
Less Is More: Multiparty Session Types Revisited∗

Technical Report (first version: 09/01/2019; last update: 05/08/2019)

ALCESTE SCALAS, Imperial College London, UK

NOBUKO YOSHIDA, Imperial College London, UK

Multiparty Session Types (MPST) are a typing discipline ensuring that a message-passing process implements

a given multiparty session protocol, without errors. In this paper, we propose a new, generalised MPST theory.

Our contribution is fourfold. (1) We demonstrate that a revision of the theoretical foundations of MPST is

necessary: classic MPST have a limited subject reduction property, with inherent restrictions that are easily

overlooked, and in previous work have led to flawed type safety proofs; our new theory removes such

restrictions and fixes such flaws. (2) We contribute a new MPST theory that is less complicated, and yet more
general, than the classic one: it does not require global multiparty session types nor binary session type duality

— instead, it is grounded on general behavioural type-level properties, and proves type safety of many more

protocols and processes. (3) We produce a detailed analysis of type-level properties, showing how, in our new

theory, they allow to ensure decidability of type checking, and statically guarantee that processes enjoy, e.g.,

deadlock-freedom and liveness at run-time. (4) We show how our new theory can integrate type and model

checking: type-level properties can be expressed in modal µ-calculus, and verified with well-established tools.

CCS Concepts: • Theory of computation → Process calculi; Type structures; Verification by model

checking;

Additional Key Words and Phrases: session types, duality, deadlock-freedom, liveness

1 INTRODUCTION
Session types are a type-based framework for formalising structured communication protocols,

and verifying them in concurrent message-passing programs. The original binary session types

theory [Honda et al. 1998] addresses protocols with two participants (e.g., client and server), and

is built on a notion of duality in interactions, inspired by linear logic [Girard 1987]; this has led

to several studies on the logical foundations for session types, e.g. [Caires et al. 2016; Wadler

2014]. This approach was later generalised to multiparty sessions [Bettini et al. 2008; Honda et al.

2008], supporting more sophisticated protocols with any number of participants (two or more);

correspondingly, binary duality was generalised as multiparty consistency, leading to studies on its

logical foundations [Caires and Pérez 2016; Carbone et al. 2016, 2015].

Unfortunately, this duality-based framework has intrinsic limitations: the consistency require-

ment is not satisfied by manymultiparty protocols — even surprisingly simple ones. Such limitations

are subtle: in this paper, we show that they have been overlooked or wrongly bypassed in several

previous works, leading to MPST extensions that are no longer correct, and have flawed subject

reduction proofs. Then, we provide a solution: a new, generalised MPST theory that subsumes

classic MPST under a new theoretical foundation, removes its limitations, fixes the aforementioned

flaws, and supports a richer set of multiparty protocols and processes.

The Multiparty Session Types (MPST) framework. Bettini et al. [2008]; Honda et al. [2008] introduce

the seminal notion of global types, which describemultiparty conversations from a global perspective.

MPST verification follows a top-down approach based on endpoint projections:

∗
This is the long version of the POPL’19 paper with the same title, and by the same authors: https://doi.org/10.1145/3290343

Authors’ addresses: Alceste Scalas, Imperial College London, UK, alceste.scalas@imperial.ac.uk; Nobuko Yoshida, Imperial

College London, UK, n.yoshida@imperial.ac.uk.

https://doi.org/10.1145/3290343

2 Alceste Scalas and Nobuko Yoshida

(1) a multiparty protocol is formalised as a global type G, providing a bird’s eye view on the

interactions between two or more roles;

(2) G is projected onto a set of endpoint (local) session types (one per role); and

(3) session types are assigned to communication channels, used by MPST processes that can be

written and type-checked separately.

E.g., the global typeG below models a protocol (based on OAuth 2.0 [OAuth Working Group 2012])

between service s, client c, and authorisation server a:

G = s→c:

{
login . c→a:passwd(Str) . a→s:auth(Bool) . end ,
cancel . c→a:quit . end

}
(1)

The protocol of G says that the service sends to the client either a request to login, or cancel; in
the first case, c continues by sending passwd (carrying a String) to the authorisation server, who

in turn sends auth to s (with a Boolean, telling whether the client is authorised), and the session

ends; in the second case, c sends quit to a, and the session ends. The projections of G describe the

local I/O actions (i.e., the interfaces) that programs must implement to play the roles in G:

Ss = c⊕

{
login.a&auth(Bool) ,
cancel

}
Sc = s&

{
login.a⊕passwd(Str) ,
cancel.a⊕quit

}
Sa = c&

{
passwd(Str).s⊕auth(Bool) ,
quit

}
(2)

Here, Ss, Sc, Sa are session types, obtained by projecting G resp. onto s, c, a (for brevity, we omit

final ends). Ss represents the interface of s in G: it must send (⊕) to c either login or cancel; in
the first case, s must then receive (&) message auth(Bool) from a, and the session ends; otherwise,

in the second case, the session just ends. Types Sc and Sa follow the same intuition. The multiparty

session type system assigns the types in (2) to channels, and checks that endpoint programs use

them correctly: e.g., the program implementing the service is checked against Ss, and the programs

implementing c/a against Sc/Sa. Endpoint programs, in turn, are formalised as processes in a π -
calculus extended with multiparty communication primitives. Variations of this framework have

been implemented in numerous programming languages (surveyed in Ancona et al. [2017]; Gay and

Ravara [2017]), allowing to develop distributed applications with guaranteed protocol conformance.

Limitations and Theoretical Issues of MPST. Theories and implementations based on MPST cru-

cially require “correct by construction” protocols that do not cause deadlocks nor communication

errors when endpoint programs interact. This is achieved by imposing well-formedness conditions

to global types, and consistency restrictions when processes are type-checked.

However, such restrictions introduce rather serious problems when proving subject reduction —

i.e., when proving that typed processes only reduce to typed processes, and thus, no (untypable)

error state can be reached (“typed processes never go wrong”). Usually, one expects a statement like:

Γ ⊢ P and P → P ′
implies ∃Γ′ : Γ′ ⊢ P ′

(3)

where Γ ⊢ P is a typing judgement stating that process P abides by the typing context Γ, which
can map, e.g., the communication channels cs, cc, ca to the types Ss, Sc, Sa in (2).

Unfortunately, (3) is wrong. If we take Γ without any constraint as in (3), it might contain types

like c⊕m(Str).end and s&m(Int).end, and they could type a parallel process P = P1 | P2, where P1
and P2 interact according to the types, with P1 sending a message m("Hello") (carrying a String),
and P2 receiving m but using its payload as an Integer. In this case, P would reduce to a “wrong”

and untypable P ′
(see also [Coppo et al. 2015a, p. 163], and §3 later on): this means that (3) does

not hold. For this reason, the MPST theory requires the aforementioned consistency restriction, and

its actual subject reduction statement reads:

Γ ⊢P with Γ consistent and P→P ′
implies ∃Γ′ consistent: Γ→∗ Γ′ and Γ′⊢P ′

(4)

Less Is More: Multiparty Session Types Revisited (Technical Report) 3

(where Γ→∗ Γ′ denotes typing context reductions). Consistency is a syntactic constraint ensuring

that the potential output messages of each role match the input capabilities of their recipient; as

noted above, this requirement was developed by generalising the notion of binary session duality

[Honda et al. 1998]. However, due to this binary session heritage, multiparty consistency is:

(1) overly restrictive.Consistency does not hold for many protocols: even the simple authorisation

protocol in (1)/(2) above is not consistent. Hence, for such protocols, the MPST framework

cannot prove type safety of any process, because (4) holds vacuously;

(2) inflexible and error-prone. Some MPST works, e.g. [Deniélou et al. 2012; Deniélou and

Yoshida 2012; Yoshida et al. 2010], propose richer global types with flexible well-formedness

conditions — but either overlook the consistency requirement, or fail to realise that their

extensions do not satisfy it. Hence, their subject reduction theorems do not hold (like (3)),

or hold vacuously (as above); and worryingly, such results are reused in later works and

implementations (more details in §8).

These two claims are based on technical arguments, that we develop in §3. They clearly undermine

the expressiveness and applicability of MPST: when the theory cannot ensure type safety for a given

protocol, MPST-based implementations should either reject it (thus being overly restrictive), or

forfeit the guaranteed absence of run-time errors. To solve these problems, we pose the questions:

Can we remove the duality/consistency requirements of MPST?

Can we use, instead, more flexible properties of session types, thus enlarging the subject

reduction property, and the set of provably type-safe processes?

To answer positively, we need a new MPST theory that is not rooted in binary session duality —

but has more general foundations, that still support duality as a special case.

Contributions. We present a new theory of multiparty session types. Its novel theoretical founda-

tions leverage a weak behavioural safety invariant that, for the first time, eschews the limitations

of duality/consistency, and allows to obtain much more general results than classic MPST.

We summarise MPST definitions and typing rules in §2, highlighting where our new theory

diverges from the classic (§2.3): i.e., when establishing the prerequisites for proving type safety.

(1) We explain how classicMPST establish such prerequisites: i.e., by imposing consistency/duality.

We uncover that the resulting severe limitations lead to subtle theoretical issues (§3).

(2) We present our new MPST theory (§4), with a much weaker prerequisite: a safety invariant,

not depending on global types, nor needing projection/duality/consistency from classic MPST.

(3) By removing consistency, we rebuild the theoretical foundations of MPST on a more general

basis. Our rebuilding subsumes classic MPST works, and fixes their theoretical issues, by

producing more general typing rules, with just small visible differences (Remark 5.12).

(4) We design our new type system to be parametric: its safety invariant is abstracted as a

parameter φ. We show that φ can be fine-tuned to ensure decidability of type-checking, and

statically enforce various run-time properties on processes — e.g., liveness (§5.3, §5.4, §5.5).

(5) The parameter φ can be a behavioural property: this allows for a novel integration of

type/model checking techniques for MPST. We show how to express φ as a modal µ-calculus
formula, and verify type-level properties via model checking, using the paper’s companion

artifact (§6). Via point 4 above, the model-checked properties transfer to processes.

(6) Our theory extends to asynchronous communication, to handle richer protocols and programs.

Asynchrony makes φ (and type checking) undecidable; still, we present various ways to

achieve decidable type checking, with methods based e.g. on communicating automata (§7).

NOTE: The main difference between this technical report the conference paper [Scalas and Yoshida

2019] are the appendices, that contain technical details, proofs, and discussion on related work: we

4 Alceste Scalas and Nobuko Yoshida

provide some pointers in the main text. In particular, in § H, we discuss more related topics (e.g.,

asynchronous subtyping), and other theories that have different goals, or cannot handle our examples

(conversation types, choreographic programming).

2 MULTIPARTY SESSION TYPES
This section describes the multiparty session π -calculus (§2.1), its types, and typing rules (§2.2).

Our streamlined formulation is based on Coppo et al. [2015a] and Scalas et al. [2017a], i.e., the

most common in literature; we include subtyping [Dezani-Ciancaglini et al. 2015], to later study its

crucial influence on the behavioural properties of types and processes (§5).

Crucially, in this section we leave one typing rule under-specified: the rule for session restriction.

The reason is explained in §2.3: the exact form of this rule strictly depends on the theoretical

foundations that allow to prove type safety — and the choice of such foundations is the crossroads

where our new theory (§4) departs from classic MPST (§3).

2.1 The Multiparty Session π -Calculus
The multiparty session π -calculus models processes that interact via multiparty channels. We give

a streamlined definition, sufficient for our developments. Extensions with, e.g., ground values

(booleans, strings,. . .), or conditionals, are standard and orthogonal; we use them in examples.

Definition 2.1. Themultiparty session π -calculus syntax is defined as follows:

c,d F x
�� s[p] (variable, channel with role p)

P ,Q F 0
�� P | Q

�� (νs) P (inaction, composition, restriction)

c[q]⊕m⟨d⟩ .P (selection towards role q)

c[q]
∑

i ∈I mi (xi).Pi (branching from role q with I , ∅)

def D in P
�� X ⟨̃c⟩

�� err (process definition, process call, error)

D F X (x̃) = P (declaration of process variable X)

Restriction, branching and declarations act as binders, as expected; fc(P) is the set of free channels
with roles in P , and fv(P) is the set of free variables in P . We adopt a form of Barendregt convention:

bound sessions and process variables are assumed pairwise distinct, and different from free ones.

A channel c can be either a variable or a channel with role s[p], i.e., a multiparty communication

endpoint whose user plays role p in the session s . The inaction 0 represents a terminated process

(and is often omitted). The parallel composition P | Q represents two processes that can execute

concurrently, and potentially communicate. The session restriction (νs) P declares a new session

s with scope limited to process P . Process c[q]⊕m⟨d⟩ .P performs a selection (internal choice)

towards role q, using the channel c: the message label m is sent with the payload channel d , and
the execution continues as P . Dually, the branching (external choice) c[q]

∑
i ∈I mi (xi).Pi uses

channels c to wait for a message from role q: if a message label mk with payload d is received (for

some k ∈ I), then the execution continues as Pk , with xk replaced by d . Note that variable xi is bound
with scope P i . Process definition def X (x̃) = P in Q and process call X ⟨̃c⟩ model recursion: the

call invokes X by expanding it into P , and replacing its formal parameters with the actual ones.

err denotes the error process. Note that our simplified syntax does not have “pure” input/output

prefixes: they can be easily encoded as singleton branch/selection.

Definition 2.2 (Semantics). A reduction context C is: C F C | P
�� (νs)C

�� def D in C
�� []

Reduction → is inductively defined in Fig. 1, up-to a standard structural congruence ≡ (§A)

including α-conversion. We say that P has an error iff, for some C, P =C[err].

Less Is More: Multiparty Session Types Revisited (Technical Report) 5

[R-Comm] s[p][q]
∑

i ∈I mi (xi).Pi | s[q][p]⊕mk ⟨s ′[r]⟩ .Q → Pk {s
′[r]/xk } | Q if k ∈ I

[R-X] def X (x1, . . . ,xn) = P in (X ⟨s1[p1], . . . , sn[pn]⟩ | Q)
→ def X (x1, . . . ,xn) = P in (P{s1[p1]/x1} · · · {sn [pn]/xn} | Q)

[R-Ctx] P → P ′
implies C[P] → C[P ′]

[R-Err] s[p][q]
∑

i ∈I mi (xi).Pi | s[q][p]⊕m⟨s ′[r]⟩ .Q → err if ∀i ∈ I : mi ,m
Fig. 1. MPST π -calculus semantics, defined up-to standard structural congruence (details: §A).

In Def. 2.2, the reduction context C defines a process with a single hole [], occurring in place

of some subterm P . The communication rule [R-Comm] says that the parallel composition of a

branching and a selection process, both operating on the same session s respectively as roles p
and q, reduces to the corresponding continuations, with the sent channel being substituted on the

receiver side. The process call rule [R-X] allows to invoke the process P in the definition of X by

creating a copy of P , and replacing the formal parameters xi with actual parameters, i.e., channels

with role si [pi]. The standard context rule [R-Ctx] says that reduction can happen under parallel

composition, restriction and process definition (cf. definition of C). Finally, the error rule [R-Err]

says that a parallel composition of mismatching selection and branching processes reduces to err:
intuitively, it models a scenario where a process implementing role q is trying to send m to another

process implementing p — who is indeed waiting for an input, but does not expect to receive m.

Example 2.3. The following process interacts on session s using channels with role s[s], s[c],
s[a], to play resp. roles s, c, a. For brevity, we omit irrelevant message payloads.

(νs) (Ps | Pc | Pa) where:


Ps = s[s][c]⊕cancel

Pc = s[c][s]
∑{

login.s[c][a]⊕passwd⟨"XYZ"⟩ , cancel.s[c][a]⊕quit
}

Pa = s[a][c]
∑{

passwd(y).s[a][s]⊕auth⟨y = "secret"⟩ , quit
}

Here, (νs) (Ps | Pc | Pa) is the parallel composition of processes Ps, Pc, Pa in the scope of session s .
In Ps, “s[s][c]⊕cancel” means: use s[s] to send cancel to c. Process Pc uses s[c] to receive login
or cancel from s; then, in the first case it uses s[c] to send passwd to a; in the second case, it uses

s[c] to send quit to a. By Def. 2.2, we have the reductions:

(νs) (Ps | Pc | Pa) → (νs) (0 | s[c][a]⊕quit | Pa) → (νs) (0 |0 |0) ≡ 0

2.2 Types, Subtypes, and Typing
Session types (Def. 2.4) describe the intended use of communication channels in theMPST π -calculus
(Def. 2.1); channels are mapped to their respective type by session typing contexts (Def. 2.6).

Definition 2.4. The syntax of multiparty session types is:

S,T F p&i ∈Imi (Si).S
′
i

�� p⊕i ∈Imi (Si).S
′
i

�� end
�� µt.S

�� t with I ,∅, and mi pairwise distinct

We require types to be closed, and recursion variables to be guarded.

The branching type (or external choice) p&i ∈Imi (Si).S
′
i says that a channel must be used to

receive from p one input of the form mi (Si), for any i ∈ I chosen by p, where mi are message labels

and Si are message payload types; then, the channel must be used following the continuation type

S ′i . The selection type (or internal choice) p⊕i ∈Imi (Si).S
′
i , instead, requires to use a channel to

perform one output mi (Si) towards p, for some i ∈ I , and continue using the channel according

to S ′i . Type end describes a terminated channel allowing no further inputs/outputs. Type µt.S
models recursion: µ binds the recursion variable t in S . The guardedness requirement ensures

6 Alceste Scalas and Nobuko Yoshida

Θ(X) = S1, . . . , Sn
Θ ⊢ X :S1, . . . , Sn

[T-X]

S ⩽ S ′

c :S ⊢ c :S ′
[T-Sub]

∀i ∈ 1..n ci :Si ⊢ ci :end
end(c1 :S1, . . . , cn :Sn)

[T-end]

end(Γ)

Θ · Γ ⊢ 0
[T-0]

Θ,X :S1, . . . , Sn · x1 :S1, . . . ,xn :Sn ⊢ P Θ,X :S1, . . . , Sn · Γ ⊢ Q

Θ · Γ ⊢ def X (x1 :S1, . . . ,xn :Sn) = P in Q
[T-def]

Θ ⊢ X :S1, . . . , Sn end(Γ0) ∀i ∈ 1..n Γi ⊢ ci :Si
Θ · Γ0, Γ1, . . . , Γn ⊢ X ⟨c1, . . . , cn⟩

[T-X]

Γ1 ⊢ c :q&i ∈Imi (Si).S
′
i ∀i ∈ I Θ · Γ,yi :Si , c :S

′
i ⊢ Pi

Θ · Γ, Γ1 ⊢ c[q]
∑

i ∈I mi (yi).Pi
[T-&]

Γ1 ⊢ c :q⊕m(S).S ′ Γ2 ⊢ d :S Θ · Γ, c :S ′ ⊢ P

Θ · Γ, Γ1, Γ2 ⊢ c[q]⊕m⟨d⟩ .P
[T-⊕]

Θ · Γ1 ⊢ P1 Θ · Γ2 ⊢ P2
Θ · Γ1, Γ2 ⊢ P1 | P2

[T- |]

Γ′ =
{
s[p]:Sp

}
p∈I φ(Γ′) s <Γ Θ · Γ, Γ′ ⊢ P

Θ · Γ ⊢ (νs :Γ′) P
[T-ν] where φ is a typing context property

Fig. 2. Multiparty session typing rules. Rule [T-ν] for session restriction is discussed in §2.3.

that recursive types are contractive: i.e., in µt.S we have S , t′ for all t′. For brevity, we often omit

the trailing end in types, and end-typed message payloads: e.g., p⊕m stands for p⊕m(end).end.
In Def. 2.5 below, we define the multiparty session subtyping relation [Dezani-Ciancaglini et al.

2015].
1
Intuitively, Def. 2.5 says that a type S is smaller than S ′ when S is “less demanding” than S ′

— i.e., when S imposes to support less external choices and allows to perform more internal choices.

Session subtyping is used in the type system to augment its flexibility.

Definition 2.5. The session subtyping ⩽ is coinductively defined:

∀i ∈ I Si ⩽ Ti S ′i ⩽ T ′
i

p&i ∈Imi (Si).S
′
i ⩽ p&i ∈I∪J mi (Ti).T

′
i

[Sub-&]

∀i ∈ I Ti ⩽ Si S ′i ⩽ T ′
i

p⊕i ∈I∪J mi (Si).S
′
i ⩽ p⊕i ∈Imi (Ti).T

′
i

[Sub-⊕]

end ⩽ end
[Sub-end]

S{µt.S/t} ⩽ T

µt.S ⩽ T
[Sub-µL]

S ⩽ T {µt.T/t}

S ⩽ µt.T
[Sub-µR]

In Def. 2.5, rules [Sub-&]/[Sub-⊕] define subtyping on branch/select types: [Sub-&] is covariant in

both the carried types and in the number of branches, whereas [Sub-⊕] is contravariant in both: this

formalises the intuition of a smaller type having less external choices, and more internal choices.

By rule [Sub-end], end is only subtype of itself. The recursion rules [Sub-µL]/[Sub-µR] relate types up-to

their unfoldings, as usual for coinductive subtyping [Pierce 2002, Ch. 21].

Definition 2.6 (Typing Contexts). Θ denotes a partial mapping from process variables to n-tuples
of types, and Γ denotes a partial mapping from channels to types, defined as:

Θ F ∅
�� Θ, X :S1, . . . , Sn Γ F ∅

�� Γ,x :S
�� Γ, s[p]:S

The composition Γ1, Γ2 is defined iff dom(Γ1) ∩ dom(Γ2) = ∅.

We write s <Γ iff ∀p : s[p]<dom(Γ) (i.e., session s does not occur in Γ).
We write dom(Γ)= {s} iff ∀c ∈dom(Γ) there is p such that c=s[p] (i.e., Γ only contains session s).
We write Γ⩽Γ′ iff dom(Γ)=dom(Γ′) and ∀c ∈dom(Γ): Γ(c)⩽Γ′(c).

1
Our ⩽ is inverted w.r.t. the “process-oriented” subtyping of Dezani-Ciancaglini et al. [2015] because, for convenience, we

use the “channel-oriented” order of Gay and Hole [2005]; Scalas et al. [2017a]. For a thorough comparison, see [Gay 2016].

Less Is More: Multiparty Session Types Revisited (Technical Report) 7

The type system uses two kinds of typing contexts: Θ to assign an n-tuple of types to each

process variable X (one type per argument), and Γ to map variables and channels with roles to

session types. Together, they are used in judgements of the following form:

Θ · Γ ⊢ P (with Θ omitted when empty) (5)

meaning: “given the process types in Θ, P uses its variables and channels linearly according to Γ.”
The typing judgement (5) is inductively defined by the rules in Fig. 2. For convenience, we

type-annotate channels bound by process definitions and restrictions.

The first three rules in Fig.2 define auxiliary judgements. By [T-X], Θ ⊢ X :S1, ..., Sn holds if Θ
maps X to an n-tuple of types S1, ..., Sn . By [T-Sub], Γ ⊢ c :S ′ holds if Γ only contains one entry c :S
with S⩽S ′: i.e., when typing processes, [T-Sub] allows to use a channel of type S whenever a channel

with a larger type S ′ is needed, as per Liskov and Wing [1994]’s substitution principle; note that

Def. 2.5 relates types up-to unfolding, hence [T-Sub] makes the type system equi-recursive [Pierce

2002, Ch. 21]. Finally, end(Γ) holds if Γ’s entries are end-typed (under [T-Sub]).

The other rules in Fig. 2 define the process typing judgement in (5). The termination rule

[T-0] says that 0 is typed if all channels in Γ are end-typed. By the process definition rule [T-def],

def X (x̃) = P in Q is typed if P uses the arguments x1, ...,xn according to S1, ..., Sn , and the latter

is the type of X when typing both P and Q : this means that P can refer to X , and this allows to

type recursive processes. By the process call rule [T-X], X ⟨̃c⟩ is typed if the types of c̃ match those

of the formal parameters of X , and any unused channel (in Γ0) is end-typed: this preserves linearity
by ensuring that channels requiring more inputs/outputs cannot be forgotten. By the branching

rule [T-&], c[q]
∑

i ∈I mi (yi).Pi is typed if c has type S , where S is an external choice from q, with the

same branching labels mi . The selection rule [T-⊕] says that c[q]⊕m⟨d⟩ .P is typed if c has type S ,
where S is an internal choice towards q with message label m. By the parallel rule [T- |], two parallel

processes are typed by splitting the context in the premises. The session restriction rule [T-ν]

deserves special attention: we discuss it in §2.3.

Example 2.7. Take the processes from Ex.2.3, and the types Ss, Sc, Sa from §1, eq. (2). With the

rules in Fig.2, we have the following typing derivation:

...
s[s]:Ss ⊢ Ps

...
s[c]:Sc ⊢ Pc

s[s]:Ss, s[c]:Sc ⊢ Ps | Pc
[T- |]

...
s[a]:Sa ⊢ Pa

Γ ⊢ Ps | Pc | Pa
[T- |]

where Γ = s[s]:Ss, s[c]:Sc, s[a]:Sa

The process Ps | Pc | Pa is typed by rule [T- |], that splits the typing context linearly ensuring that a

channel is not used by two parallel sub-processes. In the omitted part of the derivation, processes

Ps, Pc, Pa are typed separately, using rules [T-⊕]/[T-&]: each process uses one of the channels with

role s[s], s[c], s[a], according to the type Ss, Sc, Sa, respectively.

We conclude with the transitions/reductions of typing contexts (Def. 2.8): intuitively, they abstract

the message exchanges that might occur over typed channels. We adopt a standard formulation,

with two adaptations: we compare payloads using ⩽ (to cater for subtyping), and we specify

transition labels for inputs, outputs, and communication.

Definition 2.8. Let α have the form s:p&q:m(S), or s:p⊕q:m(S), or s:p,q:m (for any roles p, q, message

label m, and type S). The typing context transition
α
−→ is inductively defined by the rules:

8 Alceste Scalas and Nobuko Yoshida

k ∈ I

s[p]:q⊕i ∈Imi (Si).S
′
i

s :p⊕q:mk (Sk)
−−−−−−−−−−→ S ′k

[Γ-⊕]
k ∈ I

s[p]:q&i ∈Imi (Si).S
′
i

s :p&q:mk (Sk)
−−−−−−−−−−→ S ′k

[Γ-&]

Γ1
s :p⊕q:m(S)
−−−−−−−−→ Γ′

1
Γ2

s :q&p:m(T)
−−−−−−−−→ Γ′

2
S⩽T

Γ1, Γ2
s :p,q:m
−−−−−→ Γ′

1
, Γ′

2

[Γ-Comm]
Γ, c :S{µt.S/t}

α
−→ Γ′

Γ, c :µt.S
α
−→ Γ′

[Γ-µ] Γ
α
−→ Γ′

Γ, c :S
α
−→ Γ′, c :S

[Γ-Cong]

We write Γ
α
−→ iff Γ

α
−→Γ′ for some Γ′. The reduction Γ→Γ′ is defined iff Γ

s :p,q:m
−−−−−→ Γ′ for some

s, p, q, m. We write Γ→ iff Γ→Γ′ for some Γ′, and Γ̸→ for its negation (i.e., when there is no Γ′

such that Γ→Γ′). We define →∗
as the reflexive and transitive closure of →.

By [Γ-⊕]/[Γ-&] in Def. 2.8, a typing context entry can transition to one of its continuations by firing

an output label of the form s:p⊕q:m(S) (in case of selection types), or an input label of the form

s:p&q:m(S) (in case of branching types). Rule [Γ-Comm] models type-level communication: e.g., it

allows two entries s[p]:Sp, s[q]:Sq to interact, provided that: (1) Sp is a selection towards q (with
a corresponding output transition); (2) Sq is a branching from p (with a corresponding input

transition); and (3) they are firing a common message label m, and the carried type S sent by Sp is
subtype of the type T expected by Sq. When all such conditions hold, s[p]:Sp, s[q]:Sq transition to

the respective continuations, by firing a communication label s:p,q:m that records the session s , and
the message sender p, recipient q, and label m (the payload types are discarded).

In the rest of the paper, we will mostly use the unlabelled reduction Γ→Γ′, which means that Γ
transitions to Γ′ through some communication. The labelled transitions will be reprised in §5.

2.3 Towards Subject Reduction and Type Safety
In § 1, we mentioned that a process naively typed with an arbitrary Γ can “go wrong.” Indeed,

by themselves, the typing rules in Fig.2 do not guarantee type safety, as shown by the following

(counter-)example:

s[p]:q⊕foo(end), s[q]:p&bar(end), s ′[r]:end ⊢ s[p][q]⊕foo⟨s ′[r]⟩ | s[q][p]
∑
bar(x) → err (6)

Intuitively, the problem of this typing judgement can be seen in its typing context: the type of s[p]
outputs foo to q, but the type of s[q] expects bar. This means that we need a criterion to reject (6).

Importantly, the same criterion must be applied for typing session restriction. Consider rule

[T-ν] in Fig.2: it types a restricted session s with Γ′, provided that (1) Γ′ only contains channels with

roles belonging to s ; (2) the restricted s does not occur in the remaining context Γ (to avoid clashes);

and (3) Γ′ satisfies a (yet unspecified) property φ. How should we define φ? It cannot be always
true, because we would have this counterexample to type-safety, where Γ is the context in (6):

∅ ⊢ (νs :Γ)
(
s[p][q]⊕foo⟨s ′[r]⟩ | s[q][p]

∑
bar(x)

)
→ (νs) err (by (6) and rule [R-Ctx] in Fig.1) (7)

To achieve type safety, we want the process in (7) to be untypable — which means that, when

type-checking (νs :Γ)..., we must ensure that φ in rule [T-ν] does not hold for Γ, in cases like (6).

Moreover, φ must be technically usable to prove subject reduction; this leads to three desiderata:

(D1) φ must make the typing context “safe:” if the type of s[p] sends a message to q, then the type

of s[q] must be able to input such a message;

(D2) φ must be preserved when the typing rule [T- |] splits typing contexts (see derivation in Ex.2.7);

(D3) φ must be preserved when processes, and typing contexts, interact and reduce (Def. 2.2/2.8).

Therefore, the choice of the criterion for handling cases like (6) has a deep impact on the

theoretical foundations of the type system: it determines how subject reduction and type safety

properties are stated and proved, and how general/restrictive they are; it also determines how to

define φ in rule [T-ν], to correctly type session restriction (νs) P , and handle cases like (7).

Less Is More: Multiparty Session Types Revisited (Technical Report) 9

In §4, we show how our new MPST theory establishes its foundations, and φ in rule [T-ν]. But

first, in §3, we show how such choices are made in classic MPST, and what are the consequences.

3 LIMITATIONS AND THEORETICAL ISSUES OF CLASSIC MPST
This section gives a formal basis to our claims in §1: in §3.1 we use our opening example to show

the technical issues of classic MPST, caused by consistency (also called coherency, e.g., by Deniélou

et al. [2012]); and in §3.2, we provide further examples that are rejected by classic MPST. Our new

MPST system (§4) eschews these problems, by adopting a more general theoretical basis.

Remark 3.1. The issues described in this section do not apply to two recent MPST works, by Dezani-

Ciancaglini et al. [2015] and Scalas and Yoshida [2018]: they have different, non-classic MPST theories.

However, such works have other limitations, surmounted by this paper: they are detailed in §8.2.

3.1 Consistency and Subject Reduction
To reject cases like (6) (§ 2.3), classic MPST require typing contexts to be consistent: for each

pair of entries

{
s[p]:Sp , s[q]:Sq

}
⊆ Γ, the inputs/outputs of Sp from/to q must be dual w.r.t. the

outputs/inputs of Sq to/from p. This guarantees that two roles p, q can only send/receive compatible

messages in a session s . More precisely, consistency requires to check the duality of the partial

projections Sp↾q and Sq↾p, using Def. 3.5, 3.6, 3.7, and 3.8 (collected in Fig.3): this clearly shows that

MPST were developed by adopting a proof framework based on binary session types.

Correspondingly, to reject cases like (7), classic MPST define rule [T-ν] in Fig.2 by setting φ =
consistent. This yields the classic session restriction typing rule:

Γ′ =
{
s[p]:Sp

}
p∈I s < Γ consistent(Γ′) Θ · Γ, Γ′ ⊢ P

Θ · Γ ⊢ (νs :Γ′) P
[T-νClassic]

and this is sound (indeed, consistency satisfies the desiderata (D1)–(D3) described in §2.3).

E.g., the typing context in (6) is not consistent; correspondingly, no consistent Γ can be assigned

to (νs) ... in (7): hence, with rule [T-νClassic], the process in (7) is untypable in classic MPST.

Limitations of Consistency. Take the processes from Ex.2.3, and the typing derivation from Ex.2.7.

Using the rules in Fig.2 with [T-νClassic] above, we might try to type our opening example as:

Γ consistent

... (from Ex.2.7)

Γ ⊢ Ps | Pc | Pa
[T- |]

∅ ⊢ (νs :Γ) (Ps | Pc | Pa)
[T-νClassic]

where Γ = s[s]:Ss, s[c]:Sc, s[a]:Sa (8)

As shown in §1(2), the types Ss, Sc, Sa assigned to s[s], s[c], s[a] are respectively G↾s, G↾c, G↾a,
i.e., the projections of G (Def. 3.3). However, the derivation in (8) is wrong, because the consistency

premise of [T-νClassic] does not hold. To see why, we need to check all pairs of types for session s:

• Ss,Sc are consistent: the outputs of Ss to c are dual w.r.t. the inputs of Sc from s;
• Ss,Sa are not consistent, because the partial projections Ss↾a and Sa↾s are undefined (Def. 3.6).

Intuitively, Ss↾a and Sa↾s are undefined because the inputs/outputs of Ss/Sa from/to a/s depend
on previous I/O with c: i.e., if the service s sends login (resp. cancel) to the client c, then s
will (resp. will not) later interact with the authorisation server a. This is not captured by the

syntactic nature of projection/duality checks: i.e., protocols with inter-role dependencies are often

not consistent — even simple ones, like G in (1). Consequently, the process in Ex.2.3 is untypable,

albeit correct (does not reduce to err).

10 Alceste Scalas and Nobuko Yoshida

Definition 3.2. The syntax of a global type G is:

G F p→q: {mi(Si) .Gi }i ∈I
�� µt.G

�� t
�� end with p,q, I ,∅, and ∀i ∈ I : fv(Si) = ∅

We write p ∈ roles(G) (or simply p∈G) iff, for some q, either p→q or q→p occurs in G.

Definition 3.3 (Global Type Projection). The projection of G onto p, written G↾p, is:

(q→r: {mi(Si) .Gi }i ∈I)↾p =


r⊕i ∈I mi (Si).(Gi ↾p) if p = q

q&i ∈I mi (Si).(Gi ↾p) if p = r.
i ∈I Gi ↾p if q , p , r

(µt.G)↾p =
{
µt.(G↾p) if G↾p , t′ (∀t′)
end otherwise

t↾p = t
end↾p = end

where

.
is the merge operator for session types, that could be either the plain merging defined as

S ⊓ S = S , or the full merging:

p&i ∈I mi (Si).S
′
i ⊓ p&j ∈J mj (Sj).T

′
j = p&k ∈I∩J mk (Sk).(S

′
k⊓T

′
k) & p&i ∈I\J mi (Si).S

′
i & p&j ∈J \I mj (Sj).T

′
j

p⊕i ∈I mi (Si).S
′
i ⊓ p⊕i ∈I mi (Si).S

′
i = p⊕i ∈I mi (Si).S

′
i

µt.S ⊓ µt.T = µt.(S ⊓T) t ⊓ t = t end ⊓ end = end

Definition 3.4 (Partial Session Types). Partial session types, ranged over by H , are:

H F &i ∈I mi (Si).Hi
�� ⊕i ∈I mi (Si).Hi

�� end
�� µt.H

�� t with I , ∅ and ∀i ∈ I : fv(Si) = ∅

Definition 3.5 (Duality of Partial Session Types). The dual of H , written H , is:

&i ∈I mi (Si).Hi = ⊕i ∈I mi (Si).Hi ⊕i ∈I mi (Si).Hi = &i ∈I mi (Si).Hi µt.H =µt.H t= t end=end

Definition 3.6 (Partial Projection). The projection of S onto p, written S↾p, is:

(q&i ∈I mi (Si).S
′
i)↾p =

{
&i ∈I mi (Si).(S

′
i ↾p) if p=q.

i ∈I S
′
i ↾p if p,q

(q⊕i ∈I mi (Si).S
′
i)↾p =

{
⊕i ∈I mi (Si).(S

′
i ↾p) if p=q.

i ∈I S
′
i ↾p if p,q

(µt.S)↾p =
{
µt.(S↾p) if S↾p, t′ (∀t′)
end otherwise

t↾p = t
end↾p = end

where

.
is the merge operator for partial session types, defined as:

&i ∈I mi (Si).Hi ⊓ &i ∈I mi (Si).H
′
i = &i ∈I mi (Si).(Hi ⊓ H ′

i)

⊕i ∈I mi (Si).Hi ⊓ ⊕j ∈J mj (Sj).H
′
j = ⊕k ∈I∩J mk (Sk).(Hk ⊓ H ′

k) ⊕ ⊕i ∈I\J mi (Si).Hi ⊕ ⊕j ∈J \I mj (Sj).H
′
j

µt.H ⊓ µt.H ′ = µt.(H ⊓ H ′) t ⊓ t = t end ⊓ end = end

Definition 3.7. Subtyping for partial types is coinductively defined (we omit unfolding rules, cf. Def. 2.5):

∀i ∈ I Si ⩽ Ti H ′
i ⩽ H ′′

i

&i ∈I mi (Si).H
′
i ⩽ &i ∈I∪J mi (Ti).H

′′
i

∀i ∈ I Ti ⩽ Si H ′
i ⩽ H ′′

i

⊕i ∈I∪J mi (Si).H
′
i ⩽ ⊕i ∈I mi (Ti).H

′′
i end ⩽ end

Definition 3.8. Γ is consistent iff, ∀s, p,q, S, T , {s[p]:S, s[q]:T } ⊆ Γ implies S↾q ⩽ T ↾p.

