
Hybrid Session Verification through
Endpoint API Generation

Raymond Hu and Nobuko Yoshida

Imperial College London

Abstract. This paper proposes a new hybrid session verification method-
ology for applying session types directly to mainstream languages, based
on generating protocol-specific endpoint APIs from multiparty session
types. The API generation promotes static type checking of the be-
havioural aspect of the source protocol by mapping the state space of
an endpoint in the protocol to a family of channel types in the tar-
get language. This is supplemented by very light run-time checks in the
generated API that enforce a linear usage discipline on instances of the
channel types. The resulting hybrid verification guarantees the absence
of protocol violation errors during the execution of the session. We have
implemented our methodology for Java as an extension to the Scrib-
ble framework, and used it to implement compliant clients and servers
for real-world protocols such as HTTP and SMTP. The API genera-
tion methodology additionally provides a platform for applying further
features from session type theory: our implementation supports choice
subtyping through branch interface generation, and safe permutation of
I/O actions and affine inputs through input future generation.

1 Introduction

Application of session types to practice. Session types [15,16,5] are a type
theory for communications programming which can guarantee the absence of
communication errors in the execution of a session, such as sending an unex-
pected message or failing to handle an incoming message, and deadlocks due to
mutual input dependencies between the participants. One direction of applying
session types to practice has investigated extending existing languages with the
necessary features, following the theory, to support static session typing. This
includes extensions of Java [19,40] with first-class channel I/O primitives and
mechanisms for restricting the aliasing of channel objects, that perform static
session type checking as a preprocessor step alongside standard Java compila-
tion. New languages have also been developed from session type concepts. The
design of SILL [33,41] is based on a Curry-Howard isomorphism between propo-
sitions in linear logic and session types, giving a language with powerful linear
and session typing features, but that requires programmers to shape their data
structures and algorithms according to this paradigm.

To apply session types more directly to existing languages, another direction
has investigated dynamic verification of sessions. In [9], multiparty session types

2

(MPST) are used as a protocol specification language from which run-time end-
point monitors can be automatically generated. The framework guarantees that
each monitor will allow its endpoint to perform only the I/O actions permitted
according to the source protocol [1]. Although flexible, dynamic verification loses
benefits of static type checking such as compile-time error detection and IDE
support. Session types have been also applied through code generation to specific
target contexts. [31] develops a framework for MPI programming in C that uses
MPST as a language for specifying parallel processing topologies, from which a
skeleton implementation of the communication structure using MPI operations
is generated. The skeleton is then merged with user supplied functions for the
computations around the communicated messages to obtain the final program.

This paper presents a new methodology for applying session types directly to
mainstream statically typed languages. There are two main novel elements:

Hybrid session verification. A trend in recent works [13,8,7,2,42] has
been the study of explicit relationships between session types and linear types.
In this work, we continue in the direction of developing session types as a system
for tracking correct communication behaviour, in terms of I/O channel actions,
built on top of a linear usage discipline for channel resources (every instance of
a channel should be used exactly once). We apply this formulation practically as
hybrid session verification: we statically verify the behavioural aspect through
the native type system of the target language, supplemented by very light run-
time checks on linear channel usage.

Endpoint API generation. In this work, we use multiparty session types
as a protocol specification language from which we can generate APIs for im-
plementing the endpoints in a statically typed target language. Taking an FSM
(finite state machine) representation of the endpoint behaviour in the proto-
col [11,22], we reify each state as a distinct channel type in the target language
that permits only the exact I/O operations in that state according to the source
protocol. These state channels are linked up as a call-chaining API for the end-
point that returns a new instance of the successor state channel for the action
performed. Session type safety is thus ensured by static typing of I/O behaviour
on each state channel, in conjunction with run-time checks that every instance
of a state channel is used linearly.

