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Abstract
In multiparty session types, interconnection networks identify
which roles in a session engage in direct communication. If role
p is connected to role q, then p exchanges a message with q.
In a session-based interpretation of classical linear logic (CLL),
this corresponds to the composition, or cut, of dual propositions.
This paper shows that well-formed interactions represented in a
session-based interpretation of CLL form strictly less expressive
interconnection networks than those specified in a multiparty ses-
sion calculus. To achieve this, we introduce a new compositional
synthesis property, dubbed partial multiparty compatibility (PMC),
enabling us to build a global type denoting the interactions obtained
by iterated composition of well-typed CLL processes. We show that
the CLL composition rule induces PMC global types without circu-
lar interconnections between three participants. PMC is then used
to define a new CLL multicut rule which can form general multi-
party interconnections, preserving the deadlock-freedom property
of CLL.

Keywords Session Types, Classical Linear Logic, the Pi-Calculus,
Multiparty Session Types and Synthesis.

1. Introduction
The discovery of linear logic [12] and the early studies of its con-
nections with concurrent processes [1–3] can be seen as the origin
of a Curry-Howard correspondence for linear logic with typed in-
teractive behaviours, which have led to the more recent develop-
ments connecting linear logic and (binary) session types [5]. The
understanding of linear logic propositions as session types, proofs
as concurrent processes and proof simplification as communication
has produced new logically-motivated techniques for reasoning
about concurrent processes [16, 18, 21, 24, 26, 27], while also offer-
ing guidance to clean design and implementations for programming
languages based on communication with strong safety guarantees
such as protocol fidelity and deadlock freedom [19, 22, 25].

In linear logic-based session frameworks, processes communi-
cate through a session channel that connects exactly two distinct
subsystems typed by dual propositions: when one party sends, the
other receives; when one party offers a selection, the other chooses.
Sessions may be dynamically exchanged via a session name or cre-
ated by invocation of replicated servers. A combination of these
features enables the modelling of complex behaviours between an
arbitrary number of concurrent threads.

However, the linear typing discipline induced by linear logic
enforces very strong separation properties on the network topology
of communicating processes, to the extent that composition identi-
fies a process by a single of its used linear channels, requiring all
other linear channels in the composed processes to be disjoint and
implemented by strictly separate processes. It is from these strong
separation properties that deadlock-freedom arises in a rather sim-
ple typing discipline, at the cost of disallowing network topologies
with more intricate connectedness properties.

This paper provides a fresh look at session-based logical pro-
cesses, based on concepts originating in multiparty session types.
Motivated by an industry need [23] to specify protocols with more
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Figure 1: Interconnection networks of (1)
than two interconnected, interacting parties, the multiparty session
types framework [14] develops a methodology where types explic-
itly describe interconnection networks between many communicat-
ing processes. The basic idea of the framework consists of taking a
global type (i.e. a global description of the multiparty interaction),
from which we generate (or project) local types for each communi-
cating party (specifying how a given party interacts with all others)
and check that the process implementation of each party adheres to
its local type. Once each process is typechecked locally, a group of
many participants in a session can interact without deadlock, fol-
lowing a global type.

In a multiparty session type, interconnection networks identify
which roles in a session engage in direct communication. If partic-
ipant p is connected to another participant q, then p will exchange
a message with q. Consider the following 3-party interaction spec-
ified as a global type G:

G = p→ q : (nat).p→ r : (bool).r→ q : (char).end (1)

The typeG specifies an interaction where role p sends to roles q and
r a natural number and a boolean, respectively, followed by r send-
ing to q a string, inducing the interconnection network depicted in
Fig. 1a, realisable in a system where each role is implemented by a
separate process.

However, the topology of Fig. 1a is not realisable in linear logic-
based session frameworks, only those of Fig. 1b. We sketch three
processes with the behaviour ascribed by G, each implementing
one role in the multiparty session which are to then be composed,

P ` pq:A, pr:B Q ` pq:A⊥, qr:C R ` pr:B⊥, qr:C⊥ (2)

where P is the implementation of p with pq for communication
between p and q, and pr for communication between p and r;
Q implements role q using channel pq (dually to P ) and qr for
communication with r, and so on.

While each process is individually typable in linear logic-based
session type systems, no 3-way composition is typable. In essence,
the multiparty-based approach of identifying processes with roles
leads to richer interconnection topologies than the identification of
processes with channels during composition, at the cost of requir-
ing global types and projection to ensure deadlock-freedom.

In this work, we make precise the informal argument sketched
above, first showing a negative result on the network intercon-
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nectability in a session-based interpretation of Classical Linear
Logic (CLL), translating it into a multiparty session calculus (MP),
which then informs a conservative extension of CLL that allows for
richer connection topologies. Though a vast amount of works on
expressiveness of process calculi have been developed as encod-
ability in the literature, our approach differs insofar as our trans-
lations focus on a preservation of connectability of participants
(threads) and typability, without using semantic equivalences (e.g.
bisimulations). We show that well-formed interactions in CLL form
strictly less expressive interconnection networks than those of MP.

To demonstrate this result, we infer session flows from CLL
processes and use them to synthesise a global type. For this, we
introduce a new compositional synthesis property, dubbed partial
multiparty compatibility (PMC), which enables us to build a global
type that represents the interactions obtained by iterated composi-
tion of CLL processes. We show that the CLL composition rule in-
duces PMC global types without circular interconnections between
more than three participants (excluding the topology of Fig. 1a).

The translations from CLL into MP give two positive results:
First, CLL can be used to guarantee deadlock-freedom and termi-
nation of a (restricted) class of MP-processes with delegation and
shared channels, which is not normally guaranteed by MP-typing
systems. Secondly, PMC enables us to define a new multicut rule in
CLL which can form general multiparty interconnections, but pre-
serves the deadlock-freedom property of CLL processes. In contrast
with [8], our framework does not require any modifications to the
syntax of propositions or CLL processes, only requiring the intro-
duction of a multicut rule that is guided by PMC. We also do not
require projection from global types, thus preserving an essence of
the logical interpretations of session types.

We summarise the contributions of this work:

• A type preserving translation of typed interactions in a session-
based interpretation of classical linear logic without channel
passing and exponentials (basic CLL) into a single multiparty
session represented in MP (§ 3).
• A compositional synthesis property, partial multiparty compat-

ibility (PMC) (§ 4), which we use to show that the interconnec-
tion networks of CLL processes are less expressive than those
of a single multiparty session in MP (§ 5).
• A systematic extension of these results to full CLL (with chan-

nel passing and exponentials), showing that full CLL may be en-
coded into several sessions in MP, still with no interconnection
circularity (§ 6,§ 7). As a consequence we obtain a deadlock-
free typing discipline for interleaved multiparty sessions.
• An extension of CLL with multicut, based on PMC and the

developed translations, allowing us to type a range of untypable
examples in previous works on MP and its relationship with
linear logic [8], still ensuring deadlock-freedom and without
modifying the types or syntax of CLL (§ 8).

We discuss related work in § 9. The appendix § A lists omitted
definitions and proofs.

2. Processes, types and typing systems
This section introduces the two process calculi and typing disci-
plines used in our development: the binary session calculus CLL
(§ 2.1) which is typed using (a fragment of) the session type inter-
pretation of classical linear logic [7, 27]; and the multiparty session
calculus MP [9, 14]. To obtain our first negative result (§ 5), we re-
move channel passing and replication, addressing these features in
§ 6 and 7, respectively. Both calculi have a synchronous semantics.

(1)

0 `CL a:1

(⊥)

P `CL ∆

P `CL a:⊥,∆

(⊗)
Ψ `M : τ P `CL a:A,∆; Ψ

a〈M〉.P `CL a:τ ⊗A,∆; Ψ

(`)
P `CL a:A,∆;x:τ,Ψ

a(x).P `CL a:τ `A,∆; Ψ

(⊕)
P `CL a:Aj ,∆ j ∈ I

a.lj ;P `CL a:⊕ {li : Ai}i∈I ,∆

(&)
P1 `CL a:A1,∆ . . . Pn `CL a:An,∆

a.case{li : Pi}i∈I `CL a: & {li : Ai}i∈I ,∆
(cut)
P `CL ∆, a:A Q `CL ∆′, a:A⊥

(νa)(P | Q) `CL ∆,∆′

(id)

[a↔ b] `CL a:A, b:A⊥

Figure 2: CLL Typing Rules

2.1 Classical Linear Logic as binary session types
We give a brief summary of the interpretation of classical linear
logic as sessions, consisting of a variant of those of [7, 27]. The
syntax of binary session processes PL, QL is given below. Session
channels are ranged over with a, b, c. Basic data values (such as
strings and integers) are ranged over with M,N :
PL, QL ::= a〈M〉.PL | a(x).PL Value send and receive

| a.l;PL | a.case{li : PL}i∈I Selection and branching
| 0 | (PL | QL) Inaction and parallel
| (νa)PL | [a↔ b] Hiding and forwarding

We consider a synchronous process calculus with basic value
communication, branching and selection. The forwarder [a ↔ b]
identifies the channels a and b as dual behaviours, implemented in
the operational semantics as a renaming operation. The remaining
constructs are standard. We write fn(PL) and bn(PL) for the free
and bound channels of PL, respectively. We often omit 0 and the ·L
subscript for readability.

The syntax of (logical) binary session types is given below
(where τ ranges over basic data types):

A,B ::= τ ⊗A | τ`A 1 | ⊥
| ⊕{li : Ai}i∈I | &{li : Ai}i∈I

Following [7, 27], ⊗ corresponds to output followed by behaviour
A, ` to input followed by A, ⊕ and & to selection and branch-
ing behaviours. We note that input and output are restricted to just
value communication. The dual of A, written A⊥, is defined as:
1⊥,⊥ ⊥⊥,1 (τ ⊗A)⊥, τ `A⊥ (τ `A)⊥, τ ⊗A⊥

(⊕{li:Ai}i∈I)⊥,&{li:A⊥i }i∈I (&{li:Ai}i∈I)⊥,⊕{li:A⊥i }i∈I
We define the typing system CLL in Fig. 2, assigning the usage of
channels in PL processes to types A,B. The main typing judgment
is written PL `CL ∆; Ψ, defined up to structural congruence (see
§ A.1),where ∆ is a un-ordered set of hypotheses of the form a:A,
where a stands for a free session channel in PL and A is a binary
session type; Ψ is an un-ordered set of hypotheses of the form x:τ ,
which refer to the values that are sent and received in processes.
Throughout the paper, since values are somewhat orthogonal to our
development, we often omit the Ψ context region for the sake of
readability. The typing judgment thus states that process PL uses
channels according to the session discipline ascribed by ∆. We as-
sume all channel names in ∆ are distinct. We write ∆,∆′ for the
union of ∆ and ∆′, only defined when channels in ∆ and ∆′ are
distinct (Appendix A.1 lists explanations of each rule).

The (id) rule gives rise to the following identity process, which
is generated inductively on a given type. The identity process is
used in the translation from CLL to MP later.

Definition 2.1 (Identity Process). Let A be a session type. We de-
fine the process idA(a, b), denoting the copycat between channels a
and b at type A, typable as: idA(a, b) `CL a:A, b:A⊥ , by induction
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on the structure of A as follows:

idτ⊗A(a, b) , b(n).a〈n〉.idA(a, b)

idτ`A(a, b) , a(n).b〈n〉.idA(a, b)

id⊕{li:Ai}i∈I (a, b) , b.case{li : (a.li; idAi(a, b))}i∈I
id&{li:Ai}i∈I (a, b) , a.case{li : (b.li; idAi(a, b))}i∈I

id1(a, b) , 0 id⊥(a, b) , 0 �

The reduction semantics for CLL is defined by PL −→ QL up to
structural congruence ≡ (we omit the homomorphic cases):

a〈M〉.P | a(x).Q −→ P | Q{M/x}
a.lj ;P | a.case{li:Qi}i∈I −→ P | Qj (j ∈ I)

(νa)([a↔ b] | P ) −→ P{b/a} (b 6∈ fn(P ))

Definition 2.2 (Deadlock-freedom). A closed processP is deadlock-
free if for all P ′ such that P →∗ P ′ 6→, P ′ ≡ 0. �

Proposition 2.1 (Deadlock-freedom in CLL [7, 27]). Suppose
P `CL ∆, where ∆ is either empty or only contains 1 or ⊥. P
is deadlock-free.

2.2 Multiparty session calculus
We introduce the MP calculus of multiparty sessions, where pro-
cesses P,Q use channels annotated by roles of the multiparty ses-
sion in which they are used.

P,Q ::= c[p]〈M〉;P | c[p](x);P Value send and receive
| c[p] C l;P | c[p] B {li:Pi}i∈I Selection and branching
| 0 | (P | Q) | (νs)P Inaction, parallel, hiding

c ::= y | s[p]

Role names are identified by p, q, r. Channels are ranged over by
s, t. As before, we write fn(P ) and bn(P ) for the free and bound
channels of P , respectively.

Role annotated channels s[p] in MP are assigned local types,
ranged over by S, T , denoting the behaviour that role p performs
on the given channel. Local types are defined by the grammar:

S, T ::= p↑(τ);T | p↓(τ);T
| ⊕p{li:Ti}i∈I | &p{li:Ti}i∈I | end

The local types p↑(τ);T and p↓(τ);T denote output and input to
role p of a value of type τ , followed by behaviour T , respectively.
Types ⊕p{li:Ti}i∈I and &p{li:Ti}i∈I denote the emission (resp.
reception) of a label li to (resp. from) role p, followed by behaviour
Ti. end denotes no further behaviour.

We define the set of roles of local type T , denoted by roles(T ),
as the set of all roles occurring in type T . We define the typing
system MP in Fig. 3, assigning the usage of role-annotated channels
to local types. The judgment P `MP ∆; Ψ, where ∆ is an un-
ordered set of hypotheses of the form s[p]:T , denotes that P uses
its session channels according to the specification of ∆, with data
variables tracked in Ψ (we often omit Ψ for presentation purposes).
As before, we assume all bindings in ∆ are disjoint and write ∆,∆′

for the union of ∆ and ∆′ only defined when both contexts are
disjoint and we use a judgment Ψ `M : τ for data values.

The type system relies on a notion of coherence, written co(∆),
which ensures that ∆ contains a local type for each role involved in
interactions in ∆. Moreover, coherence ensures that local types of
interacting roles contain the necessary dual communication actions.
(see § A.2 for a definition of coherence).