Fig. 3. Classic MPST: global types, projections, consistency, and duality. Note that all these definitions

are not necessary in our new theory of multiparty session types (§4).

Subject Reduction and Type Safety (or Lack Thereof). As noted in §1, the classic MPST subject

reduction statement is (4). Now, consider (8) again: the conclusion is wrong, but the intermediate

judgement Γ ⊢ Ps | Pc | Pa holds. For this judgement, the subject reduction statement (4) is vacuously

true (since Γ is not consistent): hence, we cannot prove that Ps | Pc | Pa “never goes wrong.”

Interplay Between Consistency and Global Type Projection. The consistency requirement constrains

the MPST theory in non-obvious ways, causing subtle issues with global type projections. Several

Less Is More: Multiparty Session Types Revisited (Technical Report) 11

MPST papers claim that if Γ is obtained by projecting a global type G, then Γ is consistent (see

e.g.: [Deniélou et al. 2012, p.28], [Coppo et al. 2015a, Prop. 1], [Chen 2015, Prop. 2]). This claim

corresponds to introducing the typing rule [T-νClassicG] below, that seemingly fixes derivation (8):

Γ′ = {s[p]:G↾p}p∈roles(G) s < Γ Θ · Γ, Γ′ ⊢ P

Θ · Γ ⊢ (νs :Γ′) P
[T-νClassicG]

Unfortunately, our example in §1 shows a global type whose projections are not consistent. This is

because we use the “full merging” projection (Def. 3.3), introduced in Deniélou et al. [2012]; Yoshida

et al. [2010] to type more processes. The intuition is the following. Take the initial choice of the

global type G in §1(1) (reported below), that does not involve role a:

G = s→c: {login.G1, cancel.G2} where

{
G1 = c→a:passwd(Str) . a→s:auth(Bool)
G2 = c→a:quit

To projectG onto a, we must “skip” the first interaction between s and c, andmerge the projections

ofG1 andG2 onto a, rejecting potentially unsafe local types combinations (thus avoiding cases like

(6) above). Consequently, projection works as follows:

G↾a = S1⊓S2 where

{
S1 = G1↾a = c&passwd(Str).s⊕auth(Bool)
S2 = G2↾a = c&quit

We now have two possibilities, depending on how we choose the merging operator ⊓ (Def. 3.3):

• plain merging: S1 ⊓ S2 = S1 iff S1=S2 (undefined otherwise);

• full merging: S1 ⊓ S2 = Sa (see (2) in §1).

i.e., the restrictive plain merging is undefined for our example G, while full merging yields all

desired projections — but they are not consistent, as shown above. Consequently, the tentative rule

[T-νClassicG] with “full merging” projections breaks subject reduction proofs. E.g., take P typed by

[T-νClassicG], and reducing to P ′
, as follows:

∅ · ∅ ⊢ P with P = (νs :Γ) P0 → (νs :Γ′) P1 = P ′
(induced by P0→P1 and rule [R-Ctx] in Fig.1) (9)

To prove subject reduction as stated in (4), we need to invert P ’s typing and apply the induction

hypothesis on Θ · Γ ⊢P0 and P0→P1 (from (9)), to obtain that there is some Γ′ such that Γ→∗ Γ′

and Θ · Γ′⊢P1; however, to apply (4) in the induction hypothesis we need Γ consistent, and we have

shown that this hypothesis might not hold.

We can now revisit our claims in §1, making them precise, and highlighting the resulting impasse:

(C1) overly restrictive: requiring Γ consistent drastically constrains typability: it rejects our

simple example in §1, and many other correct protocols (see §3.2 later on). Correspondingly,

the restrictive “plain merging” projection of [Honda et al. 2008, Def. 4.1] and [Coppo et al.

2015a, Def. 1], guarantees consistency by rejecting many correct protocols;

(C2) inflexible and error-prone: if we use a “full merging” projection as in, e.g., Yoshida et al.

[2010] or Deniélou et al. [2012], then Γ might not be consistent. This means that the proofs of

subject reduction depending on “full merging” (e.g. [Yoshida et al. 2010, Thm 3.5], [Deniélou

et al. 2012, Thm 4.6], and successive papers discussed in §8) do not work; we might fix such

proofs by adding a consistency requirement — but then, we would fall back into (C1) above.

In §4, we completely eschew these issues by developing new theoretical foundations for MPST: we

cut the ties with binary session types, adopting a more general, behavioural safety invariant, that

subsumes consistency and binary session duality.

3.2 More Examples of Correct, yet Non-Consistent Protocols
We conclude this section with Fig.4, that describes various multiparty protocols, formalised as

typing contexts. None of such protocols is consistent, because some of their partial projections are

12 Alceste Scalas and Nobuko Yoshida

(1) OAuth2 fragment.

(See global type (1) in §1) (See types (2) in §1, and Γ in Ex.2.7)

(2) Recursive two-buyers protocol. This is a mild variation of a typical example in MPST literature. Alice (a)
queries the store (s) for an item, and the store replies with a price; then, she asks Bob (b) to split the price:

if he says yes, then she buys the item from the store; if he says no, then Alice recursively retries, proposing

another split to Bob; at any point, Alice can cancel her bargaining with Bob, and say no to the store.

N/A

s[a] : s⊕query(Str).s&price(Int).µt.b⊕
split(Int).b&

{
yes.s⊕buy.end,
no.t

}
,

cancel.s⊕no


s[s] :a&query(Str).a⊕price(Int).a&

{
buy.end , no.end

}
s[b] : µt.a&

{
split(Int).a⊕

{
yes.end , no.t

}
, cancel.end

}
(3) Recursive map/reduce. The mapper (m) sends a datum to n workers (w1, . . . , wn , for some given n), and each

one sends a result to the reducer (r); then, the reducer tells the mapper whether to continue with another

iteration, or stop: in the first case, the mapper loops, while in the second case, it stops the workers.
µt.m→w1:datum(Int)
m→wn :datum(Int)
w1→r:result(Int)
wn→r:result(Int) .

r→m:


continue(Int) . t ,
stop . m→w1:stop

m→wn :stop



s[m] : µt.w1⊕datum(Int).wn⊕datum(Int).r&
{
continue(Int).t
stop.w1⊕stop.wn⊕stop

}
s[wi] :m&datum(Int).µt.r⊕result(Int).m&

{
datum(Int).t ,
stop.end

}
(∀i ∈1..n)

s[r] : µt.w1&datum(Int).wn&datum(Int).m⊕
{
continue(Int).t
stop.end

}
(4) Independentmultiparty workers. The starter process (s) sends a datum ton worker processes (wa1, . . . , wan ,

for some given n), and each one starts exchanging datum/result messages with two other workers (wbi and
wci , for i ∈ 1..n). Each triplet of workers wai , wbi , wci (i ∈ i ..n) keeps interacting until wai sends stop to wbi ,
who forwards stop to wci .

s→wa1:datum(Int) s→wan :datum(Int) .

µt.wai→wbi :


datum(Int).wbi→wci :datum(Int) .

wci→wai :result(Int) . t ,
stop . wbi→wci :stop



s[s] :wa1⊕datum(Int).wan⊕datum(Int).end

s[wai] :s&datum(Int).µt.wbi⊕
{
datum(Int).wci&result(Int).t ,
stop.end

}
s[wbi] : µt.wai&

{
datum(Int).wci⊕datum(Int).t ,
stop.wci⊕stop.end

}
s[wci] : µt.wbi&

{
datum(Int).wai⊕result(Int).t ,
stop.end

}
Fig. 4. A selection of multiparty protocols: each one is expressed as a (non-consistent) typing context (on

the right); for the sake of clarity, we also outline the shape of a global type with corresponding projections

(on the left). The exception is protocol (2), that cannot be projected from any global type: see §3.2. Being

non-consistent, all these protocols are not supported by classic MPST — but they are all supported by our new

general type system (§4); moreover, they have different behavioural properties, analysed in §5.3 (Table 1).

undefined — as a consequence of the issues illustrated in §3.1; moreover, the protocols (2), (3) and

(4) trigger further subtle restrictions in the partial projection/merging of recursive types (Def. 3.6).

Notably, Fig.4 includes an example of multiparty protocol that cannot be projected from any

global type: the recursive two-buyers protocol (2). The key issue is in the type of s[a], when alice
interacts with bob: alice sends a message to the store in one of the branches under recursion µt....
(where bob answers yes), but not in the other branch (where bob says no). This is not supported by
projection and merging (Def. 3.3): they can only generate session types where all branches under

recursion syntactically contain a same set of roles. Consequently, no global type can be projected

and yield the type of s[a] in Fig.4(2). This restriction does not impact our new MPST theory (§4).

4 A NEW, GENERAL MULTIPARTY SESSION TYPE SYSTEM
We now present our new general MPST theory. Its generality comes from the fact that it is based on

a weak typing context safety invariant, that rejects cases like (6)/(7) (§2.3) without the restrictions

Less Is More: Multiparty Session Types Revisited (Technical Report) 13

and drawbacks of classic MPST consistency. Moreover, we design the new type system to be

parametric on the safety invariant itself: by fine-tuning the parameter, the type system can accept

or reject MPST processes depending on the properties of the protocols they implement (we will take

advantage of this feature in §5). Hence, different instantiations of the parameter yield different type

system instances — but we just need to prove type safety once, under the weakest safety invariant.

This design is inspired by Igarashi and Kobayashi [2004]’s Generic Type System for the π -calculus.
We first formalise what a “safety invariant” is, in Def. 4.1 below: it is a behavioural property of

typing contexts, that depends on how they reduce (cf. Def. 2.8). The fundamental difference with

classic MPST (§3) is that our safety is not based on binary session types, nor duality.

Definition 4.1. φ is a safety property of typing contexts iff:

[S-⊕&] φ
(
Γ, s[p]:q⊕i ∈Imi (Si).S

′
i , s[q]:p&j ∈J mj (Tj).T

′
j

)
implies I ⊆ J , and ∀i ∈ I : Si⩽Ti ;

[S-µ] φ(Γ, s[p]:µt.S) implies φ(Γ, s[p]:S{µt.S/t});
[S-→] φ(Γ) and Γ → Γ′ implies φ(Γ′).

We say Γ is safe, written safe(Γ), if φ(Γ) for some safety property φ.

The rules of Def. 4.1 directly satisfy the desiderata (D1) and (D3) discussed in §2.3 (whereas (D2)

is satisfied by Lemma 4.3, as we will see shortly). Rule [S-⊕&] says that the roles in a safe typing

context can only exchange compatible messages (this is desideratum (D1)): more precisely, if the

typing context contains entries for s[p] and s[q], with p sending to q and q receiving from p, then p
support all q’s messages — and thus, they can reduce, by Def. 2.8. Rule [S-µ] says that φ contains all

recursive type unfoldings: this allows rule [S-⊕&] to check unfolded types, where ⊕/& occur at the

the top-level. By rule [S-→], safety is preserved whenever Γ reduces (this is desideratum (D3)).

Example 4.2. The typing context Γ of (8) in §3 is safe. This can be easily verified by: (1) defining

φ as φ = {Γ′ | Γ→∗ Γ′}, i.e., containing Γ and all its reductions; (2) checking that φ is a safety

property, because all its elements satisfy the clauses of Def. 4.1; and (3) concluding that, since φ(Γ)
holds, Γ is safe. Instead, the typing context in (6) is not safe: any property φ containing such typing

context is not a safety property, as it violates clause [S-⊕&] of Def. 4.1.

Def. 4.1 also has the properties below, useful for proving subject reduction: typing context splits

preserve safety (Lemma 4.3, which satisfies the remaining desideratum (D2) in §2.3); if Γ is safe,

then supertyping/reductions commute (Lemma 4.4); supertyping preserves safety (Lemma 4.5).

Lemma 4.3. If Γ, Γ′ is safe, then Γ is safe.

Lemma 4.4. If Γ safe and Γ ⩽ Γ′ → Γ′′, then there is Γ′′′ such that Γ → Γ′′′ ⩽ Γ′′.

Lemma 4.5. If Γ is safe and Γ ⩽ Γ′, then Γ′ is safe.

We can now define our new multiparty session type system. As explained in §2.3, since we are

adopting safety (Def. 4.1) as the criterion for accepting/rejecting typing contexts, we use the same

criterion to define a typing rule for session restriction.

Definition 4.6 (General Multiparty Session Type System). The general MPST typing judgement is

inductively defined by the rules in Fig.2 — with rule [T-ν] restricted as follows:

Γ′ =
{
s[p]:Sp

}
p∈I φ(Γ′) s <Γ Θ · Γ, Γ′ ⊢ P

Θ · Γ ⊢ (νs :Γ′) P
[TGen-ν] where φ is a safety property

Given a safety property φ, we write “Θ · Γ ⊢ P with φ” to instantiate φ in [TGen-ν] above; when

“with φ” is omitted, then the instantiation is φ=safe (i.e., the largest safety property, cf. Def. 4.1).

14 Alceste Scalas and Nobuko Yoshida

Example 4.7. Take the (wrong) typing derivation (8) in §3.1, and replace the (wrong) application

of rule [T-νClassic] with [TGen-ν] from Def. 4.6, instantiating φ with the safety property of Ex.4.2 (that

contains Γ). The resulting typing derivation is correct.

Ex.4.7 above shows that our new type system is not limited by consistency requirements, and types

our opening example. Notably, the only visible difference between our new type system (Def. 4.6) and

the classic one (§3.1) is that [TGen-ν] uses a (parametric) safety property φ, instead of consistency.2As
explained in §2.3, this small visible difference between typing rules is a manifestation of a deeper

underlying change: by removing the crucial consistency/duality assumption of classic MPST, we

are replacing its theoretical underpinnings, and this requires a revision of all MPST soundness

proofs. The payoff is that our new MPST theory enjoys a much more general subject reduction

property (Thm.4.8, based on Lemmas 4.3 to 4.5); from this, we get that typed processes “never go

wrong” (Cor.4.9). And again, unlike classic MPST, these results are not limited by consistency.

Theorem 4.8 (Subject Reduction). Assume Θ · Γ ⊢ P and Γ safe. Then, P → P ′
implies ∃Γ′

safe such that Γ →∗ Γ′ and Θ · Γ′ ⊢ P ′
.

Corollary 4.9 (Type safety). If ∅·∅ ⊢P and P→∗P ′
, then P ′

has no error.

Proof. We first prove a more general result. Assume Θ · Γ ⊢ P with Γ safe, and P = P1 → · · · →

Pn = P ′
. By induction on n, using Thm.4.8, we prove Θ · Γ′ ⊢ P ′

, for some safe Γ′ such that Γ →∗ Γ′.
Now, by contradiction, assume that P ′

has an error (Def. 2.2); then, P ′
is untypable, since its err

subterm is untypable: contradiction. Hence, P ′
has no errors. We obtain Cor.4.9 as a special case of

the result above, with Θ=∅ and Γ=Γ′=∅ (that is vacuously safe). □

Example 4.10. Take our opening example in §1, and its typed process from Ex.2.7 and 4.7. Using

our new Thm.4.8 instead of the classic MPST subject reduction (4) in §1, we infer that all process

reductions are well-typed. And by Cor.4.9, we are guaranteed that they do not contain errors.

Finally, note that type checking is decidable, whenever Def. 4.6 is instantiated with a decidable

safety property: this mainly follows because typing rules are syntax-directed, and for any P , at most

one can be applied. Also note that, since we proved Thm.4.8 and Cor.4.9 using the largest (i.e., the

weakest) safety property, we do not need to repeat the proof depending on how φ is instantiated in

Def. 4.6: subject reduction and type safety hold for any safety property φ.

Theorem 4.11. If φ is decidable, then “Θ·Γ ⊢ P with φ” is decidable.

5 VERIFYING RUN-TIME PROPERTIES OF PROCESSES, USING TYPES
In this section, we show that by suitably instantiating φ in our type system (Def. 4.6), we can

statically enforce desired run-time properties on processes — e.g., deadlock freedom and liveness.

In order to achieve this result, we study several typing context properties, and compare themwith

safety (Def. 4.1). The main reason for this study is that safety, albeit guaranteeing error-freedom

(Thm.4.8, Cor.4.9), is otherwise rather weak. E.g., the following typing context is safe but deadlocked

(it cannot reduce, because p is waiting an input from q, who is waiting for r, who is waiting for p):

s[p]:q&m1 .r⊕m2 , s[q]:r&m3 .p⊕m1 , s[r]:p&m2 .q⊕m3
and the context above types deadlocked processes that cannot reduce, either. This is undesirable:

“real-world” programs should be deadlock-free, or even live (i.e., each pending input/output should be

fired, eventually). Therefore, stronger typing context properties are needed — and in our new MPST

theory, we can use the parameter φ of Def. 4.6 to enforce them, without consistency limitations.

2
In §5.4, we show that all typing derivations of classic MPST are valid under Def. 4.6: consistency implies safety, hence in

[TGen-ν] we can let φ =consistent; and in §5.5, we show how φ statically determines the run-time properties on processes.

Less Is More: Multiparty Session Types Revisited (Technical Report) 15

We first discuss several desirable, although undecidable, run-time properties of processes, such as

deadlock-freedom and liveness (§5.1); next, we prove session fidelity, a crucial result that connects

typing context reductions to processes reductions (§5.2). Then, we present various typing context

properties (§5.3), and compare them (§5.4); finally, we show that they are decidable, and, with our

new type system, they can be used to ensure that processes are, e.g., deadlock-free and live (§5.5).

5.1 Run-Time Properties of Processes
In Def. 5.1 below, we formalise various desirable process properties. All these properties are

undecidable, because the MPST π -calculus is Turing-powerful [Busi et al. 2009]. To surmount this

obstacle, from §5.3 we will reason on analogous properties for types (that are not Turing-powerful).

Definition 5.1 (Process properties). P is deadlock-free iff P→∗P ′ ̸→ implies P ′≡0. P is termin-

ating iff it is deadlock-free, and ∃j finite such that, ∀n≥ j , P =P0→P1→· · ·→Pn implies Pn ≡0. P
is never-terminating iff P→∗P ′

implies P ′→. P is live iff P→∗P ′≡C[Q] implies:

(1) if Q = c[q]⊕m⟨s ′[r]⟩ .Q ′
(for some m, s ′, r,Q ′

), then ∃C′: P ′→∗C′[Q ′]; and

(2) if Q = c[q]
∑

i ∈I mi (xi).Q
′
i (for some mi ,xi ,Q

′
i), then ∃C′,k ∈ I , s ′, r: P ′→∗C′

[
Q ′
k {

s ′[r]/xk }
]
.

P is strongly live iff P→∗P ′≡C[Q] implies:

(3) item 1 above, and moreover, there is n finite such that, whenever P ′ = P ′
0
→ P ′

1
→ · · · → P ′

n ,

then for some j ≤n we have P ′
j →C

′′[Q ′] (for some C′′);

(4) item 2 above, and moreover, there is n finite such that, whenever P ′ = P ′
0
→ P ′

1
→ · · · → P ′

n ,

then for some j ≤n we have P ′
j →C

′′
[
Q ′
k {

s ′[r]/xk }
]
(for some C′′,k ∈ I , s ′, r).

In Def. 5.1, a process P is deadlock-free when it only stops reducing by becoming 0; P is termin-

ating when it always reaches 0 after a finite number of reductions; P is never-terminating when it

reduces forever; P is live (a.k.a. “lock-free” [Kobayashi and Sangiorgi 2010; Padovani 2014]) when all

its pending inputs/outputs can always eventually communicate with a corresponding output/input;

P is strongly live when all its pending inputs/outputs will always find a corresponding output/input,

enabling communication after a finite number of reductions.

Example 5.2. We now illustrate the differences among the properties in Def. 5.1. Let:

P = P1 | P2 where

{
P1 = s[p][q]

∑
resp.P

P2 = def X (x) = x[r]
∑{

m1 .X ⟨x⟩ , m2 .x[p]⊕resp.0
}

in X ⟨s[q]⟩ | Q

i.e., P1 implements p, and waits a response from q; P2 implements q, and loops every time role r
(whose omitted implementation is in Q) sends m1; if/when r chooses to send m2, then P2 sends the
response to p, triggering the input in P1. Now, consider the following implementation of Q :

Q = def Y (y) = y[q]⊕m1 .Y ⟨y⟩ in Y ⟨s[r]⟩

i.e., r sends m1 to q forever — hence, P reduces forever, which means that P is never-terminating and

deadlock-free. But note that the sub-process P1 never has a chance to receive the desired response
from q: hence, P is not live. To address this, we can instead define Q above as:

Q = s[r][q]⊕m1 .s[r][q]⊕m2 .0 | Q ′
where Q ′ =

{
def Z (z) = z[r′′]⊕m3 .Z ⟨z⟩ in

def Z ′(z′) = z′[r′]
∑
m3(x).Z

′⟨z′⟩ in
Z ⟨s[r′]⟩ | Z ′⟨s[r′′]⟩

i.e., r sends m1 and then m2 to q, and this causes q to send resp to p (cf. P2 above); meanwhile, the

sub-process Q ′
loops, with r′ and r′′ exchanging message m3. With this definition of Q , we obtain

that P is live, because P1 can always eventually receive its input while P2 reduces.

16 Alceste Scalas and Nobuko Yoshida

Still, P is not strongly live, because the input of P1 could be arbitrarily delayed by letting Q ′

reduce forever, without firing the outputs of Q . We can make P strongly live, e.g., by redefining Q ′

as Q ′=0: this guarantees that P1 will receive its input within 3 reductions.
3

5.2 Session Fidelity
We now prove that if a typing context can reduce, then a typed process P simulates the reduction

(Thm.5.4). A related result can be proved for classic MPST — but in our new theory, it is stronger:

we do not assume consistency of the typing context, nor the existence of a global type projecting it.

Session fidelity requires P to be (1) not deadlocked, and (2) productive, i.e., not trapped in a loop like

def X (x) = X ⟨x⟩ in X ⟨s[p]⟩, if s[p] needs to be used for input/output: this is formalised in Def. 5.3.

Definition 5.3. Assume ∅ · Γ ⊢ P . We say that P :

(1) has guarded definitions iff in each subterm of the form def X (x1 :S1, ...,xn :Sn) = Q in P ′
,

for all i ∈ 1..n, Si ⩽̸ end implies that a call Y ⟨...,xi , ...⟩ can only occur in Q as subterm of

xi [q]
∑

j ∈J mj (yj).Pj or xi [q]⊕m⟨c⟩ .P ′′
(i.e., after using xi for input/output);

(2) only plays role p in s, by Γ, iff: (i) P has guarded definitions; (ii) fv(P)=∅; (iii) Γ=Γ0, s[p]:S
with S⩽̸end and end(Γ0); (iv) in all subterms (νs ′ :Γ′) P ′

of P , we have end(Γ′).

We say “P only plays role p in s” iff ∃Γ : ∅·Γ ⊢P , and item 2 holds.

We will explain item 1 of Def. 5.3 shortly (after Thm.5.4). Item 2 identifies a process that plays

exactly one role on one session: clearly, an ensemble of such processes cannot deadlock by waiting

for each other on multiple sessions. All our examples (except a few, duly noted) satisfy Def. 5.3(2).

Now, in Thm.5.4 we prove that a set of processes involved in a single session simulates the typing

context, following its types/protocols. This addresses the typical application scenario of MPST: an

ensemble of programs Pp interact on a multiparty session s , each one playing a distinct role p.

Theorem 5.4 (Session Fidelity). Assume ∅·Γ ⊢P , where Γ is safe, P ≡
��
p∈IPp, and each Pp either is

0 (up-to ≡), or only plays p in s . Then, Γ→ implies ∃Γ′, P ′
such that Γ→Γ′, P→∗P ′

and ∅·Γ′ ⊢ P ′
,

where P ′ ≡
��
p∈IP

′
p and each P ′

p either is 0 (up-to ≡), or only plays p in s .

Note that in Thm.5.4, P chooses which reduction of Γ to follow: in fact, a selection type in Γ
might allow to choose m1, ..., mn (with different continuations), but P might select only one mk (by

[T-⊕] in Fig. 2, and subtyping). This observation will be a crucial when reasoning about process

liveness (§5.5). Also note that Thm.5.4 relies on item 1 of Def. 5.3. In fact, by rule [T-def] (Fig.2), an

unguarded definition X (x :S) = X ⟨x⟩ can be typed with any S ; therefore, we have e.g.:

∅ · s[p]:q⊕m, s[q]:p&m ⊢ def X (x :q⊕m) = X ⟨x⟩ in X ⟨s[p]⟩ | s[q][p]
∑
m

and the unguarded process above reduces vacuously by calling X infinitely, without matching any

typing context reduction; this explains the need of guarded definitions in Thm.5.4.

5.3 Typing Context Properties
Fig.5 lists several behavioural properties of typing contexts. In §5.5, we will show how they can

statically enforce the run-time process properties discussed in §5.1.

• Γ is deadlock-free iff it stops reducing only when it only contains ends;
• Γ is terminating iff it always reaches a final configuration, in a finite number of steps;

• Γ is never-terminating iff it never stops reducing;

• Γ is live, live
+
or live

++
iff each branching/selection can be eventually fired.

3
As a more laborious alternative, we could formalise and assume a notion of fair scheduling, that eventually fires any action

that is persistently enabled; we adopt a similar intuition for type reductions, in Def. 5.5.

Less Is More: Multiparty Session Types Revisited (Technical Report) 17

(1) Γ is safe, written safe(Γ), iff:

(see Def. 4.1) Γ |= νZ.
©­«
∀s, p, q, m, m′, S, S ′ .(

⟨s:p⊕q:m(S)⟩⊤ ∧ ⟨s:p&q:m′(S ′)⟩⊤⇒ ⟨s:p,q:m⟩⊤
)

∧ [s:p,q:m]Z

ª®¬
(2) Γ is deadlock-free, written df(Γ), iff:

Γ→∗ Γ′̸→ implies end(Γ′) Γ |= νZ.
©­«
(
(∀s, p, q, m.[s:p,q:m]⊥) ⇒

∀p, q, m, S .[s:p&q:m(S)]⊥ ∧ [s:p⊕q:m(S)]⊥

)
∧ ∀p, q, m.[s:p,q:m]Z

ª®¬
(3) Γ is terminating, written term(Γ), iff:

Γ is deadlock-free, and there is j ∈N0

such that for all n ≥ j, Γ = Γ0 → Γ1 →
· · · → Γn implies end(Γn)

Γ |= µZ.
©­«
(
(∀s, p, q, m.[s:p,q:m]⊥) ⇒

∀s, p, q, m, S .[s:p&q:m(S)]⊥ ∧ [s:p⊕q:m(S)]⊥

)
∧ ∀s, p, q, m.[s:p,q:m]Z

ª®¬
(4) Γ is never-terminating, written nterm(Γ), iff:

Γ→∗ Γ′ implies Γ′→ Γ |= νZ.
(∃s, p, q, m. ⟨s:p,q:m⟩⊤ ∧ ∀s, p, q, m.[s:p,q:m]Z)

(5) Γ is live, written live(Γ), iff:
φ(Γ), for some φ such that

[L-&] whenever φ(Γ′, s[p]:S) with S =
q&i ∈Imi (Si).S

′
i , ∃i ∈ I : ∃Γ′′:

Γ′, s[p]:S→∗ Γ′′, s[p]:S ′i

[L-⊕] whenever φ(Γ′, s[p]:S) with S =
q⊕i ∈Imi (Si).S

′
i , ∀i ∈ I : ∃Γ′′:

Γ′, s[p]:S→∗ Γ′′, s[p]:S ′i
plus clauses [S-µ], [S-→] (Def. 4.1).

Γ |= νZ.

©­­­­­­­­­­­«

∀s, p, q.(
(∃m, S . ⟨s:p&q:m(S)⟩⊤) ⇒

µZ′ .∃m. ⟨s:p,q:m⟩⊤ ∨ ∃p′, q′, m′ . ⟨s:p′,q′:m′⟩Z′

)
∧

∀m.
(
(∃S . ⟨s:p⊕q:m(S)⟩⊤) ⇒

µZ′ . ⟨s:p,q:m⟩⊤ ∨ ∃p′, q′, m′ . ⟨s:p′,q′:m′⟩Z′

)
∧

∀m.[s:p,q:m]Z

ª®®®®®®®®®®®¬
(6) Γ is live

+
, written live

+(Γ), iff:
φ(Γ), for φ such that

[L-&
+
] clause [L-&] above; moreover,

Γ′, s[p]:S belongs to some fair

traversal set X with targets Y
(Def. 5.5) such that, ∀Γt ∈ Y, we
have Γt = Γ′′, s[p]:S ′i (for some

Γ′′, i ∈ I)

[L-⊕+] clause [L-⊕] above, plus the

“moreover. . . ” part of [L-&
+
]

plus clauses [S-µ], [S-→] (Def. 4.1).

Γ |= νZ.

©­­­­­­­­­­­­­­­«

∀s, p, q.©­«
(∃m, S . ⟨s:p&q:m(S)⟩⊤) ⇒
µZ′ .∃m. ⟨s:p,q:m⟩⊤ ∨ ∃p′, q′ .

(∃m′ . ⟨s:p′,q′:m′⟩⊤
∧ ∀m′ .[s:p′,q′:m′]Z′

)ª®¬
∧

∀m.©­«
(∃S . ⟨s:p⊕q:m(S)⟩⊤) ⇒
µZ′ . ⟨s:p,q:m⟩⊤ ∨ ∃p′, q′ .

(∃m′ . ⟨s:p′,q′:m′⟩⊤
∧ ∀m′ .[s:p′,q′:m′]Z′

)ª®¬
∧

∀m.[s:p,q:m]Z

ª®®®®®®®®®®®®®®®¬
(7) Γ is live

++
, written live

++(Γ), iff:

φ(Γ), for φ such that

[L-&
++

] clause [L-&] above; moreover,

∃n ∈ N0
such that, whenever

Γ′, s[p]:S = Γ0 → Γ1 → · · · → Γn ,
then ∃j ≤ n, Γ′′ such that Γj →
Γ′′, s[p]:S ′i (for some i ∈ I)

[L-⊕++] clause [L-⊕] above, plus the

“moreover. . . ” part of [L-&
++

]

plus clauses [S-µ], [S-→] (Def. 4.1).

Γ |= νZ.

©­­­­­­­­­­­­­­­«

∀s, p, q.©­«
(∃m, S . ⟨s:p&q:m(S)⟩⊤) ⇒
µZ′ .∃m. ⟨s:p,q:m⟩⊤ ∨

(∃s ′, p′, q′, m′ . ⟨s ′:p′,q′:m′⟩⊤
∧ ∀s ′, p′, q′, m′ .[s ′:p′,q′:m′]Z′

)ª®¬
∧

∀m.©­«
(∃S . ⟨s:p⊕q:m(S)⟩⊤) ⇒
µZ′ . ⟨s:p,q:m⟩⊤ ∨

(∃s ′, p′, q′, m′ . ⟨s ′:p′,q′:m′⟩⊤
∧ ∀s ′, p′, q′, m′ .[s ′:p′,q′:m′]Z′

)ª®¬
∧

∀m.[s:p,q:m]Z

ª®®®®®®®®®®®®®®®¬
Fig. 5. Properties of typing contexts. Each property is presented in two equivalent formalisations: the left-side

ones are based on the notation and definitions introduced up to §5.4 (excluded); the right-side ones are

µ-calculus formulas (explained in §6), and allow to verify typing contexts via model checking (e.g., with tools

like mCRL2 [Groote and Mousavi 2014]).

18 Alceste Scalas and Nobuko Yoshida

The intuition behind live/live
+
/live

++
is the following. Take a typing context Γ, s[p]:S . If such a

context is live, then, by clause [L-&] of Fig.5(5), if S is an external choice, then Γ can reduce until

some branch of S is triggered; and by clause [L-⊕], if S is an internal choice, then Γ can reduce

allowing to send each message of S . The clauses of liveness+ are stricter: they ensure that, under

“fair scheduling” (details below) the interaction with S will be enabled in a finite number of steps.

The clauses of liveness
++

are even stricter, and ensure that the interaction with S will be enabled

within a finite number of steps, no matter how other roles are scheduled. We will give examples and

more explanations shortly (Ex.5.10, Ex.5.11, Ex.5.14, Thm.5.15). But first, we explain what “under fair

scheduling” means: roughly, we ensure that there is a set of roles whose interactions always cause

a desired input/output to meet a corresponding output/input. This requires some sophistication,

and the formalisation of the “fair traversal set” mentioned in the definition of liveness
+
(Fig.5(6)).

Definition 5.5 (Fair traversal set). Let X,Y be sets of typing contexts. We say that X is a fair

traversal set with targets Y iff X is closed under the rules:

Γ ∈ Y
Γ ∈ X

[TS-Target]

∃s, p, q : ∃m : Γ
s :p,q:m
−−−−−→ ∀m : Γ

s :p,q:m
−−−−−→ Γ′ implies Γ′ ∈ X

Γ ∈ X
[TS-Comm]

Def. 5.5 says that if a fair traversal set X contains a typing context Γ, then X also contains

(part of) Γ’s reductions (inductive rule [TS-Comm]), reaching one of the target contexts in Y (base

rule [TS-Target]). Notably, by rule [TS-Comm], for each reduction of Γ, it is enough to choose just two

roles p, q who can interact (clause “∃m : Γ
s :p,q:m
−−−−−→”), as long as, for all interactions they can engage

in, the corresponding reductum belongs to X (clause “. . . Γ′∈X”). Consequently, if we prove that X
is a fair traversal set with targets Y, then any Γ ∈X is supported by an inductive derivation D —

that, in turn, shows how we can reach some Γ′∈Y in a finite number of steps, by choosing a set of

participants and following any of their possible interactions (one per instance of [TS-Comm] in D).

Example 5.6. By Def. 5.5, fair traversal sets are inductively defined: this excludes cases where

target elements are reachable, but can be “infinitely delayed” by choices and recursion. E.g., let:

Γ = s[p]:µt.q⊕{m1 .t , m2}, s[q]:µt.p&{m1 .t , m2 .r⊕m3}, s[r]:q&m3
Γ′ = s[p]:end, s[q]:end, s[r]:end and thus, Γ

s :p,q:m2
−−−−−→

s :q,r:m3
−−−−−→ Γ′

Note that Γ is live, and Γ′ is reachable — and yet, we cannot define a fair traversal set X containing

Γ, with a target set Y= {Γ′}. This is because p, q can interact infinitely by exchanging m1, yielding

the infinite run Γ
s :p,q:m1
−−−−−→ Γ

s :p,q:m1
−−−−−→ · · · ; consequently, to support Γ ∈X we would need an inductive

derivation with an infinite series of instances of rule [TS-Comm] — i.e., the derivation would be invalid.

Example 5.7. Fair traversal sets can be defined when elements of the target set are reachable, but

can be infinitely delayed by “unfair scheduling.” E.g., consider:

Γ = s[p]:q⊕m1 .q′⊕m2, s[q]:p&m1, s[q′]:p&m2, s[r]:µt.r′⊕m2 .t, s[r′]:µt.r&m2 .t
Γ′ = s[p]:end, s[q]:end, s[q′]:end, s[r]:µt.r′⊕m2 .t, s[r′]:µt.r&m2 .t

Note that Γ is live, and Γ′ is reachable from Γ, via the reductions Γ
s :p,q:m1
−−−−−→

s :p,q′:m2
−−−−−−→ Γ′; however,

Γ′ can be infinitely delayed in the unfair run Γ
s :r,r′:m2
−−−−−−→ Γ

s :r,r′:m2
−−−−−−→ · · · that never fires the

communication between p and q, and thus, never enables the interaction between p and q′. Yet,
unlike Ex.5.6, we can define a fair traversal set X= {Γ, Γ′}, with target Y= {Γ′}: in fact, we can

build a finite derivation that supports Γ ∈X by instantiating rule [TS-Comm] twice — choosing p, q for

the fist reduction, and then p, q′ to reach the axiom [TS-Target], ignoring the interactions between

r, r′.

