™

are positive by Prop. 5.2).

For the matrix ((1) ;) of Example 6.2, we obtain in base 2 the estimations 2™ 41 <

dp <3-2™ —1. For m = 0,...,3, the lower bounds are 2, 3, 5, 9, the upper
bounds 2, 5, 11, 23, and the observed values of d,, are 2, 5, 10, 21, close to the
upper bounds.

On the positive side, Theorem 8.4 ensures that the bit size of the d-entry
(and with it all other entries by Prop. 5.5) is at most linear in the number of
absorptions. On the negative side, it indicates that it really has linear bit size;
the increase of the size of the d-entry cannot be avoided. The a- and c-entries
may grow as well, but they need not, while b is guaranteed to remain small
because it is invariant.

Theorem 8.4 also has a negative effect on efficiency. Remember (Theorem 7.1)
that n emissions require O(n) absorptions, and thus lead to a d-entry of bit size
O(n). The next execution of the loop in Algorithm 1 will thus need time O(n)
because it requires the calculation of either 2¢ — d (emission of 1), or 2¢ + d
(emission of 1), or d — 2a (in the test whether 0 can be emitted). Therefore we
obtain:

Theorem 8.5. The calculation of the first n digits of the result of applying a
non-affine refining 1-LFT to a digit stream needs time O(n?) if Algorithm 1 is
used.



8.4 Size Bounds for Tensors

For tensors, similar results hold, but their proofs are much more involved. Here,
we present only the main results.

Proposition 8.6. Let Ty = ([g 4 ; Z) be a refining tensor with h > 0, and let
T,, be a tensor which results from Ty by m absorptions in base r, any number of
emissions, and cancellation of all common factors. Then all entries of T, are
bounded by ™ (h + |f|+ |d| + |b]).

Proposition 8.7. For every refining tensor Ty = (Z g ; Z) with h > 0, there

is an integer mg > 0 such that after m > mqg absorptions, any number of emis-
sions, but no cancellations, the lower right entry h' of the resulting tensor sat-
isfies h' > pm—mo,

8.5 Cancellation in Tensors

bdf h
under emissions and absorptions. Hence, only a finite amount of cancellation is
possible if b # 0, and so, h will have size @(r™) after m absorptions. Only in the
case b = 0, an infinite amount of cancellations is possible. The result of emitting

A} from (g 2 Ji Z) is

From (17), (18), and (20), it follows that the entry b in ( c e 9) is invariant

ra rc—kd re—kf rg—kh
0 d f h ’

The results of left and right absorption of Aj, into ( ) are the tensors

a c e g

0dfh
a ¢ re+ka rg+ke and a rct+ka e rg+ke
0 d rf rh+ kd 0 rd f rh+kf) "

These three tensors reveal that the three entries a, d, and f either remain the
same or are multiplied by r. Hence—under the condition b = 0—the three condi-
tions a = 0, d = 0, and f = 0 are invariant under absorptions and emissions, i.e.,
zeros at these positions will stay for ever. Yet the three tensors do not exhibit
any opportunity for cancellation in themselves.

In the case of matrices, the opportunity for cancelling r appears only if an
absorption and an emission are considered together. Analogously, we now con-
sider the combined effect of absorbing k; from the left and ks from the right,

a c e g

and emitting [ at (b df h) (a round). The result, which does not depend on

the temporal order of these three transactions, has a common factor of r in its
8 entries. Cancelling this factor leads to

<a rc+kea—1d re+kia—1If G > (31)

0 d f rh+ kid+ ka f



where G = r2g 4+ rkic+ rkse + k1ksa — rlh — kyld — kol f.

Thus, in each round, a factor of r can be cancelled. Yet this is not enough: since
a round contains two absorptions, the lower right entry increases by a factor of
approximately r2 in each round, i.e., with the cancellation, it still increases by
approximately r. At least, it will be only half as big (in terms of bit size) as in
the case b # 0. Note also that a, d, and f attain their original values after a
round with cancellation. On the positive side, this means that these three entries
are bounded, reducing both space and time complexity of the calculations. On
the negative side, it implies that if at least one of these three values is non-zero,
then only a finite amount of further cancellations is possible (none at all if at
least one of a, d, f is 1 or —1). Thus, we may only hope for a further infinite
amount of cancellations if a = d = f = 0. Under this assumption, there is indeed
another common factor of  in Tensor (31). Its cancellation leads to

0 ¢ e rg+kic+ke—1Ih
0 0 O h
Hence, the entries ¢, e, and h attain their original values. As h is the dominant

entry, one may argue further as in the case of matrices that all entries are
bounded during the calculation. Summarising, we have the following three cases

(32)

for (‘bl 4 Ji Z) if all possible cancellations are performed:

1. If b # 0, then there are only finitely many cancellations possible. After m
rounds, h has bit size 2m + O(1).

2. If b = 0, then it stays 0 for ever, and so do each of a, d, f in this case. If not
all of a, d, f are zero, then a factor of r can be cancelled in each round, but
apart from these, there are only finitely many cancellations possible. After
m rounds, h has bit size m + O(1).

3. Ifb=a=d= f =0, then this remains true for ever, and a factor of 72 can
be cancelled in each round. All entries of the tensor have size O(1).

Like in the case of matrices, these results imply that a calculation with a tensor
T needs quadratic time, unless b=a=d = f =0 or exp;; T =0 or expr T = 0.

9 Handling Many Digits at Once

The complexity analysis given above has shown that apart from some exceptional
cases, the computation of n output digits from M (x) or T'(x,y) needs quadratic
time O(n?)—if Algorithm 1 is used which works digit by digit, handling each
individual digit by a transaction. In this section, we show that handling many
digits at once leads to a reduction in the complexity.

9.1 Multi-Digits

The key observation is that the product of two (and hence many) digit matrices
is again a digit matrix, in a bigger base. The product of two digit matrices

1 Kk L ko (1 kirat+ke
<0 7"1) (0 7"2) o <0 riro > (33)



looks like a digit matrix again; indeed, the conditions |k;| < r; — 1 imply
|k1’l°2 + k2| S (’I°1 — ].) T2 + (’I°2 — ].) = I1ro — 1

so that the result really is a digit matrix in base r173. Iterating (33) yields

Wt A = AR where R=r" and K = Zkir”*i . (34)

i=1

Thus, instead of considering the digit sequence ky ... k,, one may instead con-
sider the single number K and the length n of the sequence. The number K with
|K| < r™ —1 will be called an n-multi-digit in base r.

If a real number = € Iy is given, then we may ask for the first n digits
of a possible digit stream representation of z; this request is written as n?x.
According to the considerations above, we may accept that the answer is not
given as a digit stream of length n, but as an n-multi-digit K. The number K
with |K| < r™ — 1 is a correct answer to the request n? z iff z is in [£=1 KE1],
We write K = n?z if K is a correct answer for n? z (but note that there are
usually two different correct answers, e.g., 17 % has the correct answers 0 and 1).

9.2 Multi-Digit Computation

Assume we are given a refining non-singular matrix M and an argument 2z in
Iy, and we are asked for n digits of M (z) in base 2. Theorem 7.1 provides two
integers ¢< and ¢~ such that at least ¢< + n and at most ¢~ + n digits from z
are needed to obtain n digits of M (x). Thus we must ask for some number m of
digits of =, but we only know ¢< +n < m < ¢ + n. There are two strategies
that can be used:

1. Ask for m = ¢< + n digits from = and let K = m?z. Absorb A%~ into M
and check whether n digits can be emitted from the resulting matrix M'. If
yes, then do the emission, but if not, absorb one more digit from 2, check
again, etc. Alternatively, one may determine the number ¢'< belonging to
M’ and ask for ¢ < — ¢< more digits from z, absorb these new digits into M’
and check again whether n digits can be emitted, etc.

2. Ask for m = ¢~ +n digits from z and let K = m?z. Absorb A%" into M and
emit n digits from the resulting matrix (which is guaranteed to be possible).

Strategy (1) ensures that as few as possible digits are read from z, but it is al-
gorithmically more involved than strategy (2) since it involves checking whether
the emission is possible, and if this fails, either degenerates to the old digit-by-
digit algorithm, or involves finding out how many more argument digits are at
least needed. Here, we shall follow strategy (2), which is easier to describe.

Assume M = (§ ) is given where the four entries are small. We need to

determine ¢ = [logy(2con M)] = [logQ(%L(frbf\)/‘g)]. The rounded logarithm

can be obtained by counting how often the denominator (d — |b[)> must be



doubled until it is bigger than the numerator, or the other way round, depending
on which is bigger in the beginning. Alternatively, the calculation may be based
on bit sizes. Clearly, it is sufficient to compute ¢ once for M to serve several
requests n? M (x) with different n and z.

To handle a request n? M (x), we compute m = ¢ +n and ask for K = m? x.
Then we absorb A%" into M:

m 1 K a 2™c+ Ka
Aea2t = (7 C). _
K (b d) 0 2m b 2md+ Kb (35)
Since the original entries are assumed to be small and 2™ and K have a bit size
of O(m) = O(n), the computations in (35) can be done in linear time O(n). Let

the result be M' = (g g) with small @ and b, and big C and D.

The next step is to find a suitable integer L with |L| < 2" — 1 such that A%
can be emitted from M', which is possible iff M'(ly) C [£2, LEL]. If M and
hence M' are increasing, then M'(Iy) = [%:‘g, %i‘g], and if M is decreasing, then

M'(Iy) = [%—i‘g, g—:‘g] Anyway, we know what M'(Ip) is. In the next subsection,
we shall show how to determine a suitable L from this information.

Before we come to this, we consider the case of tensors. Assume we are given
a refining tensor T' and two arguments z; and zs in Iy, and we are asked to
compute the first n digits of a representation of the result T'(x;,z2). Although
we did not show how to do this, it is in principle possible to compute the two
integers ¢f = [logy(4cony, T)] and ¢ = [logy(4cong T)] from Theorem 7.2.
Then we may request m; = cf + n digits from x; and ms = CE + n digits
from zo which will be delivered as multi-digits K1 = m1?x; and Ky = may? .

Absorbing these multi-digits into T' = (‘; g ; }gL) yields

E m m
T = (‘Z g - f;) = TOAY @AY’
where T' is given by

b 2m2d + Ksb 2m1f—|—K1b 21’711+m2h_|_2m1K2f_|_2m2K1d + K1 Ksb
(36)
In contrast to the matrix case, we do not get away with a linear computation. The
product K1 K> is a product of two n-bit integers which needs time ¢ (n) > O(n).
Currently, the best known algorithms yield ¢g(n) = O(n logn loglogn), but
many software packages for big integer arithmetic come up with a multiplication
which needs more time than t(n), but is still more efficient than O(n?).
Apart from the product K; K>, all other operations, including multiplication
by the powers of 2, can be performed in linear time O(n). Thus we still have
linear time if a = b = 0; in this case, some power of 2 may be cancelled.
Again, the next step is to find a suitable L with |L| < r™ — 1 such that
A7 can be emitted from T", which is possible iff 7'(I2) C [£=1, LEL]. The two
end points of T'(12) are the smallest and the largest of the four corner values

(a 2m2c + Koa  2™e + Kia  2™*17M2g 4 2™ Koe + 2™ K ¢ + K1K2a>




T'(£1, £1), respectively. If the monotonicity type of T' and hence of T” is known,
then it is clear which of the corner values are the smallest and the largest.