We define the dual of a binary type T , written T [13] as:
↑ (τ);T ,↓ (τ);T , ⊕{li:Ti}i∈I , &{li:Ti}i∈I and end , end;
and the dual rules for ↓ and &.

The reduction semantics for MP processes are given below
(omitting the structural congruence closure and homomorphic
rules). They are fundamentally identical to the reduction rules of
§ 2.1, but where we require not just the session channel to match

(vsend)
Ψ `M : τ P `MP ∆, s[p]:T ; Ψ

s[p][q]〈M〉;P `MP ∆, s[p]:q↑(τ);T ; Ψ

(vrecv)
P `MP ∆, s[p]:T ;x:τ,Ψ

s[p][q](x);P `MP ∆, s[p]:q↓(τ);T ; Ψ

(sel)
P `MP ∆, s[p]:Tj j ∈ I

s[p][q] C lj ;P `MP ∆, s[p]:⊕ q{li : Ti}i∈I

(branch)
P1 `MP ∆, s[p]:T1 . . . Pn `MP ∆, s[p]:Tn

s[p][q] B {li:Pi}i∈I `MP ∆, s[p]: & q{li : Ti}i∈I

(end)
∆ end only
0 `MP ∆

(comp)
P `MP ∆ Q `MP ∆′

P | Q `MP ∆,∆′

(close)
P `MP ∆, s[1] : T1, . . . , s[n] : Tn co(s[1]:T1, . . . , s[n]:Tn)

(νs)P `MP ∆

Figure 3: MP Typing Rules

but also the role assignment to be consistent:

s[p][q]〈M〉;P | s[q][p](x);Q −→ P | Q{M/x}
s[p][q] / lj ;P | s[q][p] . {li:Qi}i∈I −→ P | Qj (j ∈ I)

We highlight that, in contrast to the CLL system, the typing system
MP alone does not ensure deadlock-freedom.

Fact 2.1 (Deadlock in MP). There exists a dead-locked process P
that is typable by the rules of Figure 3, i.e. P `MP ∅, does not imply
that P is deadlock-free.
Proof. TakeP = s[p][r](x); s[p][q]〈7〉,Q = s[q][p](x); s[q][r]〈tt〉,
R = s[r][q](x); s[r][p]〈”a”〉. (νs)(P |Q |R) `MP ∅, butP |Q |R
is deadlocked.

3. Relating the CLL and MP systems
In this section we develop one of our main contributions: the con-
nection between the CLL and MP typing systems. To motivate our
approach, consider the following CLL typable processes:

PL , a〈7〉.b(x).a〈”hello”〉.0 `CL a:nat⊗ str ⊗ 1, b:nat`⊥
P ′L , b(x).a〈7〉.a〈”hello”〉.0 `CL a:nat⊗ str ⊗ 1, b:nat`⊥

Both PL and P ′L are typable in the same context, however PL first
outputs on a, then inputs on b and then outputs on a again, whereas
P ′L flips the order of the first two actions. By the nature of process
composition in CLL, both processes can be safely composed with
R1

L `CL a:nat ` str ` ⊥ and R2
L `CL b:nat ⊗ 1. We also observe

that, since both PL and P ′L are typable in the same context, the
typing discipline of CLL does not capture cross-channel sequential
dependencies (i.e. it cannot distinguish the ordering of actions on
different channels within a process at the level of types).

We now consider a mapping from CLL to MP. The following
processesQ andQ′ are idealised translations of PL and P ′L. Session
s[q][p] denotes channel s located at participant p which will interact
with another participant q:

Q , s[q][p]〈7〉; s[q][r](x); s[q][p]〈”hello”〉;0
Q′ , s[q][r](x); s[q][p]〈7〉; s[q][p]〈”hello”〉;0

Morally, the processes PL and Q above are similar, insofar as both
send 7 to a destination (resp. a and role p), followed by an in-
put (resp. on b and from r), followed by an output of “hello” to
the initial destination. A similar argument can be made for P ′L
and Q′. However, despite PL and P ′L having the same types, we
have that Q `MP s[q]:p↑(nat); r↓(nat); p↑(str); end, but Q′ `MP

s[q]:r↓(nat); p↑(nat); p↑(str); end. By refining channels with role
annotations within a multiparty session, MP can distinguish order-
ings of actions performed on different session sub-channels.
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Thus, our goal is to find a precise way to not only systematically
map process PL to process Q (and P ′L to Q′), but also generate the
corresponding local typing environment in a type preserving way.
To relate CLL with MP processes we define a mapping from session
channels in CLL to role-annotated session channels in MP, such
that given a cut-free process in CLL (intuitively, a single thread),
we consistently map its channels to role-annotated channels in the
MP system, capturing the cross-channel sequential dependencies
that are not codified at the level of CLL session types.

Definition 3.1 (Channel to Role-Indexed Channel Mapping). Let
PL `CL ∆ such that the typing derivation does not use the cut rule.
We define a channel name to role-indexed channel name mapping
σ such that for all a, b ∈ fn(PL), if a 6= b, σ(a) = s[p][q] and
σ(b) = s[p′][q′], then p = p′ ∧ q 6= q′. We discard reflexive role
assignments of the form s[p][p]. We write PL `σCL ∆ to denote such
a mapping and cσ(a), pσ(a) and dσ(a) to denote the channel, first
(principal) and second (destination) roles in the image of a in σ.

A mapping according to Def. 3.1 identifies a single-thread pro-
cess of CLL with a single role implementation in MP, such that
all its channels are mapped to same multiparty session channel
s and to the same principal role p, but to different destination
roles. Formally, we note that ∀a, b ∈ fn(PL), cσ(a) = cσ(b) and
pσ(a) = pσ(b). In the remainder of this paper, we exclude all re-
flexive role assignments.

Let PL `σCL ∆. We write σ(PL) for the process obtained by
renaming each free name a in PL with σ(a), where actions in PL

are mapped to their corresponding actions in multiparty session
processes and the forwarding construct is mapped to the renamed
identity process (Def. 2.1).

Having constructed a syntactic mapping from CLL to MP pro-
cesses, we must now find a way to generate the appropriate local
typings for processes in the image of the translation.

Definition 3.2 (Local Typing Generation). Let PL `σCL ∆, Let cσ
and pσ to refer to the unique channel and principal role of σ. We
inductively generate a local type T such that σ(PL) `MP cσ[pσ]:T
by induction on the structure of typing of PL, written JPLKσ:

J0Kσ , end
Ja〈M〉.P Kσ , dσ(a)↑(τ); JP Kσ with M : τ

Ja(y).P Kσ , dσ(a)↓(τ); JP Kσ with y : τ

Ja.lj ;P Kσ , ⊕dσ(a){lj : JP Kσ}
Ja.case{li : Pi}i∈IKσ , &dσ(a){li : JPiKσ}i∈I

J[a↔ b]Kσ , JidA(a, b)Kσ with ∆ = a:A, b:A⊥

Given the definition of a type preserving mapping of cut-free
processes in CLL to single-thread processes in MP, we account for
process composition. We define the judgement P 
σρ ∆; Γ such
that P is an n-ary composition of processes, Γ is a typing context
assigning role-indexed channel names to local types, ∆ is a typing
context assigning channel names to session types, σ is a free name
to role-indexed channel mapping (Def. 3.1) and ρ is a mapping
from bound names to role-indexed channels.

Definition 3.3 (Process Composition).
(thread)

PL `σCL ∆

PL 
σ∅ ∆; cσ [pσ ]:JPLKσ
(comp)

PL `σCL ∆, a:A QL 
σ
′
ρ ∆′, a:A⊥; Γ

?


ρ′ = ρ ∪ (a, cσ [pσ(a)][dσ(a)])

cσ = cσ′ pσ(a) = dσ′ (a) dσ(a) = pσ′ (a)

∀z ∈ ∆, y ∈ ∆′.dσ(z) 6= dσ′ (y) ∧ dσ(z), dσ′ (y) 6∈ ρ

(νa)(PL | QL) 
(σ′∪σ)\{a}
ρ′ ∆,∆′; Γ, cσ [pσ ]:JPLKσ

Rule (comp) above defines the composition of a single-thread CLL
process with an n-ary composition of CLL processes which can be
mapped to MP typed processes. The rule ensures that the resulting
mappings are consistent and that the resulting process is well-
formed in both CLL and MP. Composition is only defined when
both σ and σ′ map a to the same multiparty session channel, where
the destination role in σ(a) matches the principal role in σ′(a),
and vice-versa. Moreover, since roles are implemented by single
threads and composition in CLL only connects a single channel,
we enforce that channels in ∆ and channels in ∆′ cannot have the
same destination role (otherwise we would have the same role split
across different threads). Finally, role assignments for free names
cannot capture previously composed role assignments.

We write ρ(P ) for the renaming of bound names in P generated
by the following (we omit the congruence cases for conciseness):

ρ((νx)(P | Q)) = ρ′(P{ρ(x)/x}) | ρ′(Q{ρ(x)/x})

where ρ′ = ρ \ {x} and ρ(x) denotes s[q][p] if ρ(x) = s[p][q].
We now show that the combination of the type preserving transla-
tion of CLL to MP for cut-free processes combined with our com-
position rule preserves typing in MP.

Proposition 3.1. If P 
σρ ∆; Γ, then ρ(σ(P )) `MP Γ.

Example 3.1 (Four Threads). We show how to fully translate the
CLL process from the beginning of this section and how to form a
system through composition:
PL , a〈7〉.b(x).a〈”hello”〉.0 `CL a:nat⊗ str ⊗ 1, b:nat`⊥
RL , b〈2〉.0 `CL b:nat⊗ 1 SL , d(n).0 `CL d:nat`⊥; e:1

QL , a(n).d〈93〉.a(s).0 `CL a:nat` str `⊥, d:nat⊗ 1

We define σ, σ1, σ2, σ3 such that:
σ(PL) = s[p][q]〈7〉; s[p][r](a); s[p][q]〈”hello”〉;0
σ1(RL) = s[r][p]〈2〉;0 σ3(SL) = s[s][q](n);0
σ2(QL) = s[q][p](n); s[q][s]〈93〉; s[q][p](s);0

We thus have:
JPLKσ = q↑(nat); r↓(nat); q↑(str); end JRLKσ1 = p↑(nat); end
JQLKσ2 = p↓(nat); s↑(nat); p↓(str); end JSLKσ3 = q↓(nat); end

Let Γ = s[p]:JPLKσ, s[q]:JQLKσ1 , s[r]:JRLKσ2 , s[s]:JSLKσ3 . It is
then straightforward to see that the following judgment is derivable:

(νa, b, c, d)(PL | QL | RL | SL) 
∅ρ e:1; Γ

Example 3.2 (Choice and Branching). We illustrate how our
framework handles choice and branching, by considering the fol-
lowing set of processes. As we discuss in § 4, this typable branching
behaviour in CLL is not typable in the previous work on multiparty
logic [8]:

PL , a.case{l1:b.l2;0, l3:b.l4;0} Q1
L , a.l1;0

Q2
L , a.l3;0 RL , b.case{l2:0, l4:0}

with: PL `CL a: & {l1:⊥, l3:⊥}, b:⊕ {l2:1, l4:1}
QiL `CL a:⊕ {l1:1, l3:1} RL `CL b: & {l2:⊥, l4:⊥}, w:1

We carry out a mapping from the processes above to MP by defin-
ing σ, σ1 and σ2 such that:

σ(PL) = s[p][q] . {l1:s[p][r] / l2;0, l3:s[p][r] / l4;0}
σ1(Q1

L) = s[q][p] / l1;0 σ1(Q2
L) = s[q][p] / l3;0

σ2(R) = s[r][p] . {l2:0, l4:0}
We can thus generate the following local types:

JPLKσ = &q{l1:⊕ r{l2:end}, l3:⊕ r{l4:end}}
JQ1

LKσ1 = ⊕p{l1:end} JQ2
LKσ1 = ⊕p{l3:end}

JRLKσ2 = &p{l2:end, l4:end}

Let Γ = s[p]:JPLKσ, s[q]:JQiLKσ1 , s[r]:JRLKσ2 . Then we have:

(νa, b)(PL | QiL | RL) 
∅ρ w:1; Γ
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4. Partial multiparty compatibility
This section studies a compositional concurrent synthesis property,
dubbed partial multiparty compatibility (PMC). As illustrated by
Fact 2.1, a multiparty session type theory [9, 14] cannot guarantee
deadlock-freedom if we do not rely on either (1) a projection from
a global type; or (2) a global synthesis property called multiparty
compatibility [11, 17]. For example, the previous counterexample
can be avoided if we start from the following global type:

G = p→ q : (nat).q→ r : (bool).r→ p : (char).end (3)

then type each process with the following local types.
Tp = q↑(nat); r↓(char); end, Tq = p↓(nat); r↑(bool); end

Tr = q↓(bool); p↑(char); end (4)

or we may build (synthesise) G in (3) from {Tp, Tq, Tr} in (4). If
we start from a projectable global type or are able to synthesise a
global type, the example in Fact 2.1 is no longer typable.

Given that CLL employs a binary form of composition, to prove
negative results about expressiveness or define multicut rules in
later sections, we extend a global synthesis condition to a binary
(partial) relation. We introduce partial global types whose arrow
p q represents a global interaction which has not yet been com-
posed with another party (e.g. it denotes the emission from p to q,
not yet composed with the reception by q). When we compose two
partial specifications of participant p and q by fusing two partial
global types, p  q is changed to p → q, preserving the order-
ing of communications. When we finish composing all participants
(thus reconstructing a complete global type – one without partial
arrows), deadlock-freedom is guaranteed.

4.1 Partial global types and semantics
We first define a partial global type G, consisting of a combination
of complete global types and endpoint interactions.

Definition 4.1 (Partial Global Types). The grammar of partial
global types (G, G′, ...) is defined as:

G ::= end | p→ q : (τ).G | p→ q : {lj :Gj}j∈J
| p q :↑ (τ).G | p q :↓ (τ).G
| p q : ⊕{lj :G}j∈J | p q : &{lj :Gj}j∈J

We omit ↑, ↓,⊕ and & from the partial global types when clear
from context or unnecessary. Given a partial global type G, we
write roles(G) to denote the set of role names occurring in G. We
write p q ∈ G if p q occurs in G. Similarly for p→ q ∈ G.
We say G is complete if p q 6∈ G for all p, q ∈ roles(G). �
The first three constructs of Def. 4.1 represent the standard global
types [9, 14]. Global type p → q:(τ).G means that participant
p sends a value of type τ to participant q, and the rest of inter-
action is specified by G. Global type p → q:{lj :Gj}j∈J means
that participant p selects label li, then q’s i-th branch will be cho-
sen, becoming Gi. On the other hand, partial global types (the last
four components) denote half of a complete global interaction. The
modes (↑, ↓,⊕,&) in partial global types indicate which compo-
nent of the partial global interaction is being satisfied. For instance,
p  q :↑ (τ) denotes the contribution of the emission component
of the interaction (from a local type q↑(τ)), whereas p q :↓ (τ)
denotes the reception component. A similar reasoning applies to
selection and branching.