Less Is More: Multiparty Session Types Revisited (Technical Report) 19

Table 1. Verification of the multiparty protocols in Fig.4 against the properties in Fig.5. The results for protocol

(3) hold for n≥ 1, while the results for protocol (4) hold for n≥ 2.

consistent safe
deadlock-

free
live live

+
live

++
never-

terminat.
terminat.

(1) OAuth2 fragment false true true true true true false true

(2) Rec. two-buyers false true true true false false false false

(3) Rec. map/reduce false true true true true true false false

(4) MP workers false true true true true false false false

Ex.5.6 and Ex.5.7 clarify why live
+
in Fig.5(6) requires the existence of a certain traversal set:

this ensures that, when Γ has some pending input/output, then under “fair scheduling,” Γ can reach

a target Γt where such input/output has been fired, by interacting with a matching output/input.

5.4 Relationships Between Typing Context Properties
We now study how typing context properties are related: this is formalised in Lemma 5.9 below,

that also conveys the expressiveness of our new type system (Remark 5.12).

To cover classic MPST theory, we first define projected typing contexts, in Def. 5.8; note that the

projections with plain and full merging correspond to claims (C1) and (C2) in §3.1, respectively.

Definition 5.8. We say that Γ is the full (resp. plain) projection of G for session s , written

fprojG,s(Γ) (resp. pprojG,s (Γ)), iff Γ= {s[p]:G↾p}p∈roles(G), where G↾p is the projection with full

merging (resp. plain merging) in Def. 3.3.

Lemma 5.9. For all Γ, the following (non-)implications hold:

(1) consistent(Γ) ⇍= =⇒ safe(Γ);
(2) live(Γ) ⇍= =⇒ safe(Γ);
(3) live(Γ) ⇍= =⇒ df(Γ);
(4) nterm(Γ) ⇍= =⇒ df(Γ);
(5) consistent(Γ) ⇍= ≠⇒ df(Γ);
(6) consistent(Γ) ∧ df(Γ) ⇍= ≠⇒ live(Γ);
(7) live

++(Γ) ⇍= =⇒ live
+(Γ) ⇍= =⇒ live(Γ);

(8) term(Γ) ⇍= =⇒ live
++(Γ);

(9) assume dom(Γ)= {s} (Def. 2.6). Then:
∃G : fprojG,s(Γ) ⇍= =⇒ live

+(Γ).

consistent

GG-

safe

df livelive+

live++

term

n
te
rm

In the diagram, the “safe” set contains all typing contexts supported by our general type system.

The red subsets are the classic MPST theory: � contains all contexts projected by some global type;

its subset �− only has consistent typing contexts, i.e. the only class of global types for which classic

MPST proves type safety: this class excludes our example in §1, and also all protocols in Fig.4, and

more (see Ex.5.10 and Ex.5.11 below). Notably, in item (9), we prove that all projected contexts are

live
+
: this is discussed in Remark 5.16 later.

Example 5.10. The protocols described in Fig.4 are verified in Table 1. We observe:

• all protocols are safe and live, but none of them is consistent: hence, they are not supported

by the classic MPST theory;

• all protocols are live
+
, except recursive two-buyers (2): this is because it allows alice and bob

to bargain forever by exchanging split/no messages, without ever involving the store (that

20 Alceste Scalas and Nobuko Yoshida

will keep waiting for alice to send either buy or no). This violates clause [L-&
+
] of Fig.5(6),

because we cannot find any traversal set whose targets trigger the store’s pending input (the
issue is similar to Ex.5.6);

• two protocols are not live
++
: recursive two-buyers (as expected, by the point above and the

contrapositive of Lemma 5.9(7)), and MP workers (4). The latter is not live
++

because each

triplet of workers wai , wbi , wci (i ∈1..n≥ 2) can loop independently from the others; therefore,

the interaction between, e.g., two workers in triplet 1 might be delayed for an unbounded

number of transitions, while triplet 2 keeps progressing. Note that this scenario arises if the

roles are scheduled unfairly; otherwise, each enabled interaction will be eventually fired, and

this is reflected by the fact that the MP workers protocol is live
+
;

• only the OAuth2 fragment (1) is terminating — while the other protocols are neither termin-

ating, nor never-terminating: i.e., they might loop forever, but depending on the choices of

one or more roles, they can reach a terminated state (where all roles have type end).

Example 5.11. We now provide some more small examples of multiparty protocols and their

properties, complementing those discussed Ex.5.10.

ΓA = s[p]:q&m1 .r⊕m3, s[q]:r&m2 .p⊕m1, s[r]:p&m3 .q⊕m2 is consistent (hence safe), but not live

nor deadlock-free: this is because its inputs/outputs, albeit dual, occur in the wrong order.

ΓB = s[p]:µt.q⊕m1 .t, s[q]:µt.p&m1 .t, s[r]:p&m2 is consistent, deadlock-free and safe, but not

live: in fact, s[p],s[q] reduce infinitely, but s[r] cannot fire its input (violating [L-&] in Fig.5).

ΓC = s[p]:S, s[q]:p&m(S).end with S = µt.q⊕m(t) . end (from [Bernardi and Hennessy 2016,

Ex. 1.2]) is terminating (hence live
++
, and safe), but not projectable from any global type, nor

consistent: this is because a recursion variable t occurs as payload in S , which is disallowed by

Def. 3.3 and Def. 3.8. Notably, ΓC types the process below (from [Bernardi and Hennessy 2016,

Ex. 1.2]): it creates infinitely many sessions s ′ where p and q exchange one message m (note that
this process, although deadlock-free, does not satisfy Def. 5.3(2)).

∅ · ΓC ⊢ def X (x :S,y :p&m(S)) = P in X ⟨s[p], s[q]⟩

where P =
(
νs ′ :Γ′C

) (
x[q]⊕m⟨s ′[p]⟩ .0 | y[p]

∑
m(z).X ⟨z, s ′[q]⟩

)
with Γ′C = s

′[p]:S, s ′[q]:p&m(S).end

Remark 5.12. By Lemma 5.9(1,9), our general session type system instantiated with φ= fprojG,s
subsumes the classic MPST theory, and also proves subject reduction and type safety in presence of

“full-merging” global type projections: this is because consistency/projectability are limited syntactic

approximations of safety/liveness. Hence, the typing rule [T-νClassicG] in §3 is valid in our theory, and

we can type our opening example (Ex.4.7), and support complex protocols rejected by classic MPST,

such as all those listed in Fig.4. This retroactively fixes some flawed results in literature, described in

§3.1 (claim (C2)), and impacting the works listed in §8. Further, we support protocols for which no

global type exists: see Ex.5.10 (case “recursive two-buyers”) and Ex.5.11 (case ΓC).

5.5 Static Verification of Run-Time Process Properties
We now show that, by using the type-level properties in Fig.5, we can predict and constrain the

run-time behaviour of processes. Roughly, the intuition is: if we have Γ ⊢ P , and some property

in Fig.5 holds for Γ, then a similar corresponding property from Def. 5.1 holds for P . From this it

follows that, to ensure that a closed process (νs) P has a desired property from Def. 5.1, we can

correspondingly instantiate φ in Def. 4.6, and check if the judgement “∅ ⊢ (νs :Γ) P with φ” holds.
First, we highlight that all typing context properties mentioned thus far are decidable (Thm.5.13

below) — unlike the run-time process properties in Def. 5.1. This is clear for consistency and

projectability, that are syntactic and inductive; others (safety, liveness,. . .) are decidable because,

Less Is More: Multiparty Session Types Revisited (Technical Report) 21

by Def. 2.8, typing contexts have finite-state transition systems. Consequently, by Thm.4.11, type

checking is decidable, if φ is instantiated with any property listed in Thm.5.13.

Theorem 5.13 (Decidability of φ). φ(Γ) is decidable, for all Γ, and for all φ such that

φ ∈
{
consistent, fprojG,s, pprojG,s , safe, term, nterm, df , live, live

+, live++
}

(for any G)

Now, assume Γ ⊢ P . To predict the run-time behaviour of P from Γ, we need to overcome a

complication: it might seem that if Γ is live (Fig.5(5)), then P should be live, too. But this is not the

case, due to a subtle interaction between the typing rule [T-Sub] in Fig.2, and the fact that supertyping

does not preserve liveness: this issue (that is related to the problem of fair subtyping, studied by

Padovani [2016]), is illustrated in Ex.5.14 below. For this reason, in Thm.5.15 we guarantee process

liveness via the stronger type-level property live
+
: this is the payoff of fair traversal sets (Def. 5.5).

Example 5.14. Take Γ with the rec. two-buyer protocol (Fig.4(2)): it is live (Table 1). Now, let:

Γ′ =

{
s[a]: s⊕query(Str).s&price(Int).µt.b⊕split(Int).b&

{
yes(Int).s⊕buy , no.t

}
s[s]: a&query(Str).a⊕price(Int).a&

{
buy.end , no.end

}
(as in Fig.4(2))

s[b]: µt.a&
{
split(Int).a⊕no.t , cancel.end

}
i.e., the types of alice and bob in Γ′ are supertypes (Def. 2.5) of those in Γ: alice never chooses to send
cancel to bob, who in turn always answers no to all split proposals. We have Γ⩽Γ′ (Def. 2.5) and
Γ′ is safe (Lemma 4.5), but not live: after sending the price, the store will wait for either buy or no
from alice, but neither message will ever be sent, while alice and bob loop by exchanging split/no.
Consequently, a process P typed by Γ′ can have two sub-processes implementing alice and bob
that interact forever, while a sub-process implementing the store waits for a buy/no message, but

will never receive it: hence, P is not live, as it does not satisfy Def. 5.1(2). Now, note that such P is

also typed by Γ (via rule [T-Sub] in Fig.2): i.e., a live typing context can type a non-live process.

Theorem 5.15. Assume ∅ · Γ ⊢ P , with Γ safe, P ≡
��
p∈IPp, each Pp having guarded definitions and

either being 0 (up-to ≡), or only playing role p in s . Then, (1) df(Γ) implies that P is deadlock-free;

(2) term(Γ) implies that P is terminating; (3) nterm(Γ) implies that P is never-terminating; (4) live
+(Γ)

implies that P is live; and (5) live
++(Γ) implies that P is strongly live.

Proof. The results follow by Thm. 5.4 (session fidelity). For (4) we also use the fact that, if

live
+(Γ) and Γ⩽Γ′, then live

+(Γ′). □

Remark 5.16. With Lemma 5.9(9) and Thm. 5.15(4), we uncover that global types / projections

(Fig.3) are ways to produce live
+
typing contexts, and ensure that processes are live. Since Thm.5.15

does not need the technicalities of Fig.3, our theory and results are more general than classic MPST.

And importantly, the premises of all cases of Thm.5.15 are decidable (by Thm.5.13 and Thm.4.11).

6 VERIFYING TYPE-LEVEL PROPERTIES VIA MODEL CHECKING
Our new MPST theory (§ 4) is parametric on a general property φ, that is not constrained by

syntactic duality/consistency. In this section, we leverage this distinguishing feature to integrate

type checking and model checking, in two steps: (1) we show how to express φ as amodal µ-calculus
formula, and (2) we use a model checker (through the paper’s companion artifact) to verify whether

the transitions of Γ satisfy the µ-calculus version of φ. This provides a practical method to verify

whether φ(Γ) holds — e.g., in rule [TGen-ν] (Def. 4.6), and in Thm.5.15.

We focus on a fragment of the µ-calculus with data, adopting a formulation based on [Groote and

Mousavi 2014, §6.5]. Let α range over the labels in Def. 2.8 — i.e., α can have the form s:p&q:m(S)
for input, or s:p⊕q:m(S) for output, or s:p,q:m for communication. Then, µ-calculus formulas are

defined as follows, where d (“data”) ranges over sessions, roles, message labels, and session types:

22 Alceste Scalas and Nobuko Yoshida

ϕ F ⊤
�� ⊥ �� [α]ϕ �� ⟨α⟩ϕ

�� ϕ1 ∧ ϕ2

�� ϕ1 ∨ ϕ2

�� ϕ1 ⇒ ϕ2

�� µZ.ϕ
�� νZ.ϕ ��

Z

�� ∀d.ϕ �� ∃d.ϕ
A formula ϕ accepts or rejects a typing context Γ depending on the sequences of actions that Γ
can fire along its transitions. A formula can be either: true/false (⊤/⊥), i.e., accept any/no typing

context; box modality [α]ϕ (“for all transitions with label α , the reached typing context must satisfy

ϕ”); diamond modality ⟨α⟩ϕ (“for some transition with label α , the reached typing context satisfies

ϕ”); implication ⇒; least/greatest fixed point µZ.ϕ/νZ.ϕ, allowing to iterate ϕ for a finite/infinite

number of times; a variable Z, for iteration; and universal/existential quantification ∀d.ϕ/∃d.ϕ.
When a typing context Γ satisfies a formula ϕ, we write Γ |= ϕ.

Example 6.1. The µ-calculus formula ϕ = ∃s .∃p.∃q.∃m.∃S . ⟨s:p⊕q:m(S)⟩⊤ says: “accept a typing

context if, for some session s , roles p and q, message label m, and type S , it can perform an output

action s:p⊕q:m(S)” — and after such a transition, the reached typing context is always accepted, by

⊤. Therefore, if we take the typing context Γ=s[r]:r′⊕msg(Str).end, then we have Γ
s :r⊕r′:msg(Str)
−−−−−−−−−−−→

(by Def. 2.8), which means that Γ satisfies ϕ — in symbols, Γ |= ϕ. Moreover, Γ satisfies the formula

∀s .∀p.∀q.∀m.[s:p,q:m]⊥, that holds when no communication is possible, for any role: in fact, the

formula says that any communication would reach a context rejected by ⊥.

Instead, if we take the formula ϕ ′ = ∃s .∃p.∃q.∃m. ⟨s:p,q:m⟩⊤, then Γ above does not satisfy

ϕ ′
, because it requires a communication transition to be enabled. However, if we extend Γ as

Γ′ = Γ, s[r′]:r&msg(Str).end, then we have both Γ′ |= ϕ and Γ′ |= ϕ ′
— and thus, Γ′ |= ϕ ∧ ϕ ′

.

Example 6.2 (Formulas in Fig.5). We now describe the µ-calculus formulas in Fig.5:

• safety (1) checks that, if an output m and an input m′ are enabled between two roles p and q,
then they can communicate via m (i.e., by Def. 2.8, the output message m must be supported

by the recipient). This must hold for any context reachable via communication transitions:

this is enforced by the greatest fixed point νZ. ... and the clause ... ∧ [s:p,q:m]Z;
• deadlock-freedom (2) checks whether communication is possible; if not (“∀... .[s:p,q:m]⊥”,
that holds only when no roles can interact, cf. Ex.6.1), then (⇒) there must be no input nor

output transitions enabled — i.e., all typing context entries must be end. This must hold for

any context reachable via communications: it is enforced by νZ. ... and ... ∧ ∀... .[s:p,q:m]Z;
• termination (3) is similar to deadlock-freedom, but uses a least fixed point µZ. ...: hence,
the clause ... ∧ ∀... .[s:p,q:m]Z can only iterate for a finite number of times, and then no

communications, nor inputs, nor outputs must be enabled — i.e., all context entries are end;
• never-termination (4) checks that in any context reachable via communication transitions

(νZ. ... and ... ∧ ∀... .[s:p,q:m]Z), some further communication is possible (∃... . ⟨s:p,q:m⟩⊤);
• liveness (5) checks that, if an input or output between two roles p and q is enabled, then (⇒) a

corresponding communication can be fired, after a finite sequence of communications among

any role. The sequence is built with a least fixed point µZ′, that can iterate on the clause

... ∨ ∃... . ⟨s:p′,q′:m′⟩Z′
for a finite number of times. The top-level greatest fixed point νZ. ...

repeats the check for all contexts reachable via communication (clause ... ∧ ∀... .[s:p,q:m]Z);
• liveness

+
(6) is similar to liveness, but the nested fixed points µZ′ build finite sequences

of communications by picking a pair of roles p′, q′ at each step, and following all their

interactions, until a communication between p, q is enabled. This corresponds to building

the fair traversal set (Def. 5.5) required by the left-side definition of live
+
in Fig.5;

• liveness
++

(7) is also similar to liveness, but the nested fixed points µZ′ build finite

sequences by following any communication between any pair of roles, until a communication

between p, q is enabled. This ensures that, along any execution path, after a finite number of

steps, p and q will be able to interact, as in the left-side definition of live
++

in Fig.5.

Less Is More: Multiparty Session Types Revisited (Technical Report) 23

Table 2. Average time (in seconds ± std. dev.) for the verification of the protocols in Fig.4. Protocols (3) and

(4) are instantiated with n=3. The outcome of the verification is shown in Table 1. (Benchmarking specs: Intel
Core i7-4790 CPU, 3.60GHz, 16 GB RAM, mCRL2 201808.0 invoked 30 times (by mpstk) with: pbes2bool --strategy=2)

states safe
deadlock-

free
live live

+
live

++
never-

terminat.
terminat.

(1) OAuth2 fragment 37 1.00 ± 0% 1.00 ± 0% 1.00 ± 0% 1.00 ± 0% 1.00 ± 0% 1.00 ± 0% 0.98 ± 9%

(2) Rec. two-buyers 85 1.00 ± 0% 1.00 ± 0% 1.00 ± 0% 1.00 ± 0% 1.00 ± 0% 1.00 ± 0% 0.99 ± 3%

(3) Rec. map/reduce 2561 1.00 ± 0% 1.00 ± 0% 1.00 ± 0% 1.00 ± 0% 1.00 ± 0% 1.00 ± 0% 0.99 ± 3%

(4) MP workers 442369 1.01 ± 4% 0.98 ± 8% 0.98 ± 9% 1.03 ± 14% 1.02 ± 7% 0.99 ± 6% 1.00 ± 1%

Implementation. This paper has a companion artifact: a toolkit, called mpstk (“MultiParty Session

Types toolKit”), that verifies the properties listed Fig.5 (and described in Ex.6.2). It is available at:

https://alcestes.github.io/mpstk

Internally, mpstk uses the mCRL2 model checker [Groote and Mousavi 2014], in combination with

the theory in §2.2 and §4 (e.g., mpstk checks subtyping, as per Def. 2.5). We used mpstk to verify

the protocols in Fig.4: the results are in Table 1. We also measured the time needed to verify each

case: the results are in Table 2. In all instances, the verification takes around one second. Notably,

this also holds for the multiparty workers protocol (4), although it has 12000× more states than

the OAuth2 fragment (1). This state space explosion is due to the interleaving of multiple parallel

components — but still, its impact on verification time is minimal: in fact, the properties in Fig.5

only follow the communication transitions of a typing context Γ, whereas the input and output

transitions of Γ are checked for their presence/absence, but not followed to their destination state.

Hence, mCRL2 can verify our formulas in Fig.5 without exploring the whole state space of Γ.

7 ASYNCHRONOUS MULTIPARTY SESSION π -CALCULUS
In its original formulation [Bettini et al. 2008; Honda et al. 2008], theMPST π -calculus has asynchron-
ous buffered semantics, to model typical “real-world” distributed message-passing programs. Our

new theory extends to asynchrony, overcoming challenges due to queue handling and decidability.

NOTE: this section is a summary of the results that are discussed, in full detail, in §C–§G.

Asynchronous MPST. We give an intuition of the asynchronous calculus with an example:

s[p][q]⊕m⟨s ′[r]⟩ .P | s[q][p]
∑
m(x).Q | s▶ϵ

→ P | s[q][p]
∑
m(x).Q | s▶ (p, q, m⟨s ′[r]⟩) ·ϵ → P | Q{s

′[r]/x} | s▶ϵ
(10)

In the topmost process, s▶ϵ is the (empty) message queue of session s (not present in the calculus

of §2.1). The first reduction enqueues the pending message (p, q, m⟨s ′[r]⟩), meaning that p has sent

to q a message with label m and payload s ′[r]. With the second reduction, the message is received.

The classic async MPST typing judgement has the following form:

Θ · Γ ⊢S P (11)

where S is the set of sessions whose queue occurs in P (e.g., to type (10) above, we let S = {s}).
Types are extended to model pending messages; e.g., the processes in (10) are typed by, respectively:

Γ = s[p]:q⊕m(S ′).S , s[q]:p&m(S ′).T , s ′[r]:S ′

Γ′ = s[p]:(q!m(S ′)·ϵ ; S) , s[q]:p&m(S ′).T , s ′[r]:S ′

Γ′′ = s[p]:S , s[q]:T , s ′[r]:S ′
(12)

Note that Γ above is a typing context similar to Def. 2.6. Instead, in Γ′ the type of s[p] is a pair
(M ; S), whereM =q!m(S ′)·ϵ is amessage queue type (abstracting the pending messages sent through

https://alcestes.github.io/mpstk

24 Alceste Scalas and Nobuko Yoshida

s[p]), followed by the continuation type S . In Γ′, the topmost queued message type matches the

branching type of s[q]: their interaction leads to Γ′′, with a reduction similar to Def. 2.8.

The classic async MPST theory has all the issues described in §3 — but the presence of message

queues makes its subject reduction statement more complicated [Coppo et al. 2015a, Lemma 1]:

If Θ · Γ ⊢S P and ∃Γ0 such that Γ, Γ0 consistent and P → P ′,

then ∃Γ′, Γ′
0
consistent: Γ, Γ0 →

∗ Γ′, Γ′
0
and Θ · Γ′ ⊢S P ′

General Asynchronous MPST. We extend our new theory in §4 to asynchronous MPST, and prove

a simpler and more general subject reduction statement: Thm.7.1. To achieve it, we develop async

typing rules based on an async safety property φ, with a more sophisticated async typing context

reduction →S, where S is a set of sessions, as in (11); e.g., in (12) we have Γ →{s } Γ
′ →{s } Γ

′′
.

Theorem 7.1 (Async Subject Reduction). Assume Θ · Γ ⊢S P with Γ asynchronously safe.

Then, P → P ′
implies ∃Γ′ asynchronously safe such that Γ →S

∗ Γ′ and Θ · Γ′ ⊢S P ′
.

We define asynchronous variants of φ, similar to those in Fig.5; and by suitably instantiating φ,
we ensure that typed async processes are deadlock-free/live, similarly to Thm.5.15.

(Un-)Decidability of Type Checking. A result akin to Thm.4.11 holds for async MPST.

Theorem 7.2. If φ is decidable, then “Θ·Γ ⊢SP with φ” is decidable.

However, under asynchrony we do not have a decidability result for φ as general as Thm.5.13.

On the contrary, async safety and most other properties are undecidable: the pairing of a session

type with a message queue (cf. Γ′ in (12)) corresponds to a Communicating Finite-State Machine

(CFSM) [Brand and Zafiropulo 1983], and makes typing contexts Turing-powerful [Bartoletti et al.

2016, Thm. 2.5]. Still, we obtain decidable instances of φ through various sound approximations:

(M1) consistency is decidable, and implies asynchronous safety;

(M2) via the session type / CFSM correspondence established in [Deniélou and Yoshida 2013], we

show that if Γ is synchronously live (Fig.5(5), decidable by Thm.5.13), then Γ is also asynchronously
live; we extend the result to live

+
(Fig.5(6)); and by Lemma 5.9(9), this means that any Γ projected

from a global type is asynchronously live
+
;

(M3) given n ≥ 1, we can decide if Γ enqueues at most n messages; if so, Γ is finite-state, hence

async safety/liveness are decidable. For example, take Γ = s[p]:q⊕m1 .q&m2, s[q]:p⊕m2 .p&m1: it
is deadlocked under synchronous semantics, and not projectable from any global type — but

under asynchrony, the top-level outputs of p and q can be both enqueued, and then received;

hence, we can decide that Γ enqueues at most 2 messages, and is asynchronously live.

Remark 7.3. By instantiating φ in Thm.7.2 with one of the methods above, we obtain an expressive

decidable fragment of our new asynchronous MPST theory: (M1) subsumes classic async MPST; (M2)
covers all live typing contexts, albeit non-consistent: e.g., it covers all cases in Fig.4, and all global types

(by Lemma 5.9(9)); (M3) covers more typing contexts that are not projectable from global types.

8 CONCLUSION, RELATED AND FUTUREWORK
We have presented a new theory of multiparty sessions types, with novel foundations that do not

depend on duality/consistency, nor global types, nor projections. Our new theory subsumes classic

MPST, also fixing subject reduction flaws in previous work (Remark 5.16). Moreover, our new type

system is modular and reusable: by fine-tuning its parameter φ, we ensure that type-checking is
decidable, and that processes are safe, deadlock-free, and live. A summary of the main results:

(R1) our type safety results (Thm.4.8, Cor.4.9) are much more general than classic MPST;

Less Is More: Multiparty Session Types Revisited (Technical Report) 25

(R2) if we instantiate φ with projection/consistency, or any property in Fig. 5, then the type

checking judgement “Θ · Γ ⊢ P withφ” is decidable. This follows from Thm.4.11 and Thm.5.13;

(R3) by suitably choosing φ in (R2) above, we can statically guarantee that P “inherits” φ, and has
certain desired run-time properties. This is formalised in Thm.5.15;

(R4) we can implement φ in (R2)/(R3) above as a syntactic check (Remark 5.12), or as a µ-calculus
formula (Fig.5). In the latter case, we can verify whether Γ satisfies φ via model checking —

e.g., using mCRL2, through the paper’s companion artifact (mpstk). This is shown in §6;

(R5) our new theory extends to asynchronous communication, as illustrated in §7.

8.1 Classic Multiparty Session Types (MPST)
The classic MPST framework, and its notions of global types and projections, were introduced by

Honda et al. [2008], with linearity conditions to check the well-formedness of global types, and

ensure projectability of local types. Later, Bettini et al. [2008] proposed a simplified MPST system

adopted by most works, including ours.

We now classify some related works w.r.t. their use of projection/consistency:

papers projection consistency subj. red. claim

(a)

Bettini et al. [2008]; Carbone et al. [2016, 2015]; Coppo

et al. [2015a]; Honda et al. [2008, 2016]

≤ plain yes correct (C1)

(b)

Chen [2015]; Deniélou et al. [2012]; Deniélou and

Yoshida [2012]; Toninho and Yoshida [2016]

≥ full no flawed (C2)

(c) Scalas et al. [2017a]; Toninho and Yoshida [2017] full yes (required) correct (C1)

Row (a) lists works using plain (or stricter) global type projection (Def. 3.3), guaranteeing

consistency. As shown in §5.4, our theory captures plain projection / consistency by setting its

parameter φ as φ=pprojG,s / φ=consistent; however, this excludes many valid protocols, as per

claim (C1) — e.g., all our examples in Fig.4.

Row (b) lists works using full (or more flexible) global type projection, originally introduced in

Yoshida et al. [2010] to support more protocols. Such works overlook the consistency requirement;

and in §3, we reveal that classic MPST subject reduction proofs relying on full projection (without

consistency) are flawed, as per claim (C2). To “fix” these works within the classic MPST theory, we

must require consistency, as done by works in row (c) — but this restricts typability, thus falling

back into claim (C1). Instead, by Remark 5.12, our new MPST theory supports full projections with

φ= fprojG,s, thus subsuming classic MPST and fixing flaws, without losing expressiveness.

8.2 Non-Classic Multiparty Session Types
To the best of our knowledge, there are three MPST works (mentioned in Remark 3.1) that are not

based on classic projection+consistency (Fig.3) — but have other limitations, that we surmount.

The first work is by Dezani-Ciancaglini et al. [2015] (with a more recent journal version by

Ghilezan et al. [2018]): it presents a single-session type system, with first-order session types (i.e.,

without channel-passing); it is rooted on global types and their projections, but does not require

consistency. The resulting subject reduction proof strategy is quite complex, as it requires to reason

on global types and their semantics (see the proof of subject reduction in Ghilezan et al. [2018]).

Such a type system is subsumed by letting φ= fprojG,s in our Def. 4.6; in addition, our work also

supports higher-order types, multiple interleaved sessions, and protocols for which no global type

exists (see Table 1(2), and Ex.5.11, case ΓC).
The second non-classic MPST work is by Scalas and Yoshida [2018]: it was our first attempt

(and, to the best of our knowledge, the first work in general) to directly address the limitations of

consistency (claim (C1)), and propose a behavioural theory of MPST, not based on global types and

projections. Unfortunately, we could not build upon that work, due to its intrinsic limitations:

26 Alceste Scalas and Nobuko Yoshida

(1) a major goal of this paper is subsuming and fixing classic MPST (cf. claim (C2) in §1, and §3).

However, the theory of Scalas and Yoshida [2018] cannot achieve this goal: it has different

(and more complicated) typing rules that require typing context liveness, and do not support

consistency. Our new theory, instead, supports both consistency and liveness, as instances of

φ (Lemma 5.9, Remark 5.12);

(2) from Scalas and Yoshida [2018], we reuse the definition of typing context liveness (Fig.5(5))

— but we show that it is insufficient to guarantee process liveness (Def. 5.1, Ex.5.14). Hence,

we develop the stronger properties live
+
/live

++
(Fig.5(6,7)), to obtain the results on run-time

process behaviour in Thm.5.15. Such results are absent in Scalas and Yoshida [2018];

(3) the branching/selection typing rules of Scalas and Yoshida [2018] (Fig. 3) directly inspect

typing context reductions. This peculiarity is not problematic under synchronous semantics

(where typing contexts have finite-state transition systems), and in some cases, it enables

flexible typing judgements that cannot be obtained in classic MPST [Scalas and Yoshida

2018, Ex. 5.5]. The drawback is that, when extended to asynchronous semantics, typing

contexts become Turing-powerful (§7), and typing rules that inspect their reductions become

inherently undecidable; consequently, the theory of Scalas and Yoshida [2018] does not

subsume classic works on asynchronous MPST, and cannot achieve this goal without a major

overhaul. Instead, our typing rules do not inspect typing context reductions, but only check

whether the parametric property φ holds: hence, type checking is decidable whenever φ is

decidable (Thm.7.2), and this allows us to subsume classic asynchronous MPST (Remark 7.3).

By instantiating φ= live in Def. 4.6, this paper largely subsumes Scalas and Yoshida [2018]’s work —

minus some corner cases based on the inspection of typing context reductions (cf. item (3) above).

A third MPST work that can be considered non-classic is Caires and Pérez [2016]: it proposes

a theory of multiparty session types encoded in binary sessions, with a type system based on

linear logic [Caires and Pfenning 2010; Wadler 2012]. A related multiparty-to-binary session

decomposition was later studied by Scalas et al. [2017a] — with a remarkable difference: in Scalas

et al. [2017a], consistency is a necessary requirement (formalised in their Theorem 6.3), whereas

in Caires and Pérez [2016] it is not, although the paper supports full projections and merging.

This difference is due to the fact that the decomposition of Caires and Pérez [2016] introduces a

centralised medium process that receives and forwards all messages between processes playing

different roles — whereas the decomposition of Scalas et al. [2017a] maintains the peer-to-peer

nature of MPST interactions. This suggests that, when decomposing multiparty choreographies into

linear binary interactions, consistency is necessary if and only if there is no centralised medium

process.
4
The present work supports general multiparty sessions (and binary sessions as a special

case) without requiring consistency, nor global types, nor medium processes.

8.3 Binary Sessions Without Duality
Our work yields a generalised theory of binary sessions not based on classic duality (Def. 3.5),

subsuming classic papers based on [Honda et al. 1998]. If we take a binary session typing context

Γ=s[p]:S, s[q]:T , our Lemma 5.9 becomes:

∃G: fprojG,s(Γ) ⇍= =⇒ consistent(Γ) ⇍= =⇒ live
++(Γ) ⇐⇒

(
safe(Γ) and df(Γ)

)
(13)

Here, the leftmost “⇍= ” is due to supertyping: e.g., if we take the global type G=p→q: {m, m′}, it

projects the typing context Γ=s[p]:q⊕{m, m′}, s[q]:p&{m, m′}, that is consistent and live
++

(hence

safe); however, if we replace p’s entry with the supertype p⊕m, the resulting context is still live
++

4
In an earlier version of this work, we wrongly claimed that Caires and Pérez [2016] has an implicit (but overlooked)

consistency assumption, similarly to other works listed in row (b) of the table above. This wrong claim is still readable in

the conference version of this work [Scalas and Yoshida 2019].

Less Is More: Multiparty Session Types Revisited (Technical Report) 27

and consistent, but not projectable from any global type. The other “⇍= ” in (13) is due to non-tail-

recursive types like µt.q⊕m(t).end: they have no dual in classic binary session types (since t is a
forbidden payload): thus, they yield non-consistent typing contexts, and processes like P in Ex.5.11

(case ΓC) cannot be typed. This limitation has been addressed by several authors, extending duality

with various pitfalls (see e.g. [Bernardi and Hennessy 2016, §5.3]): for a survey, and a logic-based

solution, see [Lindley and Morris 2016, §3.2]. By not using duality, our theory eschews these issues.

8.4 Type Systems for the π -Calculus
Many type systems have been proposed for the π -calculus, also influencing MPST: see survey in

[Hüttel et al. 2016]. Our new MPST theory is a case of behavioural type system: it treats types as

simple processes that reduce and evolve along a typed computation; and since types are simpler

than programs, they can be analysed with simpler methods (e.g., finite model checking via our

parameter φ, cf. §6). As stated in §4, the design of our new MPST theory is inspired by Igarashi and

Kobayashi [2004]’s Generic Type System (GTS) for the π -calculus: i.e., we define a type system that

is parametric on a property φ, and we prove type safety under the weakest φ; then, we fine-tune
φ to statically verify stronger properties of processes, like deadlock-freedom and liveness (§5).

Besides this general analogy, our treatment is wholly different: we carefully reuse fundamental

MPST definitions (§2.1) and develop new and more general results (§4, §5) to ensure our new

theory fully subsumes the classic one; moreover, for async MPST we devise a new treatment of

queue types, obtaining a new, more general subject reduction result (Thm.7.1).

As an alternative, we might have tried to encode MPST in the GTS, and develop our new results

from there. However, this appears unfeasible. Gay et al. [2014] tried the approach for binary sessions,

obtaining drawbacks in terms of complication and loss of abstraction (see “Assessment” in Gay et al.

[2014]): such drawbacks would be greatly amplified for multiparty sessions. Moreover, [Igarashi

and Kobayashi 2004, §4.2, §5] study process/type correspondence using a temporal logic without

fixed points, with limited support for recursion: their logic would not allow, e.g., to model our

variants of liveness (Fig.5) and address the interplay between liveness, subtyping, and recursion

(Ex.5.14, Thm.5.15). Further, the encoding approach would not work for async MPST: the types of

Igarashi and Kobayashi [2004] lack message queues, and are akin to CCS without restriction, with

decidable reachability [He 2011, p. 374]; hence, they cannot encode the Turing-powerful typing

contexts of async MPST (§7), whose reachability is undecidable.

8.5 Choreographies and Communicating Finite-State Machines (CFSMs)
Various works model and verify multiparty protocols, a.k.a. choreographies, via automata-theoretic

methods, by representing each party as a CFSM [Brand and Zafiropulo 1983]. The safety their

interactions (that is generally undecidable) is verified with two main approaches: (a) assume the

decidability of a synchronisability property [Basu and Bultan 2011, 2016; Basu et al. 2012], and

then check temporal properties of CFSMs via model checking; (b) check decidable synchronous

execution conditions on CFSMs, and prove that they ensure safe asynchronous executions [Bocchi

et al. 2015; Deniélou and Yoshida 2013; Lange et al. 2015]. Both methods can help extending our

new MPST theory: since we essentially treat async typing contexts as systems of CFSMs (§7), new

decidable results on CFSM safety can yield new decidable instances of our type system (Thm.7.2).

Unfortunately, synchronisability has been recently proven undecidable by Finkel and Lozes [2017]:

i.e., method (a) above might be unusable — hence, we adopt method (b) (cf. (M2) in §7). Unlike this

paper, the above CFSM works do not study type systems, nor properties of typed processes.

28 Alceste Scalas and Nobuko Yoshida

8.6 Future Work
We kept our typing rules close to classic MPST, to easily combine our results with existing works.

E.g., we plan to integrate our work with Coppo et al. [2015b], that studies MPST deadlock-freedom in

presence ofmultiple interleaved sessions: our generalised typing rules can be a drop-in replacement

for the classic rules used by Coppo et al. [2015b], and this integration would combine their global

deadlock-freedom checks, with our improved type safety results for individual sessions. We also

plan to extend the calculus (e.g., with polymorphism [Caires and Pérez 2016; Goto et al. 2016]),

and expand the properties/formulas studied in Fig.5 and Thm.5.15. We will investigate the logical

foundations of our new MPST theory, aiming at results that generalise those by Carbone et al.

[2016, 2015], which are focused on limited global types, projections, and consistency.

Another interesting research topic is the completeness of safety (Def. 4.1), i.e., studying whether

the inverse implication w.r.t. Thm.4.8/Cor.4.9 holds. This corresponds to the following conjecture:

Take any Γ. If ∀P , P ′
: Γ ⊢ P and P →∗ P ′

implies that P ′
has no error, then safe(Γ).

