Simulating Services-Based Systems Hosted in Networks
with Dynamic Topology

Petr Novotny and Alexander L. Wolf

Imperial College London
London, UK

Imperial College London
Department of Computing
Technical Report DTR-2016-02 January 2016

© 2016 Petr Novotny and Alexander L. Wolf

ABSTRACT

Abstract

The emerging use of mobile ad hoc networks combined with current trends in the use of
service-based systems pose new challenges to accurate simulation of these systems. Current
network simulators lack the ability to replicate the complex message exchange behaviour of
services, while service simulators do not accurately capture of mobile network properties. In
this paper we provide an overview of a framework for simulating both a service behavioural
model and a mobile network. The framework is implemented as an extension of the NS-3

network simulator.

1 Introduction

Service-based systems are becoming integral elements of tactical wireless, mobile networks. Structured as a
complex of interdependent, interrelated services, they can provide end users with a rich set of information
combined from multiple sources. This model of information delivery is in sharp contrast to the flow-based,
point-to-point model that has been traditionally supported in tactical networks. Analysing the behaviour of
such complex applications is a challenging task. The challenge is compounded when services run on highly
dynamic networks such as mobile, ad hoc networks (MANETS), in which the fluidity of the underlying
network greatly impacts performance and availability.

Service-based systems consist of some number of services that interact with one another in order to
complete client requests. Each service provides a set of methods for use by other services or clients. A
method may use any number of other methods provided by other services to carry out its functionality.
Thus, services are interconnected with each other. Clients initiate the flow of service requests by sending
messages that request method executions, and then wait for some response.

A simulator that can closely replicate the behaviours of service-based systems running on MANETSs can
be a valuable analysis tool. In particular, it can provide a means to predict performance when designing, de-
ploying, or managing the system. Furthermore, it can model network traffic workloads that are characteristic
of MANETS. Existing simulation tools fall short of providing such capabilities. Packet-level network simu-
lators, such as NS—EE and QualNetﬂ provide detailed implementations of mobile, wireless networks, but lack
the ability to replicate complex behavioural aspects of service-based systems. These aspects are addressed in
high-level service simulators [5], which unfortunately do not provide a means to simulate a complex network
layer.

In this paper we introduce a new simulation tool for service-based systems hosted on MANETs. With
the system and behavioural models of services built on top of a packet-based simulator, our approach allows
the replication of various critical aspects, such as the cascading flows of messages in complex conversations,
comprehensive client-driven workload profiles, and the propagation of faults through services. Furthermore,
the simulator provides generic and easily extended models that can be used to capture modern service-based
platforms, such as SOA, operating in MANET or hybrid networks.

We have used the simulator for evaluation of several system management methods such as in method of
discovery of software service dependencies in MANETSs [4] 2], method of fault localization in service-based
systems hosted in MANETs [3] [I], and in analysis of behavior of hybrid wireless networks [6].

A source code of the simulator is available for download at the following address:
https://github.com/jecmldev /service-simulator-ns3

2 Architecture

The simulator engine is built on top of the discrete event network simulator NS-3, extended with additional
higher-level abstraction layers and components for simulating service entities and their interactions. NS-3
provides a comprehensive network simulation with detailed implementation of low-level network protocols.
However, NS-3 provides only a simple mechanism for simulating the flow of packets from point to point. At
the highest abstraction level, NS-3 provides sockets and packets as a basic network data transfer mechanism.

Figure [1] illustrates the architecture of our simulator engine. The simulation engine encapsulates the
socket layer into a messaging layer that provides the abstraction of messages exchanged between end-points.
The messaging layer is then encapsulated into a service layer that provides abstractions for entities (services
and clients) and their interconnection models. Finally, the simulator provides methods for engineers to
configure the simulation scenarios and their parameters, to run the simulation, and to generate output
traces. In what follows, we describe these layers, models and the current implementation.

Thttp://www.nsnam.org/
%http://www.scalable-networks.com/products/qualnet/

http://www.nsnam.org/
http://www.scalable-networks.com/products/qualnet/

Service-based system simulator

Service layer "

=]

8

:

= =

= b o b
[2 T by @
E g 2 E g £
& =} £ = = @
@ = c [@
& 8 = o & iz
8 H o E El 2

= i

2 “ @ 5 2
& = =] %
Q [FT)

L=

o

£

m

=

s

Messaging layer n

NS3 — Network layer

Figure 1: Architecture of the NS-3 based service-based system simulator

3 Messaging layer

The messaging layer provides abstractions for exchange of messages between end-points used by service-based
system entities. The messaging layer is built directly on top of the socket layer of NS-3.