We introduce a standard notion of projection from global to lo-
cal types, defined in terms of a merge operation for branchings [11],
written T t T ′, ensuring that if the locally observable behaviour of
the local type is not independent of the chosen branch then it is
identifiable via a unique choice/branching label (the merge opera-
tor is otherwise undefined) (see Appendix A.3).

Definition 4.2 (Projection). LetG by a global type. The projection
of G for a role p is defined by the function G � p below. If no side

conditions hold then projection is undefined.

s→ r : (τ).G′ � p =


r↑(τ); (G′ � p) if p = s

s↓(τ); (G′ � p) if p = r

G′ � p otherwise

s→ r : {lj :Gj}j∈J � p =


⊕r{lj :Gj � p}j∈J if p = s

&s{lj :Gj � p}j∈J if p = r

tj∈JGj � p otherwise
end � p = end

As an illustration of merging, consider

Gm = q→ p:{l1:p→ r:{l2:end}, l3:p→ r:{l4:end}} (5)

Then we have

Gm�p = &q{l1:⊕ r{l2 : end}, l3:⊕ r{l4 : end}}, (6)
Gm�q = ⊕p{l1 : end, l3 : end}, Gm�r = &p{l2:end, l4:end}

To define the semantics of global and local types, we introduce
a swapping relation allowing for the permutation of independent
global actions.
Definition 4.3 (Swapping). We define swapping, written ∼sw as
the smallest congruence on complete global types satisfying the
following where p 6= p′ and q 6= q′:

(ss) p→ q : (τ).p′ → q′ : (τ ′).G ∼sw p′ → q′ : (τ ′).p→ q : (τ).G

(sb) p→ q : (τ).p′ → q′ : {li : Gi}i∈I
∼sw p′ → q′ : {li : p→ q : (τ).Gi}i∈I

(bb) p→ q : {li : p′ → q′ : {l′j : Gj}j∈J}i∈I
∼sw p′ → q′ : {l′j : p→ q : {li : Gj}i∈I}j∈J

Swapping extends to partial global types in the obvious way. �
The operational semantics for local, global types and configura-

tions are given by labelled transition systems (LTS).
Definition 4.4 (LTS for Local Types). We define the syntax of
labels as:

` ::= pq↑(τ) | pq↓(τ) | pq / l | pq . l
We define ` as pq↑(τ) = qp↓(τ) and pq / l = qp . l and vice-

versa. The transition relation between local types T `−→ T ′ for role
p is defined by the following rules (assuming k ∈ I in (sel/br)):

(out) q ↑ (τ);T
pq↑(τ)−→ T (in) q ↓ (τ);T

pq↓(τ)−→ T

(sel) ⊕ q{li:Ti}i∈I
pq/lk−→ Tk (br) &q{li:Ti}i∈I

pq.lk−→ Tk

Definition 4.5 (LTS for Global Types). The transition relation

between global types G `·`′−→ G′ is defined by the following rules:

(io) p→ q : (τ).G
pq↑(τ)·qp↓(τ)−→ G

(sb) p→ q : (li : Gi)i∈I
pq/lk·qp.lk−→ Gk

(sw) G1 ∼sw G′1 ∧G′1
`·`′−→ G′2 ∧G′2 ∼sw G2 ⇒ G1

`·`′−→ G2

Definition 4.6 (Configurations). Given a set of rolesP , we define a
configuration asC = (Tp)p∈P . The synchronous transition relation
between configurations is defined as:

(com)
Tp

`−→ T ′p Tq
`−→ T ′q Tr = T ′r r 6= p, r 6= q

(Tp)p∈P
`·`−→ (T ′p)p∈P

We write G
~̀
−→ Gn−1 if G

`1·`2−→ G1 · · ·
`n−1·`n−→ Gn−1 and

~̀= `1 · · · `n and similarly for T and C. We define traces of global

type G0 as Tr(G0) = {~̀ | G0

~̀
−→ Gn n ≥ 0}. Similarly for

configurations.

Proposition 4.1 (Trace Equivalence). Suppose G is a well-formed
global type and the set of participants in G is P . Assume C =
(Tp)p∈P = (G�p)p∈P . Then Tr(C) = Tr(G).
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4.2 Partial Multiparty Compatibility
In order to define partial multiparty compatibility, we first define
multiparty compatibility for synchronous semantics, which is sim-
pler than the one for an asynchronous semantics [11, 17].

Definition 4.7 (Synchronous Multiparty Compatibility). Configu-
ration C0 = (T0p)p∈P is synchronous multiparty compatible if for

all C0

~̀
−→ C = (Tp)p∈P and Tp

`−→ T ′p ,

1. if ` = pq↑(τ) or pq / l, there exists C
~̀′
−→ C′

`−→ `−→ C′′;

2. if ` = pq↓(τ), there exists C
~̀′
−→ C′

`−→ `−→ C′′; or

3. if ` = pq . l, there exists `1 = pq . l′, C
~̀′
−→ C′

`1−→ `1−→ C′′

where ~̀′ does not include actions from or to p.

One can check that the two sets of local types in (4) and (6) satisfy
synchronous multiparty compatibility.

Definition 4.8 (Deadlock-freedom). C = (Tp)p∈P is deadlock-

free if for all C
~̀
−→ C1, there exists C′ = (T ′p)p∈P such that

C1

~̀′
−→ C′ and T ′p = end for all p ∈ P .

Theorem 4.1 (Deadlock-freedom, MC and a Global Type). The
following three statements are equivalent.

1. (MC) A configuration C is synchronous multiparty compatible.
2. (DF) C is deadlock-free.
3. (WF) There exists well-formed G such that Tr(G) = Tr(C).

Multiparty compatibility is a global property defined using the set
of all participants (modelled by communicating automata in [11,
17]). To define a compositional (local) multiparty compatibility,
we introduce the composition of two partial global types, which
we dub as fusion.

Definition 4.9 (Fuse). We define the fusing of two partial global
typesG1, G2, written fuse(G1, G2), inductively on the structure of
G1 and G2, up to the swapping relation ∼sw:
fuse(end, end) = end
fuse(p q : ↑(τ).G′1, p q : ↓(τ).G′2) = p→ q : (τ).fuse(G′1, G

′
2)

fuse(p q : ⊕{l : G′1}, p q : &{l : G′2, {lj : Gj}j∈J})
= p→ q : {l : fuse(G′1, G

′
2), {lj : Gj}j∈J}

fuse(p q : ↑(τ).G1, G2) = p q : ↑(τ).fuse(G1, G2)
if not p q : ↓(τ).G′2 ∼sw G2

The last rule (which does not overlap with the first three rules) can
be extended similarly to input, branching and selection in partial
and complete global types. We say fuse(G1, G2) = G is well-
formed if p→ q ∈ G then p q 6∈ G and q p 6∈ G. �
We can now define the main contribution of this section: a compo-
sitional notion of partial multiparty compatibility (PMC).

Definition 4.10 (Partial Multiparty Compatibility). Suppose G1

and G2 are partial global types. G1 and G2 are partial multiparty
compatible iff fuse(G1, G2) is well-formed. �
Example 4.1 (Partial Multiparty Compatibility). (1) Consider the
following partial global types between two participants which rep-
resent a deadlock:

G1 = p q : (nat).q p : (bool).end
G2 = q p : (bool).p q : (nat).end

Then G3 = fuse(G1, G2) = p  q : (nat).q → p : (bool).p  
q : (nat).end which is not well-formed since p  q ∈ G3 but
q→ p ∈ G3.
(2) Consider (as we mention in § 5, these correspond to the partial
global types of Example 3.2. The respective complete global type
is untypable in [8]):
G1 = q p: & {l1:p r:⊕ {l2:end}, l3:p r:⊕ {l4:end}}
G2 = q p:⊕ {l1:end} G3 = p r: & {l2:end, l4:end}

We then have that:
fuse(G1, G2) = q→ p:{l1:p r:⊕ {l2:end},

l3:p r:⊕ {l4:end}}
fuse(fuse(G1, G2), G3) = q→ p:{l1:p→ r:{l2:end},

l3:p→ r:{l4:end}}

Then: fuse(fuse(G1, G2), G3) = fuse(G1, fuse(G2, G3)). �
Lemma 4.1. Suppose fuse(fuse(Gi, Gj), Gk) with {i, j, k} =
{1, 2, 3} is well-formed. Then fuse(fuse(Gi, Gj), Gk)∼sw

fuse(Gi, fuse(Gj , Gk)).

Theorem 4.2 (Compositionality). Suppose G1, ...,Gn are partial
global types. Assume for all i, j such that 1 ≤ i 6= j ≤ n, Gi and
Gj are partial multiparty compatible and G = ∪ifuse(Gk)k∈I is
a complete global type. Then G is well-formed.

5. CLL encoded as a single multiparty session
Having defined in § 3 how to translate CLL processes to MP, we
study the interconnection networks induced by CLL processes by
generating the corresponding partial global types (§ 4). We prove a
strict inclusion of interconnections of CLL into those of single MP,
by fusing the partial global types into a complete global type.

Definition 5.1 (Generating Partial Global Types). Given P such
that P `σCL ∆ we generate its partial global type, written #σ(T )
with local type T = JP Kσ as follows:

#σ(end) , end
#σ(q!(τ);T ) , pσ  q :↑ (τ).#σ(T )

#σ(q?(τ);T ) , q pσ :↓ (τ).#σ(T )

#σ(⊕q{li : Ti}i∈I) , pσ  q:⊕ {li:#σ(Ti)}i∈I
#σ(&q{li : Ti}i∈I) , q pσ : & {li:#σ(Ti)}i∈I

We write #σ(P ) for #σ(JP Kσ).

We then generate a set of partial global types G, following the
rules in Definition 3.3. We extend 
 judgment with G, written
P 
σρ ∆; Γ;G as follows:

(thread-G)
PL `σCL ∆

PL 
σ∅ ∆; cσ [pσ ]:JP Kσ ; {#σ(P )}
(comp-G)

PL `σCL ∆, a:A QL 
σ
′
ρ ∆′, a:A⊥; Γ;G (?) in (comp)

(νa)(PL | QL) 
(σ′∪σ)\{x}
ρ′ ∆,∆′; Γ, cσ [pσ ]:JP Kσ ;G ∪ {#σ(P )}

Example 5.1 (Four Threads). Using the procedure defined above,
we generate the following partial global types for Example 3.1:

#σ(P ) = p q: ↑ (nat).r  p: ↓ (nat).p q: ↑ (str).end
#σ1 (R) = r  p :↑ (nat).end
#σ2 (Q) = p q :↓ (nat).q s :↑ (nat).p q :↓ (str).end
#σ3 (S) = q s :↓ (nat).end

Where applying fuse to the partial global types above produces
the global type: p → q:(nat).q → s:(nat).r → p:(nat).p →
q:(str).end. We note that, for instance, adding a message between
r and s makes the example not typable in CLL since it introduces a
3-way cycle in the interconnection network topology. �
Example 5.2 (Choice and Branching). The partial global types
generated for Example 3.2 are G1 = #σ(P ), G2 = #σ1(Q1)
and G3 = #σ2(R) in Example 4.1(2).

We now make precise the claims in § 1. We begin by formalising
the notion of interconnection network as an un-directed graph.

Definition 5.2 (Interconnection Network). Given a global type G
we generate the interconnection network graph for the roles of G
where the nodes of the graph are the roles of G and two nodes p, q
have an edge between them (written as p↔ q) if p→ q or q→ p
or p q or q p occurs in G. �

6 2016/2/17



We first establish two basic properties of our framework: (1) we can
always fuse the partial global types of a well-formed composition;
(2) any two such partial types overlaps in at most 2 roles.

Proposition 5.1. Let P 
σρ ∆; Γ;G and ∆ = ∅ or ∆ contains only
1 or ⊥. There exists a single well-formed global type G such that
G = fuse(G) where fuse(G) denotes fusion of all partial global
types in G.

Theorem 5.1. Let P 
σρ ∆; Γ;G. For any distinct G1, G2 ∈ G we
have that roles(G1) ∩ roles(G2) contains at most 2 elements.

By the above results, we can immediately show the following
separation result between general MP global types and those in-
duced by CLL-valid processes.

Theorem 5.2. Let P 
σρ ∆; Γ;G. Let G = fuse(G). The intercon-
nection network graph for G is acyclic.

Finally, we establish that our encoding indeed produces a single
multiparty session, that is, the fusing of all partial global types in a
complete session is synchronous multiparty compatible.

Theorem 5.3. Let P 
∅ρ ∆; Γ;G and ∆ = ∅ or ∆ contains only 1
or ⊥. Then we have: (1) P →∗ 0; (2) fuse(G) is well-formed and
deadlock-free.

As a consequence of Prop. 3.1 and Theorem 5.3, the image of the
translation into MP is deadlock-free.

Corollary 5.1. If P 
∅ρ ∆; Γ and ∆ = ∅ or ∆ contains only 1 or
⊥, then ρ(σ(P )) `MP Γ is deadlock-free.

6. Channel passing
Typing rules and translations We integrate delegation (channel
passing) into our framework. In CLL this amounts to replacing the
rules for ⊗ and ` of § 2 with:

(⊗)
PL `CL ∆, y:A QL `CL ∆′, x:B

x〈y〉.(PL | QL) `CL ∆,∆′, x:A⊗B

(`)
PL `CL ∆, y:A, x:B

x(y).PL `CL ∆, x:A`B

Thus, x:A ⊗ B identifies a channel along which a process sends
a fresh y that is used according to type A, and then proceeds as B.
The channels of the subprocesses using x and y must be disjoint.
A` B denotes the dual behaviour. In MP, delegation is embodied
by the following rules (types are extended in the obvious way):

(csend)
P `MP ∆, c:T

c[q]〈c′〉;P `MP ∆, c′:T ′; c:q↑(T ′);T

(crecv)

P `MP ∆, c:T, x:T ′

c[q](x);P `MP ∆, c:q↓(T ′);T

Unlike in CLL, MP processes delegate a session by performing a
free output of an ambient session channel. Session input is dual. We
assume role identifiers in different sessions are disjoint.