We will investigate whether this conjecture holds — and if not, what other completeness results are

achievable. Since session subtyping is central for defining safety (via clause [S-→] in Def. 4.1, and

[Γ-Comm] in Def. 2.8), we will leverage Chen et al. [2017]’s work on the completeness of subtyping.

We will also study how to implement our new MPST theory. A basis is the work by Scalas

et al. [2017a,b], that embeds classic MPST in Scala, through a linear π -calculus encoding based

on consistency; however, since we do not require consistency, the work by Scalas et al. [2017a,b]

only covers a fragment of our new theory. Using the µ-calculus formulas illustrated in §6, a new

implementation can verify typing context properties by offloading them to a model checker.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful remarks. Thanks to Francisco Ferreira, Sung-

Shik Jongmans, and Julien Lange for their comments, and to Simon Castellan for testing the

companion artifact. Thanks to Mariangiola Dezani and Paola Giannini for a discussion that helped

us realise amisunderstanding in the relatedwork (see Footnote 4). This workwas partially supported

by EPSRC (projects EP/K034413/1, EP/K011715/1, EP/L00058X/1, EP/N027833/1, EP/N028201/1),

and by the EU COST Action CA15123 (“EUTypes”).

REFERENCES
Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-Malo Deniélou, Simon J. Gay, Nils

Gesbert, Elena Giachino, Raymond Hu, Einar Broch Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi,

Rumyana Neykova, Nicholas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. 2017. Behavioral Types in

Programming Languages. Foundations and Trends in Programming Languages 3(2-3) (2017). https://doi.org/10.1561/

2500000031

Massimo Bartoletti, Alceste Scalas, Emilio Tuosto, and Roberto Zunino. 2016. Honesty by Typing. LMCS 12(4) (2016).

https://doi.org/10.2168/LMCS-12(4:7)2016

Samik Basu and Tevfik Bultan. 2011. Choreography conformance via synchronizability. InWWW.

Samik Basu and Tevfik Bultan. 2016. On deciding synchronizability for asynchronously communicating systems. Theor.

Comput. Sci. 656 (2016).

Samik Basu, Tevfik Bultan, andMeriemOuederni. 2012. Synchronizability for Verification of Asynchronously Communicating

Systems. In VMCAI.

Giovanni Bernardi and Matthew Hennessy. 2016. Using higher-order contracts to model session types. LMCS 12(2) (2016).

https://doi.org/10.2168/LMCS-12(2:10)2016

Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. 2008.

Global Progress in Dynamically InterleavedMultiparty Sessions. In CONCUR. https://doi.org/10.1007/978-3-540-85361-9_

33

Laura Bocchi, Julien Lange, and Nobuko Yoshida. 2015. Meeting Deadlines Together. In CONCUR. https://doi.org/10.4230/

LIPIcs.CONCUR.2015.283

https://eutypes.cs.ru.nl/
https://doi.org/10.1561/2500000031
https://doi.org/10.1561/2500000031
https://doi.org/10.2168/LMCS-12(4:7)2016
https://doi.org/10.2168/LMCS-12(2:10)2016
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.4230/LIPIcs.CONCUR.2015.283
https://doi.org/10.4230/LIPIcs.CONCUR.2015.283

Less Is More: Multiparty Session Types Revisited (Technical Report) 29

Daniel Brand and Pitro Zafiropulo. 1983. On Communicating Finite-State Machines. JACM 30, 2 (1983). https://doi.org/10.

1145/322374.322380

Nadia Busi, Maurizio Gabbrielli, and Gianluigi Zavattaro. 2009. On the expressive power of recursion, replication and iteration

in process calculi. Mathematical Structures in Computer Science 19, 6 (2009). https://doi.org/10.1017/S096012950999017X

Luís Caires and Jorge A. Pérez. 2016. Multiparty Session Types Within a Canonical Binary Theory, and Beyond. In FORTE.

https://doi.org/10.1007/978-3-319-39570-8_6

Luís Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear Propositions. In CONCUR. https://doi.org/10.

1007/978-3-642-15375-4_16

Luís Caires, Frank Pfenning, and Bernardo Toninho. 2016. Linear logic propositions as session types. MSCS 26, 3 (2016).

Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and Philip Wadler. 2016. Coherence Generalises Duality:

A Logical Explanation of Multiparty Session Types. In CONCUR. https://doi.org/10.4230/LIPIcs.CONCUR.2016.33

Marco Carbone, Fabrizio Montesi, Carsten Schürmann, and Nobuko Yoshida. 2015. Multiparty Session Types as Coherence

Proofs. In CONCUR. https://doi.org/10.4230/LIPIcs.CONCUR.2015.412

Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas, and Nobuko Yoshida. 2017. On the Preciseness of Subtyping

in Session Types. Logical Methods in Computer Science 13, 2 (2017). https://doi.org/10.23638/LMCS-13(2:12)2017

Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. 2014. On the Preciseness of Subtyping in Session

Types. In PPDP. https://doi.org/10.1145/2643135.2643138

Tzu-Chun Chen. 2015. Lightening global types. JLAMP 84, 5 (2015). https://doi.org/10.1016/j.jlamp.2015.06.003

Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. 2015a. A Gentle Introduction to

Multiparty Asynchronous Session Types. In Formal Methods for Multicore Programming. https://doi.org/10.1007/

978-3-319-18941-3_4

Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. 2015b. Global Progress for Dynamically

Interleaved Multiparty Sessions. MSCS 760 (2015). https://doi.org/10.1017/S0960129514000188

Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. 2012. Parameterised Multiparty Session Types.

LMCS 8, 4 (2012). https://doi.org/10.2168/LMCS-8(4:6)2012

Pierre-Malo Deniélou and Nobuko Yoshida. 2012. Multiparty Session Types Meet Communicating Automata. In ESOP.

https://doi.org/10.1007/978-3-642-28869-2_10

Pierre-Malo Deniélou and Nobuko Yoshida. 2013. Multiparty Compatibility in Communicating Automata: Characterisation

and Synthesis of Global Session Types. In ICALP. https://doi.org/10.1007/978-3-642-39212-2_18

Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, and Nobuko Yoshida. 2015. Precise

subtyping for synchronous multiparty sessions. In PLACES. https://doi.org/10.4204/EPTCS.203.3 Journal version:

[Ghilezan et al. 2018].

Alain Finkel and Etienne Lozes. 2017. Synchronizability of Communicating Finite State Machines is not Decidable. In ICALP.

https://doi.org/10.4230/LIPIcs.ICALP.2017.122

Simon Gay and António Ravara. 2017. Behavioural Types: From Theory to Tools. River Publishers, Series in Automation,

Control and Robotics. https://doi.org/10.13052/rp-9788793519817

Simon J. Gay. 2016. Subtyping Supports Safe Session Substitution. In A List of Successes That Can Change the World:

Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday (LNCS), Vol. 9600. https://doi.org/10.1007/

978-3-319-30936-1_5

Simon J. Gay, Nils Gesbert, and António Ravara. 2014. Session Types as Generic Process Types. In EXPRESS/SOS. https:

//doi.org/10.4204/EPTCS.160.9

Simon J. Gay and Malcolm Hole. 2005. Subtyping for session types in the π -calculus. Acta Inf. 42, 2-3 (2005). https:

//doi.org/10.1007/s00236-005-0177-z

Silvia Ghilezan, Svetlana JakÅąiÄĞ, Jovanka PantoviÄĞ, Alceste Scalas, and Nobuko Yoshida. 2018. Precise subtyping for

synchronous multiparty sessions. Journal of Logical and Algebraic Methods in Programming (2018). https://doi.org/10.

1016/j.jlamp.2018.12.002

Jean-Yves Girard. 1987. Linear Logic. TCS 50 (1987), 1–102.

Matthew Goto, Radha Jagadeesan, Alan Jeffrey, Corin Pitcher, and James Riely. 2016. An extensible approach to session

polymorphism. Mathematical Structures in Computer Science 26, 3 (2016). https://doi.org/10.1017/S0960129514000231

Jan Friso Groote and Mohammad Reza Mousavi. 2014. Modeling and Analysis of Communicating Systems. The MIT Press.

Chaodong He. 2011. The Decidability of the Reachability Problem for CCS!. In CONCUR. https://doi.org/10.1007/

978-3-642-23217-6_25

Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. 1998. Language Primitives and Type Discipline for

Structured Communication-Based Programming. In ESOP. https://doi.org/10.1007/BFb0053567

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty asynchronous session types. In POPL. https:

//doi.org/10.1145/1328438.1328472 Full version in [Honda et al. 2016].

https://doi.org/10.1145/322374.322380
https://doi.org/10.1145/322374.322380
https://doi.org/10.1017/S096012950999017X
https://doi.org/10.1007/978-3-319-39570-8_6
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.4230/LIPIcs.CONCUR.2016.33
https://doi.org/10.4230/LIPIcs.CONCUR.2015.412
https://doi.org/10.23638/LMCS-13(2:12)2017
https://doi.org/10.1145/2643135.2643138
https://doi.org/10.1016/j.jlamp.2015.06.003
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1017/S0960129514000188
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.4204/EPTCS.203.3
https://doi.org/10.4230/LIPIcs.ICALP.2017.122
https://doi.org/10.13052/rp-9788793519817
https://doi.org/10.1007/978-3-319-30936-1_5
https://doi.org/10.1007/978-3-319-30936-1_5
https://doi.org/10.4204/EPTCS.160.9
https://doi.org/10.4204/EPTCS.160.9
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1016/j.jlamp.2018.12.002
https://doi.org/10.1016/j.jlamp.2018.12.002
https://doi.org/10.1017/S0960129514000231
https://doi.org/10.1007/978-3-642-23217-6_25
https://doi.org/10.1007/978-3-642-23217-6_25
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472

30 Alceste Scalas and Nobuko Yoshida

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty Asynchronous Session Types. J. ACM 63, 1, Article 9

(2016). https://doi.org/10.1145/2827695

Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo Deniélou, Dimitris Mostrous, Luca

Padovani, António Ravara, Emilio Tuosto, Hugo Torres Vieira, and Gianluigi Zavattaro. 2016. Foundations of Session

Types and Behavioural Contracts. ACM Comput. Surv. 49, 1, Article 3 (2016). https://doi.org/10.1145/2873052

Atsushi Igarashi and Naoki Kobayashi. 2004. A generic type system for the π -calculus. TCS 311, 1 (2004). https:

//doi.org/10.1016/S0304-3975(03)00325-6

Naoki Kobayashi and Davide Sangiorgi. 2010. A hybrid type system for lock-freedom of mobile processes. TOPLAS 32, 5

(2010). https://doi.org/10.1145/1745312.1745313

Julien Lange, Emilio Tuosto, and Nobuko Yoshida. 2015. From Communicating Machines to Graphical Choreographies. In

POPL. https://doi.org/10.1145/2676726.2676964

Sam Lindley and J. Garrett Morris. 2016. Talking Bananas: Structural Recursion for Session Types. In ICFP. https:

//doi.org/10.1145/2951913.2951921

Barbara H. Liskov and Jeannette M. Wing. 1994. A Behavioral Notion of Subtyping. TOPLAS 16, 6 (1994). https:

//doi.org/10.1145/197320.197383

OAuth Working Group. 2012. RFC 6749: OAuth 2.0 Framework. http://tools.ietf.org/html/rfc6749.

Luca Padovani. 2014. Deadlock and lock freedom in the linear π -calculus. In CSL-LICS. https://doi.org/10.1145/2603088.

2603116

Luca Padovani. 2016. Fair Subtyping for Multi-Party Session Types. Mathematical Structures in Computer Science 26, 3

(2016). https://doi.org/10.1017/S096012951400022X

Benjamin C. Pierce. 2002. Types and programming languages. MIT Press.

Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. 2017a. A Linear Decomposition of Multiparty Sessions

for Safe Distributed Programming. In ECOOP. https://doi.org/10.4230/LIPIcs.ECOOP.2017.24

Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. 2017b. A Linear Decomposition of Multiparty Sessions

for Safe Distributed Programming (Artifact). Dagstuhl Artifacts Series 3, 1 (2017). https://doi.org/10.4230/DARTS.3.2.3

Alceste Scalas and Nobuko Yoshida. 2018. Multiparty session types, beyond duality. Journal of Logical and Algebraic Methods

in Programming 97. https://doi.org/10.1016/j.jlamp.2018.01.001

Alceste Scalas and Nobuko Yoshida. 2019. Less is More: Multiparty Session Types Revisited. Proc. ACM Program. Lang. 3,

POPL, Article 30 (Jan. 2019), 29 pages. https://doi.org/10.1145/3290343

Bernardo Toninho and Nobuko Yoshida. 2016. Certifying Data in Multiparty Session Types. In A List of Successes That

Can Change the World: Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday (LNCS), Vol. 9600. https:

//doi.org/10.1007/978-3-319-30936-1_23

Bernardo Toninho and Nobuko Yoshida. 2017. Certifying data in multiparty session types. JLAMP 90 (2017). https:

//doi.org/10.1016/j.jlamp.2016.11.005

Philip Wadler. 2012. Propositions as sessions. In ICFP. https://doi.org/10.1145/2364527.2364568

Philip Wadler. 2014. Propositions as sessions. J. Funct. Program. 24, 2-3 (2014).

Nobuko Yoshida, Pierre-Malo Deniélou, Andi Bejleri, and Raymond Hu. 2010. Parameterised Multiparty Session Types. In

FOSSACS. https://doi.org/10.1007/978-3-642-12032-9_10

https://doi.org/10.1145/2827695
https://doi.org/10.1145/2873052
https://doi.org/10.1016/S0304-3975(03)00325-6
https://doi.org/10.1016/S0304-3975(03)00325-6
https://doi.org/10.1145/1745312.1745313
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.1145/197320.197383
https://doi.org/10.1145/197320.197383
http://tools.ietf.org/html/rfc6749
https://doi.org/10.1145/2603088.2603116
https://doi.org/10.1145/2603088.2603116
https://doi.org/10.1017/S096012951400022X
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/DARTS.3.2.3
https://doi.org/10.1016/j.jlamp.2018.01.001
https://doi.org/10.1145/3290343
https://doi.org/10.1007/978-3-319-30936-1_23
https://doi.org/10.1007/978-3-319-30936-1_23
https://doi.org/10.1016/j.jlamp.2016.11.005
https://doi.org/10.1016/j.jlamp.2016.11.005
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.1007/978-3-642-12032-9_10

Less Is More: Multiparty Session Types Revisited (Technical Report) 31

Appendices — Part 1
Additional definitions, and asynchronous MPST

Synchronous Asynchronous (§7)

Multiparty session π -calculus §2.1 §C

Multiparty session types §2.2 §D

Issues of classic MPST §3 §E

A new, general MPST theory §4 §F

• Typing context safety invariant Def. 4.1 Def. F.2

• Subject reduction Thm.4.8 Thm.7.1 / Thm.F.6

• Decidability of type checking Thm.4.11 Thm.7.2

Verifying process behaviours using types §5 §G

• Session fidelity Thm.5.4 Thm.F.8

• Typing context properties Fig.5, Def. 5.8 Def. G.2

• Static verification of process properties Thm.5.15 Thm.G.9

• (Un-)Decidability of typing ctx. properties Thm.5.13 Thm.G.5, Thm.G.6

Model checking of type-level properties §6 Remark G.10

Related and Future Work §8 and §H

Table 3. Contents and contributions of this paper. The contents and main contributions in the “Asynchronous”

column are summarised in §7. Proofs are available in the second part of the appendices (§I–§N).

32 Alceste Scalas and Nobuko Yoshida

P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) P | 0 ≡ P (νs) 0 ≡ 0

(νs) (νs ′) P ≡ (νs ′) (νs) P (νs) (P | Q) ≡ P | (νs)Q if s < fc(P)

def D in 0 ≡ 0 def D in (νs) P ≡ (νs) (def D in P) if s < fc(D)

def D in (P | Q) ≡ (def D in P) | Q if dpv(D) ∩ fpv(Q) = ∅

def D in (def D ′ in P) ≡ def D ′ in (def D in P)
if (dpv(D) ∪ fpv(D)) ∩ dpv(D′) = (dpv(D′) ∪ fpv(D′)) ∩ dpv(D) = ∅

[R-≡] P ≡ P ′ P → Q Q ≡ Q ′
implies P ′ → Q ′

Fig. 6. MPST π -calculus: standard structural congruence (top), and up-to-congruence reduction rule (bottom),

which completes Fig.1. In the rules above, fpv(D) is the set of free process variables in D, and dpv(D) is the set
of declared process variables in D.

A MULTIPARTY SESSION π -CALCULUS
The standard congruence delation of the MPST π -calculus, mentioned in Fig.1, is formalised in

Fig.6. The up-to congruence reduction rule [R-≡], which was omitted in Fig.1, says that reduction

is closed under ≡.

B SESSION FIDELITY
This section discusses some intermediate results leading to Thm.5.4 (session fidelity). For the full

proof details, see §I.

The MPST typing system enjoys the fundamental Lemmas B.1 to B.3 below: they hold in most

typing systems, and will be necessary for session fidelity (§5.2).

Lemma B.1 (Substitution). Assume Θ · Γ,x :S ⊢ P and Γ′ ⊢ s[p]:S , with Γ, Γ′ defined. Then,
Θ · Γ, Γ′ ⊢ P{s[p]/x}.

Proof. Minor adaptation of [Coppo et al. 2015a, Lemma 5]. □

Lemma B.2 (Subject Congruence). Assume Θ · Γ ⊢ P and P ≡ P ′
. Then, Θ · Γ ⊢ P ′

.

Proof. By examining the cases where P ≡ P ′
holds, and by inversion of the typing judgements

Θ · Γ ⊢ P and Θ · Γ ⊢ P ′
(Lemma I.4). □

Lemma B.3 (Narrowing). If Θ · Γ ⊢ P and Γ′ ⩽ Γ, then Θ · Γ′ ⊢ P .

With Def. 5.3 and Lemmas B.1 and B.2, we can show how typing contexts determine process

shapes. Thm.B.4 below addresses the typical application scenario of MPST, i.e., an ensemble of

programs Pp that interact on a multiparty session s , each one playing a distinct role p. The crucial
parts are items (1) and (2): if the type of the channel used by Pp requires to select (resp. branch),

then Pp will be ready to perform the corresponding operation, possibly after calling some X . Note

that this crucially relies on item 1 of Def. 5.3. In fact, by rule [T-def] (Fig.2), an unguarded definition

like X (x :S) = X ⟨x⟩ can be typed with any S , even when S is an internal/external choice requiring

to use x for selection/branching. This possibility would refute items (1)(b) and (2)(b) of Thm.B.4 —

but item 1 of Def. 5.3 solves the issue: it forces unused process parameters to be end-typed.

Theorem B.4 (Session Inversion). Assume ∅ · Γ ⊢
��
p∈IPp with each Pp either being 0 (up-to ≡),

or only playing role p in s . Then, Γ = Γ0,
{
s[p]:Sp

}
p∈I ′ (for some I ′) with end(Γ0). Moreover, ∀p ∈ I ′:

Less Is More: Multiparty Session Types Revisited (Technical Report) 33

(1) if q⊕j ∈J mj (S
′
j).S

′
j ⩽ Sp then p ∈ I and for some C, C′, and k ∈ J , either:

(a) Pp ≡ C
[
s[p][q]⊕mk ⟨s ′[r]⟩ .P ′

p

]
or

(b) Pp ≡ C

[
def X (x1 :T1, . . . ,xn :Tn) = C

′
[
xl [q]⊕mk ⟨d⟩ .P ′

p

]
in

X
〈
s ′
1
[r1], . . . , s ′l−1[rl−1], s[p], s

′
l+1[rl+1], . . . , s

′
n[rn]

〉] with 1≤ l ≤n;

(2) if q&j ∈J mj (S
′
j).S

′
j ⩽ Sp then p ∈ I and for some C, C′, and K ⊇ J , either:

(a) Pp ≡ C
[
s[p][q]

∑
k ∈K mk (xk).P

′
pk

]
or

(b) Pp ≡ C

[
def X (x1 :T1, . . . ,xn :Tn) = C

′
[
xl [q]

∑
k ∈K mk (xk).P

′
pk

]
in

X
〈
s ′
1
[r1], . . . , s ′l−1[rl−1], s[p], s

′
l+1[rl+1], . . . , s

′
n[rn]

〉]
with 1≤ l ≤n;

(3) if end ⩽ Sp then p ∈ I implies Pp ≡ 0.

Further, (4) ∀p ∈ I \ I ′ : Pp ≡ 0.

C ASYNCHRONOUS MULTIPARTY SESSION π -CALCULUS
We now address asynchronous MPST, as in the original MPST papers [Bettini et al. 2008; Honda

et al. 2008] and in most successive works. Async MPST provide a more faithful model of real-world

distributed applications, that usually employ buffered message-passing (e.g., via the TCP protocol);

moreover, we will see that our new async MPST theory (unlike the classic one) can handle protocols

whose correctness actually depends on message buffering (Ex.G.4(4),(5)). However, asynchrony

will require us to address several challenges:

(1) the classic async MPST theory has additional complications (§E);

(2) to eschew such complications, and successfully extend our approach to asynchrony, we will

develop a new proof strategy for subject reduction (§F);

(3) async typing context properties are generally undecidable; still, we will achieve decidable

type checking by leveraging results from communicating automata (§G).

In this section, we start developing the asynchronous theory by adding non-blocking send operations

and message queues to the π -calculus of §2.1. From now on, we overload the notation of §2.1, and

focus on the differences between synchronous/asynchronous definitions and results.

Definition C.1. Async MPST processes have the syntax in Def. 2.1, plus session queues:

P ,Q F . . .
�� s▶σ where σ is a message queue: σ F (p, q, m⟨s[r]⟩) ·σ

�� ϵ

We require that in well-formed processes, each session has a queue: if P = (νs)Q , then Q ≡(
ν s̃ ′

)
(Q ′ | s▶σ).

The semantics of async processes is induced by the rules in Fig.1, but (1) we replace [R-Comm]

and [R-Err] by [R-AOut], [R-AIn] and [R-AErr] in Fig.7, and (2) the congruence ≡ is extended with the

rules in Fig.7. The set of message senders in σ , or senders(σ), is:

senders((p, q, m⟨s ′[r]⟩) ·σ ′) = {p} ∪ senders(σ ′) senders(ϵ) = ∅

In Fig.7, the output rule [R-AOut] enqueues a pending message — i.e., a triple with the message

sender role, the intended recipient, and the message itself. The input rule [R-AIn] dequeues a

pending message if its sender, recipient, and label match the receiving process. The error rule

[R-AErr] fires if a process with role p is waiting for a message mi (i ∈ I) from q, but the queue head is

an unsupported message. The semantics is defined up-to the congruence ≡ in Fig.6, plus the rules

for queues in Fig.7: the first is for garbage collection; the second reorders messages with different

sender/recipient. E.g.:

s[p][q]
∑
m2(x).P | s▶ (r, p, m1⟨s1[r1]⟩) · (q, p, m2⟨s2[r2]⟩) ·ϵ → P{s2[r2]/x} | (r, p, m1⟨s1[r1]⟩) ·ϵ

34 Alceste Scalas and Nobuko Yoshida

[R-AOut] s[q][p]⊕m⟨s ′[r]⟩ .Q | s▶σ → Q | s▶σ · (q, p, m⟨s ′[r]⟩) ·ϵ

[R-AIn] s[p][q]
∑

i ∈I mi (xi).Pi | s▶ (q, p, mk ⟨s ′[r]⟩) ·σ → Pk {s
′[r]/xk } | s▶σ if k ∈ I

[R-AErr] s[p][q]
∑

i ∈I mi (xi).Pi | s▶ (q, p, m⟨s ′[r]⟩) ·σ → err if ∀i ∈ I : mi , m

(νs) s▶ϵ ≡ 0
s▶σ · (p

1
, q

1
, m1⟨s1[r1]⟩) · (p2, q2, m2⟨s2[r2]⟩) ·σ

′

≡ s▶σ · (p
2
, q

2
, m2⟨s2[r2]⟩) · (p1, q1, m1⟨s1[r1]⟩) ·σ

′ if p
1
, p

2
or q

1
, q

2

Fig. 7. Async MPST π -calculus: semantics (top) and congruence for queues (bottom).

i.e., the “swapping congruence” ≡ moves the message m2 to the head of the queue, allowing to fire

[R-AIn]. Hence, the session queue behaves as a set of unidirectional FIFO buffers, delivering messages

between each pair of roles, akin to the TCP protocol.

D ASYNCHRONOUS MULTIPARTY SESSION TYPES
We now extend the type system of §2 to the asynchronous calculus of §C. We reuse and overload

definitions and notation from §2.2. We will prove subject reduction and session fidelity results with

our new async type system (§F).

To type queues in the asynchronous calculus, we need queue types (Def. D.1).

Definition D.1. The queue and session/queue types are: (with S from Def. 2.4)

(Queue types) M F p!m(S)·M
�� ϵ (Session/queue types) τ F S

�� M
�� (M ; S)

The congruence relation ≡ for session/queue types τ is inductively defined as:

S ≡ S

p , q

p!m1(S1)·q!m2(S2)·M ≡ q!m2(S2)·p!m1(S1)·M
M ≡ M ′ S ≡ S ′

(M ; S) ≡ (M ′
; S ′)

Subtyping for session/queue types extends Def. 2.5 as:
M ⩽ M

M ⩽ M ′ S ⩽ S ′

(M ; S) ⩽ (M ′
; S ′)

Queue types are sequences of message types p!m(S) having recipient p, label m, and payload

type S (omitted when S= end). A session/queue type can be a session type, a queue type, or a

session/queue types pair: the latter describes queued messages (sent “in the past,” not yet received)

and channel usage (that a process will fulfil “in the future”). The congruence ≡ reorders queued

messages with different recipients, like ≡ in Fig.7.

Definition D.2. An async MPST typing context is a partial mapping defined as:

Γ F Γ, s[p]:τ
�� Γ,x :S

�� ∅

The composition Γ1, Γ2 is defined iff ∀c ∈ dom(Γ1) ∩ dom(Γ2) : Γi (c)=M and Γj (c)= S and for all

such c , we postulate (Γ1, Γ2)(c) = (M ; S). We extend ≡ (from Def. D.1) to typing contexts as:

Γ ≡ Γ′ iff dom(Γ) = dom(Γ′) and ∀c ∈ dom(Γ) : Γ(c) ≡ Γ′(c).
The relation Γ⩽Γ′ follows Def. 2.6, but using session/queue subtyping from Def. D.1.

Unlike Def. 2.6, in Def. D.2 above we have that: (1) channels with role map to session/queue types

(but variables x still map to session types, only); and (2) the context composition Γ1, Γ2 allows
the domains of Γ1 and Γ2 to overlap on some c — but only if c maps to a session type in one context,

and a queue type in the other. This can only occur if c=s[p] (for some s, p), i.e., c is not a variable
x ; then, (Γ1, Γ2)(c) yields the combined session/queue type. The async typing rules in Fig.8 induce

the judgement:

Θ · Γ ⊢S P where S is a set of sessions {s1, . . . , sn}, omitted when empty (14)

Less Is More: Multiparty Session Types Revisited (Technical Report) 35

Θ · Γ ⊢ P (from Fig.2, replacing rules [T- |] / [T-ν] with [TA- |] / [TA-ν])

Θ · Γ ⊢∅ P
[TA-Lift]

Θ · Γ1 ⊢S1
P1 Θ · Γ2 ⊢S2

P2 S1∩S2 = ∅

Θ · Γ1, Γ2 ⊢S1∪S2
P1 | P2

[TA- |]

Γ′ =
{
s[p]:Sp

}
p∈I s < Γ φ(Γ′) Θ · Γ, Γ′ ⊢S P

Θ · Γ ⊢S\s (νs :Γ
′) P

[TA-ν]
where φ is a typing context property

Θ · ∅ ⊢{s } s▶ϵ
[TA-ϵ]

Θ · Γ ⊢{s } s▶σ Γ′ ⊢ s ′[r]:S

Θ · (Γfs[p]:q!m(S)·ϵ), Γ′ ⊢{s } s▶ (p, q, m⟨s ′[r]⟩) ·σ
[TA-σ]

where Γfs[p]:M =

{
Γ{M ·Γ(s[p])/s[p]} if s[p] ∈ dom(Γ)

Γ, s[p]:M otherwise

Fig. 8. Asynchronous MPST typing rules: processes (top) and queues (bottom).

Unlike the sync MPST judgement (5), the context Γ of (14) is asynchronous (Def. D.2); further, (14)

includes a set of sessions S to track P ’s queues; e.g., the parallel rule [TA- |] types parallel processes

by combining their contexts, and requiring their session queues not to overlap (S1∩ S2 = ∅): this

rejects processes with multiple queues per session, like Q | s▶σ | s▶σ ′
. We will use S in a more

sophisticated way later, in §F. The lifting rule [TA-Lift] types queueless processes, by lifting the

synchronous typing judgement in Fig.2. The session restriction rule [TA-ν] is akin to [T-ν] (Fig.2),

but also removes the restricted s from the set of sessions; the typing context property φ is defined

depending on the underlying proof strategy for subject reduction, with considerations similar to

those highlighted in §2.3: we discuss the classic async MPST approach (and its issues) in §E, and

our novel approach in §F.

The remaining rules are for typing queues. We have two queue rules: [TA-ϵ] types an empty

queue s▶ϵ with the empty context; [TA-σ] types a non-empty queue by inserting a message type

in Γ usingf, that might (a) prepend the message to a queue type in Γ, or (b) add a queue-typed

entry to Γ, if not present.

Example D.3. The queue typing rules produce judgements like the following:

Θ · Γ,
s[p]:q&m2(S2).S

′ ,
s[r]:p!m1(S1)·ϵ ,
s[q]:p!m2(S2)·ϵ

⊢{s } s[p][q]
∑
m2(x).P | s▶ (r, p, m1⟨s1[r1]⟩) · (q, p, m2⟨s2[r2]⟩) ·ϵ

Note that s[p] has a session type (matching the process), while queued messages are typed by

assigning them to their sender role, thus giving queue types to s[r] and s[q].

Async contexts reduce by Def. D.4 below: the definition is standard, except for the addition of

transition labels. Unlike Def. 2.8, types interact in two phases: first, messages are queued ([Γ-AMsg]);

then, they are consumed ([Γ-AComm]).

Definition D.4. Let α have the form s:p!q:m or s:p,q:m. The async typing context transition

α
−→ is inductively defined by the following rules, up-to congruence ≡ (Def. D.1), plus rules [Γ-µ] and

[Γ-Cong] (Def. 2.8):

[Γ-AMsg] s[p]:(M ; q⊕i ∈Imi (Si).S
′
i)

s :p!q:mk
−−−−−−→ s[p]:(M ·q!mk (Sk)·ϵ ; S ′k) if k ∈ I

[Γ-AComm] s[p]:q!mk (Sk)·M , s[q]:p&i ∈Imi (Ti).T
′
i

s :p,q:mk
−−−−−−→ s[p]:M, s[q]:T ′

k if k ∈ I , Sk ⩽Tk

36 Alceste Scalas and Nobuko Yoshida

Definition E.1 (Partial Asynchronous Projection). The message queue for p inM , writtenM(p),
is:

(p!m(S)·M)(p) = p!m(S)·(M(p)) (q!m(S)·M)(p) = M(p) (if p , q) ϵ(p) = ϵ

The queue prefixing ofM to H is the partial type:

p!m(S)·M•H = ⊕m(S).(M•H) ϵ•H = H

The projection of τ onto p, written τ ↾p, is a partial session type defined as Def. 3.6 if τ = S , and:

M↾p = M(p)•end (M ; S)↾p = M(p)•(S↾p)

Definition E.2. Γ is asynchronously consistent, written a-consistent(Γ), iff ∀s, p, q,τ ,τ ′:
Γ = Γ′, s[p]:τ , s[q]:τ ′ implies τ ↾q ⩽ τ ′↾p

Table 4. Classic async MPST consistency. These definitions build upon Fig.3, and are not necessary in our

new async MPST theory.

The asynchronous reduction Γ→Γ′ is defined iff Γ
α
−→Γ′ for some α .

In Def. D.4, both transition rules and labels can be seen as different forms of synchronisation:

• s:p!q:m denotes an interaction between a session type and its queue, with the addition of a

pending message m sent from p to q, on session s;
• s:p,q:m (that reuses notation from Def. 2.8) denotes the interaction between a queue type and

a recipient session type, with the reception by q of a queued message m previously sent by p
on session s .

When the transition label is immaterial, we use the reduction →.

E PROBLEMS OF CLASSIC ASYNCHRONOUS MPST
We now outline the issues of classic asynchronous MPST, to overcome them in §F. We summarise

the technical definitions in Table 4.

Similarly to § 3, classic async MPST require “asynchronously consistent” (or “a-consistent”)

typing contexts. Therefore, rule [TA-ν] in Fig.8 is instantiated as follows:

Γ′ =
{
s[p]:Sp

}
p∈I s < Γ a-consistent(Γ′) Θ · Γ, Γ′ ⊢S P

Θ · Γ ⊢S\s (νs :Γ
′) P

[TA-νClassic]

Async consistency (Def. E.2) caters for message queues by building upon (and further complicat-

ing) Fig.3, thus inheriting its problems (cf. §3.1) and limitations (cf. §3.2). Moreover, the presence of

queues and queue types, and their interaction with consistency, introduce two further difficulties,

that complicate the classic subject reduction statement:

Empty Queues and “Missing” Reductions. The typing rules [TA-ϵ]/[TA-σ] never map channels

with role to empty queue types: this is visible in Ex.D.3 and Thm.L.5(6). E.g., take a typed

process with empty queues P =s[p][q]⊕m⟨s ′[q′]⟩ .0 | s▶ϵ . By Fig.8:

Θ · Γ, s[p]:q⊕m(S).end ⊢∅ s[p][q]⊕m⟨s ′[q′]⟩ .0 Θ · ∅ ⊢{s } s▶ϵ
[TA-ϵ]

Θ · Γ ⊢{s } P
[TA- |]

where Γ = s[p]:q⊕m(S).end, s ′[q′]:S

(15)

Note that Γ maps s[p] to a session type without queue. Now, P reduces as:

Less Is More: Multiparty Session Types Revisited (Technical Report) 37

P → P ′ = 0 | s▶ (p, q, m⟨s ′[q′]⟩) ·ϵ

with Θ·Γ′⊢{s } P
′
and Γ′=s[p]:(q!m(S)·ϵ ; end), s ′[q′]:S

Here, Γ′ maps s[p] to a session type paired with a (non-empty) queue. Hence, Γ in (15) cannot

match the process transition by reducing to Γ′. By Def. D.4, the “missing” type reduction

would be allowed if Γ mapped s[p] to the pair (ϵ ; q⊕m(S).end).

Async Consistency vs. Context Splits. Async consistency has a limitation w.r.t. synchronous

consistency: it does not satisfy desideratum (D2) in §2.3. In fact, when the parallel typing

rule [TA- |] (Fig.8) splits a typing context, we might have:

a-consistent(Γ1, Γ2) ≠⇒ a-consistent(Γ1) (16)

because Γ1 might lose queue types in a way that breaks consistency. E.g., if we take:

Γ1 =

{
s[p]:q⊕m2 .S ′,
s[q]:p&m1 .p&m2 .S

′′

}
Γ2 = s[p]:q!m1 ·ϵ (m1,m2) (17)

then Γ1, Γ2 is consistent, but Γ1 is not, due to the mismatching output m2 and input m1.
Consequently, async consistency is not preserved across typing derivations, and cannot be

used in an induction hypothesis.

E.g., consider the process P below (slightly simplified by omitting irrelevantmessage payloads).

Its sub-process Pp (who plays role p) has already sent a queued message m1 and is about to

send m2 to q, while the sub-process Pq (who plays role q) can receive both messages:

P = Pp | Pq | s▶ (p, q, m1) ·ϵ

Pp = s[p][q]⊕m2 .P ′

Pq = def X (x) = x[p]
∑
m1 .x[p]

∑
m2 .Q in X ⟨s[q]⟩

Note that we have Pq → P ′
q, by expanding the call to X (rules [R-X] and [R-Ctx] in Fig. 1);

therefore, by [R-Ctx], we also have P → P ′ = Pp | P
′
q | s▶ (p, q, m1) ·ϵ . Now, if P is well-typed,

we have:

Θ · Γ1 ⊢∅ Pp | Pq Θ · Γ2 ⊢{s } s▶ (p, q, m1) ·ϵ

Θ · Γ1, Γ2 ⊢{s } P
[TA- |]

where

Γ1 =

{
s[p]:q⊕m2 .S ′,
s[q]:p&m1 .p&m2 .S

′′

}
Γ2 = s[p]:q!m1 ·ϵ

Note that Γ1, Γ2 is consistent, but Γ1 is not (due to the mismatching output of m2 and input of

m1). Thus, if we try to prove subject reduction for P→P ′
by requiring an a-consistent typing

context, we cannot apply the induction hypothesis on the premise Pp | Pq → Pp | P
′
q.