Our methodology is a practical compromise that combines benefits from fully
static session type systems and code generation approaches. Firstly, this method-
ology allows many of the safety benefits of session types, such as sending only
expected message types and exhaustive handling of potential input types, to be
statically checked in mainstream languages like Java, up to the linear channel
usage contract of the generated API. Secondly, by directly targeting existing
languages, user implementations of session endpoints using the generated API
can be readily integrated with existing libraries and IDE support.

We present the implementation of our methodology for Java as an extension
to Scribble [39], a practical protocol description language based on multiparty
session types. Beyond the basic safety properties of enforcing session type be-
haviour through endpoint FSMs, we take advantage of our hybrid approach

3

1 // External data types for message payload formatting

2 type <java> "java.lang.Integer" from "rt.jar" as Int;

3

4 global protocol Adder(role C, role S) {

5 choice at C { // Internal choice by C

6 Add(Int, Int) from C to S; // Message sig: op(payload)

7 Res(Int) from S to C;

8 do Adder(C, S); // Recursive protocol def

9 } or {

10 Bye() from C to S;

11 Bye() from S to C; // Protocol end

12 } }

1 2

3

4

S!Bye()

S?Bye()

S!Add(Int, Int)

S?Res(Int)

Fig. 1. (a) Scribble global protocol, and (b) Endpoint FSM for C.

to support additional practical features such as value-switched branches and
abstraction of nominal state channels as I/O interfaces. API generation also
provides a platform for applying further features from session type theory: our
implementation supports choice subtyping [12] through branch interface genera-
tion, and safe permutation of I/O actions [26,3] and affine inputs [33,25] through
input future generation. We have tested our framework by using our API gen-
eration to implement compliant clients and servers for real-world protocols such
as HTTP and SMTP.

Outline: § 2 describes the Scribble toolchain that this paper builds on, and gives
an overview of the new methodology for hybrid session verification through API
generation. § 3 presents our implementation of the proposed methodology that
generates Java endpoint APIs from Scribble protocol specifications. § 4 discusses
SMTP as a use case and extensions to the API generation for asynchronous I/O
permutations and affine inputs, and abstraction of nominal Java channel types
by generating I/O interfaces. § 5 discusses related and future work.

This work on hybrid session verification through endpoint API generation
was first presented at the CoCo:PoPs workshop [4]. The Java tools presented
in this paper are publically available as part of the Scribble [39] open source
github repository [38]. The first presented version [4] of these tools and example
applications can be retrieved from there, e.g., June 2015 [36]; the latest research
version can be found at a public fork [37].

2 Overview

The Scribble toolchain. The Scribble methodology starts from specifying a
global protocol, a description of the full protocol of interaction in a multiparty
communication session from a neutral perspective, i.e. all potential and necessary
message exchanges between all participants from the start of a session until
completion. The communication model for Scribble protocols is designed for
asynchronous but reliable message transports with ordered delivery between each
pair of participants, e.g. standard Internet applications and Web services that
use TCP, HTTP, etc.

4

Global protocol specification. We use as a first running example a simple
client-server protocol for a service that adds two integers, written in Scribble in
Fig. 1 (a). The main elements of the protocol specification are as follows.

The protocol signature (line 4) declares the name of the protocol (Adder) and
the abstraction of each participant as a named role (C and S). Payload format
types (line 2) give an alias (e.g. Int) to data type definitions from an external
language (java.lang.Integer) used to define the wire protocols for message for-
matting. A message signature (e.g. Add(Int, Int)) declares an operator name
(Add) as an abstract message identifier (which may correspond concretely to,
e.g., a header field), and some number of payload types (a pair of Int). Message
passing (e.g. line 6) is output-asynchronous, i.e. dispatching the message is non-
blocking for the sender (C). The receiver (S) is blocked on the message input.
Located choice (e.g. line 5) states the subject role (C) for which selecting one of
the listed protocol blocks to follow is a mutually exclusive internal choice. This
decision is an external choice to all other roles involved in each block, which must
be appropriately coordinated by explicit messages. Recursive protocol definitions
(line 8) describe recursive interactions between the roles involved. Non-recursive
do statements can be used to factor out common subprotocols.