9.3 Multi-Digit Emission

The treatment in the previous section has left us with the following problem:
given an integer n > 0 and a rational interval [u,v] C Iy, which arose as M'(Ip)
or T'(13), find an integer L such that |[L| < 2" — 1 and [u,0v] C [&31, Bt
Because we used the upper bounds for absorption, we know that such an L
exists, but for the sake of generality, we also derive a condition for the existence
of L.

The interval inclusion above can be written as u > Z=1 and v < L, which
is equivalent to 2"v — 1 < L < 2™y + 1. Since L is required to be an integer, this
in turn is equivalent to v' < L < ', where v' = [2"v — 1] and v’ = |2™u + 1].
Note that v' and u’ are integers.

Thus, the following seems to be the appropriate method: Compute the inte-
gers v’ and u’. If v' > o/, then the emission of n digits is not possible. Otherwise,
any integer L with v' < L <4/ can be emitted, for instance L = v' or L = u/.

There is one remaining difficulty though: as an n-multi-digit, the chosen
integer L should satisfy |L| < 2™ — 1. Yet if u = 1, then ' = 2™ + 1, and if
1—-2"" < wu < 1, then ' = 2"; in both cases, the choice L = u' is forbidden.
Similarly, v' = —2"™ — 1 or v’ = —2™ may happen if v < —1 + 27", rendering the
choice L = v' unsuitable.

These problems may be solved as follows: remember u > —1, whence u' >
—2™ 4+ 1. Hence, u' is a suitable choice if v’ < 2" — 1. This condition can be
expressed in terms of u as follows:

w=2"u+1]<2" -1 <= 2"u+1<2" <= u<1-2"". (37)

Since n > 0, this is certainly the case if © < 0. Analogously, one may show that
v’ is suitable if v > 0. Since u < v, one of these two conditions is always satisfied.
Actually, the decision which of v’ and v’ to take can be based on the sign of any
element w € [u, v]; for, w < 0 implies u < 0, and w > 0 implies v > 0.

Algorithm 2
Input: An integer n > 0 and a rational interval [u,v] C Io.
Output: An n-multi-digit L which can be emitted, or the information that such
a digit does not exist.
Method:
u'=|2"u+1]; v' = [2"v — 1];
if u' <v' then no such digit exists
else if w >0 then L =v" else L =1u'
(where w is any convenient test value from [u,v]).

This algorithm is sufficient to deal with the various cases of LFT’s which
have been handled in the previous section. Since we followed strategy (2) and



absorbed sufficiently many digits to guarantee the emission, the test v’ < v’ can
be omitted.
In the matrix case, we have [u,v] = M'(ly) where M' = (a C). If M'"is

b D
increasing, then u = %:‘g and v = gi‘g A simple test value w in-between is

M'(0) = C/D. The test C/D > 0 is equivalent to C > 0 since D > 0 by
our general assumption. Hence, we obtain the following algorithm (which also
includes the absorption phase):

Algorithm 3
Input: A refining increasing matriz M = (Z Z) with ¢, an argument T, and
the desired number n > 0 of output digits.
Output: An n-multi-digit L = n? M (x).
Method:
m = c> +n;
if m>0 then K = m?z; C =2"c+ Ka; D = 2"d+ Kb
else C =c¢;, D = d,
if C>0 then L = [%ﬁba)-l —1 else L = [%J +1.

For a decreasing matrix, the algorithm has to be suitably modified.

The two numbers {%J and [%ﬁba)
of the 2n-bit integers 2"(C =+ a) by the n-bit integers D =+ b, resulting in n-bit
integers. The complexity of such a division is the same as the complexity ¢ (n) of
multiplying two n-bit integers. Apart from the two divisions, all other operations,
including multiplication by 2", can be performed in linear time O(n). Thus, we
have managed to decrease the time needed to obtain n output digits from O(n?)
(for non-affine matrices) to ¥ (n).

But what about affine matrices (b = 0) where the single digit algorithm
already performed in time O(n)? Well, if b = 0, the fractions 2"(Ca)

Db
z ég?) , where a power of 2 can be cancelled before the quotients are computed.

After cancellation, these are divisions of an n bit integer by a small integer which
can be done in linear time O(n).

For tensors of known monotonicity type, similar variants of the general Al-
gorithm 2 can be developed. For general tensors, the algorithm becomes more
complicated.

-| are obtained by integer divisions

simplify to

10 Algebraic Operations

These are the basic arithmetic operations like addition and multiplication. For
each operation, we shall show how exponents can be handled, and how its ac-
tion on mantissas can be implemented by LFT’s. The general algorithm for
multi-digits (Alg. 2) can be specialised to the various cases (here only shown
for addition). These specialised multi-digit operations will not depend on LFT’s
any more. Later, we consider transcendental functions like exponential and log-
arithm, where LFT’s will be indispensable.



10.1 Addition 1 + x2

Ezponents. If both arguments happen to have the same exponent, it can be taken
out since 2°x1 +2¢x2 = 2°(x1 +x2). If the exponents are different, then the smaller
one can be increased because of [€]s = 2°[0° : {]>. If the exponents have been
successfully handled, we are left with adding the mantissas. Unfortunately, the
base interval [—1, 1] is not closed under addition, but writing x; + 2 as 2(z; Bxs)
with z; @ 25 = 2122 golves the problem. Hence the exponent handling can be
done as follows:

(e1 &) +(e2]&) = (e+1] (07 “: &) @ (07 *2: &) where e = max(er, e2).

Single-digit algorithm. The operation ‘@’ is a refining 2-LFT T = (g é ; g) of
type (1,1). By the analysis in Section 8.5 we know that the zeros written as 0
are persistent, and that there are sufficient opportunities for cancellation so that
the entries remain bounded. Thus, the single-digit algorithm for addition can be
run with tensors of the form (Z o 6 1), ie., four parameters which are small
integers. Since the entries are bounded, only finitely many tensors may show up
during the single-digit algorithm. Hence, the algorithm can be turned into the
action of a finite state transducer operating on digits as pure symbols.

Multi-digit algorithm. Algorithm 2 can be adapted to the special case of addition.
Because of %(w,y) = %(w,y) = %, we know conp, T = cong T = %, whence

¢f =cg = 1. Thus, n + 1 digits from the two arguments are sufficient to obtain
n result digits. With K; = (n + 1)?7¢; for i = 1,2, we have u = 12(;;11 @ 12(3;11 =
% and v = % A convenient test value w in-between is K;:Sf%
the condition w > 0 is equivalent to K; + K> > 0. The two integer candidates
are ' = [2"u+ 1| = [(K1 + K2 +2)/4| and v' = [(K; + Ky — 2)/4]. Thus, the

algorithm looks as follows:
For L = n? (& @ &) do:
if K>0then L = [(K—2)/4] else L = [(K +2)/4].

Subtraction is very similar to addition and not included here.

10.2 Multiplication 21 * x5
Ezponents:  (e1 | &) *(e2 | &) = (e1 +ea | & # &a).

Zero digits. Multiplication ‘¢’ is a refining 2-LFT T = (Ll7 3 g (1)) which has no

monotonicity type since & * & is increasing in & for & > 0, but decreasing for
& < 0. If & starts with 1 or 1, we are in one of these two cases, but 0 does
not provide the necessary information. Yet we may push out any zero digits
without bothering about monotonicity and without changing the state tensor:
(0:6)x& = 0: (& x&),  &Gx*(0:&) = 0: (6 *E).

This process requires only linear time in the number of emitted digits. It ends if
enough digits have been emitted or both arguments are normalised.



Single-digit algorithm. If there are no more zero digits to be emitted, then the
signs of the arguments can be read off from their first non-zero digits. From
these signs, the monotonicity type to be used in the rest of the computation can
be determined, e.g., & > 0 and & < 0 implies type ({,1). By the analysis in
Section 8.5 we know that (é 3 3 (1)) has three persistent zeros and belongs to
the medium class of tensors that permit one cancellation in every round, which

does not suffice to obtain bounded entries. The general form of the state tensor

will be (Z g ]g IC{) with small @ and big C', E, G, and H. The algorithm cannot

be optimised to a finite state transducer, but some optimisations are possible
because of the persistent zero entries. (Konecny [39] characterized the functions
that can be computed by finite state transducers. Multiplication is not among
these functions.)

10.3 Reciprocal 1/«

This operation presents the difficulty that it is undefined for £ = 0. To compute
1/z, we first need to normalise the argument 2 by squeezing out zeros from the
mantissa and reducing the exponent accordingly (see Section 2.3). This process
does not terminate for x = 0 and may take very long for z ~ 0. A possible
solution is to provide a lower bound for the exponent and to indicate a “potential
division by 0” if this bound is reached.

If normalisation terminates, we know z # 0 and } < [¢| < 1 for the final
mantissa of 2. Then 1 < ‘?1‘ < 4, whence |t| < 1. This shows how to proceed
after normalisation:

1/(e| &) = (—e+2| R(§)) where R(§) = ﬁ

Function R is a 1-LFT, R = ({ ). It is decreasing, bounded and refining on
the two intervals [4,1] and [—1,—2]. This is sufficient to use the single-digit
algorithm for computing R(§). Practically, this can be done by first absorbing
the initial two digits of ¢, which are 11, 10, 10, or 11 because of normalisation.

Absorption of 11 leads to ({ 1) (after cancellation), absorption of 10 leads to

((1) ;) etc. These matrices are ordinary decreasing refining matrices as required
01

by the single-digit algorithm ((1 2) is exactly the matrix used in Example 6.2).

11 Infinite LFT Expressions

11.1 Infinite Matrix Products

We shall later see that many familiar constants like 7 or e can be written as
(formal) infinite products [~ , M, of matrices with integer entries. This is a
generalisation of the infinite sequences (or products) of digit matrices that we
have already seen. Moreover, functions like e” can be realised as infinite products
of matrices whose entries depend on the argument z.



Before we continue, we need to clarify what such an infinite product actually
means. As finite products of matrices are again matrices, one should expect the
same for an infinite product. The standard way to define the infinite product
[~y M, would be that it is the limit of the finite products [])""_, M,, as m goes
to infinity. Yet such a definition would involve a notion of limit for matrices,
or rather 1-LFT’s. While it is not impossible to define such a limit notion, it
is beyond the scope of these notes. To avoid this problem, we only define the
results of applying infinite products to arguments (numbers or intervals); the
product itself remains meaningless and is considered mainly as another way to
present a sequence of matrices.

Given a real number argument yo, it is straightforward to define [T~ M, (yo)
as the limit of the sequence of real numbers y, = My - -+ M,,_1(yo), provided all
the numbers y,, are well-defined (no division by 0) and the limit exists. Using
this new notion, we obtain for instance the real number y = Zfil d;27% de-
noted by the digit stream dids--- as [[,~, Aq, (0), because Ag, ---Aq, (0) =
(>, d;i2n7) /2™ converges to y. Actually, the argument 0 can be replaced by
any real number yo since Aq, -+ Ag, (yo) = (yo+ Y1y di2"7%) /2™ also converges
to y.