Due to the issues above, the classic async subject reduction statement reads [Coppo et al. 2015a,

Lemma 1]:

If Θ · Γ ⊢S P and ∃Γ0 such that Γ, Γ0 a-consistent and P → P ′,

then ∃Γ′, Γ′
0
a-consistent such that Γ, Γ0 →

∗ Γ′, Γ′
0
and Θ · Γ′ ⊢S P ′ (18)

Intuitively, the statement solves the above issues by adding the typing context Γ0, containing queue
types that restore “missing” reductions and consistency.

In §F, we avoid these complications, and obtain more general results, by developing a new async

MPST theory, that extends our new theory in §4 with novel semantics for asynchronous typing

context, and a novel subject reduction statement and proof technique.

38 Alceste Scalas and Nobuko Yoshida

F GENERAL ASYNCHRONOUS MULTIPARTY SESSION TYPE SYSTEM
We now present our async MPST type system. As in §4, it is modular, parametric w.r.t. an async

safety property φ (Def. F.2); to eschew the classic MPST difficulties summarised in § E, in the

following we contribute a novel proof technique for asynchronous subject reduction, based on a

novel handling of queue types:

(1) we define a smarter typing context reduction →S (Def. F.1) using the session set S;

(2) we define async typing context S-safety (Def. F.2) by exploiting →S above;

(3) we develop a new subject reduction statement (Thm.F.6), simpler than (18), by exploiting

the fact that our S-safety handles queueless type reductions, and survives context splits

(Lemma F.5).

Definition F.1. The async typing context S-transition
α
−→S is inductively defined by the rules

below, up-to ≡ (Def. D.2):

[Γ-Base] Γ
α
−→ Γ′ implies Γ

α
−→S Γ′

[Γ-DMsg] s[p]:q⊕i ∈Imi (Si).S
′
i

s :p!q:mk
−−−−−−→S s[p]:(q!mk (Sk)·ϵ ; S ′k) if s ∈S, k ∈ I

[Γ-DCom] s[p]:q!mk (Sk)·ϵ , s[q]:p&i ∈Imi (Ti).T
′
i

s :p,q:mk
−−−−−−→S s[q]:T ′

k if s ∈S, k ∈ I , Sk ⩽Tk

plus rules [Γ-µ] and [Γ-Cong] (Def. 2.8), replacing
α
−→ with

α
−→S.

We write Γ
α
−→S iff there is Γ′ such that Γ

α
−→S Γ′. We Γ →S Γ′ iff Γ

α
−→S Γ′ for some α .

In Def. F.1, rule [Γ-Base] says that any async reduction Γ
α
−→ Γ′ (Def. D.4) is matched by

α
−→S. To

support reductions of session types without queues, [Γ-DMsg] allows an internal choice to reduce by

creating a queue type carrying its output, and [Γ-DCom] allows a queue type to disappear when its

last message is consumed. Crucially, [Γ-DMsg] and [Γ-DCom] only apply for sessions in S; otherwise,
α
−→S matches

α
−→, i.e., queueless types do not reduce.

Definition F.2 (Asynchronous Safety). φ is an S-safety property on typing contexts iff:

[SA-&!] φ
(
Γ, s[p]:q&i ∈Imi (Si).S

′
i , s[q]:M

)
andM ≡p!m(T)·M ′

implies ∃k ∈ I : mk =m, T ⩽Sk ;
[SA-µ] φ(Γ, s[p]:µt.S) implies φ(Γ, s[p]:S{µt.S/t});
[SA-→] φ(Γ) and Γ →S Γ′ implies φ(Γ′).

We say Γ is asynchronously S-safe, or a-safeS(Γ), iff φ(Γ) for some S-safety property φ.

The notion of S-safety in Def. F.2 is akin to Def. 4.1, but caters for asynchrony: if a queue has

a top-level message from p to q, and q is trying to receive from p, then their messages must be

compatible and allow them to reduce, by Def. D.4. Note that clause [SA-→] uses→S: i.e., if a queueless

type belongs to a session in S it can reduce, otherwise is stuck and ignored, as shown in Ex.F.3.

Example F.3. Take Γ1 and Γ2 from (16) above. We have a-safe{s}(Γ1, Γ2), but a-safe{s}(Γ1) does
not hold: Γ1 reduces by →{s } , queuing message m2, and violating clause [SA-&!] (Def. F.2). Instead,

a-safe∅(Γ1) holds, since Γ1/→∅, and Γ1 (vacuously) satisfies Def. F.2.

We now have all the ingredients for our general async type system.

Definition F.4. The general asynchronous MPST typing judgement is induced by the rules

in Fig.8 — with rule [TA-ν] restricted as follows:

Γ′ =
{
s[p]:Sp

}
p∈I φ(Γ′) s < Γ Θ · Γ, Γ′ ⊢S P

Θ · Γ ⊢S\s (νs :Γ
′) P

[TAGen-ν]
where φ is an

{s}-safety property

We write “Θ · Γ ⊢ P with φ” to specify how to instantiate φ in rule [TAGen-ν] above. When “with φ”
is omitted, then the instantiation is φ=a-safeSU

(i.e., the largest SU -safety property, cf. Def. F.2)

where SU is the set of all sessions.

Less Is More: Multiparty Session Types Revisited (Technical Report) 39

As in Def. 4.6, Def. F.4 provides a novel foundation for asynchronous MPST, but has just one visible

change w.r.t. the classic multiparty session typing rules: the rule for session restriction, that uses

a parametric, behavioural (rather than syntactic) property on Γ′. Note that, crucially, we exploit
the judgement’s session set to determine S for async S-safety (Def. F.2); by using the same S for

→S (Def. F.1), we are able to formalise and prove asynchronous subject reduction, type safety,

and session fidelity, as follows. Crucially, Thm.F.6 (that provides the precise formal statement of

Thm.7.1) uses Lemma F.5 as a weak form of desideratum (D2) in §2.3: it provides fine-grained splits

of async typing contexts (again, depending on the session set S) that preserve safety along the

subject reduction proof.

Lemma F.5. Let a-safeS(Γ): then, a-safeS\s(Γ); and if Γ=Γ′, s[p]:S , then a-safeS(Γ
′).

Theorem F.6 (Asynchronous Subject Reduction). Assume Θ · Γ ⊢S P with Γ S-safe. Then,

P → P ′
implies ∃Γ′ S-safe such that Γ →S

∗ Γ′ and Θ · Γ′ ⊢S P ′
.

Corollary F.7 (Async Type Safety). If ∅ · ∅ ⊢∅ P and P →∗ P ′
, then P ′

has no errors.

Theorem F.8 (Async Session Fidelity). Let Θ · Γ ⊢S P , with P ≡

(��
p∈IPp

)
| s▶σ , and each Pp

either being 0 (up-to ≡), or only playing role p in s . Then, Γ→S implies ∃Γ′, P ′
such that Γ →S Γ′,

P →∗ P ′
and Θ · Γ′ ⊢S P ′

, with P ′ ≡

(��
p∈IP

′
p

)
| s▶σ ′

and each P ′
p either being 0 (up-to ≡), or only

playing role p in s .

Finally, similarly to the synchronous case (Thm. 4.11), also asynchronous type checking is

decidable, when instantiated with a decidable safety property.

Theorem 7.2. If φ is decidable, then “Θ·Γ ⊢SP with φ” is decidable.

G FROM ASYNC TYPING CONTEXT PROPERTIES TO PROCESS PROPERTIES
As in §5, we now present several properties reinforcing a-safeS, compare them, and use them to

instantiate φ in our type system, to predict and constrain the run-time behaviour of processes.

However, under asynchrony, we need to address an additional challenge: since queue types are

unbounded, an asynchronous typing context Γ can induce an infinite state transition system, making

its properties undecidable (unlike Thm.5.13).

Def. G.2 below is the async version of the typing context properties discussed in § 5.3. The

key difference is that Def. G.2 checks queued message types, instead of internal choices. But first,

we need to formalise the asynchronous version of Def. 5.5 (fair traversal sets), in Def. G.1 below.

Its purpose is similar: find a set of roles that can interact and always reach a target state, under

“fair scheduling”; but in Def. G.1, we also choose the “right time” to fire queuing and reception

transitions: this allows to ignore unfair executions where a recursive output is fired infinitely, and

enqueues infinitely many messages, without giving a chance to the recipient to consume them.

Definition G.1 (Asynchronous fair traversal set). Let X,Y be sets of asynchronous typing contexts.

We say that X is a fair traversal set for sessions S with targets Y iff X is closed under the rules:

Γ ∈ Y
Γ ∈ X

[TSA-Target]

∃s ∈S, p, q : ∃m :


Γ
s :p,q:m
−−−−−→S and

(
Γ

s :p,q:m
−−−−−→S Γ′ implies Γ′∈X

)
or

Γ
s :p!q:m
−−−−−→S and

(
∀m : Γ

s :p!q:m
−−−−−→S Γ′ implies Γ′∈X

)
Γ ∈ X

[TS-IO]

40 Alceste Scalas and Nobuko Yoshida

We can now formalise Def. G.2. Most definitions match those in Fig.5; the additional item (7)

places a bound on the length of type queues: it will be useful later, for Thm.G.5.

Definition G.2 (Properties of Asynchronous Typing Contexts). We write a-endS(Γ) iff ∀s[p] ∈
dom(Γ) with s ∈S, Γ(s[p]) ∈ {S, ϵ, (ϵ ; S) | S ⩽ end}.
(1) We say that Γ is S-deadlock-free, or a-dfS(Γ), iff Γ→S

∗ Γ′/→S implies a-endS(Γ
′).

(2) We say that Γ is S-terminating, written a-termS(Γ), iff Γ is S-deadlock-free, and there is

k ∈N such that for all n ≥ k , Γ = Γ0 →S Γ1 →S · · · →S Γn implies a-endS(Γn).

(3) We say that Γ is S-never-terminating, written a-ntermS(Γ), iff Γ →S
∗ Γ′ implies Γ′→S.

(4) φ is an S-liveness property on asynchronous typing contexts iff:

[LA-&] φ(Γ, s[p]:S) with S =q&i ∈Imi (Si).S
′
i implies ∃i ∈ I : ∃Γ′ : Γ, s[p]:S →S

∗ Γ′, s[p]:S ′i
[LA-!] φ(Γ, s[p]:M) withM ≡ q!m(S)·M ′

implies ∃Γ′ : Γ, s[p]:M →S
∗ Γ′, s[p]:M ′

plus clauses [SA-µ] and [SA-→] from Def. F.2. We say that Γ is asynchronously S-live, written

a-liveS(Γ), iff φ(Γ) for some liveness property φ.

(5) φ is an S-liveness+ property iff:

[LA-&
+
] clause [LA-&] above; moreover, Γ belongs to some async fair traversal set X for sessions S

with targets Y (Def. G.1) such that, ∀Γt ∈Y, we have Γt =Γ′′, s[p]:S ′i (for some Γ′′, i ∈ I)

[LA-!
+
] clause [LA-!] above, moreover, Γ belongs to some async fair traversal set X for sessions S

with targets Y (Def. G.1) such that, ∀Γt ∈Y, we have Γt =Γ′′, s[p]:M ′
(for some Γ′′)

plus clauses [SA-µ] and [SA-→] from Def. F.2. We say Γ is asynchronously S-live+, or a-live
+
S
(Γ),

iff φ(Γ) for some S-liveness+ property φ.

(6) φ is an S-liveness++ property iff:

[LA-&
++

] clause [LA-&] above; moreover, there is n ∈N such that if Γ = Γ0 →S Γ1 →S · · · →S Γn ,
∃i <n such that Γi →S Γi+1 = Γ′′, s[p]:S ′i (for some Γ′′, i ∈ I)

[LA-!
++

] clause [LA-!] above, moreover, there is n ∈N such that if Γ = Γ0 →S Γ1 →S · · · →S Γn ,
∃i <n such that Γi →S Γi+1 = Γ′′, s[p]:M ′

(for some Γ′′)

plus clauses [SA-µ] and [SA-→] from Def. F.2. We say Γ is asynchronously S-live++, or a-live++
S
(Γ),

iff φ(Γ) for some S-liveness++ property φ.

(7) Γ is k-bounded (w.r.t. S), or a-boundS,k (Γ), iff k ∈N and Γ→S
∗ Γ, s[p]:M implies |M | ≤k . Γ

is bounded (w.r.t. S), or a-boundS(Γ), iff ∃k finite: a-boundS,k (Γ).

Lemma G.3 below is the async version of Lemma 5.9. Items 8 and 9 show that boundedness does

not imply any other property, and is only implied by termination.

Lemma G.3. For all Γ, letting S = {s | ∃p : s[p] ∈dom(Γ)}, we have:

(1) a-consistent(Γ) ⇍= =⇒ a-safeS(Γ);
(2) a-liveS(Γ) ⇍= =⇒ a-safeS(Γ);
(3) a-liveS(Γ) ⇍= =⇒ a-dfS(Γ);
(4) a-ntermS(Γ) ⇍= =⇒ a-dfS(Γ);
(5) a-consistent(Γ) ⇍= ≠⇒ a-dfS(Γ);
(6) a-consistent(Γ) ∧ a-dfS(Γ) ⇍=≠⇒ a-liveS(Γ);
(7) a-termS(Γ) ⇍= =⇒ a-live

++
S
(Γ);

(8) a-termS(Γ) ⇍= =⇒ a-boundS(Γ);
(9) a-boundS(Γ) ⇍= ≠⇒ a-safeS(Γ) ∨ a-dfS(Γ);
(10) a-live

++
S
(Γ) ⇍==⇒ a-live

+
S
(Γ) ⇍==⇒ a-liveS(Γ).

consistent

GG-

safe

df livelive+

live++

boundn
te
rm

term

Less Is More: Multiparty Session Types Revisited (Technical Report) 41

Example G.4. Ex.5.10 and Ex.5.11 also hold under the async properties of Def. G.2. Moreover:

(1) The typing context Γ from Ex.2.7 (i.e., our example in §1) is bounded;

(2) ΓB from Ex.5.11 is not bounded: s[p] can queue infinite outputs, before s[q] consumes them;

(3) the “arbitrary typing context” s[p]:q⊕foo(end), s[q]:p&bar(end), s ′[r]:end from §2.3 is

async bounded, but not async safe nor deadlock-free;

(4) s[p]:µt.q⊕m1 .q&m2 .t , s[q]:µt.p⊕m2 .p&m1 .t is not a-consistent, and is deadlocked under syn-

chronous reductions (Def. 2.8); however, under →{s } (Def. D.4) it is async live
+
(hence async

safe) and bounded (k = 2). In fact, both s[p] and s[q] can reduce by enqueuing their initial

output messages (m1 and m2), and then receiving the message enqueued by the other party;

(5) s[p]:µt.q⊕m1 .q⊕m1 .q&m2 .t , s[q]:µt.p⊕m2 .p&m1 .t (akin to (4) above) is live
+
, but not a-consistent

nor bounded: in each loop, two messages m1 are queued and only one is consumed.

Note that the diagram of Lemma G.3 includes � and �− from Lemma 5.9, i.e., the sets of contexts

projected from a global type: they do not occur in the statement, but will be justified by Thm.G.6

and Remark G.7.

Decidability. Thm.G.5 below provides minimal decidability criteria for async properties.

Theorem G.5. ∀Γ, a-consistent(Γ) is decidable. Furthermore, ∀S,k , a-boundS,k (Γ) is decidable;
and if a-boundS,k (Γ) holds, then Γ has a finite state transition system, hence a-safeS(Γ), a-dfS(Γ),
a-termS(Γ), a-ntermS(Γ), a-liveS(Γ), a-live

+
S
(Γ) and a-live++

S
(Γ) are decidable.

By Thm.G.5 and Thm.7.2, we obtain various decidable instances of our general asynchronous MPST

type system. Such instances require either asynchronous consistency (as in classic async MPST), or

the enforcement of a limit on the size of queue types, to ensure that the properties in Def. G.2 are

decidable.

Besides such results, decidability of φ (and type checking) is hampered due to the correspondence

between session/queue types and Communicating Finite State Machine (CFSM) [Deniélou and

Yoshida 2013]: (1) a session/queue type (M ; S) is a CFSM with finite control S and output queues

M , and (2) an async Γ is a system of interacting CFSMs. Unfortunately, safety and other proper-

ties in Def. G.2 (including the existence of a queue bound k) are undecidable for CFSMs [Brand

and Zafiropulo 1983] [Genest et al. 2007], and Γ can encode a Turing machine [Bartoletti et al.

2016, Thm. 2.5]. To address this problem, we cannot straightforwardly lift decidable synchronous

properties to asynchrony, e.g.:

Γ = s[p]:r⊕m1 .q⊕m2, s[q]:p&m3 with m2 , m3
Γ →{s } →{s } Γ′ ≡ s[p]:(q!m2 ·r!m1 ·ϵ ; end), s[q]:p&m3

Note that Γ is synchronously safe (Def. 4.1), but not asynchronously {s}-safe (Def. F.2): the outputs of
s[p] are queued, and Γ′ violates Def. F.2 ([SA-&!]). Luckily, Thm.G.6 says that the session types/CFSMs

correspondence allows to lift liveness to asynchrony; and building upon this basis, we can also lift

liveness
+
to asynchrony (notice that the latter is a completely new result).

TheoremG.6. Let Γ be a synchronous typing context (Def. 2.6); moreover, let S = {s | ∃p : s[p] ∈ dom(Γ)}.
Then, live(Γ) is decidable, and implies a-liveS(Γ). Moreover, live

+(Γ) is decidable, and implies

a-live
+
S
(Γ).

Proof. [Deniélou and Yoshida 2013, Def. 4.2] and [Bocchi et al. 2015, Def. 4] define Multiparty

Compatibility (MC) as a behavioural property based on Γ’s synchronous reductions; its definition
corresponds to our synchronous liveness (Fig.5); further, MC is decidable (as our Thm.5.13). Finally,

[Deniélou and Yoshida 2013, Thm 4.1] and [Bocchi et al. 2015, Thm. 6] say that if Γ is live/MC,

then queued outputs are eventually consumed, and external choices are eventually triggered, as in

42 Alceste Scalas and Nobuko Yoshida

async liveness (Def. G.2). This leads to the result on liveness. For the result on liveness
+
, we further

leverage the live/MC correspondence above to rule out the existence of communication loops that

would not allow to build the fair traversal sets required by clauses [LA-&
+
]/[LA-!

+
] of Def. G.2(5). For

further details, see §N. □

Remark G.7. With Theorems G.5, G.6, and 7.2, we can instantiate φ in Def. F.4 as described in

§7 (methods (M1)–(M3)), to obtain various decidable type-checking methods for async processes. In

particular, by Lemma 5.9(9) and Thm.G.6, we can use global types to project async live
+
typing contexts

(hence the sets � and �− in the diagram of Lemma G.3). Thus, such decidable instances of our type

system subsume classic async MPST (that only cover φ=a-consistent), and type the async version of

our example in §1 — i.e., Remark 5.12 also applies to async MPST. Also note that we support protocols

that are “inherently” asynchronous, and cannot be projected from any global type — cf. Ex.G.4(4),(5).

To conclude, we show how the properties defined above influence process behaviours (Thm.G.9).

These results are new, and intuitively similar to Thm.5.15 (for synchronous MPST), modulo the

presence of message queues.

Definition G.8. P is asynchronously deadlock-free iff P →∗ P ′ ̸→ implies P ′ ≡ 0. P is

asynchronously terminating iff it is async deadlock-free, and ∃k finite such that, ∀n ≥ k , P =
P0→P1→· · ·→Pn implies Pn ≡0. P is asynchronously never-terminating iff P→∗P ′

implies

P ′→. We say that P is asynchronously live iff P →∗ P ′ ≡ C[Q] implies:

(1) if Q = s▶σ with σ ≡ (p, q, m⟨s ′[r]⟩) ·σ ′
, then P ′ →∗ C′[s▶σ ′] for some C′;

(2) if Q = c[q]
∑

i ∈I mi (xi).Q
′
i , then P ′ →∗ C′

[
Q ′
k {

s ′[r]/xk }
]
for some C′,k ∈ I , s ′, r;

P is strongly asynchronously live iff P→∗P ′≡C[Q] implies:

(3) item 1 above, and moveover, there is n finite such that, whenever P ′ = P ′
0
→ P ′

1
→ · · · → P ′

n ,

then for some j ≤n we have P ′
j →C

′′[s▶σ ′] (for some C′′);

(4) item 2 above, and moveover, there is n finite such that, whenever P ′ = P ′
0
→ P ′

1
→ · · · → P ′

n ,

then for some j ≤n we have P ′
j →C

′′
[
Q ′
k {

s ′[r]/xk }
]
(for some C′′,k ∈ I , s ′, r).

Theorem G.9. Assume ∅·Γ ⊢SP ≡
(��
p∈IPp

)
| s▶σ , with all Pp having guarded definitions and being

0 (up-to ≡), or only playing p in s . Then: (1) a-dfS(Γ) implies P is async deadlock-free; (2) a-termS(Γ)
implies P is async terminating; (3) a-ntermS(Γ) implies P is async never-terminating; (4) a-live

+
S
(Γ)

implies P is async live. (5) a-live
++
S
(Γ) implies P is strongly async live.

Remark G.10. The a-dfS(Γ), a-liveS(Γ) a-live
+
S
(Γ) hypothesis used in Thm.G.9(1) are generally

undecidable, but they are implied by (decidable) synchronous liveness/liveness+ (by Thm.G.6 and

Lemma G.3) — which in turn, can be verified using the model checking techniques discussed in §6.

Moreover, the premises of items (1)–(5) of Thm.G.9 can be decided by first checking whether Γ has

k-bounded queues, given some k (by Thm.G.5). Furthermore, as highlighted in Remark G.7, global

types are a (decidable) way to project typing contexts that are a-live
+
, and thus, ensure that typed

processes are live (by Thm.G.9(4)). These results are more general than those achievable under classic

MPST, because they do not require the existence of global types, nor consistency of Γ.

H ADDITIONAL RELATED AND FUTUREWORK
The main related works are discussed in § 8. In this section, we discuss other approaches for

formalising protocols and typing processes, and show why they cannot handle our examples; we

also discuss other papers and extensions that are specifically related to our general asynchronous

MPST theory.

Less Is More: Multiparty Session Types Revisited (Technical Report) 43

H.1 Conversation Types
Conversation types where proposed by [Caires and Vieira 2009, 2010], as a typing discipline for

ensuring that processes implement given protocols. They share various goals and fundamental

ideas with session types (including a notion of duality), but their technical development is rather

different; among their main features, the flexible assignment of protocol roles to processes, and

the capability of letting processes dynamically join existing sessions; both features allow to model

forms of multiparty interaction.

Conversation types do not have consistency requirements that can be directly compared with

those of classic MPST; still, they have several type-level operators and constraints that remind

syntactic duality, and do not support our examples in Fig.4.

Consider, e.g., our opening example (§1). The conversation type corresponding to the global type

G in (1) is (19) below, where τm(T) denotes a communication where two parties exchange message

m carrying a value of type T , and ⊕ denotes an internal choice:

⊕

{
τlogin.τpasswd(Str).τauth(Bool) ,
τcancel.τquit

}
(19)

Note the lack of explicit roles in (19). This is a distinguishing feature of conversation types: they

can be decomposed in various ways, using a merge relation ▷◁ [Caires and Vieira 2010, Def. 3.11]. In

order to match the scenario in §1, we would need to decompose (19) into three types, combined by

▷◁: this is the only way to type three separate processes (for the service, client, and authorisation

server), using rule [Par] in [Caires and Vieira 2010, Fig. 9]. Therefore, we would like to decompose

(19) as follows, where !/? denote output/input messages, and & is an external choice:

⊕

{
!login.?auth(Bool) ,
!cancel

}
▷◁ &

{
?login.!passwd(Str) ,
?cancel.!quit

}
▷◁ &

{
?passwd(Str).!auth(Bool) ,
?quit

}
(20)

However, the merging in (20) is undefined: by [Caires and Vieira 2010, Def. 3.11], the rightmost

external choice (i.e., the type of the authorisation server) can only be merged with an internal

choice ⊕ having dual output messages (rules [Plain-l]/[Plain-r] in [Caires and Vieira 2010, FIg. 8])

— but the other types in (20) do not satisfy this requirement: this is because the desired output

messages are prefixed by (i.e., depend on) choices and other interactions.
5
Alternatively, one might

try to adjust (19), and leverage directions and their projection [Caires and Vieira 2010, Def. 3.7],

aiming at an implementation that starts a binary conversation between the service and client, and

involves the authorisation server at a later stage. This would be a significant change; besides, it

would still require to decompose the overall protocol using ▷◁, with the limitations described above.

As a future research direction, it would be interesting to investigate whether our approach

based on safety (Def. 4.1) can provide a new foundation for conversation types, replacing its merge

relation with a more flexible alternative.

H.2 Global Types Semantics and Choreographic Programming
Various works investigate the semantic properties of global types (also called choreographies) and

their projections: for example, [Castagna et al. 2012; Lanese et al. 2008]. Unlike the present work,

such papers do not investigate type systems (i.e., do not use projections as types), nor type safety

results; hence, they do not address the issues described in §2.3, nor develop results like ours.

5
This reminds the reason why, in classic MPST, some partial projections of the same protocol are undefined, cf. §3.1. This

suggests a common fundamental limitation: the authorisation protocol in §1, and all other examples in Fig.4, are inherently

multiparty, and cannot be cleanly decomposed into sets of binary interactions; however, a binary decomposition is required

both in classic MPST (via partial projection/consistency), and in conversation types (via merging). Our new MPST theory

(§4) does not have this requirement.

44 Alceste Scalas and Nobuko Yoshida

On a related line of research, [Carbone and Montesi 2013] propose choreographic programming:

an approach where concurrent and distributed application are directly developed as choreographies,

using a language that reminds a global type specification (Def. 3.2) enriched with programming

constructs (e.g., variables, data, conditionals). Choreographic programs are compiled by projecting

them into endpoint processes (in a variant of the multiparty session π -calculus); once deployed
and executed, such processes interact as specified in the original choreographic program, which is

deadlock-free by construction.

The choreographic programming approach is somewhat “opposite” w.r.t. MPST, and does not

address scenarios like our example in § 1. In fact, in [Carbone and Montesi 2013], distributed

applications are developed as single programs, type-checked against a global type; unlike MPST,

distributed components are not supposed to be developed independently, and separately verified

against a desired interface (i.e., a session type). For example:

• with MPST, the authorisation server, the client and the service in § 1 can be developed

and verified separately and independently, by different programmers, working on distinct

codebases. Hence, the developer of the authorisation server only needs to type-check the

implementation Pa against the session type Sa in (2) (cf. Ex.2.7); this is enough to guarantee

correct interaction with other third-party processes, as long as their combined types are safe

(cf. Def. 4.1);

• instead, in choreographic programming, the authorisation server, the client and the service
in §1 need to be written as a single combined “global program,” that would look like G in (1).

In many cases, this is not desirable or feasible.

A payoff of this restriction is that type system of [Carbone and Montesi 2013] does not encounter

the difficulties of MPST systems: since processes are not type-checked separately against a desired

interface, typing derivations like Ex.2.7 do not arise, and this avoids the issues illustrated in §2.3.

The limitations above are directly addressed in [Montesi and Yoshida 2013], who propose com-

positional choreographies: they develop a unified language for both choreographies and endpoint

programs — and the latter are called partial choreographies, with the possibility of being separ-

ately developed, and reused. To this purpose, unlike [Carbone and Montesi 2013], [Montesi and

Yoshida 2013] introduce parallel composition of (partial) choreographies, and communication via

synchronisation (cf. (par) in Fig. 2, and rule [C |Sync] in Fig. 3 of [Montesi and Yoshida 2013]). This

leads to the introduction of session types, and typing contexts denoted with ∆ [Montesi and Yoshida

2013, p. 432], and reductions similar to our Definitions 2.6 and 2.8, and a typing rule for parallel

composition (rule [T |Par] in [Montesi and Yoshida 2013, p. 432]) similar to our rule [T- |] in Fig. 2.

The resulting typing derivations are similar to our Ex.2.7, and have issues like those discussed

in §2.3, that require to constrain ∆. The subject reduction statement [Montesi and Yoshida 2013,

Thm. 1] does not show explicit constraints on ∆ — but since the paper integrates classic MPST from

Honda et al. [2008] and Deniélou et al. [2012], it should either (a) inherit the duality/consistency

issues and limitations discussed in §3 (i.e., not supporting our opening example in §1, nor the other

examples in Fig.4), or (b) implement a rather complex subject reduction proof strategy similar to

the “non-classic” approach of Dezani-Ciancaglini et al. [2015] and Ghilezan et al. [2018] (discussed

in § 8.2). On the positive side, we believe that our new MPST theory can be used as a drop-in

replacement for classic MPST in [Montesi and Yoshida 2013]: the resulting integration would

support our examples, without significant changes to the rest of their paper.

H.3 Asynchronous Subtyping
Our new asynchronous type system (even in its decidable instances) supports asynchronous

protocols whose correctness depends on the capability of buffering messages, and consuming them

Less Is More: Multiparty Session Types Revisited (Technical Report) 45

at a later time. This means that we can use typing contexts (and type-check processes) that interact

correctly under asynchrony, but would deadlock under synchronous semantics: see Ex.G.4, cases (4)

and (5). This feature is not supported by the classic async MPST theory, because its a-consistency

requirement (Def. E.2) only accepts types (and processes) that interact dually under synchronous

semantics, disregarding asynchronous message buffering.

To overcome this limitation of classic MPST, [Mostrous et al. 2009] introduced an asynchronous

subtyping relation⩽
a
that allows to “anticipate” outputs w.r.t. inputs: for example, if S =p&m1.p⊕m2

and S ′ = p⊕m2 .p&m1, we have S ⩽a
S ′; therefore, by using ⩽

a
in Fig.2 (rule [T-Sub]) and Fig.8, a

typed asynchronous process can use an S-typed channel according to S ′, to first send m2 (that is
buffered at run-time) and then receive m1, without causing deadlocks nor communication errors.

6

Asynchronous subtyping has been further studied (for binary sessions) in [Chen et al. 2017, 2014],

and later discovered to be undecidable in [Bravetti et al. 2017; Lange and Yoshida 2017]. We

can seamlessly integrate ⩽
a
in our new MPST theory by proving that if a-safeS(Γ) and Γ⩽

a
Γ′,

then a-safeS(Γ
′); and to preserve Thm.G.9, we also need to prove that if a-live

+
S
(Γ) and Γ⩽

a
Γ′,

then a-live
+
S
(Γ′). However, the undecidability of ⩽

a
would make type checking undecidable, thus

falsifying Thm.7.2; therefore, to preserve Thm.7.2, we could only adopt decidable fragments of ⩽
a

— and the known ones (studied in [Bravetti et al. 2017, 2018; Lange and Yoshida 2017]) are limited

to binary sessions. Hence, integrating ⩽
a
in our new theory would introduce a limited gain —

especially because, as explained above, our new async MPST theory already supports asynchronous

protocols. Therefore, we decided to leave the further study of multiparty asynchronous subtyping

as future work.

ADDITIONAL REFERENCES FOR THE APPENDIX
Mario Bravetti, Marco Carbone, and Gianluigi Zavattaro. 2017. Undecidability of asynchronous session subtyping. Inf.

Comput. 256 (2017). https://doi.org/10.1016/j.ic.2017.07.010

Mario Bravetti, Marco Carbone, and Gianluigi Zavattaro. 2018. On the boundary between decidability and undecidability of

asynchronous session subtyping. Theor. Comput. Sci. 722 (2018). https://doi.org/10.1016/j.tcs.2018.02.010

Luís Caires and Hugo Torres Vieira. 2009. Conversation Types. In ESOP. https://doi.org/10.1007/978-3-642-00590-9_21

Luís Caires and Hugo Torres Vieira. 2010. Conversation types. Theoretical Computer Science 411, 51 (2010). https:

//doi.org/10.1016/j.tcs.2010.09.010

Marco Carbone and Fabrizio Montesi. 2013. Deadlock-freedom-by-design: multiparty asynchronous global programming.

In POPL. https://doi.org/10.1145/2429069.2429101

Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. 2012. On Global Types and Multi-Party Session.

Logical Methods in Computer Science 8, 1 (2012). https://doi.org/10.2168/LMCS-8(1:24)2012

Blaise Genest, Dietrich Kuske, and Anca Muscholl. 2007. On Communicating Automata with Bounded Channels. Fundam.

Inform. 80, 1-3 (2007).

Ivan Lanese, Claudio Guidi, Fabrizio Montesi, and Gianluigi Zavattaro. 2008. Bridging the Gap between Interaction- and

Process-Oriented Choreographies. In Sixth IEEE International Conference on Software Engineering and Formal Methods,

SEFM 2008, Cape Town, South Africa, 10-14 November 2008. 323–332. https://doi.org/10.1109/SEFM.2008.11

Julien Lange and Nobuko Yoshida. 2017. On the Undecidability of Asynchronous Session Subtyping. In FOSSACS. https:

//doi.org/10.1007/978-3-662-54458-7_26

Fabrizio Montesi and Nobuko Yoshida. 2013. Compositional Choreographies. In CONCUR. https://doi.org/10.1007/

978-3-642-40184-8_30

DimitrisMostrous, Nobuko Yoshida, and Kohei Honda. 2009. Global Principal Typing in Partially Commutative Asynchronous

Sessions. In ESOP. https://doi.org/10.1007/978-3-642-00590-9_23

Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. 2017. A Linear Decomposition of Multiparty Sessions

for Safe Distributed Programming. Technical Report 2. Imperial College London. https://www.doc.ic.ac.uk/research/

technicalreports/2017/#2

6
The asynchronous subtyping relation ⩽a outlined here is inverted w.r.t. the one in [Mostrous et al. 2009], for the reasons

explained in footnote 1.

https://doi.org/10.1016/j.ic.2017.07.010
https://doi.org/10.1016/j.tcs.2018.02.010
https://doi.org/10.1007/978-3-642-00590-9_21
https://doi.org/10.1016/j.tcs.2010.09.010
https://doi.org/10.1016/j.tcs.2010.09.010
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.2168/LMCS-8(1:24)2012
https://doi.org/10.1109/SEFM.2008.11
https://doi.org/10.1007/978-3-662-54458-7_26
https://doi.org/10.1007/978-3-662-54458-7_26
https://doi.org/10.1007/978-3-642-40184-8_30
https://doi.org/10.1007/978-3-642-40184-8_30
https://doi.org/10.1007/978-3-642-00590-9_23
https://www.doc.ic.ac.uk/research/technicalreports/2017/#2
https://www.doc.ic.ac.uk/research/technicalreports/2017/#2

46 Alceste Scalas and Nobuko Yoshida

Alceste Scalas and Nobuko Yoshida. 2019. Less is More: Multiparty Session Types Revisited (Artifact). https://doi.org/

10.1145/3291638 Peer-reviewed artifact of [Scalas and Yoshida 2019] (to appear). Latest version available at: https:

//alcestes.github.io/mpstk.

Alfred Tarski. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5, 2 (1955).

https://doi.org/10.1145/3291638
https://doi.org/10.1145/3291638
https://alcestes.github.io/mpstk
https://alcestes.github.io/mpstk

Less Is More: Multiparty Session Types Revisited (Technical Report) 47

Appendices — Part 2
Proofs

48

I SESSION INVERSION AND FIDELITY
Proposition I.1. If P ≡ P ′, then fc(P) = fc(P ′) and fv(P) = fv(P ′).

Proof. By examining the cases where P ≡ P ′ holds, and by applying the definition of fc(·) and fv(·). □

Proposition I.2 (Normal Form). For all P , P ≡ def D̃ in (ν s̃) P1 | . . . | Pn , where ∀i ∈ 1..n, Pi is either a branching,
a selection, or a process call.

Proof. From [Coppo et al. 2015a, Proof of Thm. 1]. □

Proposition I.3. For all S , S ⩽ end if and only if end ⩽ S .

Proof. Follows by Def. 2.5. □

Lemma I.4 (Typing Inversion). Assume Θ · Γ ⊢ P . Then:

(1) P = 0 implies end(Γ);
(2) P = def X (x1 :S1, . . . ,xn :Sn) = Q in P ′ implies:

(i) Θ · x1 :S1, . . . ,xn :Sn ⊢ Q and

(ii) Θ,X :S1, . . . , Sn · Γ ⊢ P ′;
(3) P = X ⟨c1, . . . , cn⟩ implies:

(i) Θ ⊢ X :S1, . . . , Sn ;
(ii) Γ = Γ0, Γ1, . . . , Γn ;
(iii) end(Γ0);
(iv) ∀i ∈ 1..n : Γi ⊢ ci :Si ;

(4) P = (νs :G) P implies:

(i) s < Γ;
(ii) Θ · Γ, Γ′ ⊢ P , for some Γ′ such that Γ′ = {s[p]:G↾p}p∈G ;

(5) P = P1 | P2 implies:

(i) Γ = Γ1, Γ2, such that

(ii) Θ · Γ1 ⊢ P1 and

(iii) Θ · Γ2 ⊢ P2;
(6) P = c[q]

∑
i ∈I mi (yi).Pi implies:

(i) Γ = Γ0, Γ1 such that

(ii) Γ1 ⊢ c :q&i ∈I mi (Si).S
′
i and

(iii) ∀i ∈ I : Θ · Γ0,yi :Si , c :S
′
i ⊢ Pi ;

(7) P = c[q]⊕m⟨d⟩ .P ′ implies:

(i) Γ = Γ0, Γ1, Γ2 such that

(ii) Γ1 ⊢ c :q⊕m(S).S ′ and

(iii) Γ2 ⊢ d :S and

(iv) Θ · Γ0, c :S
′ ⊢ P ′.