The abstractions provided by NS-3 for transferring data over the network are that of sockets and packets.
The NS-3 socket is an asynchronous implementation of BSD socket API. The sockets are used to send and
receive data in NS-3 packets. The NS-3 packet is transferred over the network in series of network packets.
The NS-3 provides suit of socket types including one for each transport layer protocol implemented in NS-3
(i.e. TCP and UDP). The messaging layer encapsulates the sockets of the specific transport protocol and
provides abstractions for exchange of messages.

Figure [2] illustrates the high level structure of the messaging layer. The messaging layer has two main
objectives.

First, the messaging layer defines the abstractions used for exchange of messages over the network in
unicast mode. A message represents remote method invocation mechanism such as a message in SOAP
protocol. The message caries reference to the service and method to invoke and additional identification
data. Additionally, the message caries certain amount of dummy data to represent the size the message
would have in a real system. The messages are exchanged over the network between two types of end-points.
A client end-point is used to send messages and a server end-point is used to receive messages. The client-end
point is thus used by the client applications and services to send request messages to other services and to
receive response messages. Furthermore, the client-end point is also used to send response messages from
services back to clients and services. The server end-point is used by services to listen for and to receive
invocation request messages.

The messaging layer further introduces semantics into the message exchange. The end-points thus support
two message exchange patterns; namely the request-response pattern and the send-only pattern. In order to
support these exchange patterns the end-points report on whether a message was successfully sent between
end-points or failed (i.e. send failure) and whether a response message was received on time or not (i.e.
response timeout).

The second objective of the messaging layer is to provide implementation of the specific transport pro-
tocols for exchanging messages over the dynamic networks. In our current implementation, the messaging
layer provides implementation of the UDP transport layer protocol. The UDP is commonly used in MANET
environments because it is a lightweight stateless protocol. Thus, it allows sending data between nodes

<<instantiates»>> ‘ <<nstantiates»>>
MessageEndPointFactory

r—=—=—=—=——==7 +ereateClientEndPoint() [T~~~ -~ 1
: +ereateServerEndPoint)
I

lr M

| UdpClientMessageEndPoint H EndpointMessageldCache H UdpServerMessageEndPoint

v 7

ClientMessageEndPoint ServerMessogeEndPoint
+sendMessage() +receivelMessagal)
' [
HUSESH ‘%7
R _IMessngeEndPnfnt|
|
Phessage =~ ServiceLayer::5Servicelnstance |
- 1
-uniqueld
R es aiorid HCanfigu ration::ServiceMethod |
-size

Figure 2: Class diagram of the messaging layer

without maintaining connection or other mechanisms which are problematic or ineffective in networks with
dynamic topology. However, the UDP protocol is unreliable because it does not guarantee delivery of packets
or notification of failure. Thus, the UDP based end-point implementation provides additional lightweight
mechanism for semi-reliable message delivery. This mechanism also provides the necessary functionality for
the end-point reporting of status of message exchange. The protocol uses acknowledgement messages (ACK)
to verify if payload message was successfully received.

The acknowledgement protocol works as following: an end-point will wait for certain period of time after
it sent payload message to receive ACK message. If the ACK message is received in predefined period of
time, the end-point will confirm successful sending of the payload message. However, if the ACK message
was not received, the end-point will re-send the payload message again and again wait of the ACK message.
The re-send cycle will be repeated for certain number of times. On the receiving side, as a response to
any payload message received, the end-point will automatically send ACK message. The acknowledgement
protocol is illustrated in Figure 3] for client end-point and Figure [4] for server end-point. The client end-point
is used for either to send request message and wait for response or to send single message without response.

Due to peculiarities of the dynamic networks, the messages get frequently lost between nodes. Hence,
using the acknowledgement and re-send mechanism may lead to repeated sending and receiving of the same
messages. To eliminate consequences of such a condition, the UDP end-points use two strategies. First,
whenever end-point receives payload message, it always sends back ACK message to confirm reception of the
payload message (even if the message was already received before). Second, the end-point uses mechanism
of dropping redundant payload messages already received i.e. preventing redundant invocation of services.
This is an important feature ensuring integrity of the computations, required in environment built on top of
non-reliable transport protocols.