To construct a mapping from CLL to MP with delegation, we
relax our single role per CLL thread restriction due to the ⊗ typ-
ing rule, which splits the context into two distinct regions: one for
usage by the emitted session and another for the continuation. If
all channels were assigned to the same role, the resulting process
would not be typable in MP, which disallows for role implementa-
tions across parallel threads.

Thus, we consider a general bijective mapping from CLL to role-
annotated MP channels, where actions in a cut-free process may
map to actions pertaining to different MP roles. Moreover, since
cut-free processes now have bound as well as free names, we define
a mapping η of bound names to variables in MP assigned to a single
role, denoting the destination role for communication along the
channel, which to maintain consistency with MP must be a different
session than that used to send or receive the delegated name.

Definition 6.1 (Name to Role-Indexed Channel Mapping). Let
PL `CL ∆ without using the cut rule. We define a name to role-
indexed channel mapping of P as a pair of mappings (σ, η) such
that: For all x, y ∈ fn(PL) such that x 6= y, if σ(x) = s[p][q] and
σ(y) = s[p′][q′], then p 6= q′∧q 6= p′∧ (p 6= p′∨q 6= q′). For all
x, y ∈ bn(PL) such that x 6= y, if η(x) = z[p] and η(y) = z[p′]
then p′ 6= p. Given η(x) = x[p], we write dη(x) for p. �

The role restrictions in Def. 6.1 guarantee that the renaming is
bijective and that in a single thread we cannot implement dual role
endpoints. In addition to Def. 6.1, we introduce a well-formedness
condition to ensure that instances of the ⊗ rule do not induce roles
being split across different threads.

Definition 6.2. Let PL `CL ∆ without using the cut rule and (σ, η)
be a mapping viz. Def 6.1. We say that (σ, η) is well-formed if for
each instance of ⊗ in the typing derivation of PL:

P1L `CL ∆1, y:A P2L `CL ∆2, x:B

x〈y〉.(P1L | P2L) `CL ∆1,∆2, x:A⊗B

For all z ∈ ∆1 and z′ ∈ ∆2, x: cσ(z) = cσ(z′) implies
pσ(z) 6= pσ(z′). PL `(σ,η)CL ∆ denotes (σ, η) is well-formed wrt
PL `CL ∆.

Since threads can now denote potentially multiple roles, we must
generate a local typing context from each thread, assigning local
types to each role annotated channel. In the cases of selection
and branching we collect actions pertaining to the principal role
assignment for each branch and combine the result with the context
generation for the continuation processes (since it may contain
different role assignments). To generate the local type for session
output, we produce the delegated session type from the usage of y
in subprocess P and proceed inductively, noting that there will be
a binding for y in the resulting context (since delegation is a free
output in MP). For session input, we dualise the delegated type so
that both input and output types match in MP, as needed.

Definition 6.3 (Local Type Generation). Let PL `(σ,η)CL ∆ where
all free and bound names are distinct. We generate a local typing
context Γ such that η(σ(PL)) `MP Γ by induction on the structure
of PL, written JP Kησ (we write cϕ(x), pϕ(x) and dϕ(x), where ϕ
stands for σ if x ∈ fn(PL) and η otherwise; and c for cϕ(x)[pϕ(x)]
if x ∈ fn(PL) and for x otherwise; T denotes a dual type of T ):

J0Kησ , ∅
Jx〈y〉.(P | Q)Kησ , c:dϕ(x)↑(JP Kησ(y))

⊎
(JP Kησ

⊎
JQKησ)

Jx(y).P Kησ , c:dϕ(x)↓(JP Kησ(y))
⊎

(JP Kησ \ η(y))

Jx.lj ;P Kησ , c:⊕ dϕ(x){lj :JP Kησ(c)}
⊎

JP Kησ
Jx.case{li : Pi}i∈IKησ , c: & dϕ(x){li:JPiKησ(c)}i∈I

⊎
JP Kησ

J[x↔ y]Kησ , JidA(x, y)Kησ with ∆ = x:A, y:A⊥

In Def. 6.3 above we use an operation s[p]:T
⊎

Γ defined as
Γ, s[p]:T if s[p] 6∈ Γ and Γ 6= ∅. If Γ = Γ′, s[p] : T ′, we change
T ′ to T ;T ′ if T is an input our output; or, change T ′ to T if T
is a selection or branching (since T already contains all actions of
role p by construction). If Γ is empty we append end to T in the
relevant cases. See Appendix A.8 for a full definition.

Proposition 6.1. If PL `(σ,η)CL ∆ then σ(η(PL)) `MP JP Kησ .
Where σ(P ) substitutes free names of P by their role-indexed
channel mappings and forwarding by the identity process, and
η(P ) replaces non-binding occurrences of bound names by their
multiparty session calculus actions with destination given by η.

As in Def. 6.1, we define the judgment P �σ,ησ ∆; Γ where (σ, η)
is a well-formed bijective mapping. The key condition (?) in Defi-
nition 3.3 is changed to (†) below taking multiple role threads into
account and bound names (the red letters highlight differences). We
omit the rule for single threads, which just absorbs the `σ,ηCL judg-
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ment and generates the corresponding local types (cf. Def 6.3).

†


ρ′ = ρ ∪ (x, cσ(x)[pσ(x)][dσ(x)])

cσ(x) = cσ′ (x) pσ(x) = dσ′ (x) dσ(x) = pσ′ (x)

∀z ∈ ∆, y ∈ ∆′.cσ(x) = cσ′ (z)⇒ dσ(z) 6= dσ′ (y) ∧ dσ(z), dσ′ (y) 6∈ ρ
∀x ∈ η.∀y ∈ η′.x = y ⇒ η(x) 6= η′(y)

The last line states that equal bound names in P andQmust denote
distinct destination roles.

(compd)

PL `σ,ηCL ∆, x:A QL �σ
′,η′
ρ ∆′, x:A⊥; Γ (†)

∀z ∈ ∆; y ∈ ∆′.cσ(z) = cσ′ (y)⇒ pσ(z) 6= dσ′ (y) ∧ dσ(z) 6= pσ′ (y)
∀z ∈ ∆, x; y ∈ ∆′, x.cσ(z) = cσ′ (y)⇒ pσ(z) 6= pσ′ (y)

(νx)(PL | QL) �(σ
′∪σ)\{x},η∪η′

ρ′ ∆,∆′; Γ, JPLKησ

We assume, wlog, that if x ∈ bn(PL) and x ∈ bn(QL) then the two
processes eventually exchange the bound name x. In (compd), the
additional conditions state that for channels mapped to the same
MP session (cσ(z) = cσ′(y)): (1) since PL and QL may only
interact via channel x, σ and σ′ cannot map disjoint names to dual
role pairings, denoting communication in MP; (2) the same role is
not split across different threads.

Proposition 6.2. If P �(σ,η)ρ ∆; Γ then σ(η(ρ(P ))) `MP Γ.

Example 6.1. To illustrate the mapping for delegation, consider:

P , x(y).(y(n).y(m).z〈n〉.0 | 0) Q , x(y).y〈0〉.y〈1〉.0
with the following typings:

P `CL x:(nat` nat` 1)⊗ 1, z:nat⊗ 1
Q `CL x:(nat⊗ nat⊗⊥) `⊥, w:1

We can produce mappings σ and σ′ such that:

σ(P ) = s[p][q]〈y〉; (y[s](n); y[s](m); s[t][v]〈n〉;0 | 0)
σ′(Q) = s[q][p](y); y[r]〈0〉; y[r]〈1〉;0

and we have that:

(νx)(P | Q) �σ
′′,η z:nat⊗ 1, w:1; s[p]:T1, y:T, s[q]:T2, s[t]:T3

with T = s↓(nat); s↓(nat); end T1 = q↑(T ); end
T2 = p↓(r↓(nat); r↓(nat); end); end T3 = v↑(nat); end

Note that mapping z to s[p][t], for instance, would not allow for
a valid composition of the two processes since we would have the
role p of session s spread across two threads. Likewise, mapping z
to s[t][q] would disallow the composition ofP andQ since it would
require the two processes to share two distinct channel names. �

6.1 Interconnection Networks of CLL with Delegation
We carry out a similar development to that of § 5, showing that the
topology of the interconnection networks denoted by our encoding
cannot form cycles between more than two roles. We extend the
syntax of global types with session send (resp. receive) prefixes
p  q: ↑ (T ).G (resp. p  q: ↓ (T ).G). The fundamental
difference is partial global type generation, which is now inductive
on the structure of the CLL process, collecting the principal and
destination roles from σ, for each MP channel used in the encoding.

Definition 6.4 (Generating Partial Global Types). Given P `(σ,η)CL

∆ we generate its partial global type wrt a multiparty session
channel s, written #σ

η (P )(s) by induction on the structure of P
(the top case is chosen if x ∈ σ, cσ(x) = s, the bottom otherwise):

#σ
η (x〈y〉.(P1 | P2))(s) ,{

pσ(x) dσ(x) :↑ (JP1Kησ(y)).fuse(#σ
η (P1)(s),#σ

η (P2)(s))

fuse(#σ
η (P1)(s),#σ

η (P2)(s))

We show only the case for channel passing (see § A.9 for the other
cases). Let C be the set of session channels in the image of σ. We
denote by #σ

η (P ) the set
⋃

(#σ
η (P )(s))s∈C . �

We need to prove that fuse can generate partial global types due
to session output involving parallel composition. Extending the �
judgment with partial global types to P �σ,ηρ ∆; Γ;G we can then
show the following results.

Theorem 6.1. Let P �σ,ηρ ∆; Γ;G and ∆ = ∅ or ∆ containing
only 1 or ⊥. Then we have: (1) P →∗ 0; (2) fuse(G) at each ses-
sion is well-formed and deadlock-free; and (3) the interconnection
network graph for fuse(G) for each session is acyclic.

Notice that Theorem 6.1 offers a typing system which guaran-
tees deadlock-freedom in MP with interleaved multiparty sessions
(which is not usually satisfied in multiparty session calculi [14]).

7. Exponentials (replication)
Typing rules and translation Full classical linear logic has two
exponential modalities, written !A and ?A, where (!A)⊥ =?(A⊥)
and (?A)⊥ = !(A⊥), governed by the following rules:

(!)
P `CL Γ; y:A

!x(y).P `CL Γ;x:!A
(?)

P `CL Γ, u:A; ∆

P{x/u} `CL Γ; ∆, x:?A

(copy)
P `CL Γ, u:A; ∆, y:A

u〈y〉.P `CL Γ, u:A; ∆
(cut!)

P `CL Γ;x:A Q `CL Γ, u:A⊥; ∆

(νu)(!u(x).P | Q) `CL Γ; ∆

We extend the typing judgment with an unrestricted context region
Γ, subject to contraction and weakening. The process at the root
of rule (!) denotes an input-guarded replication on channel x.
Note how no linear channels may be used by process P . Rule
(?) moves sessions of type ?A to the unrestricted context region.
Rules (copy) and (cut!) trigger replicated inputs (which may be
used an arbitrary number of times) on fresh sessions and allow for
persistent composition, respectively. The operational semantics for
input-guarded replication are standard [7] (see § A.1 for a precise
definition). In MP, we extend the type syntax with:

S, T ::= p̃!(T ) | p?(T )

where p̃!(T ) denotes a replicated session of type T meant to be
used by the set of roles p̃. The type p?(T ) denotes a client of a
replicated session of type T offered by role p. We mirror the typing
rules above with the appropriate syntax (where Γ denotes a shared
context region, also subject to contraction and weakening):

(accept)
P `MP Γ; y:T

!c[p̃](y);P `MP Γ; c:p̃!(T )

(move)
P `MP Γ, u:p?(T ); ∆

P{c/u} `MP Γ; ∆, c:p?(T )

(req)
Q `MP Γ, u:p?(T ); ∆, y:T

?u[p]〈y〉;Q `MP Γ, u:p?(T ); ∆

(comp)
P `MP Γ; ∆1 Q `MP Γ; ∆2 Γ; ∆1 � Γ; ∆2

P | Q `MP Γ; ∆1,∆2

The !c[p̃](y).P construct denotes a replicated input on c meant
to be used by by roles p̃ with the corresponding fresh output
(?c[q]〈y〉;Q). As in CLL, replicated inputs may be used an arbitrary
number of times. The composition rule is extended with a compat-
ibility check on the typing contexts, written Γ; ∆1 � Γ; ∆2, which
checks that the channel role assignment in usages of a replicated
session are consistent with the ascribed typings. The compatibility
check is defined by the homomorphic extension of the following
rule (and undefined otherwise):

s[p]:q̃!(T ) � s[qi]:p?(T ) qi ∈ q̃

The operational semantics of replication are identical to CLL.
For free names, we use the same one role per thread restrictions

of Def. 3.1, allowing for different session names in the same thread
and multiple destination roles for replicated channel names (oth-
erwise the mapping of replicated inputs would be degenerate), and
Def. 6.1 for bound names. We note that for the case of replicated in-
put channels, we have that pσ denotes a single role and dσ denotes a
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set of roles that may use the replicated service. Let PL `(σ,η)CL Γ; ∆,
with all free and bound names distinct. We generate a local typing
context Θ with η(σ(PL)) `MP Θ by induction on the structure of
PL, written JP Kησ (we show only the new cases):

J!x(y).P Kησ , c:dϕ(x)!(JP Kησ(y))
⊎

(JP Kησ \ η(y))

Ju〈y〉.P Kησ , c:dϕ(u)?(JP Kησ(y))
⊎

(JP Kησ \ η(y))

The rules above are similar to those from § 6, where we compute
the local type for the replicated session inductively, by the usage
of the bound name y in the continuation process P . We note that
in the top rule, dσ denotes a set of roles. We define the judgment
P �σ,ηρ Γ; ∆; Θ for process composition, now with an additional
composition rule to account for shared names:

(threadr )
PL `σ,ηCL Γ; ∆

PL �
σ,η
∅ Γ; ∆; JPLKησ

(compr )

PL `σ,ηCL Γ; ∆, x:A QL �σ
′,η′
ρ Γ; ∆′, x:A⊥; Θ (†)

(νx)(PL | QL) �(σ′∪σ)\{x},η∪η′
ρ′ Γ; ∆,∆′; Θ, JPLKησ

(comp!r )

PL `σ,ηCL Γ;x:A QL �σ
′,η′
ρ Γ, u:A⊥; ∆; Θ (†)

(νu)(!u(x).PL | QL) �(σ′∪σ)\{x,u},η∪η′
ρ′ Γ; ∆; Θ, JPLKησ

Note that the condition of (compr) and (comp!r) is (†) in (compd)
in § 6, where for (comp!r) we consider u instead of x in †. More-
over, we require σ and σ′ to match for channels in Γ.