Proof. Straightforward by the rules in Fig.2, noticing that they are syntax-driven: i.e., for each shape of P in cases

1–7 of the statement, the typing judgement in the hypothesis can be obtained by exactly one rule. More in detail, we

have:

• case 1 by rule [T-0];

• case 2 by rule [T-def];

• case 3 by rule [T-X];

• case 4 by rule [T-νClassic];

• case 5 by rule [T- |];

• case 6 by rule [T-&];

• case 7 by rule [T-⊕].

□

Proposition I.5. Assume Θ · Γ ⊢ P . Then, fc(P) ⊆ dom(Γ) and ∀c ∈ (dom(Γ) \ fc(P)) : Γ(c) ⩽ end.

Proof. By induction on the typing derivation of Θ · Γ ⊢ P . □

Proposition I.6. Assume Θ · Γ ⊢ P . Then, fpv(P) ⊆ dom(Θ).

Less Is More: Multiparty Session Types Revisited (Technical Report) 49

Proof. By induction on the typing derivation of Θ · Γ ⊢ P . □

Proposition I.7. Assume Θ · Γ ⊢ P and Θ · Γ′ ⊢ P . Then:

(1) ∀c ∈ dom(Γ) ∩ dom(Γ′) : Γ(c) ⩽ Γ′(c) or Γ′(c) ⩽ Γ(c);
(2) ∀c ∈ dom(Γ) \ dom(Γ′) : Γ(c) ⩽ end;
(3) ∀c ∈ dom(Γ′) \ dom(Γ) : Γ′(c) ⩽ end;

Proof. By induction on the typing derivation of Θ · Γ ⊢ P , observing the shape of P and the consequent constraints

on the entries of Γ′ imposed by Lemma I.4. □

Proposition I.8. Assume Θ · Γ ⊢ P and Θ · Γ′ ⊢ P . Further, assume that P has guarded definitions, by Γ. Then, P has

guarded definitions, by Γ′.

Proof. By induction on the typing derivation ofΘ · Γ ⊢ P , applying Prop.I.7 to determine the shape of any alternative

typing context Γ′. The key observation is that Γ and Γ′ do not influence the types of the bound variables x1, . . . ,xn in

Def. 5.3(1). □

Proposition I.9. Assume Θ · Γ ⊢ P and P ≡ P ′. Further, assume that P has guarded definitions, by Γ. Then, P ′ has
guarded definitions, by Γ.

Proof. By cases on the definition of ≡, and by applying Def. 5.3(1) — noticing that by Lemma B.2, we have

Θ · Γ ⊢ P ′. □

Lemma I.10. Assume Θ · Γ ⊢ P and Θ · Γ′ ⊢ P . Further, assume that P only plays role p in session s , by Γ. Then, P only

plays role p in session s , by Γ′.

Proof. Follows by Prop.I.8, Prop.I.7 and Def. 5.3. □

Proposition I.11. If P ≡ 0, then Θ · Γ ⊢ P implies end(Γ).

Proof. Assume Θ · Γ ⊢ P with P ≡ 0. By Lemma B.2, Θ · Γ ⊢ 0; hence, by Lemma I.4(1), we conclude end(Γ). □

Lemma I.12. Assume Θ · Γ ⊢ P and Γ = Γ0, c :S with end(Γ0) and q⊕j ∈J mj (S
′
j) ⩽ S . Further, assume that for each

subterm (νs ′ :Γ′) P ′ of P , we have end(Γ′). Then, P ≡ def D̃ in (ν s̃) P1 | . . . | Pn , where:

(1) there is exactly one j ∈ 1..n, such that either:

(a) Pj = c[q]⊕mk ⟨d⟩ .P
′
p for some k ∈ J , or

(b) Pj = X ⟨d1, . . . ,dl−1, c, dl+1, . . . ,dm⟩ for some l ,m such that 1 ≤ l ≤ m;

(2) for all i ∈ 1..n and i , j (with j from item 1 above), Pi = X ⟨d1, . . . ,dm⟩ for somem.

Proof. (Sketch) The congruence for P holds by Prop.I.2, from which we also get:

∀i ∈ 1..n : Pi is either a branching, a selection, or a process call (by Prop.I.2) (21)

We now prove the two claims.

Item 1. By Lemma I.4(5), c :S can only appear in the typing context Γj of exactly one Pj , for some j ∈ 1..n; moreover,

the rest of the entries of Γj must be (subtypes of) end, by the hypothesis on the typing of restricted sessions, and

[T-end]. Therefore, Pj cannot be a branching, by the contrapositive of Lemma I.4(6). Thus, by (21) and by the rules

in Fig.2, we conclude that the only possible typable shapes for Pj are either (a) (by rule [T-⊕]) or (b) (by rule [T-X]).

This proves the thesis.

Item 2. Observe that for all i ∈ 1..n and i , j (with j from item 1 above), we have Θi · Γi ⊢ Pi with end(Γi). By the

contrapositive of Lemma I.4(6), Pi cannot be a branching; moreover, by the contrapositive of Lemma I.4(7), Pi
cannot be a selection. Thus, by (21) and by the rules in Fig.2, we conclude that the only possible typable shape

for Pi is Pi = X ⟨d1, . . . ,dm⟩ (by rule [T-X]). This proves the thesis.

□

Lemma I.13. Assume Θ · Γ ⊢ P and Γ = Γ0, c :S with end(Γ0) and q&j ∈J mj (S
′
j) ⩽ S . Further, assume that for each

subterm (νs ′ :Γ′) P ′ of P , we have end(Γ′). Then, P ≡ def D̃ in (ν s̃) P1 | . . . | Pn , where:

(1) there is exactly one j ∈ 1..n, such that either:

(a) Pj = c[q]
∑
i ∈K mi (d).P

′
pi for some K ⊇ J , or

(b) Pj = X ⟨d1, . . . ,dl−1, c, dl+1, . . . ,dm⟩ for some l ,m such that 1 ≤ l ≤ m;

(2) for all i ∈ 1..n and i , j (with j from item 1 above), Pi = X ⟨d1, . . . ,dm⟩ for somem.

50

Proof. (Sketch) The congruence for P holds by Prop.I.2, from which we also get:

∀i ∈ 1..n : Pi is either a branching, a selection, or a process call (by Prop.I.2) (22)

We now prove the two claims.

Item 1. By Lemma I.4(5), c :S can only appear in the typing context Γj of exactly one Pj , for some j ∈ 1..n; moreover,

the rest of the entries of Γj must be (subtypes of) end, by the hypothesis on the typing of restricted sessions, and

[T-end]. Therefore, Pj cannot be a selection, by the contrapositive of Lemma I.4(7). Thus, by (22) and by the rules

in Fig.2, we conclude that the only possible typable shapes for Pj are either (a) (by rule [T-&]) or (b) (by rule [T-X]).

This proves the thesis.

Item 2. Observe that for all i ∈ 1..n and i , j (with j from item 1 above), we have Θi · Γi ⊢ Pi with end(Γi). By the

contrapositive of Lemma I.4(7), Pi cannot be a selection; moreover, by the contrapositive of Lemma I.4(6), Pi
cannot be a branching. Thus, by (22) and by the rules in Fig.2, we conclude that the only possible typable shape

for Pi is Pi = X ⟨d1, . . . ,dm⟩ (by rule [T-X]). This proves the thesis.

□

Theorem B.4 (Session Inversion). Assume ∅ · Γ ⊢
��
p∈I Pp with each Pp either being 0 (up-to ≡), or only playing role p

in s . Then, Γ = Γ0,
{
s[p]:Sp

}
p∈I ′ (for some I ′) with end(Γ0). Moreover, ∀p ∈ I ′:

(1) if q⊕j ∈J mj (S
′
j).S

′
j ⩽ Sp then p ∈ I and for some C, C′, and k ∈ J , either:

(a) Pp ≡ C
[
s[p][q]⊕mk ⟨s

′[r]⟩ .P ′p
]
or

(b) Pp ≡ C

[
def X (x1 :T1, . . . ,xn :Tn) = C

′
[
xl [q]⊕mk ⟨d⟩ .P

′
p
]
in

X
〈
s ′
1
[r1], . . . , s ′l−1[rl−1], s[p], s

′
l+1[rl+1], . . . , s

′
n [rn]

〉]
with 1≤ l ≤n;

(2) if q&j ∈J mj (S
′
j).S

′
j ⩽ Sp then p ∈ I and for some C, C′, and K ⊇ J , either:

(a) Pp ≡ C
[
s[p][q]

∑
k ∈K mk (xk).P

′
pk

]
or

(b) Pp ≡ C


def X (x1 :T1, . . . ,xn :Tn) = C

′
[
xl [q]

∑
k ∈K mk (xk).P

′
pk

]
in

X
〈
s ′
1
[r1], . . . , s ′l−1[rl−1], s[p], s

′
l+1[rl+1], . . . , s

′
n [rn]

〉  with 1≤ l ≤n;

(3) if end ⩽ Sp then p ∈ I implies Pp ≡ 0.
Further, (4) ∀p ∈ I \ I ′ : Pp ≡ 0.

Proof. Assume the hypotheses:

∃I : ∅ · Γ ⊢
��
p∈I Pp (23)

∀p ∈ I , either: (24)

Pp ≡ 0 or (25)

Pp only plays role p in s (Def. 5.3) (26)

We observe:

Γ = Γp
1
, . . . , Γpn such that

I = {p
1
, . . . , pn } and ∀p ∈ I : ∅ · Γp ⊢ Pp

(by (23) and Lemma I.4(5)) (27)

if Pp only plays p in s , then s[p] ∈ fc

(
Pp

)
and fv

(
Pp

)
= ∅

Γp = Γ′p, s[p]:Sp with end(Γ′p) and Sp ⩽̸ end

(
by Lemma I.10, Def. 5.3,

Prop.I.5, and (23)

)
(28)

Notice that:

∃I ′, Γ0 : Γ = Γ0,
{
s[p]:Sp

}
p∈I ′ and end(Γ0) by (27) and (28) (29)

and (29) satisfies the first claim in the statement. We now prove the remaining claims.

Item (1). Take any p ∈ I ′ such that q⊕j ∈J mj (S
′
j).S

′
j ⩽ Sp. We first prove that p ∈ I . By contradiction, assume p < I (i.e.,

none of the processes plays only role p in s): then, by (25), (26) and (28), we obtain that s[p] < fc
(��
p∈I Pp

)
, which

(by Prop.I.5) implies Sp ⩽ end. But then, by Def. 2.5, we obtain q⊕j ∈J mj (S
′
j).S

′
j ⩽̸ Sp — contradiction. Hence, we

have proved p ∈ I . We now examine the two possible cases for Pp:
• Pp ≡ 0 (by (25)). We show that this case is absurd. By contradiction, assume Pp ≡ 0. Observe that ∀r ∈ I such
that r , p, s[p] < fc(Pr) (by (25), (26) and (28)), which (by Def. 2.5) implies Sp ⩽ end. But then, by Def. 2.5, we

obtain q⊕j ∈J mj (S
′
j).S

′
j ⩽̸ Sp — contradiction. Hence, we have proved Pp . 0;

Less Is More: Multiparty Session Types Revisited (Technical Report) 51

• Pp only plays role p in s (by (26)). Then, we apply Lemma I.12, and we have two sub-cases. If Lemma I.12(1)(a)

holds, we observe that d therein cannot be a variable (otherwise we would have fv

(
Pp

)
, ∅, i.e., by Def. 5.3, Pp

does not only play p in s — contradiction), and therefore d = s ′[r] (for some s ′, r), from which we conclude by

obtaining case (a) of the statement with the following context:

C = def D̃ in (ν s̃) [] | Q2 | . . . | Qn (30)

Otherwise, if Lemma I.12(1)(b) holds, we observe:

(1) by (23) and Prop.I.6, X < fpv
(
Pp

)
, and therefore, by Prop.I.2, Pp has the form:

Pp ≡ def D̃1 in def X (x1 :T1, . . . ,xm :Tm) = Q in def D̃2 in
(
ν s̃ ′

)
X ⟨d1, . . . ,dn⟩ (31)

(2) hence, we can use the congruence≡ to remove unused process declarations D̃2 in (31), and place the definition

of X immediately before the call:

Pp ≡ def D̃1 in
(
ν s̃ ′

)
def X (x1 :T1, . . . ,xm :Tm) = Q in X ⟨d1, . . . ,dn⟩ (32)

(3) from (32), by Lemma I.4 and Lemma B.2, and observing that d1, . . . ,dn cannot be variables (since fv

(
Pp

)
= ∅,

by Def. 5.3 and Prop.I.1), we get Γp = Γp0, . . . , Γpm such that (note that the following derivation applies [T-def]

once for each process declaration in D̃1, yielding the sequence of process typings
�X ′
:T̃ ′

):

. . .

�X ′
:T̃ ′ · Γp,x1 :T1, . . . ,xm :Tm ⊢ Q

Θ,�X ′
:T̃ ′,X :T1, . . . ,Tn ⊢ X :T1, . . . ,Tm

end(Γp0) ∀i ∈ 1..m Γpi ⊢ s
′
i [ri]:Ti�X ′

:T̃ ′,X :T1, . . . ,Tn · Γp, ⊢ X
〈
s ′
1
[r1], . . . , s ′n [rn]

〉 [T-X]

�X ′
:T̃ ′ · Γp ⊢ def X (x1 :T1, . . . ,xm :Tm) = Q in X

〈
s ′
1
[r1], . . . , s ′n [rn]

〉 [T-def]

...
∅ · Γp ⊢ Pp

[T-def ×
���dpv(D̃1

)���]
(33)

From (33), we get:

m = n (34)

∃l : s ′l [rl] = s[p] (35)

∀i ∈ 1..n : i , l implies end ⩽ Ti by Def. 5.3(2)(iv) (36)

q⊕j ∈J mj (S
′
j).S

′
j ⩽ Sp ⩽ Tl (since Γpl ⊢ dl :Tl , and by transitivity of ⩽) (37)

(4) by Prop.I.2 we have:

Q ≡ def D̃ ′′ in
(
ν s̃ ′′

)
Q1 | . . . | Qn′′

where ∀i ∈ 1..n′′ : Qi is either a branching, a selection, or a process call
(38)

�X ′
:T̃ ′ · Γp,x1 :T1, . . . ,xl :Tl , . . . ,xm :Tm ⊢ Q (by (33)) (39)

(5) since Pp has guarded definitions (by Def. 5.3(2), then by (38), Prop.I.9 and (39) we know that inQ1 | . . . |Qn′′

(from (38)) some branching or selection uses xl , before further process calls. Without loss of generality,

assume that Q1 satisfies the requirement;

(6) by (39) and the contrapositive of Lemma I.4(6), Q1 cannot use xl for branching;
(7) hence, by rule [T-⊕], we conclude that Q1 is a selection on xl ;
(8) therefore, by Lemma I.12(1)(a), we obtain:

Q1 = xl [q]⊕mk ⟨d⟩ .P
′
p for some k ∈ J (40)

Summing up, from (32), (34), (35), (38) and (40) we have the following reduction contexts, as required by case

(b) of the statement:

C = def D̃1 in
(
ν s̃ ′

) (
def X (x1 :T1, . . . ,xn :Tn) = C

′ in
X

〈
s ′
1
[r1], . . . , s ′l−1[rl−1], s[p], s

′
l+1[rl+1], . . . , s

′
n [rn]

〉)
C′ = def D̃ ′′ in

(
ν s̃ ′′

)
[] | Q2 | . . . | Qn′′

(41)

and this concludes the proof.

52

Item (2). The proof is similar to that for item (2) above, except that we use Lemma I.13 instead of Lemma I.12, obtaining

the same reduction contexts: either (30) (thus obtaining case (a) of the steatement) or (41) (thus obtaining case (b)

of the statement).

Item (3). If I ∩ I ′ = ∅, the statement holds vacuously. Otherwise, take any p ∈ I ∩ I ′, and assume end ⩽ Sp = Γ(s[p]).
We have two cases:

• Pp ≡ 0 (by (25)). This is the thesis;

• Pp only plays role p in s (by (26)). This case is impossible: otherwise, by (28) we would get Sp ⩽̸ end, and
thus end ⩽̸ Sp (by Prop.I.3) — which would contradict the assumption end ⩽ Sp.

Item (4). If I \ I ′ = ∅, the statement holds vacuously. Otherwise, take any p ∈ I \ I ′, which implies p < I ′. We have two

cases:

• Pp ≡ 0 (by (25)). This is the thesis;

• Pp only plays role p in s (by (26)). This case is impossible: otherwise, by (28) we would get Γp = Γ′p, s[p]:Sp
and therefore s[p] ∈ dom(Γ) (by (27)), that means p ∈ I ′ (by (29)) — which would contradict the assumption

p ∈ I \ I ′.

□

Definition I.14 (Type Unfolding). The one-step unfolding of a type S , written unf(S), is:

unf(µt.T) = T {µt.T/t} unf(T) = T if T , µt.T ′

The n-steps unfolding of a type S , written unf
n(S), is:

unf
0(T) = T unf

m+1(T) = unf

(
unf

m(T)
)

The complete unfolding of a session type S , written unf
∗(S), is defined as:

unf
∗(S) = unf

n(S) for the smallest n such that unf
n(S) = unf

n+1(S)

Proposition I.15. For all S,T :

(1) S ⩽ T if and only if unf(S) ⩽ T , and
(2) S ⩽ T if and only if S ⩽ unf(T).

Proof. Item 1.

• (=⇒) Assume S ⩽ T . If S , µt.S ′, then S = unf(S) ⩽ T , and we obtain the thesis. Otherwise, by Def. I.14, we

have unf(S) = S ′{µt.S ′/t}, and we conclude by the coinductive rule [Sub-µL] of Def. 2.5.

• (⇐=) Assume unf(S) ⩽ T . If S , µt.S ′, then unf(S) = S ⩽ T , and we obtain the thesis. Otherwise, by Def. I.14

we have S ′{µt.S ′/t} ⩽ T , and since ⩽ is the largest relation closed backward under the coinductive rule [Sub-µL]

of Def. 2.5, we conclude µt.S ′ = S ⩽ T .

Item 2. The proofs for the two the implications in the statement are similar to the corresponding proofs for item 1,

but using the coinductive rule [Sub-µR] of Def. 2.5 (instead of [Sub-µL]). □

Proposition I.16. For all S,T :

(1) S ⩽ T if and only if unf
∗(S) ⩽ T , and

(2) S ⩽ T if and only if S ⩽ unf
∗(T).

Proof. Take the smallest n such that unf
∗(S) = unf

n(S) (by Def. I.14).

• Item 1 By induction on n, applying Prop.I.15(1) in the inductive case.

• Item 2 By induction on n, applying Prop.I.15(2) in the inductive case.

□

Proposition I.17. s[p]:S, s[q]:T → Γ′ if and only if s[p]:unf(S), s[q]:T → Γ′.

Proof. (=⇒). If S , µt.S ′, then S = unf(S), and the statement holds vacuously. Otherwise, we conclude by Def. I.14

and Def. 2.8 (rule [Γ-Comm]).

(⇐=). If S , µt.S ′, then S = unf(S), and the statement holds vacuously. Otherwise, we conclude by Def. I.14 and

inversion of rule [Γ-Comm] in Def. 2.8. □

Proposition I.18. s[p]:S, s[q]:T → Γ′ if and only if s[p]:unf∗(S), s[q]:T → Γ′.

Proof. Take the smallest n such that unf
∗(S) = unf

n(S) (by Def. I.14). The statement is proved by induction on n,
applying Prop.I.17 in the inductive case. □

Less Is More: Multiparty Session Types Revisited (Technical Report) 53

Lemma I.19. Assume s[p]:S, s[q]:T→. Moreover, assume:

Γ = Γ0, s[p]:S, s[q]:T ⩽ Γ′ = Γ′
0
, s[p]:S ′, s[q]:T ′ → Γ′′ = Γ′

0
, s[p]:S ′′, s[q]:T ′′

Then, there is Γ′′′ such that Γ → Γ′′′ ⩽ Γ′′.

Proof. Assume:

s[p]:S, s[q]:T→ (42)

Γ ⩽ Γ′ (43)

Γ′ → Γ′′ (44)

We have:

Γ′ = Γ′
0
, s[p]:S ′, s[q]:T ′

with unf
∗(S ′) = q⊕i ∈I ′mi (S

′′
i).S

′′′
i

and unf
∗(T ′) = p&j ∈J ′mj (T

′′
j).T ′′′

j
and I ′ ⊆ J ′ and ∀i ∈ I ′ : S ′′i ⩽ T ′′

i

(by (44), Def. 2.8, Prop.I.18) (45)

Γ′′ = Γ′
0
, s[p]:S ′′′k , s[q]:T

′′′
k

with k ∈ I ′ ⊆ J ′
(by (44), (45), Prop.I.18) (46)

Γ = Γ0, s[p]:S, s[q]:T
with Γ0 ⩽ Γ′

0

and unf
∗(S) = q⊕i ∈I mi (Si).S

′
i

and unf
∗(T ′) = p&j ∈J mj (Tj).T

′
j

and I ′ ⊆ I and J ⊆ J ′

and ∀i ∈ I ′ :

{
S ′′i ⩽ Si
S ′i ⩽ S ′′′i

and ∀j ∈ J :

{
T ′′
j ⩽ Tj

T ′
j ⩽ T ′′′

j

(by (43), (45), Prop.I.16, Def. 2.5) (47)

k ∈ I ⊆ J and ∀i ∈ I : Si ⩽ Ti (by (46), (47), (42) and Def. 2.8) (48)

Now, let:

Γ′′′ = Γ0, s[p]:S
′
k , s[q]:T

′
k (49)

We conclude:

Γ′ → Γ′′′ (by (47), (49), (48), Def. 2.8, Prop.I.18) (50)

Γ′′′ ⩽ Γ′′ (by (47), (49), (48), Def. 2.6) (51)

□

Lemma B.3 (Narrowing). If Θ · Γ ⊢ P and Γ′ ⩽ Γ, then Θ · Γ′ ⊢ P .

Proof. By induction on the derivation of Θ · Γ ⊢ P , and by Def. 2.5. □

Theorem 5.4 (Session Fidelity). Assume ∅·Γ ⊢P , where Γ is safe, P ≡
��
p∈I Pp, and each Pp either is 0 (up-to ≡), or

only plays p in s . Then, Γ→ implies ∃Γ′, P ′ such that Γ→Γ′, P→∗ P ′ and ∅·Γ′ ⊢ P ′, where P ′ ≡
��
p∈I P

′
p and each P ′p

either is 0 (up-to ≡), or only plays p in s .

Proof. We have:

safe(Γ) (by hypothesis) (52)

Γ→ (by hypothesis) (53)

Γ (⩽ ∩ ⩾) Γ0, s[p]:S, s[q]:T where


S = q⊕i ∈I mi (Si).S

′
i and

T = p&j ∈J mj (S
′′
j).S

′′′
j and

I ⊆ J
∀i ∈ I : Si ⩽ S ′′i

©­­­«
by (52), (53),

Def. 2.8,

Prop.I.18,

Prop.I.16

ª®®®¬ (54)

By (54) and Thm.B.4, we have one of the following cases, where the two processes with reduction contexts Cp and Cq
play respectively only roles p and q in s , and k ∈ I ⊆ J ⊆ L:

54

(a) P ≡ Cp
[
s[p][q]⊕mk ⟨s

′[r]⟩ .P ′p
]
| Cq

[
s[q][p]

∑
l ∈Lml (xl).P

′
ql

]
| Q

(b) P ≡ Cp

[
def Y (y1 :T1, . . . ,ym :Tm) = C′p

[
yi′[q]⊕mk ⟨d⟩ .P

′
p
]
in

Y
〈
s ′
1
[r1], . . . , s ′i′−1[ri′−1], s[p], s

′
i′+1[ri′+1], . . . , s

′
m [rm]

〉] | Cq [s[q][p]∑l ∈Lml (xl).P
′
ql

]
| Q

(c) P ≡ Cp
[
s[p][q]⊕mk ⟨s

′[r]⟩ .P ′p
]
| Cq


def Z (z1 :T ′

1
, . . . , zn :T

′
n) = C

′
q

[
zj′[p]

∑
l ∈Lml (xl).P

′
ql

]
in

Z
〈
s ′′
1
[r′
1
], . . . , s ′′j′−1[r

′
j′−1], s[q], s

′′
j′+1[r

′
j′+1], . . . , s

′′
n [r

′
n]

〉 | Q
(d)

P ≡ Cp

[
def Y (y1 :T1, . . . ,ym :Tm) = C′p

[
yi′[q]⊕mk ⟨d⟩ .P

′
p
]
in

Y
〈
s ′
1
[r1], . . . , s ′i′−1[ri′−1], s[p], s

′
i′+1[ri′+1], . . . , s

′
m [rm]

〉]
| Cq


def Z (z1 :T ′

1
, . . . , zn :T

′
n) = C

′
q

[
zj′[p]

∑
l ∈Lml (xl).P

′
ql

]
in

Z
〈
s ′′
1
[r′
1
], . . . , s ′′j′−1[r

′
j′−1], s[q], s

′′
j′+1[r

′
j′+1], . . . , s

′′
n [r

′
n]

〉 | Q

We develop the proof for case (b) (the other cases are similar).

By induction on Cp and C
′
p, using Lemma I.4, we can prove that the term inside Cp is typed as:

yi′ :Ti′ ⊢ yi′ :q⊕mk (T
′′
k).T ′′′

k Γ′
pd ⊢ d :T ′′

k
Θp,Θ

′
p,Y :T1, . . . ,Tm · Γ′p0,yi′ :T

′′′
k ⊢ P ′p

Θp,Θ
′
p,Y :T1, . . . ,Tm
· Γ′p0, Γ

′
pd ,yi

′ :Ti′
⊢ yi′[q]⊕mk ⟨d⟩ .P

′
p

[T-⊕]

...

Θp,Y :T1, . . . ,Tm
· y1 :T1, . . .ym :Tm

⊢ C′p
[
yi′[q]⊕mk ⟨d⟩ .P

′
p
]

end(Γ0) Γpi′ ⊢ s[p]:Ti′
∀i ∈ 1..(i ′ − 1), (i ′ + 1)..m Γpi ⊢ s

′
i [ri]:Ti

Θp,Y :T1, . . . ,Tm
· Γp0, . . . , Γpm

⊢ Y

〈
s ′
1
[r1], . . . , s ′i′−1[ri′−1], s[p],

s ′i′+1[ri′+1], . . . , s
′
m [rm]

〉 [T-X]

Θp · Γp0, Γp1, . . . , Γpi′ , . . . , Γpm ⊢
def Y (y1 :T1, . . . ,ym :Tm) = C′p

[
yi′[q]⊕mk ⟨d⟩ .P

′
p
]
in

Y
〈
s ′
1
[r1], . . . , s ′i′−1[ri′−1], s[p], s

′
i′+1[ri′+1], . . . , s

′
m [rm]

〉 [T-def]

(55)

The term above can reduce by rule [R-X] (Fig.1), becoming the term (56) below, that we can type from (55) by applying

Lemma B.1m times (one per argument of Y). Notice, in particular, that d in (55) becomes a channel with role s ′′[r′′]
in (56): s ′′[r′′] could come either from the call substitutions (i.e., it replaces some yj′ , j

′ ∈ 1..m), or from the session

restrictions in C′p; in both cases, s ′′[r′′] is typed by some Γ′ps ′′ (taking the place of Γ′
pd in (55)):

...

Γpi′ ⊢ s[p]:q⊕mk (T
′′
k).T ′′′

k Γ′ps ′′ ⊢ s
′′[r′′]:T ′′

k
Θp,Θ

′
p,Y :T1, . . . ,Tm · Γ′′p0, s[p]:T

′′′
k ⊢ P ′p{s

′
1
[r1]/y1} · · · {s

′
1
[rm]/ym}

Θp,Θ
′
p,Y :T1, . . . ,Tm
· Γ′′p0, Γ

′
ps ′′ , Γpi′

⊢ s[p][q]⊕mk ⟨s
′′[r′′]⟩ .P ′p{s

′
1
[r1]/y1} · · · {s

′
1
[rm]/ym}

[T-⊕]

...

Θp,Y :T1, . . . ,Tm
· Γp1, . . . Γpm

⊢ C′p{s
′
1
[r1]/y1} · · · {s

′
1
[rm]/ym}

[
s[p][q]⊕mk ⟨s

′′[r′′]⟩ .P ′p{s
′
1
[r1]/y1} · · · {s

′
1
[rm]/ym}

]
Θp

· Γp0, Γp1, . . . , Γpm
⊢
def Y (y1 :T1, . . . ,ym :Tm) = C′p

[
yi′[q]⊕mk ⟨d⟩ .P

′
p
]
in

C′p{s
′
1
[r1]/y1} · · · {s[p]/yi′} · · · {s

′
1
[rm]/ym}

[
s[p][q]⊕mk ⟨s

′′[r′′]⟩ .P ′p{s
′
1
[r1]/y1} · · · {s

′
1
[rm]/ym}

] [T-def]

(56)

Applying the above reduction to the process in case (b) (via rule [R-Ctx]), and rearranging the reduction contexts via

≡ into a single context Cpq with one hole (using Prop.I.2), we get the following reduction, by (56) and [R-≡]:

P → P ′′ ≡ Cpq

[
s[p][q]⊕mk ⟨s

′′[r′′]⟩ .P ′p{s
′
1
[r1]/y1} · · · {s

′
1
[rm]/ym} | s[q][p]

∑
l ∈L

ml (xl).P
′
ql

]
(57)

Notice that the typing context in the conclusion of (56) is the same of (55) (since the reduction involves a closed

process variable Y and does not use any channel). Therefore:

∅ · Γ ⊢ Cpq

[
s[p][q]⊕mk ⟨s

′′[r′′]⟩ .P ′p{s
′
1
[r1]/y1} · · · {s

′
1
[rm]/ym}

| s[q][p]
∑
l ∈Lml (xl).P

′
ql

]
(by the hyp. ∅ · Γ ⊢ P , (57) and Lemma B.2) (58)

Less Is More: Multiparty Session Types Revisited (Technical Report) 55

By (56) and Lemma I.4, the term inside Cpq is typed as:

Γpi′ ⊢ s[p]:q⊕mk (T
′′
k).T ′′′

k Γ′ps ′′ ⊢ s
′′[r′′]:T ′′

k
Θ′′
p · Γ′′p0, s[p]:T

′′′
k ⊢ P ′p{s

′
1
[r1]/y1} · · · {s

′
1
[rm]/ym}

Θ′′
p

· Γ′′p0, Γ
′
ps ′′ , Γpi′

⊢ s[p][q]⊕mk ⟨s
′′[r′′]⟩ .P ′p{s

′
1
[r1]/y1} · · · {s

′
1
[rm]/ym}

[T-⊕]

Γq ⊢ s[q]:p&l ∈Lml (U
′′
l).U ′′′

l∀l ∈ L Θ′′
q · Γ′′q0,xl :U

′′
l , s[q]:U

′′′ ⊢ P ′
ql

Θ′′
q

· Γ′′q0, Γq
⊢ s[q][p]

∑
l ∈Lml (xl).P

′
ql

[T-&]

Θ′′
p ,Θ

′′
q

· Γ′′p0, Γ
′
ps ′′ , Γpi′ , Γ

′′
q0, Γq

⊢ s[p][q]⊕mk ⟨s
′′[r′′]⟩ .P ′p{s

′
1
[r1]/y1} · · · {s

′
1
[rm]/ym} | s[q][p]

∑
l ∈Lml (xl).P

′
ql

[T- |]

(59)

Now, observe that from (58) and (54), we know that:

T ′′
k ⩽ Sk ⩽ S ′′k ⩽ U ′′

k and thus Γ′ps ′′ ⊢ s
′′[r′′]:U ′′

k (by Γ′ps ′′ ⊢ s
′′[r′′]:T ′′

k , [T-Sub] and transit. of ⩽) (60)

The process in (59) reduces to the following process (by [R-Comm]), which we can type by (60) and Lemma B.1:

Θ′′
p · Γ′′p0, s[p]:T

′′′
k ⊢ P ′p{s

′
1
[r1]/y1} · · · {s

′
1
[rm]/ym} Θ′′

q · Γ′′q0, Γ
′
ps ′′ , s[q]:U

′′′ ⊢ P ′
qk {

s ′′[r′′]/xk }

Θ′′
p ,Θ

′′
q · Γ′′p0, Γ

′
ps ′′ , s[p]:T

′′′
k , Γ

′′
q0, s[q]:U

′′′ ⊢ P ′p{s
′
1
[r1]/y1} · · · {s

′
1
[rm]/ym} | P ′

qk {
s ′′[r′′]/xk }

[T- |]
(61)

Notice that the process typing context Θ′′
p ,Θ

′′
q does not change in the reduction from (59) to (61). For the channel typing

context, instead, we have:

Γ′′p0, Γ
′
ps ′′ , Γpi′ , Γ

′′
q0, Γq

⩽ Γ′′p0, Γ
′
ps ′′ , s[p]:q⊕mk (T

′′
k).T ′′′

k , Γ
′′
q0, s[q]:p&l ∈Lml (U

′′
l).U ′′′

l
→ Γ′′p0, Γ

′
ps ′′ , s[p]:T

′′′
k , Γ

′′
q0, s[q]:U

′′′

(
by (59), [T-Sub], Def. 2.6,

(60), Def. 2.8

)
(62)

∃Γ′pq :

{
Γ′′p0, Γ

′
ps ′′ , Γpi′ , Γ

′′
q0, Γq → Γ′pq and

Γ′pq ⩽ Γ′′p0, Γ
′
ps ′′ , s[p]:T

′′′
k , Γ

′′
q0, s[q]:U

′′′ (by (62) and Lemma I.19) (63)

Θ′′
p ,Θ

′′
q · Γ′pq ⊢ P ′p{s

′
1
[r1]/y1} · · · {s

′
1
[rm]/ym} | P ′qk {

s ′′[r′′]/xk } (by (61), (63) and Lemma B.3) (64)

Observe that in 62 and 63, the entries for s[p] and s[q] reduce, and (by (63) and Def. 2.8) such entries are the only

difference between Γ′′p0, Γ
′
ps ′′ , Γpi′ , Γ

′′
q0, Γq and Γ′pq. By applying the same update of s[p] and s[q] to Γ from the statement,

we obtain a typing context Γ′ such that:

∅ · Γ′ ⊢ P ′ = Cpq
[
P ′p{s

′
1
[r1]/y1} · · · {s

′
1
[rm]/ym} | P ′qk {

s ′′[r′′]/xk }
]

(by (58), (59), (63), (64)) (65)

P → P ′′ → P ′ (by (57), (61) and (65)) (66)

Γ → Γ′ (by Def. 2.8) (67)

Summing up, we have shown that if Γ is safe and reduces (Γ→), and the rest of the hypotheses in the statement hold,

then there exist Γ′, P ′ such that Γ → Γ′ (by (67)), P →∗ P ′ (by (66)) and ∅ · Γ′ ⊢ P ′ (by (65)).

We are left to prove that:

(1) P ′ ≡
��
r∈I P

′
r. This is proved by noticing that, from the hypothesis (b), (66) and [R-≡], the reductions from P to P ′

yield:

P → P ′′ → P ′

≡ Cp

[
def Y (y1 :T1, . . . ,ym :Tm) = C′p

[
yi′[q]⊕mk ⟨d⟩ .P

′
p
]
in

C′p
[
P ′p

]
{s ′

1
[r1]/y1} · · · {s

′
1
[rm]/ym}

]
| Cq

[
P ′
qk {

s ′′[r′′]/xk }
]
| Q

(68)

and this satisfies the requirement;

(2) each P ′r has guarded definitions and is either 0 (up-to ≡), or only plays role r in s . From (68), since Q and the

reduction contexts Cp, C
′
p, Cq are unchanged w.r.t. the hypothesis (b), we only need to show that the process

inside Cp (resp. Cq) is either 0 (up-to ≡), or only plays role p (resp. q) in s . We only examine the process inside Cq

(the reasoning for the other is similar). If P ′
qk {

s ′′[r′′]/xk } ≡ 0, we have Cq
[
P ′
qk {

s ′′[r′′]/xk }
]
≡ 0, and we conclude

easily. Otherwise, observe that:

∅ · Γ′q ⊢ Cq

[
P ′qk {

s ′′[r′′]/xk }
]

where Γ′q is a part of Γ′ (by (68) and Lemma I.4(5)) where the only non-end-typed channel is s[q]. Moreover,

from the initial hypotheses, in all subterms (νs ′′′ :Γ′′′) P ′′′ of Cq and P
′
qk , we have end(Γ

′′′), and all the process

56

definitions in Cq and P
′
qk are guarded. Hence, by Def. 5.3, we conclude that Cq

[
P ′
qk {

s ′′[r′′]/xk }
]
only plays role q

in s (by Γ′q)

□

J SUBJECT REDUCTION
Proposition J.1. Assume:

Γ = s[p]:S, s[q]:T ⩽ Γ′→

with safe(Γ). Then, Γ→.