Scribble performs an initial validation on global protocols to assert that the
protocol can be correctly realised by a system of independent endpoint processes.
In this two-party example, the validation checks that each choice case is indeed
communicated by C to S unambiguously (a simple error would be, e.g., if C firstly
sends a Bye to S in both cases).

Local protocol projection and Endpoint FSMs. Following a top-down
interpretation of formal MPST systems, Scribble syntactically projects [6] a valid
source global protocol to a local protocol for each role. Projection essentially
extracts the parts of the global protocol in which the target role is directly
involved, giving the localised behaviour required of each role in order for a session
to execute correctly as a whole. See §A.1 for the projection of Adder for C. A
further validation step is performed on each projection of the source protocol
for role-sensitive properties, such as reachability of all protocol actions per role.
The validation also restricts recursive protocols to tail recursion. A valid global
protocol with valid projections for each role is a well-formed protocol.

Building on a formal correspondence between syntactic local MPST and
communicating FSM [10,22], Scribble can transform the projection of any well-
formed protocol for any of its roles to an equivalent Endpoint FSM (EFSM).
Fig. 1 (b) depicts the EFSM of the projection for C. The nodes delineate the
state space of the endpoint in the protocol, and the transitions the explicit I/O
actions between protocol states. The notation, e.g., S!Bye() means output of
message Bye() to S; ? similarly stands for input. The (tail) recursion in the
protocol naturally corresponds to the cycle between states 1 and 2.

Hybrid session verification through endpoint API generation. This
paper proposes a new methodology for applying session types to practice that
ensures communication safety through a hybrid verification approach.

5

Static type checking of I/O behaviour. We consider the EFSMs derived
from a source global protocol to represent the behavioural aspect of the session
type. Our methodology is to generate a protocol-specific endpoint implementa-
tion API for a target role by capturing its EFSM via the native type system of
a statically typed target language. The key points of the API generation are:

– The Scribble toolchain is used to validate the source global protocol, project
to local protocols, and generate the EFSM for the target role.

– Each state in the EFSM is reified as a distinct channel type in the type
system of the target language. We refer to channels of these generated types
as state channels.

– The only I/O operations permitted by a generated channel type are safe
actions according to corresponding EFSM state in the protocol.

– The return type of each generated I/O operation is the channel type for
the next state following the corresponding transition from the current state.
Performing an I/O operation on a state channel returns a new instance of
the successor channel type.

Starting from a session channel for the initial state of the protocol, and perform-
ing an I/O operation on each state channel returned by the previous operation,
the generated API statically ensures that an endpoint implementation is ac-
cepted by the encapsulated EFSM and thus observes the protocol. The implicit
usage contract of the generated API is thus to use every state channel returned
by an API call exactly once up to the end of the session, to respect EFSM se-
mantics in terms of following state transitions linearly up to the terminal state.
If respected, the generated API is guaranteed to yield a fully session type safe
endpoint implementation.

Run-time checking of linear state channel usage. Due to the lack of
static support for linear usage of values or objects in most mainstream languages,
we take the practical approach of checking linear usage of state channel instances
at run-time. These checks are inlined into the Endpoint API as part of the API
generation. There are two cases for state channel linearity to be violated.

Repeat use. Every state channel instance maintains a boolean state value
indicating whether an I/O operation has been performed. The generated API
guards each I/O operation permitted by the channel type with a run-time check
on this boolean to ensure the state channel is not used more than once.

Unused. All state channels for a given session instance share a boolean state
value indicating whether the session is complete for the local endpoint. The
generated API sets this flag when a terminal operation, i.e. an I/O action lead-
ing to the terminal EFSM state, is performed. In conjunction with a language
mechanism for delimiting the scope of a session implementation, such as stan-
dard exception handling constructs, the generated API checks session completion
when program execution leaves the scope of the session.