Proposition 7.1. If P �(σ,η)
ρ ∆; Γ; Θ then σ(η(ρ(P ))) `MP ∅ ; Θ.

Example 7.1 (Replication). The following processes are identical
to an example of [8] that is not typable in the global progress type
system of [10].

P , !x(y).y(n).0 `CL ·;x:!(int` 1)

Q , !z(w).w〈1〉.0 `CL ·; z:!(int⊗ 1)

R , x(y).z(w).w(n).y〈n〉.0 `CL ∅;x:?(int⊗⊥), z:?(int`⊥), v:1

We define mappings σ, σ1, σ2 and η, η1, η2 such that:

η(σ(P )) = !s[p][r](y); y[s](n);0
η1(σ1(Q)) = !s′[q][b](w);w[r]〈1〉;0
η2(σ2(R)) = ?s[r][p]〈y〉; ?s′[b][q]〈w〉;w[r′](n); y[s′]〈n〉;0

and so produce the following local typings:

#σ
η (P ) = s[p]:r!(s↑(int)) #σ1

η1 (Q) = s′[q]:b!(r↓(int))
#σ2
η2 (R) = s[r]:p?(s′↑(int)), s′[b]:q?(r′↓(int))

Then (νx, z)(P | Q | R) � ∅; v:1; #σ
η (P ), #σ1

η1 (Q), #σ2
η2 (R).

�

7.1 Interconnection Networks of CLL with Replication
Partial global type generation for replication is analogous to that of
§ 6, insofar as we generate the replicated session type inductively
and need to handle potentially multiple session channels in the
image of the translation. We extend the syntax of partial global
types with a dedicated replication construct p̃  q : !(T ).G,
with the corresponding dual p  q : ?(T ).G, which fuse to the
corresponding p̃ → q : ∗(T ).G global type, which denotes that
role q hosts the replicated behaviour T , to be used by roles p̃ an
arbitrary (finite) number of times.

Definition 7.1 (Generating partial global types). Given P such
that P `(σ,η)CL Γ; ∆ we generate its partial global type wrt a
multiparty session channel s, written #(σ,η)(P )(s) by induction
on the structure of P as follows (the top case is chosen if x ∈

σ, cσ(x) = s, the bottom otherwise – we write only the new cases):

#σ
η (!x(y).P1)(s) ,

{
dσ(x) pσ(x) :!(JP1Kησ(y)).#σ

η (P1)(s)

#σ
η (P1)(s)

#σ
η (u〈y〉.P1)(s) ,

{
pσ(u) dσ(u) :?(JP1Kησ(y)).#σ

η (P1)(s)

#σ
η (P1)(s)

We extend to�σ,ηρ Γ; ∆; Θ;G using the following extension to the
definition of fuse:

fuse(p̃ q :!(T ).end, end) = p̃→ q : ∗(T ).end
fuse(p̃→ q : ∗(T ).end, end) = p̃→ q : ∗(T ).end
fuse(p̃ q :!(T ).G1, p q :?(T ).G2)

= fuse(p̃ q :!(T ).G1, G2)
fuse(p̃→ q : ∗(T ).G1, p q :?(T ).G2)

= fuse(p̃→ q : ∗(T ).G1, G2)

Definition 7.2 (Live Process). A process P is live, written live(P )
iff P ≡ (νã)(π.Q | R), for some R, sequences of names ã and a
non-replicated guarded process π.Q. �

Theorem 7.1. Let P �∅,ηρ Γ; ∆; Θ;G and ∆ = ∅ or ∆ contains
only 1 or ⊥. We have: (1) If live(P ) then P → P ′; (2) fuse(G)
for each session is well-formed and deadlock-free; and (3) the
interconnection net. graph for fuse(G) for each session is acyclic.

8. Multicut in CLL

As discussed in § 1, and made precise throughout our development,
the inability to compose processes that interact using more than one
channel – dubbed multicut – significantly limits the admissible in-
terconnection network topologies. Logically, such a form of unre-
stricted multicut is unsound since it destroys the crucial cut elimi-
nation property. At the operational level, this results in the loss of
deadlock freedom in a process interpretation of logic.

In this section we make use of partial multiparty compatibility
(PMC) to develop a new multicut rule for CLL without delegation.
While we allow for composed processes to share multiple dual
channels, we restrict composition by requiring the induced partial
global types to be fuseable (or PMC). With this restriction in place
we recover the deadlock freedom property. Using the mapping of
§ 3, identifying cut-free processes with the same role, we redefine
the judgment P 
σρ ∆; Γ as follows (where fuse(Γ1,Γ2) is defined
as fuse(· · · (fuse(#σ1(T1),#σ2(T2)),#σ3(T3))) · · · ,#σn(Tn))
where cσi [pσi ]:Ti ∈ Γ1 ∪ Γ2:

(Mcomp)
PL 
σρ ∆, x1:A1, ..., xn:An; Γ1 QL 
σ

′
ρ′ ∆′, x1:A⊥1 , ..., xn:A⊥n ; Γ2

fuse(Γ1,Γ2) defined ρ′ ∩ ρ = ∅ (‡)

(νx1, ..., xn)(PL | QL) 
(σ′∪σ)\{x1,...,xn}
ρ′′ ∆,∆′; Γ1,Γ2

where (‡) extends (?) in Def. 3.3 as follows (the red letters
highlight differences).

‡


ρ′′ = ρ ∪ ρ′ ∪i (xi, cσ [pσ(xi)][dσ(xi)])

cσ = cσ′ pσ(xi) = dσ′ (xi) dσ(xi) = pσ′ (xi)

∀y ∈ ∆.z ∈ ∆′.dσ(z), dσ(y) 6∈ ρ, ρ′
∧pσ(y) 6= pσ(z) ∧ pσ(y) 6= dσ′ (z) ∧ pσ′ (z) 6= dσ(y)

Unlike in the previous sections, rule (Mcomp) is symmetric,
matching a generalised cut rule. Beyond the basic restrictions such
as lack of overlapping bound names in the two processes and that
the role assignments for each of the composed xi channels must be
dual, we just maintain basic invariants akin to those of composition
for § 6: non-composed channels cannot have dual role assignments,
the same role may not be split across different threads and role as-
signments cannot capture those of previously bound names. To
enable multicut, the condition dσ(z) 6= dσ′(y) is dropped.
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Theorem 8.1 (Single Participant per Thread). Let P 
σρ ∆; Γ;G
and ∆ = ∅ or ∆ contains only 1 or⊥. Then we have: (1) P →∗ 0;
and (2) fuse(G) is well-formed and deadlock-free.

(1) above is by the fact that the calculus preserves a single mul-
tiparty session [14, § 5]; (2) is by construction. The system (and
Theorem 8.1) above is only defined in a setting without delegation.
In the presence of delegation (and thus interleaved multiparty ses-
sions) we can construct a well-typed (and fuseable) composition of
processes that deadlock. Intuitively, local types (and partial global
types) fail to capture the linear cross-session dependencies, allow-
ing us to interleave sessions in a non-deadlock free way.

However, in the presence of interleaved shared sessions (rep-
resented in our framework through replication), multicut preserves
deadlock-freedom. By considering the channel mapping of § 7 we
can define a multicut rule that accounts for replication by general-
ising the judgment above to P �σ,ηρ Γ; ∆; Θ and adding the re-
striction to the η mapping from † to the (Mcomp) rule. (1) below
follows due to the calculus satisfying the well-linked property in
[14, § 5]; (2) is again by construction.

Theorem 8.2 (Exponential). LetP �∅,ηρ Γ; ∆; Θ;G and ∆ = ∅ or
∆ contains only 1 or⊥. Then we have: (1) if live(P ) then P → P ′

(2) fuse(G) is well-formed and deadlock-free.

Example 8.1 (Two Buyer Protocol [14]). The 2-buyer protocol
aims to define the coordinated interactions of two Buyer agents
seeking to buy from a Seller agent.

Seller , x(s).x〈32〉.y〈32〉.y.case{ok:y(s).0, nok:0}
Buyer1 , x〈”xpto”〉.x(n).z〈n/2〉.0
Buyer2 , y(n).z(m).y.ok; y〈”icl”〉.0

The process Seller uses channels x and y to interact with Buyer1
and Buyer2, respectively. Process Buyer1 uses channel z to interact
with Buyer2. Consider σ, σ1 and σ2 such that:
σ(Seller) = s[S][B1](s); s[S][B1]〈32〉; s[S][B2]〈32〉;

s[S][B2] . {ok:s[S][B2](s);0, nok:0}
σ1(Buyer1) = s[B1][S]〈”xpto”〉; s[B1][S](n); s[B1][B2]〈n/2〉;0
σ2(Buyer2) = s[B2][S](n); s[B2][B1](m); s[B2][S] / ok;

s[B2][S]〈”icl”〉;0.
While in the previous development the processes above would not
be composable, we can now compose them via multicut given that:

#σ(Seller) = B1 S :↓ (str).S B1 :↑ (int).
S B2 :↑ (int).B2 S :
&{ok:B2 S :↓ (str).end, nok:end}

#σ1 (Buyer1) = B1 S :↑ (str).S B1 :↓ (int).
B1 B2 :↑ (int).end

#σ2 (Buyer2) = S B2 :↓ (int).B1 B2 :↓ (int).
B2 S : ⊕{ok : B2 S :↑ (int).end}

LetG1 = #σ(Seller),G2 = #σ1(Buyer1) andG3 = #σ2(Buyer2).
We can see that:

fuse(fuse(G1, G2), G3) = fuse(fuse(G1, G3), G2)
= fuse(fuse(G2, G3), G1) =

B1→ S : (str).S→ B1 : (int).S→ B2 : (int).B1→ B2 : (int).
B2→ S : (ok : B2→ S : (str), nok : end)

9. Related and future work
The seminal work of [1] studies acyclicity of proofs in a computa-
tional interpretation of linear logic where names are used exactly
once. With session types, channel names can be reused multiple
times in a cyclic way (even in CLL defined in § 2.1), insofar as
two processes may both send and receive along the same channel.
This feature, combined with dynamic name creation in CLL, makes
the study of interconnection networks (and deadlock-freedom in
general) more challenging. The term “interconnection networks”
in this paper originates from [2], which studies categorical models
that enable cyclic networks corresponding to multicut rules. A sim-
ilar discussion can be found in [27]. In our work, we make their

informal observations precise, defining interconnection networks
and proving the negative results in a session typed setting.

The works of [8] and [6] are the most related to our own. The
work [8] proposed a typing system for CLL extended to multiparty
session primitives. The main differences from our work are: (1)
the work in [8] does not (aim to) study interconnection networks;
(2) the projection-based approach in [8] relies on a special form of
global types annotated by modalities, and linear logic propositions
annotated by participants. Our synthesis-based approach requires
no change to the syntax of processes, types, nor typing rules (except
multicut) of CLL; (3) the multicut rule is applied to a complete set
of processes in a multiparty session, directly using information of
global types, while ours is a cut between two processes; and (4)
the projection-based cut rule [8] is more limited than our synthesis-
based rule. This is because a global type built by PMC soundly and
completely characterises all deadlock-free traces observable from
local type configurations (Theorem 4.1). For example, our system
can type Example 3.2, which is untypable in [8], noting that the
traces of local types generated in Example 5.2 are deadlock-free.

Caires and Pérez [6] show that the binary session interpretation
of intuitionistic linear logic can encode the behaviour of multiparty
sessions (up to a typed barbed congruence). While the goals of
this paper are quite different, focusing on interconnection network
topologies of CLL processes, we note that their work does not con-
tradict our negative results. The encoding of [6] consists of adding
another participant (i.e. a centralised coordinator), that mediates all
possible interactions between role implementations. Thus, a topol-
ogy such as that of Fig. 1a is realised by disconnecting all partici-
pants in the network, adding a new (fourth) participant c, and then
connecting each participant solely with c (i.e. a tree topology). In
this sense, their encoding does not preserve interconnection net-
work topologies of global types, which is key in our criteria.

Type systems for progress in concurrent processes are a vast
area of research. Usually such a typing system requires sophisti-
cated information on channel usages (e.g. [15]) or causality among
channels (e.g. [10]). While the main emphasis of this work is not
the development of a type system for progress, our encodings pro-
vide a discipline for progress in restricted interleaved multiparty
sessions. See Example 7.1 which is typable in our system but not
in a typing system for progress in multiparty sessions [10]. Our de-
velopment of multicut, which is achieved as a simple composition
rule guided by PMC, ensures deadlock-freedom in the presence of
interleaved shared sessions. We plan to investigate a notion of mul-
ticut for CLL that ensures progress of interleaved linear sessions.
This feature would be handled by using global types with session
channels [14] and synthesising a single global type consisting of
several sessions, with the additional linearity checking from [14].

Multiparty compatibility (MC) properties are studied in [4, 11,
17] where a global type is synthesised from communicating au-
tomata, assuming all participants are initially present. These global
synthesis methods are not applicable to CLL where the typing rule
for composition is binary. Investigations of partial compatibility
for choreographies [17] and timers [4] would allow us to capture
larger classes of connectability (with timing information) in the
CLL framework.
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Appendix

The structure of this appendix is as follows:

• § A contains proofs and additional definitions

§ A.1 explains in detail the typing rules and reduction se-
mantics for both CLL and MP systems. § A.1.2 also contains
additional definitions necessary to precisely define typing
for MP and projections from global types.

§ A.2 contains proofs of results from § 3.

§ A.3 contains proofs of results from § 4.

§ A.4 contains proofs of results (and additional theorems)
from § 5.

§ A.5 contains proofs of results (and additional theorems)
from § 6.

§ A.6 contains proofs of results (and additional theorems)
from § 7.

§ A.7 contains proofs of results from § 8.
• § A.8 contains the precise definition of the

⊎
function, used

throughout our development, that combines a local type with a
typing environment.
• § A.9 lists the full definition of partial global type generation

for CLL with delegation.
• § B lists the extended � judgement used in Section 6.
• § C gives the multicut rule for replication.
• Finally, § D gives a detailed presentation (and corresponding

proofs) of an alternate mapping from CLL into MP where a
thread may implement multiple roles. We prove that such a
renaming does not add to the expressiveness of the topologies
of the resulting interconnection network.