/ Open

/ Receive message to send

[Within retransmission limit]

Sending Message

/ Send message,Start ACK timeout

Waiting for ACK

[ACK received)

/

[ACK timeout]

[Retransmission limited reached]

[Response required]

Waiting for Response

Response timeout)]
d\] ,,I [Send only]

[Message exchange faile

[Response received)

Frocessing response

/ Repaort fault
|

Figure 3: State-machine diagram of the UDP client end-point protocol

f Close

[5end ACK,Notify request received
/ Request received

Processing request

Figure 4: State-machine diagram of the UDP server end-point protocol

4 Service layer

The service layer of the simulator consists of several abstraction models: entities, interconnections, workloads,
faults, messages and deployment.

(1) Entity model: Entity models provide the building blocks of the service-based system simulation.

e (lients represent applications used by end users. Each client behaves as an autonomous entity that
contacts a set of services at times (random or deterministic) configured by the engineer.

e Contracts represent definitions of interfaces of services. Each contract defines an interface of a type of
service as a set of methods. A contract is provided by (i.e. implemented by) one or more services.

e Services represent autonomous self-contained functional units. Each service adheres to (i.e. imple-
ments) one contract and has a set of methods that are available to be used by clients and other ser-
vices. Each method contains an abstract definition of its computation consisting of delays to simulate
processing time, and a set of steps that send requests to other services.

In the Figure [5| are illustrated the configuration elements of the service-based system entities. Further-
more, in the Figure [f] are shown the runtime elements of the service-based system entities. In the Table
are provided typical values used in configuration of the Entity model in our experiments.

(2) Interconnection model: The interconnection model defines the methods in other service contracts
with which each entity in the service-based system interacts (i.e., sends service requests and receives re-
sponses). Two types of interconnections are defined: client-to-service, and service-to-service. The simulator
provides probabilistic as well as deterministic generators of the service-based system interconnections. The
probabilistic generator creates a randomized configuration with predefined connection probabilities. The
deterministic generator allows the engineer to have control over the specific interactions in the system.

The interconnection model also defines the service discovery mechanism used during the system runtime.
The service discovery mechanism provides functionality to the clients and services to discover service instances
to send messages to during the system runtime. It is an essential component in service-based system where
interconnections are defined between entities and contracts (i.e. types of services) but not services themselves.
Thus, during the system runtime, the entities have to discover which actual service instance they should
interact with based on the contract the service instance provides. This task is particularly important in
MANETSs with the dynamic topology continuously altering connectivity between nodes and consequently
the availability of services.

In general, before every request, service-based system entity will query a service registry for a service
instance to send the request to. The service registry will select the most appropriate service instance based

ClientExecutionPlan

-requestRate
-postErrorDelay
-stepSelectionType

ScenarioConfiguration

+validateConfigurationd)

ServiceMethod

1
Client Sarvica + %‘-methodld
-contractld 1 * -responsesize
1
57 1
ServiceBase
: MethodExecutionPlan
-startTime
-stopTime -startDelay
-endDelay
-stepDelay -
-errorDelay ExecutionStep
| | -contractld
\/ -methodid

-requestSize

ExecutionPlan

-invocationProbability

Figure 5: Class diagram of the configuration elements of the service-based system entities

| Configuration::Client |

| Configuration::Service |

Messagelayer::ServerMessageEnd Point

+receiveMessagel)

1

CCUSES5>>

Clientinstance

TLSE5>
i

1
Servicelnstance z

N/

NS3:Application

1
1

|Servi:eTaskManager |

¢

1

1 1

%{C“E ntPlanExecuter |

|ServiceMethnr.l PlanExecuter K—.I ServiceReguestTask |

1

|C-:| nfiguration::ExecutionPlan

PlanExecuter

==Uuses>> | Messagelayer::ClientMessageEnd Point

+sendMessagel)

Figure 6: Class diagram of the runtime elements of the service-based system entities

HopDistance | ‘Physicalnistance| ‘ Fixed

AV

ServiceRegistryServiceSelector

+selectService()

HKusesw 1 HUSEsH

|

|ServiceLayer::Servir.elnstance |» ————— . 1 |

| |

|

AUSBSH ServiceRegistry |

- +registerService() & ; ServiceRegistryRecord

|SerulceLayer::F'IanE:(ecuter |— ——~ Flrdiscoverservice() 1 #

Figure 7: Class diagram of the service discovery components of the service-based system

on its availability or some other metric. The simulator provides three types of service discovery mechanisms;
based on physical distance, based on metric from routing tables (i.e. hop distance) and based on fixed
configuration. Figure [7]illustrates the service discovery components.

The interconnection model allows configuring specific system topologies. For example, a frequently used
topology in the service-based systems is a 2-tiered topology. In this type of system, the first tier consists
of the connections between the clients and a set of “front-end” services, while the second tier consists of
the connections between the services themselves. In our experiments we make frequently use of the specific
service topologies.