If any state channel remains unused (possibly discarded, e.g. garbage col-
lected) on leaving the scope of a session implementation, then it is not possible
for the completion flag to be set.

6

3 Hybrid Endpoint API generation for Java

The API generation takes as input a Java-based Scribble protocol specification,
meaning a well-formed global protocol with Java-defined payload format types.
More formally, as explained below, we start from a global type, project the target
local type, and translate it to an Endpoint FSM (EFSM).

Global and local types. Set R (ranged by r, r′, . . .) is the finite set of roles
and L (ranged by l, l′, . . .) is the finite set of message labels. The syntax of
global [16,5,22] (ranged by G,G′, . . .) and local types (ranged by L,L′, . . .) is:

G ::= r → {ri(li : ~Ti) : Gi}i∈I | µX.G | X | end
L ::= !{ri(li : ~Ti) : Li}i∈I | r?{(li : ~Ti) : Li}i∈I | µX.L | X | end

The first global type corresponds to a choice in Scribble where r selects li with
payload types ~Ti at ri and becomes Gi. µX.G is a recursive type and end denotes
termination. In local types, the first type represents a select to ri by li with ~Ti,
and the second represents a branch from r. The rest is as for G. The relationship
between global and local types is defined by the projection function G ↓r L
(defined in [16,5,22]) which means that L is a view from r of G. E.g.,

r → {ri(li : ~Ti) : Gi}i∈I ↓r!{ri(li : ~Ti) : Li}i∈I with Gi ↓r Li

Endpoint FSMs (EFSMs) serve as an interface between source protocol
validation (§ ??) and projection, and the subsequent API generation. Formally,
an Endpoint FSM E for L is a tuple (R,L,T, Σ, S, δ) where: R and L are sets
occurring in L, T is the finite set of payload format types declared by L; the
alphabet Σ is a finite non-empty set of actions {αi}i∈I , where α is either output

r!l(~T) or input r?l(~T) with r ∈ R, l ∈ L, Ti ∈ T; the set of states S is a finite
non-empty set of S; and the transition function δ is a partial function S×Σ → S.
We additionally define: δ(S) = {α | ∃S′ ∈ S.δ(S, α) = S′}.

Given L, we obtain a mapping fsm(L) = (R,L,T, Σ, S, δ) as follows. Let X
be a map from recursion variables to states X 7→ S, and Sterm be the unique
terminal state (and the only accepting state). We define: graph(S,L,X) =

⋃
i∈I [(S, ri!li(~Ti)) 7→ S′i) ∪ graph(S′i, Li,X)] L =!{ri(li : ~Ti) : Li}i∈I , S′i = succ(Li,X)⋃
i∈I [(S, r?li(~Ti)) 7→ S′i) ∪ graph(S′i, Li,X)] L = r?{(li : ~Ti) : Li}i∈I , S′i = succ(Li,X)

graph(S,L,X ∪X 7→ S) L = µX.L

∅ L = X or end

succ(X,X) = S if X 7→ S ∈ X; succ(end,X) = Sterm; otherwise succ(L,X) = fresh S.

Then we set δ = graph(Sinit, L, ∅) where Sinit is the initial state, and Σ and S
are the set of actions and states in δ.

Some properties are guaranteed for any EFSM derived from a well-formed
protocol. (1) There is exactly one initial state Sinit ∈ S such that @S′ ∈ S, α ∈
Σ.δ(S′, α) = Sinit. (2) Sterm is the only S ∈ S such that δ(S) = ∅. (3) Every S ∈ S
is one of three kinds: an output state S!, input state S?, or Sterm. An output state
means δ(S) = {αi}i∈I , |I| > 0 and every αi∈I is an output. Similarly for input
states. (4) For each S? with δ(S?) = {αi}i∈I , every αi∈I specifies the same r.

Session API. From a given EFSM, our implementation of the Endpoint API
generation outputs two main protocol-specific components, the Session API and

7

the State Channel API. The generated APIs depend on a small collection of ab-
stract protocol-independent base Java classes: Role, Op, Session, SessionEndpoint
and Buf. These are explained below.