A. Proofs and Additional Definitions
A.1 Explanation of typing rules and reduction semantics
This section explains the typing rules and semantics for the CLL
and MP calculi. In the latter case, we also include some additional
definitions that are needed to precisely define the typing system,
namely partial projection, merging of local and binary types and
coherence.

A.1.1 The CLL System
Recalling that the rules of Figure 2 define the judgement PL `CL

∆; Ψ, defined modulo the structural congruence relation ≡ of
Figure 4, where ∆ is a set of assigning distinct channel names of PL

to session types, we give an explanation of each rule: Rule (1) types
the inactive process with an arbitrary session channel assigned type
1; rule (⊥) types the dual behaviour, which just discards the no
longer used name; rule (⊗) accounts for the value output behaviour,
typing a channel awith τ⊗A if the process outputs along a a value
M of type τ and then proceeds by using a as A; dually, rule (`)
types a channel a with τ ` A if the process performs an input on
a of a value of type τ and then uses a according to type A (in § 6
we generalise both⊗ and ` to emission and reception of channels,
respectively, with the expected multiplicative decomposition of the
context for ⊗); rule (⊕) types channel a with ⊕{li:Ai}i∈I by
having the process emit a label lj with j ∈ I , and then using the
channel a according to the type Aj in the corresponding branch;
dually, rule (&) types processes that wait for a choice on channel a,
with type &{li:Ai}i∈I , if the process is prepared to account for any
of the possible choice labels and corresponding behaviours in the
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a〈M〉.P | a(x).Q −→ P | Q{M/x}
a.lj ;P | a.case{li:Qi}i∈I −→ P | Qj (j ∈ I)

(νa)([a↔ b] | P ) −→ P{b/a} (b 6∈ fn(P ))

P ≡ P ′ ∧ P ′ −→ Q′ ∧Q′ ≡ Q ⇒ P −→ Q′

x〈y〉.P | x(y).Q −→ (νy)(P | Q)

!x(y).P | x〈y〉.Q −→ !x(y).P | (νy)(P | Q)

P −→ Q ⇒ (νa)P −→ (νa)Q

P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

(νa)(P | Q) ≡ (νa)P | Q a 6∈ fn(Q) P ≡α Q⇒ P ≡ Q
(νx)(!x(y).P | Q) ≡ Q x 6∈ fn(Q)

Figure 4: Reduction Semantics for CLL Processes

type. Thus, the case branching construct must contain one process
Pi using a according to behaviour Ai for each label in the type.
Note the additive nature of the rule, where the context ∆ is the
same in all premises.

Finally, the (cut) rule composes two processes P and Q that
use channel awith dual typesA andA⊥, respectively, by hiding the
name a in the composed process in the conclusion of the rule (since
no other process may use a). We note that ∆ and ∆′ are disjoint,
thus the only common channel between P and Q is exactly a. Rule
(id) types the forwarding construct, identifying two channel names
a and b that denote dual behaviours.

Reduction Semantics The reduction semantics for CLL processes
is given in Fig. 4, including the rules for delegation (§ 6) and repli-
cation (§ 7). We omit the standard compatible closure cases. The
reduction rules for delegation and replication entail the generation
of a fresh name y.

A.1.2 The MP System
To precisely define the typing system for the MP calculus, we
require the following auxiliary definitions.

Definition A.1 (Partial Projection). Given a local type T , we define
its partial projection onto a participant p, written T � p by induction
on the structure of T according to the rules of Figure 5. In all cases,
if no side condition applies then partial projection is undefined.

Partial projection is defined in terms of a binary type merge opera-
tion for selections, where the merge TtT ′ of T and T ′ is defined by
T tT , T ; and with T = ⊕{li : Ti}i∈I and T ′ = ⊕{l′j : T ′j}j∈J ,

TtT ′ , ⊕({lh : Th}h∈I\J∪{l′h : T ′h}h∈J\I∪{lh : ThtT ′h}h∈I∩J)

if lh = l′h for each h ∈ I ∩ J ; and homomorphic for other types
(i.e. T [T1] t T [T2] = T [T1 t T2] where T is a context of local
types). T t T ′ is undefined otherwise.

Coherence, written co(∆), ensures that ∆ contains a local type
for each role involved in interactions in ∆. Moreover, coherence
ensures that local types of interacting roles contain the necessary
dual communication actions.

Definition A.2 (Coherence). We say ∆ is coherent (denoted by
co(∆)) iff for all s[p]:T1, there exists s[q]:T2 ∈ ∆ such that
T1�q = T2�p; and if s[p]:T ∈ ∆, then for all q ∈ roles(T ),
s[q]:T ′ ∈ ∆. �

The typing rules for the MP calculus are given in Figure 3, defin-
ing the judgement P `MP ∆; Ψ. Rule (vsend) types the emission
of M of type τ from role p to role q, assigning s[p] the local type
q ↑ (τ);T , provided the continuation P uses s[p] according to
type T . Dually, rule (vrecv) types the reception of a value of type

(r↑(τ);T ) � p =

{
↑(τ); (T � p) if p = r

T � p otherwise

(r↓(τ);T ) � p =

{
↓(τ); (T � p) if p = r

T � p otherwise

(⊕r{li:Ti}i∈I) � p =

{
⊕{li:(Ti � p)}i∈I if p = r

ti∈I(Ti � p) otherwise

(&r{li:Ti}i∈I) � p =

{
&{li:(Ti � p)}i∈I if p = r

ti∈I(Ti � p) otherwise
end � p = end

Figure 5: Partial Projection.

s[p][q]〈M〉;P | s[q][p](x);Q −→ P | Q{M/x}
s[p][q] / lj ;P | s[q][p] . {li:Qi}i∈I −→ P | Qj (j ∈ I)

s[p][q]〈s′[p′]〉;P | s[q][p](x);Q −→ P | Q{s′[p′]/x}
!s[p][q̃](y);P |?s[q][p]〈y〉;Q −→ !s[p][q̃](y);P |

(νs′)(P{s′/y} |
Q{s′/y})

P ≡ P ′ ∧ P ′ −→ Q′ ∧Q′ ≡ Q ⇒ P −→ Q′

Figure 6: Reduction Semantics for MP Processes

τ , bound to x in the continuation P , received by role p and sent
by q, with type q ↓ (τ);T , provided P uses s[p] according to
T . Rules (sel) and (branch) are the MP counterparts of rules (⊕)
and (&) from CLL(Fig. 2), respectively, with the former typing the
emission a label from p to q and the latter typing the reception
of a label by p from q. Rule (end) types the inactive process in a
session context containing only terminated sessions. Rule (comp)
types parallel composition of processes with disjoint session con-
texts ∆ and ∆′. Finally, rule (close) types a complete multiparty
session s by hiding the session channel, provided that process P
uses s[1]:T1, . . . , s[n]:Tn and the corresponding role indices and
local types form a coherent typing context (Def. A.2).

The following definition is used in § 4, to define the projection
of a global type onto a participant.

Definition A.3 (Merge between Local Types). The merge T t T ′
of T and T ′ is defined by T tT , T ; and with T = &r{li : Ti}i∈I
and T ′ = &r{l′j : T ′j}j∈J ,

TtT ′ , &r({lh : Th}h∈I\J∪{l′h : T ′h}h∈J\I∪{lh : ThtT ′h}h∈I∩J )

if lh = l′h for each h ∈ I ∩ J ; and homomorphic for other types
(i.e. T [T1] t C[T2] = T [T1 t T2] where T is a context of local
types). T t T ′ is undefined otherwise. �
Reduction Semantics The semantics of MP processes are given
in Figure 6, including the reduction rules for delegation (§ 6) and
replication (§ 7), but omitting the standard structural congruence
rules and compatible closure cases.

A.1.3 Proof of Proposition 2.1
Proof. By the results in [7, 27].

A.2 Proofs from § 3 – Relating the CLL and MP systems
A.2.1 Proof of Proposition 3.1
Proof. The prefix case is straightforward by Definition 3.1 and
(thread) in Definition 3.3; and the parallel composition uses
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(comp) in Definition 3.3. Both cases are mechanical by induction
on P .

A.3 Proofs from § 4 – Partial Multiparty Compatibility
A.3.1 Proof of Proposition 4.1
Proof. By definition of the projection and the LTSs. We use the
swapping rules defined in Definition 4.3.

A.3.2 Proof of Theorem 4.1
Proof. (DF)⇒(MC): (a) Suppose configuration C0 is deadlock-

free. Then by DF, for all C0

~̀
−→ C, there exists C

`1·`1−→
C1 · · ·Cn

`n·`n−→ C′ such that C′ contains only end.

The base case Cn = C0 = C is obvious. Suppose T1r
`′k−→ Tk+1r

and we are at Ck. In the case `′k is an output `′k = rq↑(τ) or a

selection `′k = rq / l, there are traces such that Ck
~̀′
−→ C′k which

does not include the action from/to the participant p. Hence at C′k,

we have T1r
`′k−→ Tk+1r and C′k

`′k·`k
′

−→ C′′k . This matches with
Definition 4.7(1). The case of the input `′k = rq↓(τ) is similar,
and matches with Definition 4.7(2). In the case `′k is a branching
such that `′k = rq . l, we can reach C′ which only contains end if

and only if there exists `′′k = rq . l′ such that T1r
`′′k−→ T ′k+1r and

Ck
~̀′
−→ C′k

`k
′′·`′′k−→ C′′k . This matches with Definition 4.7(3).

(SC)⇒(WF) By [11].
(WF)⇒(DF) By definition of projection.

A.3.3 Proof of Lemma 4.1
Proof. Mechanical by induction on Gi, Gj and Gk.

A.3.4 Proof of Theorem 4.2
Proof. By Lemma 4.1, we need only show the case whereG′n−1 =
fuse(· · · (fuse(G1, G2), G3), · · · , Gn−1) and fuse(G′n−1, Gn) is
complete. We proceed by induction on n.
The case for n = 2 is obvious.
Suppose G′n−1 contains n participants and there are only partial
arrows from pn or to pn and fuse(G′n−1, Gn) is complete. Then the
partial arrows in G′n−1 form (possibly more than one) chains such
that p1  p′1 · · · pm  p′m where either pi or p′i is pn. To obtain a
complete global type, we must have dual chains p1  p′1 · · · pm  
p′m in Gn. Assuming the completed n − 1 participants in G′n−1

form a well-formed global type, applying fuse rules one by one
from the head, we see that fuse(G′n−1, Gn) is well-formed.

A.4 Proofs from § 5 – CLL encoded as a single multiparty
session

A.4.1 Proof of Proposition 5.1
Proof. Since ∆ is empty or contains only 1 or ⊥ we have that P is
an n-ary composition of (cut-free) processes. If n = 1 then P = 0
and its corresponding global type is just end. The interesting case
is when n > 1. Since the context is either empty or contains only
1 or ⊥, we have that P is of the form (νã)(P1 | · · · | Pn) where
all free names aj :Aj of each of the Pi processes are cut with some
other Pi′ using aj :A⊥j . Thus, by construction of 
 we have that
for each bound name a of P we have cρ(a)[pρ(a)]:T ∈ Γ and
cρ(a)[dρ(a)]:T ′ ∈ Γ with T � dρ(a) = T ′ � pρ(a) and thus for
each action between two roles in a partial global type in G in we
can always find a matching action in another partial global type in
G, therefore we can fuse all partial global types in G into a single
global type.

A.4.2 Proof of Theorem 5.1
Proof. We proceed by induction on the derivation P 
σρ ∆; Γ;G,
showing that each case preserves the specified invariant of at most
2 elements in the intersection of roles(G1) ∩ roles(G2), for any
G1, G2 ∈ G. The only interesting case is when the last rule in the
derivation is (comp-G):
(comp-G)

PL `σCL ∆, a:A QL 

σ′
ρ ∆′, a:A⊥; Γ;G (?) in (comp)

(νa)(PL | QL) 
(σ′∪σ)\{x}
ρ′ ∆,∆′; Γ, cσ[pσ]:JP Kσ;G ∪ {#σ(P )}

By the i.h. we have that for any G′1, G′2 ∈ G1, roles(G′1) ∩
roles(G′2) contains at most 2 elements. By construction we know
that roles in G must either appear in σ′ (corresponding to role
assignments to channels in ∆′ and a) or ρ (corresponding to role
assignments to bound names).

By inversion we know that ∀z ∈ ∆, y ∈ ∆′.dσ(z) 6= dσ′(y),
thus there are no common dσ role assignments between σ and
σ′ to free names of the two processes beyond those for a. We
also know that pσ(a) = dσ′(a) and dσ(a) = pσ′(a). By the
definition of #σ(T1) there are at least two common role names
with each endpoint interaction in G1 coming from σ and σ′ (i.e.
role assignments to free names), which are pσ and pσ′ . Since pσ
is invariant and ∀z ∈ ∆, y ∈ ∆′.dσ(z) 6= dσ′(y), we have that
free names in ∆ cannot share any additional roles. We need now
only consider ρ. By construction, we know that ∀z ∈ ∆, y ∈
∆′.dσ(z) 6∈ ρ∧dσ′(y) 6∈ ρ, thus dσ(z) cannot appear in G1 due to
ρ. The only remaining possibilities are pσ(x) and dσ(x) which are
already accounted for from the argument above. Thus we preserve
the invariant and conclude the proof.

A.4.3 Proof of Theorem 5.2
Proof. Each endpoint interaction sequence in G denotes the contri-
bution of a single endpoint role in the global conversation. By The-
orem 5.1 we have that any distinct pair of partial global types in G
shares at most 2 role names. This means that for any distinct roles
p, q, r, if p↔ q ∈ G and p↔ r ∈ G then neither q→ r nor r→ q
or q  r nor r  q in G. Hence, in the connection graph of G we
know that we cannot have triangles of the form (p, q), (p, r), (r, q)
as edges.

We can then see that no cycles can be formed through a “dia-
mond” – a sequence of edges of the form (p, q), (p, r), (r, t), (q, t)
– in the graph by the fact that at each composition step, processes
can only share one free name (∆ ∪∆′ = ∅) and role assignments
(∀z ∈ ∆, y ∈ ∆′.dσ(z) 6= dσ′(y), similarly for ρ). If we could
form a “diamond” cycle in the graph, then either we have to able
to eventually compose processes sharing more than one name or
with different names mapping to the same roles (to close the “dia-
mond”).