In the Table [I] are provided typical values used in configuration of the Interconnection model in our
experiments. In this example configuration, the interconnections are defined probabilistically.

(3) Message model: There are three types of messages exchanged between entities: requests, responses,
and exceptions. Request messages are used to invoke methods in other services, while response messages
are sent by services back to the requesting entity upon the completion of the requested method. Exception
messages are used to propagate fault symptoms caused by network or service faults. The flow of messages
exchanged between services during the processing of a client request is called a conversation. In the simulator,
all messages contain information about the conversation to which they belong. The conversation information
is designed to replicate the behavior of WS-* standards such as WS—AddressingE

(4) Fault model: Services running on MANETS are exposed to potentially frequent faults in the network
due to network instability and in the services themselves due to resource constraints (and bugs). While
network failures are immediately captured by the network simulation layer, we must include a service fault
model that defines the failure behavior of the services.

The network faults are configured directly within configuration of the physical network. In MANETS,
the essential configuration of the network includes the propagation loss model which defines the quality of
wireless links between nodes. The simulator provides series of deterministic and probabilistic service fault
models as well as the capability to configure composite fault model behavior. The fault models are injected
into the services and into the service methods to allow fine grained configuration of the fault behavior.
Figure 8 illustrates the components of the fault model.

In the Table [I] are provided typical values used in configuration of the Fault model in our experiments.
In this example configuration, we use a probabilistic On/Off fault model to fail the services.

(5) Workload model: In service-based systems the workload is initiated by clients sending requests to
services. The workload model defines the rates of such requests. In our current implementation, clients

Shttp://www.w3.org/Submission/ws-addressing/

http://www.w3.org/Submission/ws-addressing/

Handomkate‘ ‘ OnOffRate ‘ | OnOffTime | |AhsoluteTime‘ | Composite

N/

FaultModel

-isEnabled

+isCorrupt()

1 1

L J [J

Configuration::ServiceMethod H Configuration::Service
1 *

Figure 8: Class diagram of the fault model components of the service-based system

repeatedly, and at pre-configured random times select one method to request out of the set of available
service methods, and then waits for a response.

In Figure [J]is shown client workload algorithm. The simulator provides two techniques to select a method
to send the request to. The method is either selected randomly from set of available methods or the method
is selected based on individual probability of each method to be invoked. For each client, the set of the
available service methods is defined by the interconnection model.

Upon reception of a request, the requested service method is invoked and depending on the configuration
of interconnections, further messages will be sent to other services. In Figure [10|is shown the processing of
a request by a service.

In the Table[T]are provided typical values used in configuration of the Workload model in our experiments.
In section Workload model - client are defined parameters of client request rate and the selection of the service
method to send request to. In section Workload model - service are defined parameters of delays representing
configuration of processing of requests by services.

(6) Deployment model: The deployment model specifies the mapping between physical network nodes
and the instances of entities of the service-based system (i.e. clients and services). The simulator provides
probabilistic as well as deterministic deployment methods.

In the Table[I] are provided typical values used in configuration of the Deployment model in our experi-
ments. In this example, on each node is deployed one client and the services are distributed randomly across
all of the nodes.

5 Simulation scenarios

The simulation scenarios are created by a configuration generator that creates scenario configurations based
on a set of parameters of system characteristics. In addition to the network parameters configured through
NS-3’s configuration (e.g., number of nodes, mobility, wireless link characteristics, etc.), the services, clients,
and their interactions and behaviors, including how and where the services are hosted, are configured for the
above models. During the simulation run, the simulator records events, such as service message exchanges and
fault symptoms, into trace files for analysis. Figure [11|illustrates the configuration and runtime components
of the simulator.

In the Table[I]are provided typical values used in configuration of our experiments. Aside of configuration
parameters of the service layer models, the table also contains configuration parameters of NS-3 defining the
underlying network layer.