Now we replace the argument yo by an interval Jy. In analogy to the number
case we consider the intervals

Jo = My Mn 1(Jo). (38)

The sequence (J,,)n>0 of intervals is nested if J,, DO J,41 for all n > 1 (this
does not include the inclusion Jy D J; which is disregarded deliberately). The
inclusion J,, D J,y1 means Mg - M,_1(Jg) D M-+ My(Jo). If the matrices
Moy, ..., M,_; are non-singular, this is equivalent to M, (Jp) C Jo. Therefore in
the non-singular case, the sequence of intervals is nested iff all LFT’s M,, with
n > 1 are refining w.r.t. the interval Jy. Note that My need not be refining,
but it should be bounded on Jy so that J; = My(Jp) and all other intervals are
well-defined.

Following these considerations, an infinite product [, M,(Jo) is called
refining if My is bounded on Jy and all M, for n > 1 are refining for Jy. This
includes the sequences of our signed number representation, where My is an
exponent matrix, which is bounded on the base interval I, and the remaining
matrices are digit matrices, which are refining for I.

We say that the refining product [] -, M,(Jo) has as value the real number
y if the intersection of the nested sequence of intervals J; O Jo D - - - is the sin-
gleton set {y}. For instance, the product E, [],>, A4, (In) corresponding to the
number representation (e | dids . ..) has as value the real number 2°-3°>°, d;27
denoted by the representation.

Application of an infinite product to a number and to an interval are clearly
related. If y = [[_, M,(Jo), then also y = []°_, My(yo) for all yo in Jp. On
the other hand, the interval notion is more restricted and hence more powerful
than the point notion because it includes the fact that the interval sequence is
nested, which provides lower and upper bounds for all sequences (y»)n>0 coming
from arguments yo € Jp.



11.2 Convergence Criteria

A nested sequence of intervals J, = [up,v,] converges to some single point iff
£(Jn) = v —uy, — 0 as n — oo. This single point is then the common limit of
(¥n)n>1 and (vn)n>1. Because of this observation, a convergence criterion may
be obtained from the notion of contractivity. Iterating Relation (22) yields

0(J,) = L((My--- M, 1)(Jo)) < con”® My -...-con” M, 1 -4(Jp).

Thus, we obtain the following:

Theorem 11.1.
A refining infinite product [[,—, Mn(Jo) converges if [~ con”® M,, = 0.

Usually, we shall not directly apply this criterion, but the following corollary:

Corollary 11.2. If[[;°, M, (Jo) is a refining infinite product with the property
lim, o con’® M,, < 1, then the product converges to a real number.

11.3 Transformation of Infinite Products

(Formal) infinite products can be transformed by algebraic manipulation with
the hope that the result of the transformation has better convergence properties
than the original product.

Given [, M,, select a sequence (Up)n>1 of non-singular matrices. Then
finite products can be transformed as follows:

Mo+ My Uy = MoUy Uf My Up -+ Up_y My U = Mo My -+ My
(39)
using the new matrices

My = MoU;, and M, = U*M,Upy1 forn>1. (40)

Because any infinite product [] 7, M, of non-singular matrices can be trans-
formed into any other product HZO:O J\Afn by choosing U; = MS‘MO and Up41 =
M Un]T/fn, one needs separate arguments for the convergence of the new product
to the same value as the old one.

If the original product is applied to a real number yg, then its value is the
limit of the sequence y, = My -+ My_1(yo). If there is a real number 7, such
that U,(¥o) = yo for all n > 1, then the number sequence induced by the new
matrices at yp is the same as the sequence induced by the old matrices at yo
because of My ---M,_1(§o) = Mo---M,_1Un(Yo) = yn using (39). Hence
we obtain:

Proposition 11.3. If[]>, M,, results from transforming [To—y My, with (Up)n>1
and yo and Yo are two real numbers satisfying Un(Jo) = yo for all n > 1, then
| M, (i) = [To—o Mn(yo) (this means, the first expression converges if and
only if the second converges, and if they converge, they have the same value).



11.4 Infinite Products from Taylor Series

We want to implement transcendental functions by infinite products, and so
we need methods to obtain such products from more familiar representations.
One such representation is the Taylor power series f(z) = Y .° a2, e.g.,

et =3 2T

The:e Oarne- several ways to transform Taylor series into infinite products.
Among the methods explored so far, the one described in the sequel turned out
to be the most useful one for the intended applications [29]. It can be applied
whenever a, # 0 for n > 1 and uses the matrices

M, = <an aoi””) and M, = <g ;i) forn > 1 (41)

where ¢, = G“L . To show that these matrices correspond to the Taylor series,
we claim that their finite products have the following form (up to scaling):
n n el
P, = My- My, = <a”g: Zi:‘i it ) (42)

This claim can be verified by induction. For n = 1, we have P, = M, which
clearly has the claimed form. For the step from n to n 4+ 1, we compute P, =

z> ( ) _ ( +q<z>>

P, M, =
nn<0 1 0 qn 0 qn

Dividing all four entries by ¢, # 0 yields the required form because of a,, /¢, =
Ap+41-

From (42), P,(0) = 3, a;z® follows. Hence, the product [T, M, (0) con-
verges if and only if the Taylor series converges, and yields the desired value
Yoo aizt.

Of course, we do not want to apply the product to the real number 0, but to
the base interval Iy = [—1, 1] of our number representation. Clearly, all matrices
M, are bounded (under the assumption a, # 0 for n > 1). The matrices (g qﬁ)
are refining iff |z| + |z| < |gn| (Prop. 5.4). Hence, [[)—, M, (Iy) is refining for
|z| < q/2, where ¢ = inf,>1 |g,|. The contractivity of M, is |z|/|qn| < |z|/4q,
which is at most 1/2 for |z| < ¢/2. Thus, for |z| < ¢/2, [[o—, Mn(Io) is a refining
convergent product. Since Iy contains 0, its value coincides with [] 7 M, (0) =
Yoo g anz™ as desired.

11.5 Infinite Products from Continued Fractions

Another, less familiar source of infinite products are continued fraction expan-
sions. A continued fraction is an infinite expression

b1
a1+f’%_

ap + (43)



parameterised by numbers (an)n>0 and (bn)n>1. It denotes the limit of the se-
quence of partial continued fractions

b1 b1
ap, Go+ —, Qo+ ————,
a1 a; + ﬁ
provided that this limit exists. For ease of notation, the infinite expression (43)
is written as (ao; b1, a1; b2, as;...).
Like for Taylor series, there are several ways to turn a continued fraction into
an infinite product. We use the following:

1 ap 0 bn
_ _ > 1.
My (0 1 ) and M, <1 an) forn>1 (44)

Since My(y) = ap +y and M, (y) = a::-y’ the partial products My - -+ M;,—1(0)
are exactly the partial continued fractions so that [~ M, (0) converges if and
only if the continued fraction converges, and yields the same value.

In practical applications, this infinite product must usually be transformed
into a more appropriate one before the argument can successfully be extended

to the base interval I. Often, the transformation matrices are chosen as U,, =

((1) uon ) Since 0 is a fixed point of these matrices (U, (0) = 0), the transformed

infinite product still has the value of the continued fraction when applied to 0
by Prop. 11.3. For the actual transformation, it is useful to note that

a ¢ 1 0 a ClUpyl
= 45
(b d) (0 Un+1> (b dun+1> ( )
1 0\ /a ¢ 1 0 Up @ Up CUpt1
= 46
(0 un> (b d) <0 Un+1> ( b dupt1 (46)
11.6 The Evaluation of Infinite Products

Before we come to the implementation of the various transcendental functions
by infinite products, we give hints on how to use the products in a practical
implementation. For simplicity, we only consider refining products applied to
the base interval [—1,1].

If all the matrices in [, M, (Io) have integer entries, there is a choice of
several different evaluation algorithms. We only consider single digit approaches,
but corresponding multi-digit realisations do exist. Generally, one has to assume
that a matrix M, can be created from its index n. First, the matrices may be put
into a list which initially contains only Mj. In this list, each matrix absorbs the
digits that are emitted from its right neighbour. Whenever the rightmost matrix
M, needs to absorb a digit, the next matrix M, is created and appended to
the list.

Second, the algorithm may be run with a state matrix which initially is Mj.
Whenever the state matrix cannot emit a digit, it absorbs the next matrix M,



down the list of matrices which has not been absorbed before. This next matrix
is created on the fly from its index n. Thus, only one matrix must be stored (and
the index of the next one to be absorbed), while in the first method, a whole
list of matrices must be maintained. On the other hand, the upper bounds for
space and time complexity of the ordinary single-digit algorithm do not hold
here, since the matrices that are absorbed are usually much more complicated
than the simple digit matrices.

Usually, the matrices in the infinite product depend on an argument z, like
in the product derived from the Taylor series expansion. If the argument is a
given rational, the matrices can be converted into integer matrices by suitable
scaling, and we are back to the previous case. In the general case of an arbitrary
real argument, this cannot be done; instead, the matrices must be converted
into tensors. This is always possible if their four entries depend linearly on z, by

using (6):
ax+e cr+g\ (a c e g
<bw+f da:+h> B <b d f h> -

If T, is the tensor belonging to M,,, the product f(z) =[]~ , M, (Io) becomes
the infinite tensor expression f(z) = To(x,Ti(x,...)). Such an expression can
only be evaluated by the first method indicated above: a list of tensors must
be maintained which initially consists of Ty only. Each tensor absorbs argument
digits from the left, and from the right the digits emitted from the next tensor.
If the last tensor needs a digit from its right argument, a new tensor is created
and added to the list. This algorithm works if the tensors are sufficiently con-
tractive so that (almost) each tensor needs strictly less than n digits from its
right argument to emit n digits.

12 Transcendental Functions

12.1 Exponential Function

Argument reduction. The infinite products derived below will only behave well
for |z| < 1, which is equivalent to the exponent of x being at most 0. Yet an
arbitrary real argument can be brought into this region by exploiting the fact
e?* = (e%)2. Hence, an exponent n > 0 may be handled by e™l€) = §n(ef)
where S™ means n applications of the squaring operation S. (Admittedly, this
can become quite inefficient for larger exponents.) Negative exponents n < 0 can
be handled by putting the corresponding number of zero digits in front of the
mantissa: e("18) = e where ¢ = 0I"I : ¢.

Taylor series realisation. The well-known Taylor series for e” is > 7, % All
coefficients a, = 1/n! are non-zero, so that the method of Section 11.4 can be
applied. The quotient g, = a,/an41 is n + 1, so that ¢ = inf, > |gn| = 2. Thus

we have
z z+1\ o [z T
T o= <1.
e <0 ) >H<o n+1>(10) for |z < 1 (47)

n=1



All M,, with n > 1 have contractivity nlj_ll < n%_l
As already mentioned, a representation such as (47) is open to two different

interpretations. For rational arguments z, it is (equivalent to) an infinite prod-

uct of integer matrices, e.g., e = ((1) ?) | ) ((1) n41-1) (Ip). For general (real)

arguments however, representation (47) should be turned into the infinite tensor
expression e® = To(z, Ty (z, T2 (x, .. .))) with

11 0 1 1 10 0
0 (0 0 0 1> andIn (0 0 0 n+1>

where each tensor has 3 persistent zeros, indicated by 0.