A.4.4 Auxiliary Lemmas for Theorem 5.3
Lemma A.1. Let P 
σρ ∆; Γ;G. co(Γ) implies ∆ = ∅ or ∆
contains only 1 or ⊥ and σ = ∅.

Proof. Assume to the contrary that ∆ 6= ∅ and doesn’t contain
only 1 and ⊥, or σ 6= ∅. Then it must be the case that P has some
free name x:A ∈ ∆ where σ(x) = s[p][q], for some s, p, q with
A 6= 1 or ⊥. By construction it must necessarily be the case that
s[p]:T ∈ Γ. Since x is free in P , we cannot have s[q]:T ′ ∈ Γ with
T �q = T ′�p: single thread σ-renamings are invariant on the p role
name, so for s[q] to occur in Γ it must’ve arose due to composition
on x, which is impossible since x is free, or on some other (now)
bound name y that mapped to s[q][r], for some r. However, since
σ(x) = s[p][q], by construction we know that q 6∈ ρ. This is
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contradictory with the assumption of coherence and so we conclude
the proof.

Lemma A.2. Let P 
∅ρ ∆; Γ;G with ∆ = ∅ or ∆ containing only
1 or ⊥. We have that co(Γ).

Proof. Assume to the contrary that Γ is not coherent. So (1) there
exists s[p]:T, s[q]:T ′ in Γ such that T �q 6= T ′�p or (2) s[p] : T ∈
Γ such that q ∈ rset(T ) and s[q] : T ′ 6∈ Γ.

For (1) to be the case, either T �q contains an action unmatched
by T ′�p or vice-versa. Assume wlog that T �q contains an un-
matched action. Since both s[p]:T ∈ Γ and s[q]:T ′ ∈ Γ we know
that there exists (x, s[p][q]) ∈ ρ where some subprocess of P uses
x:A for some A and some other subprocess of P uses x:A⊥. The
duality of x:A and x:A⊥ contradicts the existence of an unmatched
action in T �q. The argument for an unmatched action in T ′�p is
identical. For (2) to be the case, since s[p]:T ∈ Γ and s[q]:T ′ 6∈ Γ,
we know that there exists (x, s[p][r]) ∈ ρ, with r 6= q, and that
(z, s[q][s]) 6∈ ρ. Since q ∈ roles(T ) then it must be the case that P
uses a channel y mapped to s[p][q] that is free, which contradicts
our assumptions.

A.4.5 Proof of Theorem 5.3
Proof. By Propositions 2.1 and 5.1 and Theorem 4.1, together with
Lemmas A.1 and A.2.

A.4.6 Proof of Corollary 5.1
Proof. By Proposition 3.1 and Theorem 5.3.

A.5 Proofs from § 6 – Encoding Delegation
For the results in this section we extend coherence in the natural
way, requiring an output of a channel of type T to match with the
appropriate input of a channel of type T .

A.5.1 Proof of Propositions 6.1 and 6.2
Proof. Mechanical by induction on P .

A.5.2 Auxiliary Lemmas for Theorem 6.1

Lemma A.3. Let P �∅,ηρ ∆; Γ;G. co(Γ) implies ∆ = ∅ or ∆
containing only 1 or ⊥.

Proof. Identical to Lemma D.1, noting that the renamings ensure
that the two endpoints of an interaction cannot be implemented by
the same single-thread process and that bound-names involved in
delegation denote linear interactions along different session chan-
nels.

Lemma A.4. Let P �∅,ηρ ∆; Γ;G with ∆ = ∅ or ∆ containing
only 1 or ⊥. We have that co(Γ).

Proof. Identical to Lemma D.2, noting that in the case of delegation
the sent channel has a dual behaviour to the received channel (but
generate compatible endpoint types in Γ).

Proposition A.1. Let P �σ,ηρ ∆; Γ;G and ∆ = ∅ or ∆ contains
only 1 or ⊥. There exists a single well-formed global type G for
each session s, such that G = fuse(G) where fuse(G) denotes
fusion of all partial global types for session s in G.

Proof. Since ∆ is empty or contains only 1 or ⊥ we have that P is
an n-ary composition of (cut-free) processes. If n = 1 then P = 0
and its corresponding global type is just end. The interesting case
is when n > 1. Since the context is either empty or contains only
1 or ⊥, we have that P is of the form (νã)(P1 | · · · | Pn) where
all free names aj :Aj of each of the Pi processes are cut with some

other Pi′ using aj :A⊥j . Thus, by construction of � we have that
for each bound name a of P we have cρ(a)[pρ(a)]:T ∈ Γ and
cρ(a)[dρ(a)]:T ′ ∈ Γ with T � dρ(a) = T ′ � pρ(a) and thus for
each action between two roles in a partial global type in G in we
can always find a matching action in another partial global type in
G, therefore we can fuse all partial global types in G into a single
global type.

Lemma A.5. Let P �σ,ηρ ∆; Γ;G and ∆ = ∅ or ∆ containing
only 1 or ⊥. The interconnection network graph for fuse(G) for
each session is acyclic.

Proof. The proof is identical to that of Theorem D.1. We observe
that delegation does not add to the connection graph since delega-
tion denotes a distinct multiparty session (in fact, a binary session).

We note that forwarding combined with delegation also do not
add to the connection graph, since a forwarder just “ping-pongs”
between two channels. For instance in x(y).[y ↔ x], the forwarder
is implemented by a process that will perform an action on y
and a dual action on x. Thus if x is mapped to s[p][q] and y
instantiated with s′[r][t] we already had an edge between p and
q in the connection graph due to x and one between r and t (in a
graph for s′) due to y.

Similarly, in x〈y〉.([z ↔ y] | P ), the forwarder simply ping
pongs between z and y, mediating between the process implement-
ing a session on z with the process receiving y.

A.5.3 Proof of Theorem 6.1
Proof. (1) follows from [7, 27]. (2) follows from Prop. A.1. (3)
follows from Lemma A.5.

A.6 Proofs from § 7 – Encoding Replication
For the results in this section we extend coherence in the natural
way, requiring a replicated input to match with the appropriate
replicated output.

A.6.1 Proof of Proposition 7.1
Proof. Mechanical by induction on P (similar with Proposi-
tions 6.1 and 6.2).

A.6.2 Auxiliary Lemmas and Definitions for Theorem 7.1
Lemma A.6. Let P �σ,ηρ Γ; ∆; Θ;G. co(Θ) implies ∆ = ∅ or ∆
contains only 1 or ⊥ and σ = ∅.

Proof. As Lemma A.3.

Lemma A.7. Let P �∅,ηρ Γ; ∆; Θ;G with ∆ = ∅ or ∆ containing
only 1 or ⊥. We have that co(Θ).

Proof. As Lemma A.4.

Theorem A.1. Let P �σ,ηρ Γ; ∆; Θ;G. co(Θ) iff ∆ = ∅ or ∆
contains only 1 or ⊥ and σ = ∅.

Proof. From Lemmas A.6 and A.7.

Extensions to Exponential in MP The system which contains ex-
ponential as sessions is studied in [20]. We extend several defini-
tions for the exponential constructs based on [7] as follows. Note
that [20] uses ∗! for ? and ∗? for ! in our paper.

1. The syntax of T includes p̃!(T ) and p?(T ).

2. The duality of binary types is extended to !(T ) =?(T ) and
?(T ) =!(T ).
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3. A projection of T into the binary types are defined as an input
and an output.

4. G = s̃→ r : ∗(T ).end is projected to

• G�p = r?(T ) if p ∈ s̃;
• G�p = s̃!(T ) if p = r;
• G�p = (G′�p) otherwise.

Note that the projection from the global types fused from the
translations is always defined and ∗ does not have a continua-
tion.

5. The labels for LTSs are extended with pq̃!(T ) and pq?(T ), and
the LTS rules of the local types are defined as:

(que) q?(T )
pq?(T )−→ end (bang) q̃!T

pq̃!(T )−→ q̃!(T )

We extend the duality of labels as pq̃!(T ) = qip?(T ) and
qip?(T ) = pq̃!(T ) with qi ∈ q̃. Then the transitions of the
configurations do not change.

6. We extend Definition 4.7 by adding the following cases.

4. if ` = pq?(T ) there exists C
~̀′
−→ C′

`−→ `−→ C′′;

5. if ` = pq̃!(T ) for all C
~̀′
−→ C′′ such that C′′ = (T ′p)p∈P ,

T ′p
`−→ T ′′p .

Theorem 4.1 is updated replacing (DF) by the following live-
ness property:

Definition A.4 (Live). C = (T0p)p∈P is live if for allC
~̀
−→ C1 =

(Tp)p∈P , if Tp
`−→ T ′p and ` is not !, there exists C′ = (T ′′p )p∈P

such that C1

~̀′
−→ C′ and (1) C′ `·`−→ C′′ if ` is an output or

a selection or ?-output; (2) C′ `·`−→ C′′ if ` is an input; or (3)

C′
`
′·`′−→ C′′ if ` = pq . l with some `′ = pq . l′. �

Then the rest is proved as Theorem 4.1.

Proposition A.2. Let P �σ,ηρ Γ; ∆; Θ;G and ∆ = ∅ or ∆
contains only 1 or ⊥. There exists a single well-formed global
type G for each session s, such that G = fuse(G) where fuse(G)
denotes fusion of all partial global types for session s in G.

Proof. Since ∆ is empty or contains only 1 or ⊥ we have that P is
an n-ary composition of (cut-free) processes. If n = 1 then P = 0
and its corresponding global type is just end. The interesting case
is when n > 1. Since the context is either empty or contains only
1 or ⊥, we have that P is of the form (νã)(P1 | · · · | Pn) where
all free names aj :Aj of each of the Pi processes are cut with some
other Pi′ using aj :A⊥j . Thus, by construction of � we have that
for each bound name a of P we have cρ(a)[pρ(a)]:T ∈ Γ and
cρ(a)[dρ(a)]:T ′ ∈ Γ with T � dρ(a) = T ′ � pρ(a) and thus for
each action between two roles in a partial global type in G in we
can always find a matching action in another partial global type in
G, therefore we can fuse all partial global types in G into a single
global type.

Theorem A.2. Let P �σ,ηρ Γ; ∆; Θ;G. If ∆ = ∅ or containing
only 1 or ⊥, the interconnection net. graph for fuse(G) for each
session is acyclic.

Proof. As before, noting that it is not possible for different threads
to use the same replicated channel.

We note that even if we had a MIX-like rule which did enable
for such a process to be typable, each instance of the replicated

server uses a distinct session channel and thus denotes distinct
global types and connection graphs.

A.6.3 Proof of Theorem 7.1
Proof. (1) follows from [7, 27]. (2) follows from Prop. A.2. (3)
follows from Theorem A.2.

A.7 Proofs from § 8 – Multicut
A.7.1 Proof of Theorem 8.1
Proof. (1) By the same proposition as Proposition 3.1, we obtain
if P 
σρ ∆; Γ, then ρ(σ(P )) `MP Γ. By the definition, Γ only
contains a single multiparty session where each prefix is simple
[14, Definition 5.25 in JACM]. Since ∆ = ∅ or ∆ contains only 1
or⊥, Γ is coherent. By the result of [14, § 5], ρ(σ(P ))→∗ 0. Then
by the operational correspondence between MP and CLL, P →∗ 0.
(2) is by construction of (Mcomp).

A.7.2 Proof of Theorem 8.2
Proof. (1) By the same reasoning as above, noting that as the image
of CLL, ! and ? names (shared names below) satisfy the following
well-linked condition from [14][Definition 5.27 in JACM] when ?-
name is active:

We say P is well-linked when for each P →∗ Q, whenever
Q has an active prefix whose subject is a (free or bound)
shared name, then it is always part of a redex.

Hence the translation into MP satisfies the liveness property. Since
if P �(σ,η)

ρ ∆; Γ then σ(η(ρ(P ))) `MP Γ and the operational
correspondence between MP and CLL, CLL satisfies the liveness.
(2) is by construction.

A.8 Definition of
⊎

s[p]:q↑(τ)
⊎

(Γ′, s[p]:T ′) , Γ′, s[p]:q↑(τ);T ′

s[p]:q↑(τ)
⊎
∅ , s[p]:q↑(τ); end

s[p]:q↓(τ)
⊎

(Γ′, s[p]:T ′) , Γ′, s[p]:q↓(τ);T ′

s[p]:q↓(τ)
⊎
∅ , s[p]:q↓(τ); end

s[p]:⊕ q{lj : Tj}
⊎

(Γ′, s[p]:T ′) , Γ′, s[p]:⊕ q{lj : Tj}
s[p]:⊕ q{lj : Tj}

⊎
∅ , s[p]:⊕ q{lj : Tj}

s[p]: & q{lj : Tj}j∈J
⊎

(Γ′, s[p]:T ′) , Γ′, s[p]: & q{lj : Tj}j∈J
s[p]: & q{lj : Tj}j∈J

⊎
∅ , s[p]: & q{lj : Tj}j∈J

A.9 Partial Global Type Generation for Delegation
Figure 7 lists the partial global type generation for CLL for delega-
tion.