The main class of the Session API is a generated final subclass of the base
Session class with the same name as the source protocol, e.g. Adder (Fig. 1 (a)).
Its two main purposes are as follows.

Reification of abstract names. Session types make use of abstract names
as role and message identifiers in types, that the type system expects to be
present in the program to drive the type checking. The Session API reifies these
names as singleton Java types. For each role or operator name n ∈ R ∪ L, we
generate the following. (1) A final Java class named n that extends the relevant
base class (Role or Op). The n class has a single private constructor, and a public
static final field of type n and with name n, initialised to a singleton instance
of this class, e.g. public static final C C = new C();. (2) A public static final
field of type n and with name n in the main Session Class, that refers to the
corresponding field constant in the n class.

The Session API comprises the main Session Class with the role and message
name classes.

Session instantiation. As a distributed computing abstraction, a session
can be considered a unit of interaction that is an instance of a session type.
Following this intuition, the API user starts an endpoint implementation by
creating a new instance of the main Session Class. The API uses the Session
object to encapsulate static information, such as the source protocol, and run-
time state related to the execution of this session, such as the session ID.

A Session object is used to create a SessionEndpoint<S, R>, parameterised on
the parent Session and target role types, as on lines 1–3 in Fig. 4 (a). The first
two constructor arguments are the Session object and the singleton generated
for the target role, from which the SessionEndpoint type parameters are inferred,
and the third is an implementation of the Scribble MessageFormatter interface for
this endpoint using the Java format types declared in the Scribble specification.
The new SessionEndpoint object encapsulates the state specific to this endpoint
in the session, such as the target role and local network state.

State Channel API. Based on the properties of EFSMs, the core State Chan-
nel API is given by generating the channel classes for each EFSM state according
to Fig. 2. In the following, we use r, l, etc. to denote both a session type name
and its generated Java type (as described above); similarly, S for an EFSM state
and its generated Java channel type.

An output state is generated as a SendSocket with one send method for each
outgoing transition action α: the first two parameters are the role r and operator
l singleton types, followed by the sequence of Java payload format types, if any
(ε means no payloads). The return type is EndSocket (which supports no session
I/O operations) if the successor state is the terminal state, or else the channel
class generated for the successor state. Unary and non-unary input states are
treated differently. Channel class generation for unary inputs is similar to that
for outputs. The main difference is that each payload format type is generated as

8

State kind Java channel base class and session operation method signatures

S! SendSocket

For each α = r!l(~T) ∈ δ(S!): Tret send(r role, l op [[~T]]!)

Unary S? ReceiveSocket (|δ(S?)| = 1)

For α = r?l(~T) ∈ δ(S?): Tret receive(r role, l op [[~T]]?)

S? BranchSocket (|δ(S?)| > 1)

For α = r?l(~T) ∈ δ(S?):
CS? branch(r role) where CS? is the following CaseSocket class

CaseSocket

For each α = r?l(~T) ∈ δ(S?): Tret receive(l op, [[~T]]?)

where [[~T]]! = ε if |~T | = 0, else ‘, T1 pay1, . . .,Tn payn’

[[~T]]? = ε if |~T | = 0, else ‘, Buf<? super T1> pay1, . . ., Buf<? super Tn> payn’
Tret = δ(S, α) if S 6= Sterm, else EndSocket

Fig. 2. State channel Java class generation.

Gen. class Session operation methods Return

C 1 send(S role, Add op, Integer pay1, Integer pay2) C 2

send(S role, Bye op) C 3

C 2 receive(S role, Res op, Buf<? super Integer> pay1) C 1

C 3 receive(S role, Bye op) EndSocket

S 1 branch(C role) S 1 Cases

S 1 Cases receive(Add op, Buf<? super Integer> pay1,
Buf<? super Integer> pay2) S 2

receive(Bye op) S 3

S 2 send(C role, Res op, Integer pay1) S 1

S 3 send(C role, Bye op) EndSocket

Fig. 3. Generated state channel Endpoint API for C and S in Adder.

a Scribble Buf type with a supertype of the payload type as a type parameter. A
Scribble Buf is a simple parameterised buffer for a single payload value, written
by the generated receive code when the message is received. Non-unary inputs
are explained in § 3 (Session branches).