The tensors T, for n > 0 realise the functions Ty, (z,y) = z(y + 1)/(n + 1)
which are increasing in x because y + 1 > 0 for y € Iy, but are not monotonic
in y. They can be handled similar to multiplication: leading zero digits of z can
be pushed out without changing the tensor, and then the first non-zero digit
decides the monotonicity behaviour.

The front tensor Tp(z,y) = x(y + 1) + 1 has the same monotonicity be-
haviour, but cannot be handled immediately in the same way; notice also that
it is bounded, but not refining, so that it must emit an exponent matrix first.

— For z € [0, 1] (leading digit 1), Ty has type (1,1) and image [1, 3], so that
the appropriate exponent is 2 (and 10 can be emitted after emitting the
exponent matrix).

— For z € [-1,0] (leading digit 1), Ty has type (1, }) and image [—1, 1], so that
the appropriate exponent is 0.

— For z € [—1, 3] (leading digit 0), Ty has image [0, 2], so that the appropriate
exponent is 1, and 1 can be emitted after the exponent matrix. The ten-
sor resulting from these emissions is (up to scaling) Tp = (5 & ¢ }) with
T4(x,y) = z(y + 1). Hence, all leading zeros of z can be pushed out with-
out modifying T}, and the first non-zero digit decides the monotonicity be-

haviour.

Continued fraction realisation. A continued fraction for the exponential function

18
2 2

X X X
=l e Vg

It corresponds to the product representation

= (C o

n=1

1; ...

. . . _ 2 24z
The product of the first two matrices is (up to scaling) My = (2 2_I). The

infinite product cannot directly be extended to the base interval Iy = [—1,1]
0 z2/(16n%—4)
1 1

since the denominators of the matrices M,, = ( ) become 0 at —1.

This problem is solved by transforming the product with the matrices U, =



((1) 4(2371)) (n > 1), which have the form considered in Section 11.5. By (45),

the new front matrix is
~ 2 4(2+12) 1 4422
My = o
2 4(2-1x) 1 4-22
which is bounded on I for |z| < 1. By (46), the other matrices are

16(2n—1)(2n+1
- 0 z* 4((2n—1))((2n+_1)) _ <0 42 )
" 1 4(2n +1) 1 42n+1)

These matrices are refining on I for |z| < 1. By (23), the contractivity of M, is

< % which is better (i.e., smaller) than the value 12L < —L_ achieved

42>
(8n+3)2 n+l = n+l
by the Taylor expansion. Therefore, [~ Mn(Io) converges, and since 0 € I,
it, converges to [[°°, M, (0) = [1°, M,,(0) = e”.
Like the Taylor product, the continued fraction product consists of integer

matrices for rational arguments, e.g., e = (} g) I, ((1) 8n4+4) (o). In contrast

to the Taylor case, these matrices are not affine and hence more difficult to
handle, but they have better contractivity.

For general (real) arguments, the representation must be turned into the
infinite tensor expression e* = Ty (z, Ty (22, Ty (22, ...))) which uses both z
and 22. The tensors are

0 2 1 4 0 4 0 0
TZ T:
0 <0 —214) and  Tn (0018n+4>

where each tensor except Tp has 3 persistent zeros, indicated by . Taking into
account that their left argument 22 is > 0, the tensors T}, for n > 1 have type
(1,1). Leading zero digits of x are doubled by squaring and can be pushed out
of T}, without modifying it. Moreover, each T}, can emit 1 after reading 1 from
z2. The front tensor Ty is a bit more complicated, but can be handled essentially
like the front tensor of the Taylor expansion.

12.2 Logarithm

Definition. Natural logarithm Inz is the inverse of the exponential function.
Thus it is only defined for arguments x > 0. To deal with negative arguments,
we propose to actually compute the function f(z) = In|z|, which is the anti-
derivative (indefinite integral) of the reciprocal function 1/z.

Argument normalisation. Like the reciprocal itself, f is still undefined for 0. The
handling of this special case is similar to the handling of 1/0 in Section 10.3:
To compute f(x), we first normalise the argument z by squeezing out zeros
from the mantissa and reducing the exponent accordingly (see Section 2.3). If
normalisation terminates, we know z # 0 and § < [£| < 1 for the final mantissa
of . This mantissa will start with the digit 1 or 1. The following description
tells what to do in the positive case; the negative case is dual.



Argument reduction. Here, we use the fact that a (positive) normalised mantissa
starts with 10 or 11: In(e | 1: &) = In(2%-(£+1)/2) = (e—1)-In2 + In(1+4).
For the constant In 2 see below. The first digit of ¢ is 0 or 1; hence £ € [—%, 1].

Continued fraction expansion. A continued fraction for the function In(1 + z) is
<07 z, 17 :E/Qa 17 U1, 11 w1, 11 U2, 17 wa, 17 >

1 . . . .
where v, = ;%5 and wy, = (Z:+)2x. We now write this continued fraction as an

infinite product like in Section 11.5, and immediately transform this product by

U, = ((1) 2), using (45) and (46) in the step marked by L In the last step, the
matrices are converted into tensors.

ween= (G ET)IE )0 T o

$/2+1> ,E( wn+1>(0)
2; x2f2> fj(niz (n+1)5i4n+2> (0)

.4) ﬁ (fnixz ((n+1é):1ix4;14+2)_4> (0)

T 4z b 2nzx 8nz
0
1 2z 4> H<2n+1 (2n+2):ﬂ+8n—|—4>()

I
- 8 o

1=
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[\
5]
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5]
- &

+
n=1
(1400 ﬁ 2n  8n 0 0 (0)
S \0 21 4 v oy 0 2n+2 2n+1 8n+4/|,

The tensors in the last line will be called T,, (n > 0), and the corresponding
matrices in the second but last line M, (n > 0). All tensors T,, exhibit one
persistent zero, in the lower left corner. They are bounded on I3 since the right
entry in their second line is bigger than the sum of the two middle entries. The
determinants of the matrices are det My = 222 > 0 and det M,, = 4n(n+ 1)z >
0 for n > 1. Hence, all tensors are increasing in their second argument, for any
x. For y € Iy, one may also verify det(T,|¥) > 0, i.e., all the tensors have type
(1,1) in I3. They are not refining for Iy, but remember that we only consider
z € [—3,1]. For such z, the matrices M,, with n > 1 are refining. By (23), the
contractivity of these matrices is

dn(n + 1)z? n—go 4z _ z \’
((2n + 2)x + 6n + 3)2 (22 +6)2  \z+3
For z = —1,0,1,1, this gives 5=,0, 15, 7=, respectively.



The constant In2 can be derived from the general case as

In(1+1) = G 2) ﬁ(QZil 103116) (Io)

=1

with contractivity {= (in the limit). Another possibility is to exploit the fact

In2 = —In(3) = —In(1 — }), which leads to a product with contractivity 5= (in
the limit):
o 14ﬁ—n —4n (o)
n = .
2 6) M \omt+1 43"
Part II:

A Domain Framework for Computational Geometry

13 Introduction

In Part I we presented a framework for exact real number computation, where we
developed a data type for real numbers and presented algorithms for computing
elementary functions. We now turn our attention to computational geometry,
where we are interested in computing geometric objects, such as lines, curves,
planes, surfaces, convex hulls and Voronoi diagrams. In a broad sense, we can
say that this represents an extension of exact arithmetic in that we now need
to compute a subset of the Euclidean space rather than just a real number. In
fact, the undecidability of comparison of real numbers in exact arithmetic has
a close counterpart in computational geometry, namely the undecidability of
the membership predicate for proper subsets of the Euclidean space. Thus, in
computational geometry one has to deal with somewhat similar problems as in
exact arithmetic. However, there are some other fundamental new issues which
are not encountered in exact arithmetic, making computational geometry an
independent subject of its own.

Computational geometry and solid modelling, as in Computer Aided Design
(CAD), are fundamental in the design and manufacturing of all physical objects.
However, these disciplines suffer from the lack of a proper and sound data-
type. The current frameworks in these subjects are based, on the one hand, on
discontinuous predicates and Boolean operations, and, on the other hand, on
comparison of real numbers, which is undecidable. These essential foundations
of the existing theory and implementations are both unjustified and unrealistic;
they give rise to unreliable programs in practice.

Topology and geometry, as mainstream mathematical disciplines, have been
developed to study continuous transformations on spaces. It is therefore an irony
that the main building blocks in these subjects, namely the membership pred-
icate of a set, the subset inclusion predicate, and the basic operations such as
intersection are generally not continuous and therefore non-computable.



For example, in any Euclidean space IR"™ the membership predicate €g of
any subset S C IR" defined as

€s: R" — {tt,ff}
ttifz €S
T\ Fifag S

with the discrete topology on {tt, ff} is continuous if and only if S is both open
and closed, i.e. if S is either empty or the whole space. In fact, the membership
predicate of any proper subset of IR" is discontinuous at the boundary of the
subset.

Similarly, consider the intersection operator as a binary operator on the col-
lection C(IR™) of compact subsets of IR" equipped with the Hausdorff distance
dp defined on closed subsets by

dy(C,D) = maX(jlelg inf | —d], Sup inf |e —d]),

with the convention that dg(0,0) = 0 and for C' # 0, dy (B, C) = oc:

—N—:C(R") x C(R") = C(R")
(A, B) — ANB

Then, — N — is discontinuous whenever A and B just touch each other.

The non-continuity of the basic predicates and operations creates a founda-
tional problem in computation, which has so far been essentially neglected. In
fact, in order to construct a sound computational model for solids and geometry,
one needs a framework in which these elementary building blocks are continuous
and computable.

In practice, correctness of algorithms in computational geometry is usually
proved using the Real RAM machine model of computation, in which comparison
of real numbers is considered to be decidable. Since this model is not realistic,
correct algorithms, when implemented, turn into unreliable programs.

A simple example is provided by computing, in any floating point format,
first the intersection point z in the plane of two straight lines I; and Ly meeting
under a small angle, and then computing the minimum distance d(z, L1) and
d(z, L) from x to each of the two lines. In general, d(z,L;) and d(z,Ls) are
both positive and distinct.

A more sophisticated example is given by the implementation in floating
point of any algorithm to compute the convex hull of a finite number of points
in the plane. If there are three nearly collinear points A, B, C' as in the picture,
then depending upon the floating point format, the program can give, instead
of the two edges AB and BC, any of the following:

(i) AB only.
(ii) AC only.
(iii) BC only.
(iv) none of them.



Fig. 1. The convex hull of a finite number of points (top picture) and four possible
errors arising from floating point implementations.



In any of the above four cases, we get a logical inconsistency as the edges
returned by the program do not give the correct convex hull and in the cases (i),
(iii) and (iv) do not give a closed polygon at all.