B. Extended � judgement
(thread)

PL `σ,ηCL ∆ ρ = ∅
PL �

σ,η
ρ ∆; JPLKησ; #(σ,η)(P )

(compd)

PL `σ,ηCL ∆, x:A QL �
σ′,η′
ρ ∆′, x:A⊥; Γ;G (†)

∀z ∈ ∆; y ∈ ∆′.cσ(z) = cσ′(y)
⇒ pσ(z) 6= dσ′(y) ∧ dσ(z) 6= pσ′(y)

∀z ∈ ∆, x; y ∈ ∆′, x.cσ(z) = cσ′(y)⇒ pσ(z) 6= pσ′(y)

(νx)(PL | QL) �(σ
′∪σ)\{x},η∪η′

ρ′ ∆,∆′; Γ, JPLKησ;G ∪#σ
η (P )
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#σ
η (0)(s) , end

#σ
η (x〈y〉.(P1 | P2))(s) ,

{
pσ(x) dσ(x) :↑ (JP1Kησ(y)).fuse(#σ

η (P1)(s),#σ
η (P2)(s))

fuse(#σ
η (P1)(s),#σ

η (P2)(s))

#σ
η (x(y).P1)(s) ,

{
dσ(x) pσ(x) :↓ (JP1Kησ(y)).#σ

η (P1)(s)

#σ
η (P1)(s)

#σ
η (x.li;P1)(s) ,

{
pσ(x) dσ(x);⊕{#σ

η (P1)(s)}
#σ
η (P1)(s)

#σ
η (x.case(li:Pi)i∈I)(s) ,

{
dσ(x) pσ(x); &{#σ

η (Pi)(s)}i∈I
#σ
η (P1)(s)

Figure 7: Partial Global Types for Delegation

C. Multicut for Replication
Using the name to role-indexed channel mapping of § 7 we redefine
the judgement P �σ,ηρ Γ; ∆; Θ as follows:

(Mcomp)
PL �σ,ηρ Γ; ∆, x1:A1, ..., xn:An; Θ1

QL �
σ′,η′

ρ′ Γ; ∆′, x1:A⊥1 , ..., xn:A⊥n ; Θ2

fuse(Θ1,Θ2) defined ρ′ ∩ ρ = ∅ (�)

(νx1, ..., xn)(PL | QL) 
(σ′∪σ)\{x1,...,xn},η∪η′
ρ′′ Γ; ∆,∆′; Θ1,Θ2

where (�) – key changes from (†) are highlighted in red:

�



ρ′′ = ρ ∪ ρ′ ∪i (xi, cσ(xi)[pσ(xi)][dσ(xi)])

cσ(xi) = cσ′ (xi) pσ(xi) = dσ′ (xi) dσ(x) = pσ′ (x)

∀z ∈ ∆, y ∈ ∆′.cσ(x) = cσ′ (z)⇒ dσ(z), dσ′ (y) 6∈ ρ
∧pσ(y) 6= pσ(z) ∧ pσ(y) 6= dσ′ (z) ∧ pσ′ (z) 6= dσ(y)

∀x ∈ η.∀y ∈ η′.x = y ⇒ η(x) 6= η′(y)

σ(Γ) = σ′(Γ)

D. CLL threads as multirole MP threads
The results developed in our may seem to hinge on the fact that
we map CLL cut-free processes (threads) to single role processes in
MP. In this section we prove this is not the case by showing that if
we consider a generalized bijective mapping from CLL channels to
role-annottated MP channels (i.e.where actions in a cut-free process
may map to actions pertaining to different MP roles), we may
reconstruct identical results.

Definition D.1 (Bijective Channel to Role-Indexed Channel Map-
ping). Let PL `CL ∆ not using the cut rule. We define a bijec-
tive channel name to role-indexed channel name mapping σ such
that for all a ∈ fn(PL), σ(a) = s[p][q], for some s, p, q, where
b ∈ fn(PL) with b 6= a implies σ(b) = s[p′][q′] such that
(p 6= q′ ∧q 6= p′), (p 6= p′ ∨q 6= q′). We write PL `σCL ∆ for such
a mapping and cσ(a), pσ(a) and dσ(a) to denote the channel, first
and second roles in the image of a in σ. �

The role restrictions in the definition guarantee that the renam-
ing is bijective and that in a single thread we cannot implement
dual role endpoints. Since threads now denote potentially multiple
roles, we must generate a local typing context from each thread, as-
signing local types to each role annotated channel. In the cases of
selection and branching we collect actions pertaining to the prin-
cipal role assignment for each branch and combine the result with
the context generation for the continuation processes (since it may
contain different role assignments).

Definition D.2 (Local Typing). We generate a local typing context
Γ such that σ(PL) `MP Γ by induction on the structure of PL,

written JP Kσ (we write JP Kσ(c) for the type binding for c in JP Kσ
or end if no such binding exists and c for cσ(a)[pσ(x)]):

J0Kσ , ∅
Ja〈M〉.P Kσ , c:dσ(a)↑(τ)

⊎
JP Kσ with M : τ

Ja(y).P Kσ , c:dσ(a)↓(τ)
⊎

JP Kσ with y : τ

Ja.lj ;P Kσ , c:⊕ dσ(a){lj :JP Kσ(c)}
⊎

JP Kσ
Ja.case{li:Pi}i∈IKσ , c: & dσ(a){li:JPiKσ(c)}i∈I

⊎
JPiKσ

J[a↔ b]Kσ , JidA(a, b)Kσ with ∆ = a:A, b:A⊥

We define the judgment P �σρ ∆; Γ as before, but where σ is a
mapping according to Definition D.1 and � is defined as:

�


ρ′ = ρ ∪ (x, cσ(x)[pσ(x)][dσ(x)])

cσ(x) = cσ′ (x) pσ(x) = dσ′ (x) dσ(x) = pσ′ (x)

∀z ∈ ∆, y ∈ ∆′.cσ(x) = cσ′ (z)⇒
dσ(z) 6= dσ′ (y) ∧ dσ(z), dσ′ (y) 6∈ ρ

(threadb)
PL `σCL ∆ ρ = ∅
PL �σρ ∆; JPLKσ

(compb)

PL `σ,ηCL ∆, x:A QL �σ
′
ρ ∆′, x:A⊥; Γ (�)

∀z ∈ ∆; y ∈ ∆′.cσ(z) = cσ′ (y)
⇒ pσ(z) 6= dσ′ (y) ∧ dσ(z) 6= pσ′ (y)

∀z ∈ ∆, x; y ∈ ∆′, x.cσ(z) = cσ′ (y)⇒ pσ(z) 6= pσ′ (y)

(νx)(PL | QL) �(σ′∪σ)\{x}
ρ′ ∆,∆′; Γ, JPLKησ

Proposition D.1. If P �σρ ∆; Γ then ρ(σ(P )) `MP Γ

D.1 CLL bijective mapping as a single MP session
We replay the development of § 5 for our bijective mapping.

Definition D.3 (Generating Partial Global Types). Given P such
that P `σCL ∆ we generate its partial global type, written #σ(P )
by induction on the structure of P as follows:

#σ(0) , end
#σ(x〈M〉.P ) , pσ(x) dσ(x) :↑ (τ); #σ(P ) with M : τ

#σ(x(y).P ) , dσ(x) pσ(x) :↓ (τ); #σ(P ) with y : τ

#σ(x.li;P ) , pσ(x) dσ(x);⊕{li:#σ(P )}
#σ(x.case(li:Pi)i∈I) , dσ(x) pσ(x); &{li:#σ(Pi)}i∈I

Exactly as before, we generalize the � judgment with a set of
partial global types, written P �σρ ∆; Γ;G. We may then replicate
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the results of § 5 uniformly.
(threadb-G)

PL `σCL ∆ ρ = ∅
PL �σρ ∆; JPLKσ ; {#σ(PL)}

(compb-G)

PL `σ,ηCL ∆, x:A QL �σ
′
ρ ∆′, x:A⊥; Γ;G (�)

∀z ∈ ∆; y ∈ ∆′.cσ(z) = cσ′ (y)
⇒ pσ(z) 6= dσ′ (y) ∧ dσ(z) 6= pσ′ (y)

∀z ∈ ∆, x; y ∈ ∆′, x.cσ(z) = cσ′ (y)⇒ pσ(z) 6= pσ′ (y)

(νx)(PL | QL) �(σ′∪σ)\{x}
ρ′ ∆,∆′; Γ, JPLKησ ;G ∪ {#σ(PL)}

Proposition D.2. Let P �σρ ∆; Γ;G and ∆ = ∅ or ∆ contains
only 1 or ⊥. There exists a single well-formed global type G such
that G = fuse(G) where fuse(G) denotes fusion of all partial
global types in G.

Proof. Since ∆ is empty or contains only 1 or ⊥ we have that P is
an n-ary composition of (cut-free) processes. If n = 1 then P = 0
and its corresponding global type is just end. The interesting case
is when n > 1. Since the context is either empty or contains only
1 or ⊥, we have that P is of the form (νã)(P1 | · · · | Pn) where
all free names aj :Aj of each of the Pi processes are cut with some
other Pi′ using aj :A⊥j . Thus, by construction of � we have that
for each bound name a of P we have cρ(a)[pρ(a)]:T ∈ Γ and
cρ(a)[dρ(a)]:T ′ ∈ Γ with T � dρ(a) = T ′ � pρ(a) and thus for
each action between two roles in a partial global type in G in we
can always find a matching action in another partial global type in
G, therefore we can fuse all partial global types in G into a single
global type.

Theorem D.1. LetP �σρ ∆; Γ;G. LetG be the fusion of all partial
global types in G into a single global type. If ∆ = ∅ or containing
only 1 or ⊥, The interconnection network graph for G is acyclic.

Proof. Assume to the contrary that the connection graph for G
has a cycle. We have two kinds of cycles: a sequence of edges of
the form (p, q), (p, r), (q, r) – a triangle – or a sequence of edges
of the form (p, q), (p, r), (q, t1), . . . , (tn, s), (r, v1), . . . (vm, s) – a
diamond. We show that ∆ cannot be empty or contain only 1 or ⊥
in either case, deriving a contradiction.

Assume the connection graph for G contains a triangle. Since
(p, q) is in the connection graph, we know that roles p and q cannot
be implemented in the same process thread. Similarly for p and
r and q and r. Thus, we must have at least three process threads
P1, P2, P3, one for each role. Without loss of generality, assume
P1 `σ0CL x:A, y:B with σ0(x) = s[p][q] and σ(y) = s[p][r].
P2 `σ1CL x : A⊥, z:C with σ1(x) = s[q][p] and σ1(z) = s[q][r].
It is then immediate that we cannot find any P3 implementing r (to
fully empty the context) since it would have to share two channel
names with the composition of P1 and P2, which is not a well-
formed composition.

Assume the connection graph for G contains a diamond. We
already know by Theorem 5.2 that when all roles are implemented
by separate process threads that we cannot form a diamond. We also
know that only unconnected roles in the graph may be implemented
by the same process thread by Definition D.1. Thus the remaining
possibility is for unconnected roles in the connection graph to be
implemented by the same process thread. We note that if q and
r are implemented by the same process thread, then we cannot
find a closing instance of p (since we would need to compose two
processes sharing two channel names).

We proceed by case analysis on (n,m): when n = 0 andm = 0
we see that we cannot find a closed instance of the network since
either we are in the one-role-per-thread case (Theorem 5.2) or p

and s are implemented by the same thread. If this were the case, we
must have some P1 `σ0CL x:A, y:B, z:C,w:D such that σ0(x) =
s[p][q], σ0(y) = s[p][r], σ0(z) = s[s][r], σ0(w) = s[s][q]. This is
impossible by Definition D.1.

When n = 0 andm = m′+1: we have established that p and q,
p and r and q and r cannot be implemented by the same thread. If q
and v1 were implemented by the same thread, we can easily see that
we cannot find a closed instance of this network since we’d need
to compose with the (distinct) implementations of p and r which
are themselves connected and thus we’d need to compose a pro-
cess mapped to s[q][p]; s[v1][r]; s[v1][v2] with a process mapped to
s[p][q]; s[p][r] and another mapped to s[r][p]; s[r][v1]. If we com-
pose the first with the second, we cannot compose with the third
since they would share two channel/role assignment pairs: s[r][p]
and s[r][v1]. A similar reasoning applies to the other ways of com-
posing the processes. It is also easy to see that the same reasoning
applies if q and vi were implemented by the same thread.

When n = n′ + 1 and m = m′ + 1 we begin with the
case where q and v1 are implemented by the same thread and r
and t1 are implemented by the same thread. It is easy to see we
cannot compose such processes. The same reasoning applies as we
increase n andm. If ti and vi are implemented by the same process
we must have processes sharing two distinct channels, which we
cannot. If tn and vm are the same process, then the implementation
of s must share two channels with this process, which is also a
contradiction. Finally, if p and s are the same process, we are in the
same situation as that described in the n = 0 and m = 0 case.

Lemma D.1. Let P �σρ ∆; Γ;G. co(Γ) implies ∆ = ∅ or ∆
contains only 1 or ⊥ and σ = ∅.

Proof. Assume to the contrary that ∆ 6= ∅ and doesn’t contain
only 1 and ⊥, or σ 6= ∅. Then it must be the case that P has
some free name x:A ∈ ∆ where σ(x) = s[p][q], for some s, p, q
with A 6= 1 or ⊥. By construction it must necessarily be the
case that s[p]:T1 ∈ Γ. However, since x is free in P we have
that if s[q]:T2 ∈ Γ then T1 � q 6= T2 � p. For T2 to have the
corresponding actions with role p there must exist a free name y in
P such that σ(y) = s[q][p]. If both x and y are in the same cut-free
sub-process this contradicts Definition D.1. If they are in different
sub-processes, this contradicts the premise of the composition rule.
The only remaining possibility is for a bound name of P to have
been mapped to s[q][p], which also contradicts the premise of the
composition rule. This arguments contradicts the assumption of
coherence and so we conclude the proof.

Lemma D.2. Let P �∅ρ ∆; Γ;G with ∆ = ∅ or ∆ containing only
1 or ⊥. We have that co(Γ).

Proof. Assume to the contrary that Γ is not coherent. Then this
means there exists s[p]:T, s[q]:T ′ in Γ such that T � q 6= T ′ � p.
For this to be the case, either T � q contains an action unmatched
by T ′ � p or vice-versa. Assume that T � q contains an unmatched
action. Since s[p]:T ∈ Γ and s[q]:T ′ ∈ Γ we know that there exists
(x, s[p][q]) ∈ ρ – this is necessarily the case due to the construction
of the � judgment, insofar as if both s[q]:T ′ and s[p]:T ∈ Γ with
q ∈ rset(T ) then we cannot introduce s[q] in the context unless
with an instance of the composition rule for the corresponding
channel x – where some subprocess of P uses x:A for some A and
some other subprocess of P uses x:A⊥. The duality of x:A and
x:A⊥ contradicts the existence of an unmatched action in T � q.
The argument for an unmatched action in T ′ � p is identical.

The other possibility is for s[p] : T ∈ Γ such that q ∈ roles(T )
and s[q] : T ′ 6∈ Γ. If this is the case, then we must have x such
that σ(x) = s[p][q], with x:A′ in ∆ and A′ 6= 1,⊥ which is a
contradiction.
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Theorem D.2. Let P �σρ ∆; Γ;G. co(Γ) iff ∆ = ∅ or ∆ contains
only 1 or ⊥ and σ = ∅.

Proof. By Lemmas D.1 and D.2

Theorem D.3. Let P �σρ ∆; Γ;G and ∆ = ∅ or ∆ containing
only 1 or ⊥. Then we have: (1) P →∗ 0; (2) fuse(G) at each ses-
sion is well-formed and deadlock-free; and (3) the interconnection
network graph for fuse(G) is acyclic.

Proof. (1) follows from [7, 27]. (2) follows from Prop. D.2. (3)
follows from Theorem D.1.
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