Proof. We have:

Γ′ = s[p]:S ′, s[q]:T ′

with unf
∗(S ′) = q⊕i ∈I ′mi (S

′′
i).S

′′′
i

and unf
∗(T ′) = p&j ∈J ′mj (T

′′
j).T ′′′

j
and I ′ ⊆ J ′ and ∀i ∈ I ′ : S ′′i ⩽ T ′′

i

(by Γ′→, Def. 2.8, Prop.I.18) (69)

Γ = s[p]:S, s[q]:T
with unf

∗(S) = q⊕i ∈I mi (Si).S
′
i

and unf
∗(T ′) = p&j ∈J mj (Tj).T

′
j

(by Γ ⩽ Γ′, (69), Prop.I.16, Def. 2.5) (70)

k ∈ I ⊆ J and ∀i ∈ I : Si ⩽ Ti (by (70) and Def. 4.1) (71)

Therefore, by (70), (71), Def. 2.8 and Prop.I.18, we conclude Γ→. □

Lemma 4.4. If Γ safe and Γ ⩽ Γ′ → Γ′′, then there is Γ′′′ such that Γ → Γ′′′ ⩽ Γ′′.

Proof. Assume Γ′ → Γ′′, induced by the interaction of two entries s[p]:S ′, s[q]:T ′
in Γ′. Now, assume Γ ⩽ Γ′:

by Def. 2.6, Γ contains the entries s[p]:S, s[q]:T (for some S,T) and they reduce by the safety hypothesis and Prop.J.1.

Then, we conclude by Lemma I.19. □

Lemma 4.3. If Γ, Γ′ is safe, then Γ is safe.

Proof. By contradiction, assume that Γ is not safe. Then, by Def. 4.1 (clause [S-→]), there is Γ′′ such that Γ →∗ Γ′′,
and Γ′′ violates clause [S-⊕&] (possibly after applying [S-µ] to unfold its entries). But then, by Def. 2.8 (rule [Γ-Cong]),

Γ, Γ′ →∗ Γ′′, Γ′ and the latter is not safe. This means that Γ, Γ′ violates clause [S-→] of Def. 4.1, and therefore is not

safe: contradiction. We conclude that Γ is safe. □

Theorem 4.8 (Subject Reduction). Assume Θ · Γ ⊢ P and Γ safe. Then, P → P ′ implies ∃Γ′ safe such that

Γ →∗ Γ′ and Θ · Γ′ ⊢ P ′.

Proof. By induction of the derivation of P → P ′, and when the reduction holds by rule [R-Ctx], with a further

structural induction on the reduction context C. Most cases hold by inversion of the typing Θ · Γ ⊢ P , and by applying

the induction hypothesis. The most interesting case is the base case where P → P ′ holds by [R-Comm]:

P = s[p][q]
∑
i ∈I mi (xi).Pi | s[q][p]⊕mk ⟨s

′[r]⟩ .Q

P ′ = Pk {s
′[r]/xk } | Q (k ∈ I)

(by inversion of [R-Comm]) (72)

Γ = Γ&, Γ⊕ such that

Θ · Γ& ⊢ s[p][q]
∑
i ∈I mi (xi).Pi

Θ · Γ⊕ ⊢ s[q][p]⊕mk ⟨s
′[r]⟩ .Q

Θ · Γ ⊢ P
[T- |]

(by (72) and inv. of [T- |]) (73)

Γ& = Γ0, Γ1 such that

Γ1 ⊢ s[p]:q&i ∈I mi (Si).S
′
i∀i ∈ I Θ · Γ0,xi :Si , s[p]:S ′i ⊢ Pi

Θ · Γ& ⊢ s[p][q]
∑
i ∈I mi (xi).Pi

[T-&]

(by (73) and inv. of [T-&]) (74)

Γ⊕ = Γ2, Γ3, Γ4 such that

Γ4 ⊢ s[q]:q⊕mk (Tk).T
′
k

Γ3 ⊢ s
′[r]:Tk Θ · Γ2, s[q]:T ′

k ⊢ Q

Θ · Γ⊕ ⊢ s[q][p]⊕mk ⟨s
′[r]⟩ .Q

[T-⊕]
(by (73) and inv. of [T-⊕]) (75)

Less Is More: Multiparty Session Types Revisited (Technical Report) 57

Now, notice that:

Γ = Γ0, Γ1, Γ2, Γ3, Γ4 (by (73), (74), and (75)) (76)

Γ1 = s[p]:S with S ⩽ q&i ∈I mi (Si).S
′
i (by (74) and Fig.2, rule [T-Sub]) (77)

Γ4 = s[q]:T with T ⩽ q⊕mk (Tk).T
′
k (by (75) and Fig.2, rule [T-Sub]) (78)

Γ ⩽ Γ′′ = Γ0, s[p]:q&i ∈I mi (Si).S
′
i , Γ2, Γ3, s[q]:q⊕mk (Tk).T

′
k (by (76), (77), (78), and Def. 2.6) (79)

safe(Γ′′) (since safe(Γ), and by (79) and Lemma 4.5) (80)

k ∈ I and Tk ⩽ Sk (by (79), (80) and Def. 4.1, clause [S-⊕&]) (81)

Γ′′ → Γ′′′ = Γ0, s[p]:S
′
k , Γ2, Γ3, s[q]:T

′
k (by (79), (81) and Def. 2.8) (82)

safe(Γ′′′) (by (80), (82) and Def. 4.1, clause [S-→]) (83)

We can now use Γ′′′ to type P ′:

Θ · Γ0,xk :Sk , s[p]:S
′
k ⊢ Pk (by (81), (75) and (74)) (84)

Γ3 ⊢ s
′[r]:Sk (by (75) (for Γ3 ⊢ s

′[r]:Tk), (81), transitivity of ⩽, and [T-Sub]) (85)

Γ0, Γ3, s[p]:S
′
k defined (by (75), (74), and (73)) (86)

Θ · Γ0, Γ3, s[p]:S
′
k ⊢ Pk {s

′[r]/xk } (by (84), (85), (86), and Lemma B.1) (87)

Θ · Γ0, Γ3, s[p]:S ′k ⊢ Pk {s
′[r]/xk } Θ · Γ2, s[q]:T ′

k ⊢ Q

Θ · Γ′′′ ⊢ P ′
[T- |]

(by (87), (75), (82), (83) and (72)) (88)

We conclude the proof by showing that there exists some Γ′ that satisfies the statement:

∃Γ′ : Γ → Γ′ ⩽ Γ′′′ (by (79), (82), and Lemma 4.4) (89)

safe(Γ′) (by (89) and Def. 4.1, clause [S-→]) (90)

Θ · Γ′ ⊢ P ′ (by (88), (89), and Lemma B.3)

□

Proposition J.2. The multiparty session subtyping relation ⩽ is decidable.

Proof. An algorithm for checking whether a pair of types S,T belongs to ⩽ can be obtained as a variation of the

binary session subtyping algorithm of [Gay and Hole 2005, Fig. 11] — which in turn is based on the subtyping algorithm

for recursive types of [Pierce 2002, Fig. 21-4]. See [Ghilezan et al. 2018] for a detailed description of the algorithm, and

the paper artifact [Scalas and Yoshida 2019] for an implementation. □

Theorem 4.11. If φ is decidable, then “Θ·Γ ⊢ P with φ” is decidable.

Proof. An algorithm for deciding Θ · Γ ⊢ P can be straightforwardly obtained by inverting the typing rules in Fig.2

and Def. 4.6, noticing that:

(1) all typing rules are deterministically invertible — i.e., for each shape of P , at most one rule can conclude Θ · Γ ⊢ P ;
(2) at each inversion, the typing contexts Θ, Γ and the type annotations in P determine how to populate the typing

context in the premises the rule — with the exception of [T- |], that (in the worst case) might require to try all

possible Γ1, Γ2 such that Γ1, Γ2 = Γ;
(3) each rule inversion yields premises with strictly smaller subterms of P (thus, recursive type checking eventually

terminates).

Moreover, since ⩽ is decidable (by Prop.J.2), it is always decidable whether the judgement [T-Sub] holds. Finally, notice

that when inverting rule [TGen-ν] (Def. 4.6), the check φ(Γ′) is decidable by hypothesis. □

K TYPING CONTEXT PROPERTIES
Global Type Projections as Behavioural Properties. To develop the proofs below, we establish a link between syntactic

projections and behavioural typing context properties: this is done in Def. K.4, using some tools from Def. K.1.

Definition K.1 (Typing Context Unfoldings and Behavioural Set). The set of unfoldings of Γ, written unf(Γ), is defined
as follows (where Γ{S/c} is a mapping update):

unf(Γ) =
⋃
c :S ∈Γ { Γ{unf(S)/c} } extended to sets as unf

(
{Γi }i ∈I

)
=

⋃
i ∈I unf(Γi)

58

Given a set of typing contexts E, the closure of the unfoldings of its elements is:

unf
∗(E) = lfix

(
λE′ . E ∪ E′ ∪ unf

(
E ∪ E′

))
where lfix is the least fixed point of its argument

Given Γ, the behavioural set of Γ, written beh(Γ), is the set: beh(Γ) = unf
∗({Γ′ | Γ →∗ Γ′})

In Def. K.1, beh(Γ) is the set of all reductions of Γ, extended with all unfoldings of all their entries. This ensures

that beh(Γ) mechanically satisfies clauses [S-→] and [S-µ] of Def. 4.1 and Fig.5 (cf. K.2 below). Therefore, one can verify

whether beh(Γ) is a safety/liveness property by only checking whether the remaining clauses hold for all elements

— and if they do, it means that Γ is safe/live. Note that the least fixed point in unf
∗(E) exists because the function is

monotonic w.r.t. ⊆ [Tarski 1955].

Proposition K.2. Let φ = beh(Γ), for some Γ. Then, each element of φ satisfies clauses [S-→] and [S-µ] of Def. 4.1.

For each safe Γ, Def. K.1 gives the smallest safety property, as formalised in Prop.K.3 below.

Proposition K.3. Γ is safe (resp. live, live
+
) if and only if beh(Γ) is a safety (resp. liveness, liveness

+
) property.

Proof. (=⇒). Assume that Γ is safe (resp. live, live
+
). We have to prove that each Γ′ ∈ beh(Γ) satisfies the clauses

of Def. 4.1 (resp. 5(5), 5(6)). By Prop.K.2, we know that each Γ′ satisfies clauses [S-µ] and [S-→]; the remaining clauses are

easily proved by contradiction: if we assume that Γ′ does not satisfy some clause, by observing that Γ′ is a (possibly
unfolded) reduct of Γ, we obtain that Γ is not safe (resp. live, live

+
) — contradiction. Therefore, each Γ′ ∈ beh(φ) satisfies

all clauses of Def. 4.1 (resp. 5(5), 5(6)), and we conclude that beh(Γ) is a safety (resp. liveness, liveness
+
) property.

(⇐=). Immediate by Def. 4.1 (resp. 5(5), 5(6)). □

We can now use global type projections to produce behavioural properties that are directly usable in our framework.

This is formalised in Def. K.4.

Definition K.4. With an abuse of notation, we will use the following definitions instead of those in Def. 5.8:

fprojG,s = beh(Γ) where Γ is the projection of G for s
pprojG,s = beh(Γ) where Γ is the plain projection of G for s

i.e., we extend the properties in Def. 5.8 to contain the unfoldings and reductions of a typing context Γ projected from

G. The results below will hold for such extensions, and thus, also for the original Def. 5.8.

Proposition K.5. If consistent(Γ) and Γ → Γ′, then consistent(Γ′).

Proof. From [Scalas et al. 2017, Lemma D.22]. □

Definition K.6 (Type contexts). A global type context is defined as follows:

G F p→q: {mi(Si) . Gi }i ∈I
�� µt.G

�� []i

We write G[Gi]
i
i ∈I to denote the global type obtained by filling the hole []i of G with the global typeGi , for all i ∈ I ,

with the understanding that I indexes all the holes in G.
A session type context is defined as follows:

S F p&i ∈I mi (Ti).Si
�� p⊕i ∈I mi (Ti).Si

�� µt.S
�� []i

We write S[Ti]
i
i ∈I to denote the session type obtained by filling the hole []i of S with the session type Ti , for all i ∈ I ,

with the understanding that I indexes all the holes in S.

We now adapt to our framework the notion of multiparty compatibility defined in [Deniélou and Yoshida 2013,

Def. 4.2] and [Bocchi et al. 2015, Def. 4], for Communicating Finite-State Machines (CFSMs).

Definition K.7 (Multiparty Compatibility [Bocchi et al. 2015; Deniélou and Yoshida 2013]). Assume dom(Γ)= {s}. We

say that Γ is multiparty compatible iff:

(1) Γ →∗ Γ′, s[p]:S with unf
∗(S) = q&i ∈I mi (Si).S

′
i implies ∃k ∈ I : ∃Γ′′, Γ′′′: Γ′ →∗ Γ′′ and Γ′′, s[p]:S →

Γ′′′, s[p]:S ′k ;
(2) Γ →∗ Γ′, s[p]:S with unf

∗(S) = q⊕i ∈I mi (Si).S
′
i implies ∀k ∈ I : ∃Γ′′, Γ′′′: Γ′ →∗ Γ′′ and Γ′′, s[p]:S →

Γ′′′, s[p]:S ′k .

Less Is More: Multiparty Session Types Revisited (Technical Report) 59

Note that in Def. K.7 is specifically based on [Bocchi et al. 2015, Def. 4]: clause 1 models a CFSM that is waiting to

input from another CFSM in the system (i.e., a type in Γ′), and eventually succeeds; clause 2 models a CFSM that has

queued a single output message, that is eventually received by another CFSM in the system. Also note the reductions

in Def. K.7 mimic the “synchronous transition system” of the CFSMs in the original formulation: intuitively, it means

that each message enqueued by a CFSM is immediately consumed by the recipient, and thus, at most one message can

be queued at each reduction step, and must be received at the very next step. In our setting, such pairs of alternating

queueing/dequeueing reductions are captured by a single synchronisation step.

Proposition K.8. Assume dom(Γ)= {s}. Then, Γ is multiparty compatible if and only if Γ is live.

Proof. First, let φ = beh(Γ).
(=⇒) We show that when Γ is multiparty compatible, φ satisfies all clauses of Fig.5(5), hence is a liveness property;

then, by Prop.K.3, we conclude that Γ is live.

(⇐=) If Γ is live, φ is a liveness property (by Prop.K.3); therefore, by Def. K.1, Γ →∗ Γ′ implies that Γ′ is contained
(with its unfoldings) in φ, and satisfies the clauses of Fig.5(5). By inspecting each Γ′, we prove that it satisfies the clauses
of Def. K.7; then, we conclude that Γ is multiparty compatible. □

Lemma K.9. Assume ∃G : fprojG,s(Γ). Then, dom(Γ)= {s} (Def. 2.6), and live(Γ).

Proof. We obtain dom(Γ)= {s} straightforwardly from Def. 5.8. The rest of the statement is consequence of [Deniélou

and Yoshida 2013, Thm. 4.3]: if all projections ofG onto its roles are defined (which is our hypothesis), then the resulting

set of local types is multiparty compatible (Def. K.7); then, we conclude by Prop.K.8. □

Proposition K.10. Assume that G↾q is defined. Then, either:

(A) q<G and G↾q ⩽ end, or
(B) q<G and G↾q = t (for some t), or
(C) ∃G, I ,Gi (i ∈ I), p such that G = G[Gi]

i
i ∈I , q<G, and either:

(a) ∀i ∈ I : Gi = p→q:
{
mj(Sj) .G

′
j

}
j ∈Ji ; or

(b) ∀i ∈ I : Gi = q→p:
{
mj(Sj) .G

′
j

}
j ∈Ji .

Proof. By structural induction on G:

• base case G = end. Then, q < G; moreover, we have (µt.G)↾q = end (by Def. 3.3). Hence, we conclude by

obtaining (A);

• base case G = t (for some t). Then, q <G; moreover, we have G↾q = t (by Def. 3.3). Hence, we conclude by

obtaining (B);

• inductive case G = r→r′:
{
mk(Sk) .G

′
k

}
k ∈K . Then, we have the following sub-cases:

– r′ = q. Then, by letting G = []1, I = {1}, G1 = G, we conclude by obtaining (C)(a);

– r = q. Similar to the previous case, and we conclude by obtaining (C)(b);

– r , q , r′. Then, we have:

G↾q =
/
k ∈K

(G ′
k ↾q) (by Def. 3.3) (91)

∀k ∈ K : G ′
k ↾q is defined (by (91)) (92)

∀k ∈ K : Gk satisfies either (A), (B) or (C), with Gk in place of G (by (92) and the induction hyp.) (93)

Now, by inspecting the cases in which the merging in (91) is defined (by Def. 3.3), we can reduce (93) to the

following possibilities:

∗ ∃n≥ 0 : ∀k ∈ K : Gk ↾q = µt1.· · · µtn .end. Then, G↾q = µt1.· · · µtn .end (by Def. 3.3), and thus, G↾q ⩽ end
(by Prop.I.15). Hence, we conclude by obtaining (A);

∗ ∀k ∈ K : Gk ↾q = t (for some t). Then, G↾q = t (by Def. 3.3), and thus, we conclude by obtaining (B);

∗ ∀k ∈ K : ∃Gk , Ik ,G ′
i (i ∈ Ik) such that Gk = Gk [G

′
i]
i
i ∈Ik

, q<Gk , and either:

· ∀k ∈ K , i ∈ Ik : G ′
i = p→q:

{
mj(Sj) .G

′
j

}
j ∈Ji . Then, by letting G = r→r′: {mk(Sk) . Gk }k ∈K , I =⋃

k ∈K Ik , and ∀i ∈ I : Gi = G
′
i , we conclude by obtaining (C)(a);

· ∀k ∈K , i ∈ Ik : Gi = q→p:
{
mj(Sj) .G

′
j

}
j ∈Ji . Similar to the previous case, and we conclude by obtaining

(C)(b);

60

• inductive case G = µt.G ′
. Then, we have:

G↾q =

{
µt.(G ′↾q) if G ′↾q , t′ (∀t′)
end otherwise

(by Def. 3.3) (94)

G ′↾q is defined (by (94)) (95)

G ′
satisfies either (A), (B) or (C), with G ′

in place of G (by (95) and the induction hyp.) (96)

Now, we have the following possibilities:

– G ′↾q ⩽ end. Then, ∃n ≥ 0 : G ′↾q = µt1.· · · µtn .end , which implies G↾q = µt.µt1.· · · µtn .end (by Def. 3.3),

and thus, G↾q ⩽ end (by Prop.I.15). Hence, we conclude by obtaining (A);

– G ′↾q = t′ (for some t′). Then, by (94) we have G↾q = end, and we conclude by obtaining (A).

– ∃G′, I ′,G ′
i (i ∈ I ′) such that G ′ = G′[G ′

i]
i
i ∈I ′ , q<G

′
, and either:

∗ ∀i ∈ I ′ : G ′
i = p→q:

{
mj(Sj) .G

′
j

}
j ∈Ji . Then, by letting G = µt.G′, I = I ′, and ∀i ∈ I : Gi = G

′
i , we conclude

by obtaining (C)(a);

∗ ∀i ∈ I ′ : G ′
i = q→p:

{
mj(Sj) .G

′
j

}
j ∈Ji . Similar to the previous case, and we conclude by obtaining (C)(b).

□

Corollary K.11. Let G = µt.G ′
, and assume that G↾q is defined. Then, either:

(A) q<G and (µt.G)↾q ⩽ end, or
(B) ∃G, I ,Gi (i ∈ I), p such that G = µt.G[Gi]

i
i ∈I , q<G, and either:

(a) ∀i ∈ I : Gi = p→q:
{
mj(Sj) .G

′
j

}
j ∈Ji ; or

(b) ∀i ∈ I : Gi = q→p:
{
mj(Sj) .G

′
j

}
j ∈Ji .

Proof. Assuming the hypothesis, we know that G ′↾q is defined, and does not equal t′ for any t′ (by Def. 3.3).

Therefore, we can apply Prop.K.10 on G ′
, obtaining either K.10(A), or K.10(C); from these, with the same reasoning of

the case “G = µt.G ′
” in the proof of Prop.K.10, we obtain respectively items (A) or (B) of the thesis. □

Proposition K.12. Assume that T = G↾q is defined. Then:

(1) T = µt.T ′
implies ∃G : q<G and G = G[µt.Gi]

i
i ∈I and ∀i ∈ I : Gi ↾q , t′ (∀t′) and T ′ =

.
i ∈I (Gi ↾q);

(2) T = µt1.· · · µtn .p&j ∈J mj (Sj).S
′
j implies ∃G : q<G and G = G[p→q:

{
mj(Sj) .G

′
j

}
j ∈J]

i
i ∈I ;

(3) T = µt1.· · · µtn .p⊕j ∈J mj (Sj).S ′j implies ∃G : q<G and G = G[q→p:
{
mj(Sj) .G

′
j

}
j ∈Ji]

i
i ∈I ;

(4) T = µt1.· · · µtn .end or T = t (for some t) implies q < G.

Proof. Item (1) is proven by assuming

G↾q = µt.T ′
(by hypothesis) (97)

and proceeding by structural induction on G:

• base cases G=end and G= t′ (for some t′). Impossible, because by Def. 3.3, they would contradict (97);

• inductive case G = p→r:
{
mj(Sj) .G j

}
j ∈J . By Def. 3.3, we have p,q,r (otherwise, we would contradict (97)).

Then:

G↾q =
/
j ∈J

(G j ↾q) with G j ↾q = µt.Tj and T ′ =
/
j ∈J

Tj (by (97) and Def. 3.3) (98)

∀j ∈ J : G j ↾q = µtj .T ′
j implies


∃Gj : q<Gj and

G j = Gj [µtj .G ′
i]
i
i ∈Ij

and

∀i ∈ Ij : G ′
i ↾q , t′ (∀t′) and

T ′
j =

.
i ∈Ij (Gi ↾q)

(by i.h.) (99)

and letting I =
⋃
j ∈J Ij and G = p→r:

{
mj(Sj) . Gj

}
j ∈J , by (99) and (98) we get G = G[µt.G ′

i]
i
i ∈I and the rest

of the thesis, and we conclude;

• inductive case G = µt′.G ′
. Then, we have:

t′ = t and T ′ = G ′↾q , t′′ (∀t′′) (by (97) and Def. 3.3) (100)

and letting I = {1}, G1 = G
′
and G = []1, by (100) we get G = G[µt.Gi]

i
i ∈I and the rest of the thesis, and we

conclude.

Less Is More: Multiparty Session Types Revisited (Technical Report) 61

For the other items, we have:

G↾q is defined (by hypothesis) (101)

either q < G (by (101) and Prop.K.10) (102)

or G = G[Gi]
i
i ∈I ′ with q<G and for some p, either: (by (101) and Prop.K.10) (103)

∀i ∈ I ′ : Gi = p→q:
{
mj(Sj) .G

′
j

}
j ∈Ji (104)

and Gi ↾q = p&j ∈Ji mj (Sj).S
′
j where S ′j = G

′
j ↾q (by (104) and Def. 3.3)

or ∀i ∈ I ′ : Gi = q→p:
{
mj(Sj) .G

′
j

}
j ∈Ji (105)

and Gi ↾q = p⊕j ∈Ji mj (Sj).S
′
j where S ′j = G

′
j ↾q (by (105) and Def. 3.3)

Note that (101) rules out cases (A) and (B) of Prop.K.10, and thus leaves us with either (104) or (105).

Using (101) and (103), we rephrase the statement with G[Gi]
i
i ∈I ′ in place of G, and proceed by structural induction

on G. The results follow by item (1) and Def. 3.3. □

Proposition K.13. Assume dom(Γ) = {s}, and Γ → Γ1 → Γ2 → · · · → Γn = Γ (with n ≥ 1), and:

∀Γ′, Γ′′ :
(
Γ=Γ′, Γ′′ and

(∃Γ′
1
, . . . , Γ′n : Γ′ → Γ′

1
→ · · · → Γ′n = Γ′

and ∀i ∈1..n : Γi = Γ′i , Γ
′′

))
implies Γ′′ = ∅

Then, ∀s[p]:S ∈ Γ : S ̸⩽ end and S contains a recursive sub-term µt.S ′ (for some t, S ′).

Proof. By contradiction, assume that:

∃s[p]:S ∈ Γ such that S ⩽ end or S has no recursive sub-term (106)

Then, we have two possibilities:

(a) if the entry s[p]:S interacts with other entries at least once along Γ → Γ1 → · · · → Γ, then it cannot reduce

into s[p]:S (by (106) and Def. 2.8); therefore, Γ cannot not reduce into itself, thus contradicting the hypothesis

Γ → Γ1 → · · · → Γ;
(b) otherwise, if the entry s[p]:S does not interact with other entries along Γ → Γ1 → · · · → Γ, then we can find Γ′′

(as defined in the statement) such that s[p]:S ∈ Γ′′, thus contradicting the hypothesis Γ′′ = ∅.

Therefore, assuming (106) leads to a contradiction; hence, we conclude that ∀s[p]:S ∈ Γ : S ̸⩽ end and S =µt.S ′ (for
some t, S ′). □

Proposition K.14. Assume that S has a recursive subterm µt.S ′, for some t and S ′. Then:
(1) if t∈ fv(S ′), then µt.S ′ is a subterm of unf

n(S) (for all n);
(2) ∀Γ0, S0, Γ, s, p : if Γ0, s[p]:S0 →∗ Γ, s[p]:S , then µt.S ′ is a subterm of S0.

Moreover, for all S , if µt.S ′ is a subterm of unf
n(S) (for some n), then µt.S ′ is also a subterm of S .

Proof. Item (1): by structural induction on S , and then by induction on n.
Item (2): by induction on the number of reductions, showing that µt.S ′ is a subterm of the type of s[p], in each

predecessor of Γ, s[p]:S .
The “moreover. . . ” part of the statement is proven by first showing that

∀S0 : if µt.S ′ is a subterm of unf
1(S0), then it is also a subterm of S0 (107)

and then proceeding by induction on n, using (107) in the inductive case. □

Theorem K.15. Assume ∃G, Γ : fprojG,s(Γ). Then, dom(Γ)= {s} (Def. 2.6), and live+(Γ).

Proof. Assuming the hypotheses, we have (for some G):

Γ = {s[p]:G↾p}p∈roles(G) (by Def. 5.8) (108)

dom(Γ) = {s} (by (108)) (109)

live(Γ) (by Lemma K.9) (110)

Note that (109) proves the first part of the thesis. To prove the second part, let:

φ = beh(Γ) (111)

We now show that φ is a liveness
+
property. Therefore, we examine each element (Γ′, s[p]:S) ∈ φ, and we show that it

satisfies all clauses of Fig.5(6). We have the following (non-mutually exclusive) possibilities:

62

• S =q&i ∈I mi (Si).S
′
i . In this case, clauses [L-⊕+] and [L-µ+] of Fig.5(6) are vacuously satisfied, and we are left to

prove clause [L-&
+
]. The first part of such a clause (i.e., the part that matches clause [L-&] of Fig.5(5)) holds by

(110), (111) and Prop.K.3.

We now prove the “moreover. . . ” part of clause [L-&
+
]. We need to prove that:

Γ′, s[p]:S belongs to some fair traversal set X (Def. 5.5) with targets Y such that, ∀Γt ∈Y,
we have Γt =Γ

′′, s[p]:S ′k (for some Γ′′,k ∈ I) (112)

We proceed by contradiction, assuming that:

there is no fair traversal set that contains Γ′, s[p]:S , and has targets Y such that, ∀Γt ∈Y,
we have Γt =Γ

′′, s[p]:S ′k (for some Γ′′,k ∈ I) (113)

This means that there is Γ0 such that:

Γ0 ⊆ Γ′ (114)

∃Γ′
0
, Γ′′

0
,k ∈ I : Γ0 →

∗ Γ′
0

and Γ′
0
, s[p]:S → Γ′′

0
, s[p]:S ′k (115)

∃n≥ 1, Γ00, Γ01, . . . , Γ0n : Γ0 →
∗ Γ00 → Γ01 → · · · → Γ0n → Γ00 (116)

i.e., Γ0 is a subset of Γ
′
(114) that can interact with s[p]:S (115), but can also loop indefinitely without interacting

with s[p]:S (116); we also pick Γ0 to be minimal, in the sense that if we remove any entry, then (115) does not hold.

The combination of minimality, (115) and (116) is due to liveness (110) and (113), that claims the impossibility to

construct a fair traversal set with targets that always interact with s[p]:S (similarly to Ex.5.6).

Now, take Γ00 in (116), and partition it as Γ00=Γ1, Γ2 such that:

∃Γ10, Γ11, . . . , Γ1n : Γ1 = Γ10 → Γ11 → Γ12 → · · · → Γ1n → Γ10 and ∀i ∈0..n : Γ0i = Γ1i , Γ2 (117)

∀Γ′
1
, Γ′′

1
:

(
Γ1=Γ

′
1
, Γ′′

1
and

(∃Γ′
10
, . . . , Γ′

1n : Γ′
1
= Γ′

10
→ Γ′

11
→ · · · → Γ′

1n → Γ′
10

and ∀i ∈0..n : Γ1i = Γ′
1i , Γ

′′
1

))
implies Γ′′

1
= ∅ (118)

i.e., we pick Γ1, Γ2, so that Γ1 induces the reductions in (116), and reduces into itself, without interacting with Γ2
(by (117)); moreover, we are picking Γ1 so that it is minimal w.r.t. the reductions in (117), i.e., all its entries reduce

at least once (by (118)). This implies that:

all entries of Γ1 contain a recursive subterm (by (117), (109), (118) and Prop.K.13) (119)

Now, by (115) and (117), we have two mutually exclusive sub-cases:

(A) ∃S ′q : s[q]:S ′q ∈ Γ1. Then, we have:

∃S such that p<S and ∃Tj (j ∈ J) :
S ′q has a subterm S ′′q = µt.S[Tj]

j
j ∈J (by (119)) (120)

∃k ∈ J : Tk = p⊕i ∈Ik mi (Si).S
′
i (by (115), (117) and Def. 2.8) (121)

∃l ∈ J : p<Tl (by (117) and Def. 2.8) (122)

i.e., S ′q has a recursive subterm (120) with some branch that interacts with s[p]:S (121), and some branch that

doesn’t interact with s[p]:S (122): the former exists by the liveness hypothesis (110), and the latter exists because

otherwise Γ1 could not loop without interacting with s[p] (hence, (117) would be contradicted). Therefore:

∄S′ : S ′′q = µt.S′[Tj]
j
j ∈J ′ where


∀j ∈ J ′ : Tj = p⊕i ∈I J ′mi (Si).S

′
i

or

∀j ∈ J ′ : Tj = p&i ∈I J ′mi (Si).S
′
i

(by (120), (121) and (122)) (123)

Now, observe:

∃Sp, Sq such that Sp=Γ(s[p])=G↾p and Sq=Γ(s[q])=G↾q (by (108)) (124)

S ′′q is a subterm of Sq (by (120), Def. K.1, (124) and Prop.K.14) (125)

∃G ′
: µt.G ′

is a subterm of G and S ′′q = (µt.G ′)↾q (by (125), Prop.K.12(1) and Def. 3.3) (126)

p∈S ′q and therefore p∈ µt.G ′
(by (120), (121), (126) and Def. 3.3) (127)

and note that in G ′
there must be:

(A-1) a branch where the first interaction of p is either p→q or q→p (since, by hypothesis, s[p]:S is waiting for q,
and by Prop.K.12); and

Less Is More: Multiparty Session Types Revisited (Technical Report) 63

(A-2) a branch where p does not interact with q (otherwise, by Def. 3.3, we could not project S ′q according to (126)

and (123)).

But then:

∄G, q′, I ,Gi (i ∈ I) :



µt.G ′ = µt.G[Gi]
i
i ∈I

p<G

and either


∀i ∈ I : Gi = p→q′:

{
mj(Sj) .G

′
j

}
j ∈Ji

or

∀i ∈ I : Gi = q′→p:
{
mj(Sj) .G

′
j

}
j ∈Ji

(by (A-1) and (A-2)) (128)

which implies:

(µt.G ′)↾p is undefined (by (128), (127), and the contrapositive of Cor.K.11) (129)

G↾p is undefined (by (129), (126) and Def. 3.3) (130)

and (130) contradicts (124), and thus, the hypothesis (108);

(B) s[q] ∈ dom(Γ2). Then, we have two more sub-cases:

(a) Γ2 can first interact with Γ1, and then with s[p]:S . More formally:

∃k ∈ I , Γ′
1
, Γ′

2
: Γ1, Γ2 →→∗ Γ′

1
, Γ′

2
and Γ′

2
, s[p]:S → Γ′

2
, s[p]:S ′k (131)

where in the first sequence of reductions, an entry of Γ2 (say, s[r′]:S ′r′) interacts with an entry of Γ1 (say,
s[r]:S ′r). But then, we can apply the same reasoning of case (A) above, with the following adaptations:

(i) use r′ in place of q;
(ii) use r in place of p;
(iii) if S ′r is a (possibly recursive) external choice, let Tk in (121) be an external choice, too.

Then, the adaptation of (130) says that G↾r is undefined, contradicting the hypothesis (108);

(b) Γ2 can first interact with s[p]:S , and then with Γ1. More formally:

∃k ∈ I , Γ′
1
, Γ′

2
, Γ′′

2
, Γ3, Γ

′
3
, S ′′, r, Sr, S

′
r, S

′′
r :


s[r] ∈ dom(Γ2) and

Γ2, s[p]:S →→∗ Γ3, s[r]:Sr, s[p]:S ′k →∗ Γ′
3
, s[r]:S ′r, s[p]:S

′′
and

Γ1, s[r]:S ′r →→∗ Γ′
1
, s[r]:S ′′r

(132)

where in the last sequence of reductions, s[r]:S ′r interacts with some element of Γ1 — say, s[r′]:S ′r′ . But
then, we can use the same strategy described in case (a) above: i.e., apply the reasoning of case (A) with the

adaptations (i), (ii) and (iii), obtaining the same contradiction;

To recap: in all cases above, assuming (113) leads to a contradiction, hence we obtain that its negation (112) holds.

Therefore, we conclude that Γ′, s[p]:S satisfies clause [L-&
+
] of Fig.5(6);

• S =q⊕i ∈I mi (Si).S
′
i . In this case, clauses [L-&

+
] and [L-µ+] of Fig.5(6) are vacuously satisfied, and we are left to

prove clause [L-⊕+]. Its proof is similar to the previous case.

• S =µt.S ′. In this case, clauses [L-⊕+] and [L-&
+
] of Fig.5(6) are vacuously satisfied, and we are left to prove clause

[L-µ+] — which holds by Equation (111) and Prop.K.2;

• S =end. In this case, clauses [L-⊕+], [L-&+] and [L-µ+] hold vacuously;

• Γ′, s[p]:S → Γ′′. In this case, we also need to satisfy clause [L-→] of Fig.5(6) — which holds by Equation (111) and

Prop.K.2.

Summing up, we have proven that if we take anyG whose projections are defined, we can also define φ as in (111),

and prove that it is a liveness
+
property. Moreover, {s[p]:G↾p}p∈roles(G) ∈ φ (by (108), (111) and Def. K.1); and since

live
+
is the largest liveness

+
property (by Fig.5(6)), we have φ ⊆ live

+
, and thus, {s[p]:G↾p}p∈roles(G) ∈ live

+
. Therefore,

by Def. 5.8 we conclude that if ∃G, Γ : fprojG,s(Γ), then live
+(Γ). □

Lemma 5.9. For all Γ, the following (non-)implications hold:

64

(1) consistent(Γ) ⇍= =⇒ safe(Γ);
(2) live(Γ) ⇍= =⇒ safe(Γ);
(3) live(Γ) ⇍= =⇒ df(Γ);
(4) nterm(Γ) ⇍= =⇒ df(Γ);
(5) consistent(Γ) ⇍= ≠⇒ df(Γ);
(6) consistent(Γ) ∧ df(Γ) ⇍= ≠⇒ live(Γ);
(7) live

++(Γ) ⇍= =⇒ live
+(Γ) ⇍= =⇒ live(Γ);

(8) term(Γ) ⇍= =⇒ live
++(Γ);

(9) assume dom(Γ)= {s} (Def. 2.6). Then:
∃G : fprojG,s(Γ) ⇍= =⇒ live

+(Γ).

consistent

GG-

safe

df livelive+

live++

term

n
te
rm

Proof. The negated implications in the statement are proved in Table 1 and Ex.5.11.