In CAGD modelling operators, the effect of rounding errors on consistency
and robustness of actual implementations is an open question, which is handled
in industrial software by various heuristics.

The solid modelling framework provided by classical analysis, which allows
discontinuous behaviour and comparison of exact real numbers, is not realistic
as a model of our interaction with the physical world in terms of measurement
and manufacturing. Nor is it realistic as a basis for the design of algorithms im-
plemented on realistic machines, which can only deal with finite data. Industrial
solid modelling software used for CAGD (Computer Aided Geometric Design),
CAM (Computer Aided Manufacturing) or robotics is therefore infected by the
disparity between the classical analysis paradigm and feasible computations.
This disparity, as well as the representation of uncertainties in the geometry of
the solid objects, is handled case by case, by various expensive and unsatisfac-
tory “up to epsilon” ad-hoc heuristics. It is difficult, if at all possible, to improve
and generalise these techniques, since their relatively poor success depends on
the skill and experience of software engineers rather than on a well formalised
methodology. In practice, the maintenance cost of some central geometric oper-
ators such as the Boolean operations or some specific variants of the Minkowski
sum has always remained critical.

A robust algorithm is one whose correctness is proved with the assumption
of a realistic machine model. Recursive analysis defines precisely what it means,
in the context of the realistic Turing machine model of computation, to compute
objects belonging to non-countable sets such as the set of real numbers.

Here, we use a domain-theoretic approach to recursive analysis to develop
the foundation of an effective framework for solid modelling and computational
geometry. It is based on the work of the second author with André Lieutier. In
fact these notes form an abridged version of two papers [14,15]; full details of
proofs and many other results can be obtained from these papers.

We present the continuous domain of solid objects which gives a concrete
model of computation on solids close to the actual practice of CAD engineers.
In this model, the basic predicates, such as membership and subset inclusion,
and operations, such as union and intersection, are continuous and computable.
The set-theoretic aspects of solid modelling are revisited, leading to a theoreti-
cally motivated model. Within this model, some unavoidable limitations of solid
modelling computations are shown and a sound framework to design specifica-
tions for feasible modelling operators is provided. Moreover, the model is able
to capture the uncertainties of input data in actual CAD situations.

We need the following requirements for the mathematical model:

1. the notion of computability of solids has to be well defined,

2. the model has to reflect the observable properties of real solids,

3. it has to be closed under the Boolean operations and all basic predicates and
operations have to be computable,



4. non-regular sets' have to be captured by the model as well as regular solids,
5. the model has to support a design methodology for actual robust algorithms.

A general methodology for the specification of feasible operators and the
design of robust algorithms should rely on a sound mathematical model. This
is why the domain-theoretic approach is a powerful framework both to model
partial or uncertain data and to guide the design of robust software.

14 The Solid Domain

In this section, we introduce the solid domain, a mathematical model for repre-
senting rigid solids. The reader should refer to the Appendix for a basic introduc-
tion to the domain-theoretic notions required in the rest of this article. We focus
here on the set-theoretic aspects of solid modelling. Our model is motivated by
requirements 1 to 5 given above.

We first recall some basic notions in topology. For any subset A of a topolog-
ical space X, the closure, A, of A is the intersection of all closed sets containing
A, the interior, A°, of A is the union of all open sets contained in A and the
boundary, 0 A, of A is the set of points z € X such that any neighbourhood of x
(i.e. any open set containing z) intersects both A and its complement A°. Recall
that an open set is regular if it is the interior of its closure; dually, a closed set
is regular if it is the closure of its interior. The complement of a regular open
set then is a regular closed set and vice versa. A subset C' C X is compact if for
every collection of open subsets (O;)ier with C' C [J;c; O; there exists a finite
set J C I with C C (J;c;O;- A subset of R? is compact iff it is bounded and
closed.

Given any proper subset S C IR", the classical membership predicate €g:
R" — {tt,ff} is continuous except on 9S. Recall that a predicate is semi-
decidable if there is an algorithm to confirm in finite time that it is true whenever
the predicate is actually true. For example, membership of a point in an open
set in IR™ is semi-decidable, since if the point is given in terms of a shrinking
sequence of rational rectangles, then in finite time one such rational rectangle
will be completely inside the open set. On the other hand, if S is an open or
closed set, then its boundary has empty interior and it is not semi-decidable that
a point is on the boundary. For example if n = 1 and S is the set of positive
numbers, then a real number z € IR is on the boundary of S iff z = 0 which is not
decidable in computable analysis. It therefore makes sense from a computational
viewpoint to redefine the membership predicate as the continuous function:

e R™ — {tt,ff},
tt ifx e S°
z— { ff if z e Se°
1 otherwise.

! An open set is regular if it is the interior of its closure.



Here, {tt,ff}, is the three element poset with least element L and two incom-
parable elements tt and ff. In the Scott topology {tt} and {ff} are open sets but
{1} is not open. We call this the continuous membership predicate. Then, two
subsets, or two solid objects, are equivalent if and only if they have the same con-
tinuous membership predicate, i.e. if they have the same interior and the same
exterior (interior of complement). By analogy with general set theory for which
a set is completely defined by its membership predicate, we can define a solid
object in R™ to be any continuous map of type R"™ — {tt,ff} . The definition
of the solid domain is then consistent with requirement 1 since a computable
membership predicate has to be continuous.

Note that a solid object, given by a continuous map f : R"™ — {tt,ff},,
is determined precisely by two disjoint open sets, namely f~!(tt) and f~'(ff).
Moreover, the interior (f~'(tt) U f~'(ff))¢° of the complement of the union of
these two open sets can be non-empty. If we now consider a second continuous
function g : R™ — {tt,ff}, with f C g, then we have f!(tt) C g !(tt) and
fL(ff) C g (ff). This means that a more defined solid object has a larger inte-
rior and a larger exterior. We can think of the pair f~!(tt), f ~!(ff) as the points
of the interior and the exterior of a solid object as determined at some finite
stage of computation. At a later stage, we obtain a more refined approximation
g which gives more information about the solid object, i.e. more points of its
interior and more points of its exterior.

Definition 14.1. The solid domain (SIR",C) of R" is the set of ordered pairs
(A, B) of disjoint open subsets of R"™ endowed with the information order:
(Al,Bl) C (AQ,BQ) — A - As and B C B,.

An element (A, B) of SIR" is called a partial solid. The sets A and B are
intended to capture, respectively, the interior and the exterior (interior of the
complement) of a solid object, possibly, at some finite stage of computation.
Note that (SIR",C) is a directed complete partial order with | |;-;(A;, B;) =
(Uier Ai, Uier Bi) and is isomorphic with the function space IR"™ — {tt,ff} . By
duality of open and closed sets, (SIR", C) is also isomorphic with the collection
of ordered pairs (A, B) of closed subsets of IR"™ with A U B = IR" with the
information ordering: (A;, By) C (A2, Bs) <= As C A; and B, C B;.

Proposition 14.2. The partial solid (A, B) € (SIR",C) is a maximal element
iff A= B°° and B = A°°.

Proof. Let (A, B) be maximal. Since A and B are disjoint open sets, it follows
that A C B°°. Hence, (4, B) C (B®°, B) and thus A = B°°. Similarly, B = A°.
This proves the “only if” part. For the “if” part, suppose that A = B¢® and
B = Ac°. Then, any proper open superset of A will have non-empty intersection
with B and any proper open superset of B will have non-empty intersection with
A. Tt follows that (A, B) is maximal. a

Corollary 14.3. If (A, B) is a mazimal element, then A and B are regular
open sets. Conversely, for any regular open set A, the partial solid (A, A°°) is
mazximal.



Proof. For the first part, note that A is the interior of the closed set B¢ and
is, therefore, regular; similarly B is regular. For the second part, observe that
A = (A)° = A. O

We define (A4, B) € SR” to be a classical solid object if AU B = R".

Proposition 14.4. Any maximal element is a classical solid object.

Proof. Suppose (A, B) is maximal. Then R" = AUOJAU A®° = AU B, since
A=AUOA and A°° C A®° = B. i

Classical solid objects form a larger family than the maximal elements, i.e. regu-
lar solids. For example, if A = {z € R? | |2| < 1} U {(z,0) € R? | |z| < 2}, then
A is represented in our model by the classical (non-regular) object (A°, A).

Theorem 14.5. The solid domain (SIR", C) is a bounded complete w-continuous
domain and (A, By) < (Aa, Bs) iff A1 and By are compact subsets of Ay and
B respectively.

Proof. To characterise the way-below relation, first assume that A; and B; are
compact subsets of Ay and By respectively. If Ay C (J;c; Ui and By C U, Vi,
where the unions are assumed to be directed, then we get A; C Ay C Uicr Ui
and B; C B, C Uiel V;i. By compactness of A; and B it follows that there exists
i € I with By C U; and By C V;. Conversely, assume that (41, By) < (A, By).
There exist directed collections of open sets (U;)icr and (V;);er with union A,
and B> respectively such that U; and V; are compact subsets of A and Bs
for each ¢ € I. By the definition of the way-below relation, there exists ¢ € I
with A; C U; and By C V; from which it follows that A; and B; are compact
subsets of As and Bs respectively. Every open subset of IR™ can be obtained as
the union of an increasing sequence of open rational polyhedra (i.e. polyhedra
whose vertices have rational coordinates) way-below the open set. The collection
of all pairs of disjoint open rational polyhedra thus provides a countable basis
for SIR". O

In practice, we are often interested in the subdomain S,IR" of bounded partial
solids which is defined as S;IR"™ = {(A4, B) € SR" | B® is bounded} U {(0,0)},
ordered by inclusion. It is easy to see that SIR" is a subdcpo of SIR"™. Moreover,
it is left as an exercise to show that:

Proposition 14.6. The dcpo Sbﬁn is w-continuous with the way-below relation
given by (Ay, B1) < (A2, B) iff Ay C Ay and BS C B;°.

We say (A, B) € S[—a,a]™ is a proper element if (A4, B) # (,[—a,a]™) and
(A, B) # ([—a,a]™, D). Consider the collection R([—a,a]™) of non-empty regular
closed subsets of [—a, a]™ with the metric given by,

d(A, B) = max(du (A, B), dir (A°, B°),

where dg is the Hausdorff metric.



Theorem 14.7. The collection of proper maximal elements of S[—a,a]™ is the
continuous image of the space (R([—a,a]™),d) of the non-empty regular closed
subsets of [—a, a]™.