/ Start

Waiting to start
(Waiting till next rEqUESWW

fSEndlrequest
‘Waiting error period

[Timeout]

[Failure]

[Success)

Waiting for response

[Response received]

[Exceptian]
|

Figure 9: State-machine of the client workload algorithm

®

/ Receive request

Processing request]

J/ Start execution plan

[Waiting plan start periodj
\\f>

[Steps to execute]

Executing step

/ Send request

[Meo steps)

[Geng

srate service fault)

[Generate method fault]

[Failure]

[Success]

\/

T
[Response received])

v

[More steps to execute] >
L

N

[Plan finished)

{Waiting plan end perina

-

[Timeout]
[Waiting post step periodj [Wairing far responsejﬂ[ingmmr period

o

/ Send response

Figure 10: State-machine of the service workload algorithm

10

Entity model

Number of clients

Number of contracts

Number of methods in contract
Number of services per contract

50
30

Message model

Request message size
Response message size

500-1500 bytes
500-1500 bytes

Response timeout 60 000 ms
End-point - transport protocol UDP
ACK timeout 1000 ms
Message retransmission limit 5x
Interconnection model

Service topology type 2-tier
Number of front-end contracts 5
Client to front-end contract method connectivity probability 0.5
Service method to contract method connectivity probability 0.01-0.1
Service discovery method hop count

‘Workload model - client

Request rate

5000-15000 ms

Next request after conversation fails 5000 ms
Step selection method based on step probability
Step invocation probability 0.01 to 1
Workload model - service

Method start delay 20
Method end delay 20
Method step delay 10
Method error delay 10
Fault model

Service fault model OnOffRate
Deployment model

Client to node lonl
Service to node random
Network layer

Number of nodes 50
Spatial bounds 75m x 75m
Mobility speed 10 m/s

Mobility model
Propagation delay model
Propagation loss model
WiFi standard

‘WiFi rate

Routing protocol
Protocol stack

RandomDirection2dMobility
ConstantSpeedPropagationDelay
LogDistancePropagationLoss/a3

80211b

11Mbps

OLSR and Ipv4StaticRouting
UDP/IPv4

Table 1: Main simulator configuration parameters

11

of a scenario

Probabilistic Deterministic MAMET

S - — v

ServiceConfigurationGenerator NetworkGenerator

+generateScenariaConfiguration() +generatorMetwork()

I I

<<instantiates>> <<instantiates>>
I I
| s
Configuration::ScenarioConfiguration NetworkConfiguration
1 1
1
ScenarioLoader L @ ScenarioSimulator e——
tinstantiateEntities() ¥ sLuses=> +runSimulation() 1
1
MessageTrace 1 FaultTrace
1

Figure 11: Class diagram of the simulator configuration and runtime components

6 Conclusion

In this paper we have introduced our simulator of service-based systems hosted in networks with dynamic
topology. The simulator is built as an extension of a standard packet based network simulator NS-3. The
simulator thus closely replicates the complex network behavior as well as the service-based system entities
and models. We have used the simulator for evaluation of several system management methods such as
in method of discovery of software service dependencies in MANETSs [4], 2], method of fault localization in
service-based systems hosted in MANETS [3] [I], and in analysis of behavior of hybrid wireless networks [6].

To our knowledge, there is currently no other comparable tool providing functionality of network and
service layers simulation. Therefore, we believe that the simulator can be valuable tool for many other
researchers as well.

Acknowledgments

This research was sponsored by the U.S. Army Research Laboratory and the U.K. Ministry of Defence and
was accomplished under Agreement Number W911NF-06-3-0001. The views and conclusions contained in
this document are those of the author(s) and should not be interpreted as representing the official policies,
either expressed or implied, of the U.S. Army Research Laboratory, the U.S. Government, the U.K. Ministry
of Defence or the U.K. Government. The U.S. and U.K. Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright notation hereon.

12

References

[1] P. Novotny. Fault localization in service-based systems hosted in mobile ad hoc networks. PhD thesis,
Imperial College London, 2014.

[2] P. Novotny, B. J. Ko, and A. L. Wolf. On-demand discovery of software service dependencies in MANETS.
IEEE Transactions on Network and Service Management, 12(2):278-292, June 2015.

[3] P. Novotny, A. L. Wolf, and B. J. Ko. Fault localization in MANET-hosted service-based systems. In
315t IEEE International Symposium on Reliable Distributed Systems, pages 243-248, Oct. 2012.

[4] P. Novotny, A. L. Wolf, and B. J. Ko. Discovering service dependencies in mobile ad hoc networks. In
IFIP/IEEE International Symposium on Integrated Network Management, pages 527-533, May 2013.

[5] W. She, I.-L. Yen, and B. Thuraisingham. WS-Sim: A web service simulation toolset with realistic data
support. Computer Software and Applications Conference Workshops, 0:109-114, 2010.

[6] S. Tati, P. Novotny, B. J. Ko, A. L. Wolf, A. Swami, and T. La Porta. Diagnosing degradation of services
in hybrid wireless tactical networks. In SPIE Defense, Security, and Sensing, May 2013.

13

	Introduction
	Architecture
	Messaging layer
	Service layer
	Simulation scenarios
	Conclusion