We now examine the remaining implications.

1. Assume Γ consistent, and take the property φ = beh(Γ) (Def. K.1). By contradiction, assume that Γ is not safe. Then,

by Prop.K.3, φ must contain some Γ′ such that Γ →∗ Γ′ and Γ′ violates clause [S-⊕&] (possibly after applying [S-µ]

to unfold its entries). By Def. 3.8, such Γ′ is not consistent. But then, by the contrapositive of Prop.K.5, we obtain

that Γ is not consistent — contradiction. We conclude that Γ is safe.

2. Straightforward by Fig.5(5).

3. Straightforward by Fig.5(5).

4. Straightforward by Fig.5(4).

7. Straightforward by Fig.5(6) and Fig.5(7).

8. By contradiction, assume that Γ is not live
++

. Then, there is Γ′ such that Γ →∗ Γ′, and Γ′ (once unfolded) violates
clause [L-&

++
]/[L-⊕++] of Fig.5(7) — i.e., Γ′ = Γ′′, s[p]:S (for some Γ′′), where S is a branching/selection type that

is not triggered within a finite number of steps by a corresponding selection/branching along the reductions

of Γ′′. But then, there is no guarantee that, in a finite number of steps, Γ′ will reduce to some Γ′′′ such that

end(Γ′′′); and since Γ →∗ Γ′, there is no such guarantee for Γ, either. This implies that Γ does not satisfy Fig.5(3)

— contradiction. Therefore, we conclude that Γ is live
++

.

9. Direct consequence of Thm.K.15.

□

Theorem 5.13 (Decidability of φ). φ(Γ) is decidable, for all Γ, and for all φ such that

φ ∈
{
consistent, fprojG,s, pprojG,s , safe, term, nterm, df, live, live

+, live++
}

(for any G)

Proof. If φ = consistent, Γ ∈ φ is decidable because, by Def. 3.8, it is sufficient to check (at most) all pairs of

types contained in Γ (which are finite), using partial projection (that always terminates), duality and ⩽ (that are both

decidable).

For the other cases, observe that for any Γ, the transitive closure of the typing context reduction relation→ (Def. 2.8)

induces a finite-state transition system.

When φ = fprojG,s or φ = pprojG,s , observe the two possible definitions of the set E in Def. 5.8: in both cases, the

projection of any G always terminates, either by being undefined (then E is empty, φ is empty, and φ(Γ) is false) or by
returning some Γ, from which Def. K.1 collects all reachable typing contexts, that are finite. Then, notice that unf

∗(E)

in Def. K.1 is the least fixed point of a function that is monotonic (w.r.t. the partial order ⊆), and therefore, can be

computed with a chain of successive applications starting with ∅ (by the Knaster-Tarski theorem [Tarski 1955]) — and

since E is finite, this procedure always terminates by yielding the (finite) set of typing contexts with all combinations of

all unfoldings of all elements of all typing contexts contained in E. Hence, φ is finite, and therefore, Γ ∈ φ is trivially

decidable.

The rest of the cases are decidable because it is straightforward to produce an algorithm that inspects all (finite)

elements of the behavioural set beh(Γ) (Def. K.1), verifying whether they satisfy the clauses of Def. 4.1, Fig.5(2), Fig.5(5)

or Fig.5(6). □

L ASYNCHRONOUS SESSION FIDELITY
Proposition L.1 (Asynchronous Normal Form). For all P , P ≡ def D̃ in (ν s̃) P1 | . . . | Pn , where ∀i ∈ 1..n, Pi is

either a branching, a selection, or a process call, or a session queue.

Less Is More: Multiparty Session Types Revisited (Technical Report) 65

Proof. Minor adaptation of Prop.I.2. □

Lemma B.1 (substitution) is unchanged in async MPST, it is only applied to processes occurring as premises of

[TA-Lift]. Instead, Lemma B.2 (subject congruence) needs to be adapted as Lemma L.2 below. The difference w.r.t. the

synchronous result is that, in the asynchronous setting, if P ≡P ′ then session queues might be reordered by ≡ (Fig.7),

hence queue types might need reordering by ≡ (Def. D.2).

Lemma L.2 (Async Subject Congruence). Assume Θ · Γ ⊢S P and P ≡ P ′. Then, ∃Γ′ such that Γ ≡ Γ′ and

Θ · Γ′ ⊢S P ′.

Proof. The proof is similar to that of Lemma B.2, and in all corresponding cases we have Γ = Γ′. We have two

additional cases, corresponding to the two queue congruence rules in Def. C.1:

• when P = (νs :Γ′′) s▶σ ≡ 0 = P ′, we must have end(Γ′′) and end(Γ), and we conclude with Γ′ = Γ by typing

rule [T-0];
• when P ≡ P ′ holds by the order-swapping congruence on queues, we apply the same reordering on the queue

types of Γ, getting a congruent typing context Γ′ that satisfies the statement.

□

Proposition L.3. If p ∈ senders(σ), then ∀Θ, Γ, s : Θ · Γ ⊢{s } s▶σ implies Γ(s[p]) = M , for someM , ϵ .

Proof. Assume p ∈ senders(σ). Then:

∃σ ′,σ ′′
: σ = σ ′ ·

(
p, q, m⟨s ′[r]⟩

)
·σ ′′

(by hypothesis and Def. C.1) (133)

Θ · Γσ ′′ ⊢{s } s▶σ
′′ Γ′ ⊢ s ′[r]:S

Θ · (Γσ ′′fs[p]:q!m(S)·ϵ), Γ′ ⊢{s } s▶ (p, q, m⟨s[r]⟩) ·σ ′′
[TA-σ]

(by (133) and induction on σ ′′
) (134)

From (134), we proceed with a further induction on σ ′
(from (133)), to prove that ∃Γ such that Θ · Γ ⊢{s } s▶σ , with

Γ(s[p]) = M for someM , ϵ :

• base case σ ′ = ϵ . Then, σ = σ ′ · (p, q, m⟨s ′[r]⟩) ·σ ′′ = (p, q, m⟨s ′[r]⟩) ·σ ′′
: we conclude by (134) and Fig. 8,

letting Γ = (Γσ ′′fs[p]:q!m(S)·ϵ), Γ′);
• inductive case σ ′ = (p′, q′, m′⟨s ′′[r′]⟩) ·σ ′′′

. Then:

∃Γ′′ : Θ · Γ′′ ⊢{s } s▶σ
′′′ ·

(
p, q, m⟨s ′[r]⟩

)
·σ ′′

with Γ′′(s[p]) = M ′
for someM ′ , ϵ (by i.h.) (135)

Θ · Γ′′ ⊢{s } s▶σ
′′′ · (p, q, m⟨s ′[r]⟩) ·σ ′′ Γ′′′ ⊢ s ′′[r′]:S ′′′

Θ · (Γ′′fs ′[p′]:q′ !m′(S ′′′)·ϵ), Γ′′′ ⊢{s } s▶σ
[TA- |]

(by (135) and (133)) (136)

and we conclude by (136) and Fig.8, letting Γ = (Γ′′fs ′[p′]:q′ !m′(S ′′′)·ϵ), Γ′′′.

□

Proposition L.4. If p < senders(σ), then ∀Θ, Γ, s : Θ · Γ ⊢{s } s▶σ implies s[p] < dom(Γ).

Proof. Assume p < senders(σ). We proceed by induction on σ :

• base case σ = ϵ . Then, we have Γ = ∅ (by inversion of [TA-ϵ]), and we conclude immediately;

• inductive case σ = (p′, q, m⟨s[r]⟩) ·σ ′
. Observe that p′ , p and p < senders(σ ′) (otherwise, we would have the

contradiction p ∈ senders(σ)). By the i.h., ∀Θ′, Γ′, s : Θ′ · Γ′ ⊢{s } s▶σ
′
implies s[p] < dom(Γ′). By [TA-σ] and

Fig.8, we conclude that ∀Θ, Γ, s : Θ · Γ ⊢{s } s▶σ implies s[p] < dom(Γ).

□

Using Lemma B.1 (plus Lemma L.2) we extend Thm.B.4 (session inversion) to asynchrony, obtaining the new Thm.L.5

below: the difference w.r.t. Thm.B.4 are the new items (5)–(7), showing how queue types shape process queues.

Theorem L.5 (Async Session Inversion). Assume ∅ · Γ ⊢S

��
p∈I Pp with each Pp either being 0 (up-to ≡), or only

playing role p in s . Then, Γ=
{
s[p]:Sp

}
p∈I ′ ,

{
s[p]:Mp

}
p∈I ′′ for some I ′, I ′′. Moreover, ∀p ∈ I ′, we have items (1) , (2) ,

(3) from Thm.B.4.

Further, we have item (4) from Thm.B.4, and (5) ∀p ∈ I \ I ′′ : p < senders(σ).
Finally, ∀p∈ I ′′: (6) ∃q, m,T ,M ′

: Mp=q!m(T)·M ′
; (7) ∃s ′, r,σ ′

: σ ≡(p, q, m⟨s ′[r]⟩) ·σ ′
.

Proof. The proof is similar to that of Thm.B.4, using the asynchronous MPST normal form of Prop.L.1, and observing

that, by inversion of [TA- |], we must have S = {s}. We examine the additional items, involving the session queue.

66

Item (5). Holds by the contrapositive of Prop.L.3.

Item (6). By the contrapositive of Prop.L.4, we know that p ∈ senders(σ); then, we conclude by Prop.L.3;

Item (7). By the contrapositive of Prop.L.4, we know that p ∈ senders(σ); then, we conclude by Def. C.1.

□

Theorem F.8 (Async Session Fidelity). Let Θ · Γ ⊢S P , with P ≡

(��
p∈I Pp

)
| s▶σ , and each Pp either being 0

(up-to ≡), or only playing role p in s . Then, Γ→S implies ∃Γ′, P ′ such that Γ →S Γ′, P →∗ P ′ and Θ · Γ′ ⊢S P ′, with

P ′ ≡
(��
p∈I P

′
p

)
| s▶σ ′

and each P ′p either being 0 (up-to ≡), or only playing role p in s .

Proof. Similar to the proof of Thm.5.4, but using Thm.L.5 for asynchronous session inversion. □

M SUBJECT REDUCTION FOR ASYNCHRONOUS MPST
Remark M.1. If we want to explicitly instantiate the safety property φ for a typing derivation that restricts the multiparty

sessions s1 :Γ1, . . . , sn :Γn , then we can (1) take a set {φi }i ∈1..n where φi is an {si }-safety property such that φi (Γi), and
(2) instantiate Def. F.4 with φ =

⋃
i ∈1..n φi . By construction, φ is an {si }-safety property such that φ(Γi) (i ∈1..n).

Lemma M.2. If a-safeS(Γ) and Γ ⩽ Γ′, then a-safeS(Γ
′).

Proof. Similar to Lemma 4.5, noticing that by Def. D.1, subtyping of asynchronous typing contexts only involves

session types (not queue types). □

Lemma M.3. If Γ safe and Γ ⩽ Γ′ →S Γ′′, then there is Γ′′′ such that Γ →S Γ′′′ ⩽ Γ′′.

Proof. Similar to Lemma 4.4. □

Lemma M.4 (Narrowing (asynchronous)). If Θ · Γ ⊢S P and Γ′ ⩽ Γ with a-safeS(Γ
′), then Θ · Γ′ ⊢S P .

Proof. Similar to Lemma B.3, noticing that by Def. D.1, subtyping of asynchronous typing contexts only involves

session types (not queue types). □

Proposition M.5. Assume Θ · Γ ⊢{s } s▶σ with s ′[r] < dom(Γ), s[p] < dom(Γ) and Γ′ ⊢ s ′[r]:S . Then, we have
the judgement Θ · Γ, s[p]:q!m(S)·ϵ, Γ′ ⊢{s } s▶σ · (p, q, m⟨s ′[r]⟩).

Proof. Assume Θ · Γ ⊢{s } s▶σ with s[p] < dom(Γ) and s ′[r] < dom(Γ), and Γ′ ⊢ s ′[r]:S . Notice that:

Θ · ∅ ⊢{s } s▶ϵ
[TA-ϵ]

Γ′ ⊢ s[r]:S

Θ · s[p]:q!m(S)·ϵ, Γ′ ⊢{s } s▶ (p, q, m⟨s[r]⟩) ·ϵ
[TA-σ]

(137)

Now, let n be the length of σ , and let:

• Γ0 = ∅;

• σ0 = ϵ ;
• Γn = Γ;
• σn = σ ;
• ∀i ∈ 1..n : σi = (pi , qi , mi ⟨si [ri]⟩) ·σi−1 and Γ′i ⊢ si [ri]:Si and Γi = (Γi−1fs[pi]:qi !mi (si [ri])·ϵ), Γ

′
i .

Then, the derivation of Θ · Γ ⊢{s } s▶σ has the following shape:

Θ · Γ0 ⊢{s } s▶σ0
[TA-ϵ]

Γ′
1
⊢ s1[r1]:S1

Θ · Γ1 ⊢{s } s▶σ1
[TA-σ]

Γ′
2
⊢ s2[r2]:S2

...

[TA-σ]

Γ′n−1 ⊢ sn−1[rn−1]:Sn−1

Θ · Γn−1 ⊢{s } s▶σn−1
[TA-σ]

Γ′n ⊢ sn [rn]:Sn

Θ · Γn ⊢{s } s▶σn
[TA-σ]

(138)

We can rewrite the derivation in (138) into a derivation for Θ · Γ, s[p]:q!m(S)·ϵ, Γ′ ⊢{s } s▶σ · (p, q, m⟨s ′[r]⟩), proceeding
by induction on n:

(1) first, ∀i ∈ 0..n, rewrite Θ · Γi ⊢{s } s▶σi as Θ · Γi , s[p]:q!m(S)·ϵ, Γ′ ⊢{s } s▶σi · (p, q, m⟨s[r]⟩) ·ϵ . Notice that
the rewritten typing context is defined, since dom(Γ′) = {s ′[r]} ⊈ dom(Γi) and s[p] < dom(Γi) (by hypothesis);

Less Is More: Multiparty Session Types Revisited (Technical Report) 67

(2) then, graft (137) on top of the derivation, noticing that the conclusion of (137) matches the rewriting of

Θ · Γ0 ⊢{s } s▶σ0 after step 1 above.

We have thus obtained a typing derivation that proves the statement. □

Proposition M.6. Assume Θ · Γ ⊢{s } s▶σ , with s ′[r] < dom(Γ), Γ(s[p]) = M (for some M) and Γ′ ⊢ s ′[r]:S .
Then, we have Θ · Γ{M ·q!m(S) ·ϵ/s[p]}, Γ′ ⊢{s } s▶σ · (p, q, m⟨s ′[r]⟩).

Proof. The proof is similar to that of Prop.M.5. The only difference is that, in step 1 of the rewriting, the observation

“∀i ∈ 0..n : s[p] < dom(Γi)” does not hold. Hence, we use the following rewriting, for all i ∈ 1..n:

Θ · Γi ⊢{s } s▶σi 7→ Θ · (s[p]:q!m(S)·ϵ⇝Γi), Γ
′ ⊢{s } s▶σi · (p, q, m⟨s[r]⟩) ·ϵ

where:

s[p]:M ′′⇝Γ′′ =

{
Γ′′{Γ′′(s[p])·M ′′/s[p]} if s[p] ∈ dom(Γ′′)

Γ′′{M ′′/s[p]} otherwise

As a result, in the rewritten derivation, the type q!m(S) for the additional queue message (p, q, m⟨s ′[r]⟩) is added

at the end of Γ(s[p]) from the original typing context
7
. The rewritten derivation proves the statement. □

Lemma M.7 (Queueing/Deqeueing Typability). Assume Θ · Γ ⊢S P with Γ S-safe. Then:

(1) if P = s[p][q]⊕m⟨s ′[q′]⟩ .P ′ | s▶σ , then ∃Γ′ S-safe such that Γ →S Γ′ and Θ · Γ′ ⊢S P ′ | s▶σ · (p, q, m⟨s ′[q′]⟩);
(2) if P = s[q][p]

∑
i ∈I mi (xi).P

′
i |s▶ (p, q, m⟨s ′[q′]⟩) ·σ then there exist k ∈ I and Γ′ S-safe such that m = mk , Γ →S Γ′

and Θ · Γ′ ⊢S P ′k {
s ′[q′]/xk } | s▶σ .

Proof. Item 1. We have:

Γ = Γ⊕, Γσ ,
S = S⊕ ∪ Sσ

and

Θ · Γ⊕ ⊢S⊕
s[p][q]⊕m⟨s ′[q′]⟩ .P ′ Θ · Γσ ⊢Sσ s▶σ S⊕ ∩ Sσ = ∅

Θ · Γ ⊢S P
[TA- |] (inv. of [TA- |]) (139)

S⊕ = ∅ and

Θ · Γ⊕ ⊢ s[p][q]⊕m⟨s ′[q′]⟩ .P ′

Θ · Γ⊕ ⊢S⊕
s[p][q]⊕m⟨s ′[q′]⟩ .P ′

[TA-Lift]

(by (139) and inv. of [TA-Lift]) (140)

Γ⊕ = Γ0, Γ1, Γ2 and

Γ1 ⊢ s[p]:q⊕m(S).S ′ Γ2 ⊢ s
′[q′]:S Θ · Γ0, s[p]:S ′ ⊢ P ′

Θ · Γ⊕ ⊢ s[p][q]⊕m⟨s ′[q′]⟩ .P ′
[T-⊕]

(by (140) and inv. [T-⊕]) (141)

Γ2 ⊢ s
′[q′]:S and s ′[q′] < dom(Γσ) (by (139) and (141)) (142)

∃Γ′′ = Γ0, s[p]:q⊕m(S).S
′, Γ2, Γσ and Γ ⩽ Γ′′ (by (139), (141), [T-Sub] and Def. 2.6) (143)

We now have two cases, that we study in order to prove the existence of a suitable Γ′′′ such that Γ′′ →S Γ′′′:

• p ∈ senders(σ). Then:

∃M , ϵ : Γσ (s[p]) = M (by (139) and Prop.L.3) (144)

Γ′σ = Γσ {M ·q!m(S)·ϵ/s[p]}, Γ2 and Θ · Γ′σ ⊢Sσ s▶σ ·
(
p, q, m⟨s ′[q′]⟩

)
(by (139), (144), (142) and Prop.M.6) (145)

∃Γ′′′ = Γ0, s[p]:S
′, Γ′σ such that Γ′′ → Γ′′′ (by (143), (145) and Def. D.4) (146)

Γ′′ →S Γ′′′ (by (143) and Def. F.1) (147)

• p < senders(σ). Then:

s[p] < dom(Γσ) (by (139) and Prop.L.4) (148)

Γ′σ = Γσ , s[p]:q!m(S)·ϵ, Γ2 and Θ · Γ′σ ⊢Sσ s▶σ ·
(
p, q, m⟨s ′[q′]⟩

)
(by (139), (148), (142) and Prop.M.5) (149)

∃Γ′′′ = Γ0, s[p]:S
′, Γ′σ such that Γ′′ →S Γ′′′ (by (139), (141), (149) and Def. F.1) (150)

7
Note that the same rewriting also allows to prove Prop.M.5, when s[p] < dom(Γ). For clarity, we chose to keep Propositions M.5

and M.6 separate, with the rewriting in the proof of Prop.M.5 as simple as possible.

68

Therefore, for both cases above, using Γ′σ from either (145) or (149), and Γ′′′ from either (146) or (150), we obtain:

a-safeS(Γ
′′′) (by a-safeS(Γ), (143), Lemma M.2, (147)/(150) and Def. F.2, clause [SA-→])

(151)

Θ · Γ0, s[p]:S ′ ⊢ P ′

Θ · Γ0, s[p]:S ′ ⊢S⊕
P ′

[TA-Lift]

Θ · Γ′σ ⊢Sσ s▶σ · (p, q, m⟨s ′[q′]⟩) S⊕ ∩ Sσ = ∅

Θ · Γ′′′ ⊢S P ′ | s▶σ · (p, q, m⟨s ′[q′]⟩)
[TA- |]

(by (141), (145)/(149), (139) and (146)/(150), (151))

(152)

∃Γ′ : Γ →S Γ′ and Γ′ ⩽ Γ′′′ (by (143), (147)/(150) and Lemma M.3)

(153)

a-safeS(Γ
′) (by a-safeS(Γ), (153) and Def. F.2, clause [SA-→])

(154)

Θ · Γ′ ⊢S P ′ | s▶σ ·
(
p, q, m⟨s ′[q′]⟩

)
(by (152), (153), (154) and Lemma M.4)

(155)

Hence, we conclude the proof by (153), (154) and (155).

Item 2. We have:

Γ = Γ&, Γσ ,
S = S& ∪ Sσ

and

Θ · Γ& ⊢S&
s[q][p]

∑
i ∈I mi (xi).P

′
i

Θ · Γσ ⊢Sσ s▶ (p, q, m⟨s ′[q′]⟩) ·σ S& ∩ Sσ = ∅

Θ · Γ ⊢S P
[TA- |]

(inv. of [TA- |]) (156)

S& = ∅ and

Θ · Γ& ⊢ s[q][p]
∑
i ∈I mi (xi).P

′
i

Θ · Γ& ⊢S&
s[q][p]

∑
i ∈I mi (xi).P

′
i

[TA-Lift]

(by (156) and inv. of [TA-Lift]) (157)

Γ& = Γ0, Γ1 and

Γ1 ⊢ s[q]:p&i ∈I mi (Si).S
′
i ∀i ∈ I Θ · Γ0,xi :Si , s[q]:S ′i ⊢ P

′
i

Θ · Γ& ⊢ s[q][p]
∑
i ∈I mi (xi).P

′
i

[T-&]

(by (157) and inv. [T-&]) (158)

Sσ = {s} and Γσ = (Γ
′
σfs[p]:q!m(S)·ϵ), Γ2 and

Θ · Γ′σ ⊢Sσ s▶σ Γ2 ⊢ s
′[q′]:S

Θ · Γσ ⊢Sσ s▶ (p, q, m⟨s ′[q′]⟩) ·σ
[TA-σ]

(by (156), inv. [TA-σ]) (159)

∃k ∈ I : m = mk and S ⩽ Sk (by (156), (158), (159), a-safeS(Γ) and clauses [SA-&!]/[SA-µ] of Def. F.2) (160)

Γ2 ⊢ s
′[q′]:Sk (by (159), (160) and transitivity of ⩽) (161)

∃Γk = Γ0, s[q]:S
′
k , Γ2 defined (by (156), (158) and (159)) (162)

Θ · Γk ⊢ P ′k {
s ′[q′]/xk } (by (161), (158), (162) and Lemma B.1) (163)

∃Γ′′ = s[p]:p&i ∈I mi (Si).S
′
i , Γ1, Γσ and Γ ⩽ Γ′′ (by (156), (158), (159), [T-Sub] and Def. 2.6) (164)

∃Γ′′′ = Γk , Γ
′
σ (by (162), (159)) (165)

We now have two cases, that we study in order to prove that Γ′′ →S Γ′′′:

• p ∈ senders(σ). Then:

Γ′′ → Γ′′′ (by (164), (165) and Def. D.4) (166)

Γ′′ →S Γ′′′ (by (166) and Def. F.1) (167)

• p < senders(σ). Then:

s[p] < dom
(
Γ′σ

)
(by (159) and Prop.L.4) (168)

Γ′′′(s[p]) = S ′k (by (156), (158), (165) and (168)) (169)

Γσ (s[p]) = q!m(S)·ϵ (by (159) and Fig.8) (170)

Γ′′(s[p]) = (q!m(S)·ϵ ; p&i ∈I mi (Si).S
′
i) (by (164) and (170)) (171)

Γ′′ →S Γ′′′ (by (171), (169) and Def. F.1) (172)

Less Is More: Multiparty Session Types Revisited (Technical Report) 69

Therefore, for both cases above, using either (167) or (172), we obtain:

a-safeS(Γ
′′′) (by a-safeS(Γ), (164), Lemma M.2, (167)/(172) and Def. F.2, clause [SA-→]) (173)

Θ · Γk ⊢ P ′k {
s ′[q′]/xk }

Θ · Γk ⊢S&
P ′k {

s ′[q′]/xk }
[TA-Lift]

Θ · Γ′σ ⊢Sσ s▶σ

Θ · Γ′′′ ⊢S P ′k {
s ′[q′]/xk } | s▶σ

[TA- |]
(by (163), (156), (157), (159), (165), (173)) (174)

∃Γ′ : Γ →S Γ′ and Γ′ ⩽ Γ′′′ (by (164), (167)/(172) and Lemma M.3) (175)

a-safeS(Γ
′) (by a-safeS(Γ), (175) and Def. F.2, clause [SA-→]) (176)

Θ · Γ′ ⊢S P ′k {
s ′[q′]/xk } | s▶σ (by (174), (175), (176) and Lemma M.4) (177)

Hence, we conclude the proof by (175), (176) and (177). □

Lemma F.5. Let a-safeS(Γ): then, a-safeS\s(Γ); and if Γ=Γ′, s[p]:S , then a-safeS(Γ
′).

Proof. Assume a-safeS(Γ): it means that all →S
∗
-reductions of Γ are safe (by Def. F.2, clause [SA-→]). Note that,

among such safe reductions of Γ, there is also the subset of all its →S\s
∗
-reductions (by Def. F.1): hence, by Def. F.2, we

conclude a-safeS\s(Γ) — which proves the first part of the statement.

For the second part of the statement, assume a-safeS(Γ
′, s[p]:S), and by contradiction, also assume that Γ′ is not

S-safe. Observe that by hypothesis and Def. D.2, Γ′ can (possibly) map s[p] to a queue type, but not to a session type,

nor to a session/queue type. Hence, by Def. F.1, Γ′ cannot violate Def. F.2 due to new messages enqueued by s[p], nor
due to messages sent to s[p]. But then, the same violations of Def. F.2 can also be found by letting Γ′, s[p]:S reduce,

which therefore is not S-safe — contradiction. Hence, we conclude a-safeS(Γ). □

Proposition M.8. Assume Θ · Γ, s[p]:M ⊢S P . Then, s ∈ S and P ≡ P0 | s▶σ

Proof. By induction on the typing derivation, observing that the queue type can only be yielded by rule [TA-σ]

(Fig.8), which in turn requires s ∈ S. □

Theorem F.6 (Asynchronous Subject Reduction). Assume Θ · Γ ⊢S P with Γ S-safe. Then, P → P ′ implies ∃Γ′
S-safe such that Γ →S

∗ Γ′ and Θ · Γ′ ⊢S P ′.

Proof. By induction of the derivation of P → P ′, and when the reduction holds by rule [R-Ctx], with a further

structural induction on the reduction context C. Most cases hold by inversion of the typing Θ · Γ ⊢ P , and by applying

the induction hypothesis,

The most complex cases are the base cases where P → P ′ is due to rules [R-AOut] or [R-AIn], and messages are added

or removed from the session queue. Such cases are proved in Lemma M.7 above.

In the inductive case where P = C[P0] with C = C
′ | Q , we have:

∃P1 : C′[P0] → C′[P1] and P ′ = C′[P1] | Q (by inversion of [R-Ctx]) (178)

S = S1 ∪ S2 and

Γ = Γ1, Γ2 such that

Θ · Γ1 ⊢S1
C′[P0] Θ · Γ2 ⊢S2

Q
S1 ∩ S2 = ∅

Θ · Γ ⊢S P
[TA- |]

(by (178), inv. [TA- |] (179)

a-safeS1
(Γ1, Γ2) (by a-safeS(Γ), (179) and Lemma F.5) (180)

Now, our intermediate goal is to prove:

a-safeS1
(Γ1, Γ2) implies a-safeS1

(Γ1) (181)

For this purpose, we proceed by induction on Γ2:

• base case Γ2 = ∅. Then, Γ1 = Γ1, Γ2, and we conclude trivially by (180);

• inductive case Γ2 = Γ′
2
, c :τ . Then, we have:

a-safeS1
(Γ1, c :τ) (by the induction hypothesis on (181)) (182)

and the following sub-cases:

– c = x (i.e., c is a variable). Then, observe that S1-safety (Def. F.2) only depends on typing context entries

mapping channels with roles, and ignores any entry mapping variables: hence, from (182), we conclude

a-safeS1
(Γ1);

– c = s[p]. Then, we have the following possibilities:

70

∗ τ = S . Then, by Lemma F.5, we conclude a-safeS1
(Γ1);

∗ τ = M . Then, by (179) and Prop.M.8,Q contains the queue for session s , and s ∈ S2. Hence, by (179), s < S1,
i.e., S1 \ {s} = S1; from this, by Lemma F.5, we conclude a-safeS1

(Γ1);
∗ τ = (M ; S). Similar to the previous case.

We have thus proved (181), and therefore:

a-safeS1
(Γ1) (by (180) and (181)) (183)

∃Γ′
1

S1-safe such that Γ1 →S1

∗ Γ′
1

and Θ · Γ′
1
⊢S1
C′[P1] (by (179), (183), (178), i.h.) (184)

∃Γ′ = Γ′
1
, Γ2 such that Γ →S

∗ Γ′ (by (179) and (184)) (185)

a-safeS(Γ
′) (by a-safeS(Γ), (185) and Def. F.2, clause [SA-→]) (186)

Θ · Γ′
1
⊢S1
C′[P1] Θ · Γ2 ⊢S2

Q S1 ∩ S2 = ∅

Θ · Γ′ ⊢S P ′
[TA- |]

(by (179), (184), (185) and (178)) (187)

and we conclude by (186) and (187). □

Corollary F.7 (Async Type Safety). If ∅ · ∅ ⊢∅ P and P →∗ P ′, then P ′ has no errors.

Proof. Similar to Cor.4.9. □

Theorem 7.2. If φ is decidable, then “Θ·Γ ⊢S P with φ” is decidable.

Proof. Similar to Thm.4.11. □

N ASYNCHRONOUS TYPING CONTEXT PROPERTIES
Lemma G.3. For all Γ, letting S = {s | ∃p : s[p] ∈dom(Γ)}, we have:

(1) a-consistent(Γ) ⇍= =⇒ a-safeS(Γ);
(2) a-liveS(Γ) ⇍= =⇒ a-safeS(Γ);
(3) a-liveS(Γ) ⇍= =⇒ a-dfS(Γ);
(4) a-ntermS(Γ) ⇍= =⇒ a-dfS(Γ);
(5) a-consistent(Γ) ⇍= ≠⇒ a-dfS(Γ);
(6) a-consistent(Γ) ∧ a-dfS(Γ) ⇍=≠⇒ a-liveS(Γ);
(7) a-termS(Γ) ⇍= =⇒ a-live

++
S

(Γ);
(8) a-termS(Γ) ⇍= =⇒ a-boundS(Γ);
(9) a-boundS(Γ) ⇍= ≠⇒ a-safeS(Γ) ∨ a-dfS(Γ);
(10) a-live

++
S

(Γ) ⇍==⇒ a-live
+
S
(Γ) ⇍==⇒ a-liveS(Γ).

consistent

GG-

safe

df livelive+

live++

boundn
te
rm

term

Proof. The negated implications in the statement are proved in Ex.G.4. The remaining implications are similar to

those in Lemma 5.9, using the corresponding asynchronous definitions. □

Lemma N.1. Assume dom(Γ)= {s} and live(Γ). Then, for all synchronous (i.e., queue-less) typing contexts Γ′:

(1) Γ →∗ Γ′ implies Γ →{s }
∗ Γ′;

(2) Γ →{s }
∗ Γ′′ implies ∃Γ′ : Γ′′ →{s }

∗ Γ′ and Γ →∗ Γ′.

Proof. (Item 1) We first prove the statement for one reduction step, i.e.:

∀Γ, Γ′ : Γ → Γ′ implies Γ →{s }→{s } Γ
′

(188)

where the two-step reduction represents a message being queued, and then immediately consumed — which always

possible by the hypothesis live(Γ). Then, we prove the main statement by induction on the number of reductions in

Γ →∗ Γ′, using (188) for the inductive step.
(Item 2) Consequence of [Deniélou and Yoshida 2013, Thm 4.1] and [Bocchi et al. 2015, Thm. 6], that say (roughly):

if Γ is live, then queued outputs are eventually consumed, and external choices are eventually triggered. More in detail:

if Γ′′ contains queued messages, we can let Γ′′ reduce by consuming each queued message, thus reaching a queue-less

typing context that is the desired Γ′; then, we can reorder the transitions in Γ →{s }
∗ Γ′′ →{s }

∗ Γ′ into a sequence of

alternating queuing/dequeuing transitions (as in (188)) — which always possible by the hypothesis live(Γ); the resulting
alternating queueing/dequeueing reductions give a corresponding synchronous reduction Γ →∗ Γ′. □

Less Is More: Multiparty Session Types Revisited (Technical Report) 71

Lemma N.2. Assume dom(Γ)= {s} and live(Γ). Then, a-live{s}(Γ).

Proof. Let us define φ=a-beh{s}(Γ) similarly to Def. K.1, but using asynchronous reductions→S. Then, we prove

that φ is an asynchronous liveness property, by using Lemma N.1(2) to show that active external choices can be triggered

(clause [LA-&] of Def. G.2(4)), and queued messages can be consumed (clause [LA-!] of Def. G.2(4)). Finally, by Def. G.2(4),

we conclude a-live{s}(Γ). □

Lemma N.3. Assume dom(Γ)= {s} and live+(Γ). Then, a-live+
{s}

(Γ).

Proof. We use φ as in the proof of Lemma N.2, that we know is an {s}-liveness property by Lemma 5.9(7) and

Lemma N.2. In order to prove the “moreover. . . ” clauses of {s}-liveness+, we also use the following result, that follows

by Lemma N.1(2):

Proposition N.4. If live(Γ) and Γ →{s }
∗ Γ0, Γ1 and Γ0 →{s }→{s }

∗ Γ0,
there are Γ′

0
, Γ′

1
queue-less, such that Γ0 →{s }

∗ Γ′
0
→→∗ Γ′

0
and Γ1 →{s }

∗ Γ′
1

and Γ →∗ Γ′
0
, Γ′

1

i.e., if Γ is live and produces a loop under asynchronous semantics, then it also produces a corresponding loop under

synchronous semantics.

Then, to prove the “moreover. . . ” parts of clauses [LA-&
+
]/[LA-!

+
] of Def. G.2(5), we proceed by contradiction, similarly

to the proof of Thm.K.15: we assume that there is no asynchronous traversal set that satisfies the requirements of

Def. G.2(5) (similarly to step (113)); this means that Γ can perform asynchronous reduction loops that, by Prop.N.4,

imply the existence of corresponding synchronous reduction loops, whose form matches the one described in steps

(114)–(116). This leads to the contradiction that Γ is not live
+
. Therefore, clauses [LA-&

+
]/[LA-!

+
] of Def. G.2(5) hold, and

we conclude a-live
+
{s}

(Γ). □

	Abstract
	1 Introduction
	2 Multiparty Session Types
	2.1 The Multiparty Session -Calculus
	2.2 Types, Subtypes, and Typing
	2.3 Towards Subject Reduction and Type Safety

	3 Limitations and Theoretical Issues of Classic MPST
	3.1 Consistency and Subject Reduction
	3.2 More Examples of Correct, yet Non-Consistent Protocols

	4 A New, General Multiparty Session Type System
	5 Verifying Run-Time Properties of Processes, Using Types
	5.1 Run-Time Properties of Processes
	5.2 Session Fidelity
	5.3 Typing Context Properties
	5.4 Relationships Between Typing Context Properties
	5.5 Static Verification of Run-Time Process Properties

	6 Verifying Type-Level Properties via Model Checking
	7 Asynchronous Multiparty Session -Calculus
	8 Conclusion, Related and Future Work
	8.1 Classic Multiparty Session Types (MPST)
	8.2 Non-Classic Multiparty Session Types
	8.3 Binary Sessions Without Duality
	8.4 Type Systems for the -Calculus
	8.5 Choreographies and Communicating Finite-State Machines (CFSMs)
	8.6 Future Work

	Acknowledgments
	References
	A Multiparty Session -Calculus
	B Session Fidelity
	C Asynchronous Multiparty Session -Calculus
	D Asynchronous Multiparty Session Types
	E Problems of Classic Asynchronous MPST
	F General Asynchronous Multiparty Session Type System
	G From Async Typing Context Properties to Process Properties
	H Additional Related and Future Work
	H.1 Conversation Types
	H.2 Global Types Semantics and Choreographic Programming
	H.3 Asynchronous Subtyping

	Additional references for the Appendix
	I Session Inversion and Fidelity
	J Subject Reduction
	K Typing Context Properties
	L Asynchronous Session Fidelity
	M Subject Reduction for Asynchronous MPST
	N Asynchronous Typing Context Properties