Proof. Tt is convenient to work with the representation of S[—a,a]™ by pairs
(A, B) of closed subsets of [—a,a]™, with AU B = [—a,a]”, ordered by reverse
inclusion. Any pair of open sets (U, V') of [—a, a]™ provides a basic Scott open set
Ow,v) of S[—a,a]™ given by Ovy = {(4,B) € S[—a,a]" | ACU&B CV}.
Now consider the map I" : R([—a,a]”) — S[—a, a]” defined by I'(4) = (A, A°).
Clearly, I' is a function onto the set of proper maximal elements of S[—a, a]™.
To show that it is continuous, suppose (A, A°) € Ow,v), i.e. ACU and Ac C
V. Let k = min(r(A,U°),r(A¢,V°)) where r(Y, Z) is the minimum distance
between compact sets Y and Z. Then for D € R([—a,a]™) with d(C, D) < k,
the inequalities dg (C, D) < k and dg(C¢, D¢) < k imply D C U and D¢ C V.
This shows that I" is continuous. O

We can define a metric on the non-empty closed subsets of IR™ by putting:
d'y (A, B) = max(dp (A, B),1). We leave it as an exercise for the reader to show
that the collection of proper maximal elements of SIR" is the continuous image
of the space (R(IR™),d') of the non-empty regular closed subsets of R™ with the
metric defined by

d'(A, B) = max(dy (4, B), dy (A, BY)). (48)

15 Predicates and Operations on Solids

Our definition is also consistent with requirement 2 in a closely related way.
We consider the idealisation of a machine used to measure mechanical parts.
Two parts corresponding to equivalent subsets cannot be distinguished by such
a machine. Moreover, partial solids, and, more generally, domain-theoretically
defined data types allow us to capture partial, or uncertain input data encoun-
tered in realistic CAD situations. In order to be able to compute the continu-
ous membership predicate, we extend it to the interval domain IIR™ and define
—€ —:IIR" x SR™ — {tt,ff}, with:

tt ifCCA
Ce(A,B)=<ff fCCB
1 otherwise

(see Figure 2). Note that we use the infix notation for predicates and Boolean
operations.
We define the predicate — C — : SyIR™ x SR™ — {tt,ff}, by

tt f BUC=R"
(A,B) C(C,D)=< ff f AND #0
1 otherwise



Fig. 2. The membership predicate of a partial solid object of the unit square.

The restriction to SIR™ will ensure that — C — is continuous, as we will see in
one of the exercises below. Starting with the continuous membership predicate,
the natural definition for the complement would be to swap the values tt and ff.
This means that the complement of (A, B) is (B, A), cf. requirement 3.

As for requirement 4, Figure 3 represents a subset S of [0, 1]? that is not reg-
ular. Its regularization removes both the external and internal “dangling edge”.
Here and in subsequent figures, the two components A and B of the partial solid
are, for clarity, depicted separately below each picture.

(AB)

Fig. 3. Representation of a non-regular solid.

Bearing in mind that for a partial solid object (A, B), the open sets A and
B respectively capture the interior and the exterior of the solid, we can deduce



the definition of Boolean operators on partial solids:

(A17Bl) n (A27Bg) = (A1 n AQ,Bl U Bg)

One can likewise define the m-ary union and the m-ary intersection of partial
solids. Note that, given two partial solids representing adjacent boxes, their
union would not represent the set-theoretic union of the boxes, as illustrated in

Figure 4.

(A1,B1) (A2,B2) (A1,B1)0(A2,By)

Ay B: A, B, A.OA, B1n B>

Fig. 4. The union operation on the solid domain.

Theorem 15.1. The following maps are continuous:

(i) The predicate — € — : IIR" x SR"™ — {tt,ff},.
(#1) The binary union —U— : SIR™ x SR — SIR" and more generally the m-ary
union | J : (SR™)™ — SIR"™.
(i4i) The binary intersection —N — : SIR™ x SR™ — SIR" and more generally the
m-ary intersection [ : (SR™)™ — SR".

Proof. (i) A function of two variables on domains is continuous iff it is continuous
in each variable separately when the other variable is fixed. From this, we obtain
the required continuity by observing that a non-empty compact set is contained
in the union of an increasing sequence of open sets iff it is contained in one such
open set.

(ii) This follows from the distributivity of U over N.

(iii) Follows from (ii) by duality. a



15.1 The Minkowski Operator

We now introduce the Minkowski sum operation for partial solids of IR". Recall
that the Minkowski sum of two subsets S7, Sy C IR" is defined as

S1®Sy={z+y|ze€S,ye€ S}

where x + y is the vector addition in IR". For convenience we will use the same
notation @ for the Minkowski sum on the solid domain, which is defined as a
function — @ — : (SpIR") x (SIR"™) — SIR™ by:

(A1, B1) @ (A2, B2) = ((A1 & 42), (BY & B3)").

It can be shown that — @ — : (S;IRY) x (SR?) — SIR? is well-defined and
continuous.

16 Computability on the Solid Domain

We can provide an effective structure for SIR™ as follows. Consider the collection
of all pairs of disjoint open rational polyhedra of the form K = (L;, L»). Take
an effective enumeration (K;);c, with K; = (7 (K;), m2(K;)) of this collection.

We say (A, B) is a computable partial solid if there exists a total recursive
function §: IN = IN such that (A4, B) = (U,c., 1 (Kg(n)): Upnco ™2 (Ksmn)))-

One can similarly define an effective structure on IIR", by taking an effective
enumeration of rational intervals.

It follows from the general domain-theoretic definition (see the Appendix)
that a function F : (SIR")?> — SIR" is computable if the relation {(i, , k) | K; <
F(K;, K;)}isr.e.. The definition extends in the natural way to functions of other
types. A sequence ((An, Bn))new of partial solids is computable if there exists
a total recursive function o : IN x IN = IN such that (A,, By) = | |;c, Ka(n,i)s
with (Ky(n,i))icw an increasing chain for each n € w. For domains in general, it
can be shown that a function is computable iff it sends computable sequences to
computable sequences.

Proposition 16.1. The following functions are computable with respect to the
effective structures on IIR", SR" and S[—a, a]™.

(i) — € —:IIR"™ x SR" — {tt,ff},.
(ii)) —U—:SIR"™ x SR" — SIR".
(i) — N —:SIR" x SR" — SR".
(iv) — C — : S[—a,a]™ x S[—a,a]™ — {tt,ff},.

Proof. We show (ii) and leave the rest as exercise. We have to show that the
relation K}, < K; U K is r.e. Writing this relation in detail, it reduces to

(71 (Kg), m2(Ky)) < (1 (K;) U (Kj), m2(K;) N2 (K;)),

ie. m(Ky) Cm(K;) Um(K;) and ma(Ky) C me(K;) N me(K;), which are both
decidable. 0



17 Lebesgue and Hausdorff Computability

Our domain-theoretic notion of computability so far has the essential weakness
of lacking a quantitative measure for the rate of convergence of basis elements
to a computable element. This shortcoming can be redressed by enriching the
domain-theoretic notion of computability with an additional requirement which
allows a quantitative degree of approximation. We will see in this section that
this can be done in at least two different ways. The reader should refer to the
appendix for various notions of computability in this section.

17.1 Lebesgue Computability

The Lebesgue measure p in IR"™, which measures the volume of subsets of R",
gives us a notion of approximation which is stable under Boolean operations. For
simplicity, we confine ourselves to the solid domain of a large cube in IR". We say
that (A, B) € S[—a,a]™ is Lebesgue computable if there exists a total recursive
function 3 : IN — IN such that (4, B) = (U,,c,, ™1 (Ks(n))s Upeco, ™2 (Kp(n))) with
w(A) — p(m (Kgmny)) < 27" and p(B) — p(m2(Kgm))) < 27" The definition
extends naturally to computable elements of (SX)™ for any positive integer m.

Proposition 17.1. If a is a computable real number and (A, B) € S[—a, a]”™ is
a computable mazimal element with u(0A) = 0, then (A, B) is Lebesgue com-
putable.

The sequence ((An, Bpn))new is said to be Lebesgue computable if it is com-
putable and if (u(A,))new and (u(By))new are computable sequences of real
numbers. As for computable elements, the definition extends naturally to com-
putable sequences of (SX)™ for any positive integer m.

A computable function f: (SX)™ — SX is said to be Lebesgue computable
if it takes any Lebesgue computable sequence of m-tuples of partial solids to
a Lebesgue computable sequence of partial solids. The main result here is the
following.

Theorem 17.2. Boolean operations are Lebesgue computable.

17.2 Hausdorff Computability

Another appropriate form for the quantitative degree of approximation of solids
is provided by the Hausdorff distance. We say (A, B) € S[—a,a]™ is Hausdorff
computable if there exists a total recursive function f : IN — IN such that
(A, B) = (UnEw it (Kﬁ(n))a UnEw WQ(KB(n))) with dH(7T1 (Kﬁ(n))a A) < 27" and
dH(TrZ(KB(n))a B) < 27,

We can define the notion of a Hausdorff computable map similar to the way
we defined a Lebesgue computable map. The Hausdorff distance provides a good
way of approximating solids; in fact, objects with small Hausdorff distance with
each other are visually close. However, it can be shown by a non-trivial example
that the binary Boolean operations do not preserve Hausdorff computability.
The main positive result is the following.



Theorem 17.3. A computable mazimal element of S[—a,a]” is Hausdorff com-
putable.

18 The Convex Hull

We have already seen that points of IR" can be modelled using the domain TIR"
of the compact rectangles in IR™ ordered by reverse inclusion. Using the domain-
theoretic model, one can construct other basic notions in geometry, such as line
segments, lines and hyperplanes. We demonstrate this by describing the simplest
non-trivial geometric object, namely a line segment.

We define the partial line segment map f : (IR")? — SR"™ with f(z1,%2),
called the partial line segment through the partial points xz; and z,, given by
f(z1,z2) = (0, E) where the exterior E is the empty set if 1 Nxs # 0 and is
otherwise the complement of the convex hull of the 2 x 2™ vertices of xz; and
xa; see Figure 5. It is easy to check that f is Scott continuous and computable.
Likewise, one can define Scott continuous maps for partial lines through two
partial points, and other basic geometric objects.

Fig. 5. A partial line segment

We will now describe an algorithm to compute the convex hull of a finite
number of points in the plane in the context of the solid domain. Assume we
have m points in the plane. Each of these points is approximated by a shrinking
nested sequence of rational rectangles; at each finite stage of computation we
have approximations to the m points by m rational rectangles, considered as
imprecise points, as in Figure 6.

For these m rational rectangles we obtain a partial solid object with an
interior open rational polygon, which is contained in the interior of the convex
hull of the m points, and an exterior open rational polygon, which is contained
in the exterior of the convex hull of the m points. The union of the interior
(respectively, the exterior) open rational polygons obtained for all finite stages
of computation gives the interior (respectively, the exterior) of the convex hull
of the m points.



Fig. 6. The convex hull problem for rectangles.

More formally, we define a map C,, : (IR*)™ — SIR?, where IIR? is the
domain of the planar rectangles, the collection of all rectangles of the plane
partially ordered by reverse inclusion. Let C(IR?) be the collection of non-empty
compact subsets of IR? with the Hausdorff metric and let H,, : (IR*)™ — C(IR?)
be the classical function which sends any m-tuple of planar points to its convex
hull regarded as a compact subset of the plane.

We first define C,, on the basis (IQ*)™ of (IIR?)™ consisting of m-tuples
of rational rectangles. Let = (Ri,Ra, -+, Ry) € (IQ*)™ be an m-tuple of
rational rectangles. Each rectangle R; has four vertices denoted, anti-clockwise
starting with the bottom left corner, by R}, R?, R? and R}. We define Cy,(z) =
(I (z), Em(x)) with

Ep(x) = (Him (R}, R}, RL B, In(z) = ( [ Hm(RDZ,)°.
1<j<4

In words, E,,(z) is the complement of the convex hull of the 4m vertices of all
rectangles (Figure 7), whereas I (z) is the interior of the intersection of the
4 convex hulls of the bottom left, bottom right, top right and top left vertices
(Figure 8). Since the intersection of convex sets is convex, I, (z) as well as E,, (z)
are both convex open rational polygons.

With more accurate input data about the planar points, the boundaries of
the inner and outer convex hulls get closer to each other as in Figure 9. In the
limit, the inner and outer convex hulls will be simply the interior and the exterior
of the convex hull of the planar points (Figure 10).

Since we work completely with rational arithmetic, we will not encounter any
round-off errors and, as comparison of rational numbers is decidable, we will not
get inconsistencies.

Clearly the complexity of these algorithms to compute I, (z) and E,,(z) is
O(mlogm) each. We have therefore obtained a robust algorithm for the convex



Fig. 7. The exterior convex hull of rectangles.

Inner Convex Hull

Top left corners

Fig. 8. The interior convex hull of rectangles.



Fig. 9. Convergence of the interior and exterior convex hulls.

Fig. 10. Limit of interior and exterior convex hulls.

hull which has the same complexity as the non-robust classical algorithm. More-
over, the algorithm extends in the obvious way to RY. In 3d, we still have the
complexity O(mlogm); see [15] for the complexity in higher dimension.

We now define Cy, : (IIR?)™ — SIR? on tuples of rectangles y € (IR?)™
by putting C,,(y) = | [{C(z) | € (IQ)™ with # < y}. It can be checked that
Cm(z) = Cpy(z) for € (IQ*)™, and that, therefore, we can simply write Cy, as
C,» which will be a continuous function between domains.

The map C,, computes the convex hull of m planar points as follows. Note
that a maximal element z = (R;)?, of (IIR?)™ consists of an m-tuple of de-
generate rectangles, i.e., an m-tuple of planar points (r;)!,, where R{ = r;
for j = 1,2,3,4. It can be shown that, for such maximal z, we have Cp,(z) =
(I (@), Eon (1)) where I (@) = (Hyn((r:)))° and B (2) = (o (rs)12,))°-

Theorem 18.1. The map C), is Lebesgue computable and Hausdorff computable.



We can also study the domain-theoretic version of the following classical
question: Given N points 1, ...,zx in R?, does z, for 1 < k < N, lie on the
boundary of the convex hull of these IV points? With imprecise input, i.e. for V
input rectangles, the answer is either “surely yes”, or “surely not” or “cannot
say”. More precisely, we define the boundary rectangle predicate Py : (I]R2)N —
{tt,ff} . For R = (Ry,...,Ry) € (IR*)V, let R(k) € (TIR?)N~! be the ordered
list of the N — 1 dyadic interval vertices: R(k) = (R1,...,Rr_1, Rpy1,..., RN).
We have: -

tt if Ry C E(R(k)),
Pi(R) = ff if Ry CI(R), (49)
1 otherwise.

Theorem 18.2. The predicate Py, is Scott continuous and computable for each
k=1,...,N.

Finally, we note that domain-theoretic algorithms for Voronoi diagram and De-
launay triangulation have also been developed; see [38].

19 Historical Remarks and Pointers to Literature

19.1 Real Number Computation

In the late 1980’s, two frameworks for exact real number computation were proposed.
In the approach of Boehm and Cartwright [5, 6], a computable real number is approx-
imated by rational numbers of the form K/r™ where r is the base and K is a (usu-
ally big) integer. This approach was further developed and implemented by Valérie
Ménissier-Morain [40]. For any basic function in analysis a feasible algorithm has been
presented in order to produce an approximation to the value of the function at a given
computable real number up to any threshold of accuracy. However, the computation
is not incremental in the sense that to obtain a more accurate approximation one has
to compute from scratch. Furthermore, the algorithms are constructed using various
ad-hoc techniques and therefore, except for the simplest arithmetic operations, it is
rather difficult to verify their correctness. Actually, this method is not so different
from the multi-digit approach presented here, except that our transcendental opera-
tions are based on LFT’s, which provide a general underlying framework that simplifies
the finding of the algorithms and makes the proofs of their correctness automatic.

Vuillemin [57] proposed a representation of computable real numbers by continued
fractions and presented various incremental algorithms for basic arithmetic operations
using the earlier work of Gosper [24], and for some transcendental functions. However,
this representation is rather complicated and the resulting algorithms are relatively
inefficient.

Plume [42] studied and implemented Exact Real Arithmetic based on the number
representation of Section 2 (exponent plus a stream of signed binary digits). His di-
vision algorithm employs an auxiliary representation with dyadic rationals as digits.
Transcendental functions are based on an auxiliary function computing the real num-
ber defined by a (computable) nested sequence of real intervals whose lengths tend
to 0.

In the early and mid 90’s Di Gianantonio [12,13] and Escardé [20] studied exten-
sions of the theoretical language PCF with a real number data type based on domain



theory. At Imperial College, a new approach was then developed which is almost en-
tirely based on LFT’s and combines domain theory and the digit approach with contin-
ued fraction algorithms [45, 16,46, 43,44]. Within this approach, Peter Potts derived
algorithms for transcendental functions from continued fraction expansions. He also
developed the single-digit approach with the absorption and emission of digit matrices,
and made first steps towards a multi-digit approach. The approach was implemented in
functional languages such as Miranda, Haskell and CAML, and in imperative languages
such as C. The LFT framework for real number computation has also been studied in
the context of extensions of PCF with a real number data type by Edalat, Escardd,
Potts and Siinderhauf [47,17].

In contrast to the notes at hand, Potts and Edalat used the base interval [0, 0o],
and accordingly, digit matrices which were different from the ones presented here. This
approach includes oo with the same rights as any finite real number. The number
oo represents both +0o and —oo. Its presence makes the reciprocal function total by
1

5 = oo and é = 0. Yet on the other hand, addition and multiplication, which are total

if oo is excluded, become partial with co since co 4+ oo and 0 - co are not defined.

In this approach, exponent matrices cannot be used. Instead, each number rep-
resentation begins with a sign matriz. There are four sign matrices, for numbers in
the intervals [0, oo], [—1,1], [00,0], and [1, —1] = {z||z| > 1}. Edalat and Potts name
two advantages of [0, co]: First, the image M [0, o] of [0, co] under a non-singular LFT
M = (‘; 2) can be easily obtained from the entries of M: M0, co] = [§, ] if det M > 0,
and [§, ¢]if det M < 0. In contrast, the calculation of M[—1, 1] requires some additions.
Second, a matrix or tensor is refining for [0, o] iff all its entries are non-negative and all
its column sums are positive (if the matrix or tensor is weakly normalised so that the
sum of its entries is non-negative). This condition is much simpler than the conditions
we have derived for refinement w.r.t. [—1, 1] in Section 5. The emission conditions for
the two base intervals are similar, but the actual emissions and absorptions are simpler
in [—1,1]. A huge practical advantage of [—1, 1] are the persistent zeros which can be
found in basically all the tensors for the standard operations. With [0, o], there are
no persistent zeros at all, and no entries which are invariant under absorption and
emission.

On the theoretical side as well, the base interval [—1,1] has clear advantages. It
avoids the troublesome value oo that poses difficulties in algebraic transformations and
size estimations. Furthermore, one may work with the standard metric (¢([u, v]) = v—u)
and standard derivatives in [—1, 1], while working with [0, co] excludes the standard
metric. In fact, [16,43, 28] use a metric on [0, o] that is derived from the standard
metric on [—1,1]. Here, working in [—1, 1] directly drastically simplifies the reasoning.

Results on the growth of the entries of matrices and tensors were presented in [26,
27]—for the base interval [0,00]. With this base interval, matrices (‘; ;) cannot be
classified according to b = 0 and b # 0 as in Section 8; the crucial value is instead
(c+d)— (a+b). Given this, it is not surprising that a complete classification of tensors
w.r.t. the opportunities for cancellations was never found under the reign of [0, co]. The
classification presented in Section 8.5 of these notes was recently found by Reinhold
Heckmann and never published before.

The contractivity was already studied by Potts, and considered in greater detail by
Heckmann in [28] (for [0, oo]). In [30], Heckmann switched over to [—1,1] and studied
contractivity there.

Peter Potts was a master in the derivation of infinite products from continued
fractions (for [0, 00]). The few derivations presented here are new because of the new



base interval. They start from the same continued fractions, but are generally shorter.
The derivation of products from Taylor series is taken from [29].

19.2 Computational Geometry

The quest for reliable geometric algorithms in recent years has been a most challenging
problem. In the words of C. M. Hoffmann, a leading expert in computational geometry:
“Despite the pressing need, devising accurate and robust geometric algorithms has
proved elusive for many important science and engineering applications” [31].

In the existing frameworks and implementations of geometric algorithms, great
efforts are required to use various, often ad hoc, techniques in order to avoid poten-
tial inconsistencies and degeneracies. These methods include: (i) the so-called exact
arithmetic approach [41, 37,51, 23,52, 3,61, 9,8, 22, 11], combined with lazy implemen-
tation [4, 53] and symbolic perturbation [19,51,60] in which numerical computations
are performed to a high degree of accuracy in order to ensure the correct logical and
topological decisions; (ii) the logical and topological oriented technique [52, 55, 56],
which seeks to place the highest priority on the consistency of the logical and topological
properties of geometric algorithms, using numerical results only when they are consis-
tent with these properties; and, (iii) the intermediate methods, such as e-geometry [25],
the interval arithmetic technique [49,32-34] and the tolerance approach [50, 21, 36],
which determine an upper bound for the numerical error whenever a computation
takes place in order to decide if a computation is reliable or not. While there are pros
and cons for each of these methods in any given category of algorithms [54]; no single
method gives an overall satisfactory solution for geometric modelling as a whole.

The traditional frameworks for geometric modelling are not founded on computable
analysis: there is no reference to a notion of data type or computability in the standard
literature of computational geometry or geometric modelling. Indeed, these frameworks
are all based on classical topology and geometry in which the basic predicates and
Boolean operations are not continuous, and hence not computable, the source of non-
robustness of the resulting algorithms.

Brattka and Weihrauch [7] have studied the question of computability of classical
subsets of the Euclidean space in the type two theory of computability [59] but it is not
at all clear how their framework can be used in any practical geometric computation.

The domain-theoretic framework for solid modelling and computational geometry
was first formulated in [14] and algorithms for the convex hull and for Voronoi di-
agram/Delaunay triangulation in the domain-theoretic setting were presented in [15]
and [38] respectively. Continuous geometric operations have also been discussed in [35].

20 Exercises

20.1 Real Arithmetic

Ezercise 20.1. Implement addition =+ y directly on the number representations
by exponents and signed binary digit streams (cf. Section 2.4). Deal first with

exponents and use the mean value operation z ® y = m;y on mantissas.

Ezercise 20.2. Prove Prop. 3.1 (using Equation (1)).

FExercise 20.3. Let My = ((1) é)



a) What is the function represented by My?

b) Compute det My (Equation (2)) and deduce the monotonicity type of My
(Section 4).

c) Check that My is bounded (Prop. 5.2) and refining (Section 5.3) on Ip.

d) Assuming that the digit stream & starts with 101, determine the first four
digits of Mp(§) as in Section 6.5.

e) Compute exp My and con My (23) and derive the numbers ¢< and ¢~ of
Theorem 7.1.

f) Redo part (d) in the multi-digit approach, i.e., answer the request 47 My ().
Run Algorithm 3, but consider the monotonicity type of My. Use the fact
that & begins with 101 to find the answer of the required request to €.

g) Compare the results of parts (d) and (f), but remember that there are often
two possible answers to a request, differing by 1.

FExercise 20.4. Let T = (8 (1) (1) ;)

a) What is the function represented by 7'?

b) Compute det(T|,;) and det(T|¥) (Equations (6)) and deduce the monotonic-
ity type of T for arguments z,y € Iy (Section 4).

c¢) Check that T is bounded (14) and refining on I. For the latter, you may
use (15) or Cor. 4.2, taking the monotonicity type into account.

d) Determine cony, T' and cong T and derive the numbers ¢;” and ¢ of Theo-

rem 7.2.

Ezercise 20.5. Let T = () ; 1 }). Given z > 0, solve the equation y = T'(z,y)
for y > 0. (Thus you see how an important function can be implemented. The
equation y = T'(z,y) can be considered as an infinite product y = T'(z, T (z, .. .)),
or more efficiently, as a feed-back loop where everything emitted from T is fed

back into T' via its right argument.)

Ezercise 20.6. (Taylor series)

Use the method presented in Section 11.4 to derive an infinite product for the
cosine function from the Taylor series cosz =Y ((;Tll))! (x?)™. (By writing this

in terms of 22 instead of z, zero coefficients are avoided.) Determine for which
x this product is valid, and calculate the contractivities of its matrices.

20.2 Computational Geometry and Solid Modelling

Ezercise 20.7. Show that the map — C — : S;IR" x SR" — {tt,ff} is continu-
ous.

Ezercise 20.8. Prove Proposition 14.6.

Hint: Use the following fact for Euclidean spaces. For an open set O and a
decreasing sequence of compact subsets (C;)q., the relation ;. , C; C O implies
the existence of ¢ € w with C; C O.



Ezercise 20.9. Show that the collection of proper maximal elements of SIR" is
the continuous image of the space (R(IR"),d") of the non-empty regular closed
subsets of IR"™ with the metric defined by Equation 48.

Hint: Follow the steps of proof in Theorem 14.7 and note that in the represen-
tation of SIR"™ by closed sets ordered by reverse inclusion we have: (41, By) <
(As, By) iff A> and Bs are compact subsets of A and BY respectively.

Exercise 20.10. Draw the inner and outer convex hulls of the following three
rectangles.

R, = {( )7( 70)a( 1,- ) ( 2, _1)}
R2 = {( ’ ) ( ’ ) (072)7( )}
R3 = {(17 )v( ’ ) ( 0)7(1 )}

Ezercise 20.11. In the domain-theoretic convex hull algorithm, compute the
boundary rectangle predicate Py for 1 < k < 11.

Ry ={(-7/2,-3),(-7/2,-2),(-5/2,-2),(-5/2,-3)}
Ry ={(=7/2,-1),(=7/2,-1/2),(=3,-1/2), (=3, 1)}
Ry = {(-4,4/3),(=4,5/3),(=3,5/3),(=3,4/3)}

Ry ={(-2,-4),(-2,-7/2),(-3/2,-7/2),(-3/2,-4)}
Ry ={(-2,3),(-2,7/2),(=3/2,7/2),(-3/2,3)}

Re ={(0,-4),(0,-7/2),(1/2,-7/2),(1/2, -4)}

Ry ={(0,0),(0,1),(1,1),(1,0)}

Rs ={(0,4),(0,5),(1,5),(1,4)}

Ry ={(4,-3),(4,-2),(5,-2), (5, -3)}

Ry = {(5,-1),(5,—-1/2),(27/5,—-1/2),(27/5,-1)}

R ={(5,2),(5,3),(6,3),(6,2)}.

Hint: Note that a rectangle is a boundary rectangle if it lies completely inside
the exterior convex hull of the other rectangles.

Appendix: Basic Domain Theory

We give here the formal definitions of a number of notions in domain theory
used in these notes; see [1,2, 18] for more detail. We think of a partially ordered
set (poset) (P, C) as the set of output of some computation such that the partial
order is an order of information: in other words, a T b indicates that a has
less information than b. For example, the set {0,1}°° of all finite and infinite
sequences of bits 0 and 1 with a C b if the sequence a is an initial segment
of the sequence b is a poset and a C b simply means that b has more bits of
information than a. A non-empty subset A C P is directed if for any pair of
elements a,b € A there exists ¢ € A such that a C ¢ and b C c¢. A directed



set is therefore a consistent set of output elements of a computation: for every
pair of output a and b, there is some output ¢ with more information than a
and b. A directed complete partial order (dcpo) or a domain is a partial order in
which every directed subset has a least upper bound (lub). We say that a dcpo
is pointed if it has a least element which is denoted by L and is called bottom.

For two elements a and b of a dcpo we say a is way-below or approzimates b,
denoted by a < b, if for every directed subset A with b C | | A there exists ¢ € A
with a C ¢. The idea is that a is a finitary approximation to b: whenever the lub
of a consistent set of output elements has more information than b, then already
one of the input elements in the consistent set has more information than a. In
{0,1}°°, we have a < b iff a C b and a is a finite sequence. The closed subsets of
the Scott topology of a domain are those subsets C' which are downward closed
(ilie.z e C&yLCz = yeC)and closed under taking lub’s of directed subsets
(i.e. for every directed subset A C C' we have | |A € C).

A basis of a domain D is a subset B C D such that for every element z € D
of the domain the set B, = {y € B | y < z} of elements in the basis way-
below z is directed with x = | | B,. An (w)-continuous domain is a dcpo with
a (countable) basis. In other words, every element of a continuous domain can
be expressed as the lub of the directed set of basis elements which approximate
it. In a continuous dcpo D, subsets of the form fa = {z € D | a < z}, for
a € D, form a basis for the Scott topology. A domain is bounded complete if
every bounded subset has a lub; in such a domain every non-empty subset has
an infimum or greatest lower bound.

It can be shown that a function f : D — FE between dcpo’s is continuous
with respect to the Scott topology if and only if it is monotone (i.e. a T b =
f(a) C f(b)) and preserves lub’s of directed sets i.e. for any directed A C D, we
have f(|,c4 @) = Lloca f(a). Moreover, if D is an w-continuous dcpo, then f
is continuous iff it is monotone and preserves lub’s of increasing sequences (i.e.
FUscw 7) = Llic., (@), for any increasing (z;);c..).

The collection, D — E, of continuous functions f : D — E between dcpo’s D
and E can be ordered pointwise: f C ¢ iff Vo € D. f(z) C g(z). With this partial
order, D — E becomes a dcpo with | |;.; fi given by (|;c; fi)(x) = ;e fi(z).
Moreover, if D and E are bounded complete w-continuous dcpo’s, so is D — E.

The interval domain I[0,1]™ of the unit box [0,1]™ C IR" is the set of all
non-empty n-dimensional sub-rectangles in [0, 1]™ ordered by reverse inclusion.
A basic Scott open set is given, for every open subset O of IR", by the collection
of all rectangles contained in O. The map =z — {z} : [0,1]" — I[0,1]" is an
embedding onto the set of maximal elements of I[0,1]". Every maximal element
{z} can be obtained as the least upper bound (lub) of an increasing chain of
elements, i.e. a shrinking, nested sequence of sub-rectangles, each containing {x}
in its interior and thereby giving an approximation to {z} or equivalently to z.
The set of sub-rectangles with rational coordinates provides a countable basis.
One can similarly define, for example, the interval domain IIR" of IR".

An important feature of domains, in the context of these notes, is that they
can be used to obtain computable approximations to operations which are clas-



sically non-computable. For example, comparison of a real number with 0 is not
computable. However, the function N : I[-1,1] — {tt,ff}, with

tt ifb<0
N([a,b]) =< ff if0<a
1 otherwise

is the computable approximation to the comparison predicate. Here, {tt, ff}, is
the lift of {tt,ff}, i.e. the three element pointed domain with two incomparable
maximal elements tt and ff.

An w-continuous domain D with a least element | is effectively given wrt
an effective enumeration b : IN — B of a countable basis B if the set {{(m,n) |
bm <K by} is recursive, where (.,.) : IN X IN — IN is the standard pairing function
i.e. the isomorphism (z,y) — w + x. This means that for each pair
of basis elements (b, by), it is possible to decide in finite time whether or not
by K by. We say © € D is computable if the set {n|b, < z} is r.e. This is
equivalent to say that there is a master program which outputs exactly this set.
It is also equivalent to the existence of a recursive function g such that (by(n))new
is an increasing chain in D with o = | |, . by(n). If D is also effectively given
wrt to another basis B’ = {b}, b}, b}, -} such that the sets {(m,n) | b, < b},}
and {(m,n) | b}, < b,} are both decidable, then z will be computable wrt B iff
it is computable wrt B’. We say that B and B’ are recursively equivalent.

We can define an effective enumeration £ of the set D. of all computable
elements of D. Let 6,, n € w, be the nth partial recursive function. It can be
shown [18] that there exists a total recursive function o such that £ : IN — D,
with &, == [ ], b0, (n (i) With (bga(n)(i))i@ an increasing chain for each n € w, is
an effective enumeration of D.. A sequence (z;);c,, i8S computable if there exists
a total recursive function h such that z; = ;) for all i € w.

We say that a continuous map f : D — E of effectively given w-continuous
domains D (with basis {ag,a ---}) and E (with basis {bg, b; - - -}) is computable
if the set {(m,n) | b,, < f(a,)} is r.e. This is equivalent to say that f maps
computable sequences to computable sequences. Computable functions are stable
under change to a recursively equivalent basis. Every computable function can
be shown to be a continuous function [58, Theorem 3.6.16]. It can be shown [18]
that these notions of computability for the domain IR of intervals of IR induce
the same class of computable real numbers and computable real functions as in
the classical theory [48].

We also need the following classical definitions for sequences of real numbers.
A sequence (r;);c, of rational numbers is computable if there exist three total
recursive functions a, b, and s such that b(7) # 0 for all 4 € w and

A computable double sequence of rational numbers is defined in a similar way.
A sequence (x;)ie, of real numbers is computable if there exists a computable



double sequence (7;); jew Of rational numbers such that
rij — x| <277 for all i and j

A computable double sequence of real numbers is defined analogously. If (Zn1 ), kew
is a computable double sequence of real numbers which converges to a se-
quence (Zn)new effectively in k and n (i.e. there exists a total recursive function
e: IN x N - IN such that |z, — x,| < 27N for all & > e(n, N)), then the
sequence (Z,)new 18 computable [48, Page 20].
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