Only the channel class corresponding to the initial EFSM state has a public
constructor (taking a single argument of type SessionEndpoint<S, R>). Every
other state channel class is only instantiated internally by the method-chaining
API: every session method is generated to return a new instance of the successor
state channel. Fig. 3 summarises the channel classes and session I/O methods
generated for the C and S roles of the Adder example. The API generation pro-
motes the use of the generated utility types to direct implementations as much
as possible. For example, in C 1, the two output options are distinguished as send

methods overloaded on the operator type (as well as the payload types).

9

1 Adder adder = new Adder(); // New session object

2 try (SessionEndpoint<Adder,C> se =

3 new SessionEndpoint<>(adder, C, new AdderFormatter())) {

4 se.connect(S, SocketChannel::new, hostS, portS); // TCP channel

5 Adder_C_1 s1 = new Adder_C_1(se);

6 // State channel implementation of C starting from s1 of state type C_1

7 Buf<Integer> i = new Buf<>(1); // i.val stores the buffer value (Integer)

8 for (int j = 0; i < N; j++)

9 s1 = s1.send(S, Add, i.val, i.val).receive(S, Res, i); // C_1->C_2->C_1

10 s1.send(S, Bye).receive(S, Bye); // C_1->C_3->EndSocket

11 } // Session completion checked at run-time when se is (auto) closed

1 Adder_C_3 fib(Adder_C_1 s1, Buf<Integer> i1, Buf<Integer> i2, int i) throws ... {

2 return (i < N) ? fib(s1.send(S, Add, i1.val, i1.val = i2.val) // C_1->C_2..

3 .receive(S, Res, i2), i1, i2, i+1) // ..->C_1

4 : s1.send(S, Bye); } // C_1->C_3

1 Adder_S_3 add(Adder_S_1 s1, Buf<Integer> i1, Buf<Integer> i2) throws ... {

2 Adder_S_1_Cases cases = s1.branch(C); // Receives message; S_1->S_1_Cases

3 switch (cases.op) { // enum field set by API according to the received op

4 case Add: return add(cases.receive(Add, i1, i2) // S_1_Cases->S_2..

5 .send(C, Res, i1.val+i2.val), i1, i2); //..->S_1

6 case Bye: return cases.receive(Bye); // S_1_Cases->S_3

7 } }

Fig. 4. Using Fig. 3: (a) session initiation and example endpoint implementation for
C, (b) a Fibonacci client implemented using C, and (c) the main loop and branch of S.

Hybrid verification of endpoint implementations. Fig. 4 (a) lines 1–5 list
a typical preamble in an endpoint implementation using the generated API.

Session initiation and state channel chaining. We create a new Adder

session instance and a SessionEndpoint for role C. The SessionEndpoint se is used
to perform the client-side connect to S (the first argument) as a standard TCP
channel (second argument). The session connection phase is concluded when se

is given as a constructor argument to create an initial state channel of type
Adder C 1, and commence the implementation of the C endpoint.

Lines 7–10 give a simple imperative style implementation of C that repeatedly
adds an integer, stored in the Buf<Integer> i, to itself. In each protocol state,
given by the channel class, the generated API ensures that any session operation
performed is indeed permitted by the protocol, e.g. state channel s1 permits only
a send(S, Add, int, int) or a send(S, Bye). The method-chaining API is used
as a fluent interface (the implicit state transitions are in comments), chaining
the receive onto the send Add, which returns a new instance of C 1 following the
recursive protocol. The recursion is enacted N times by the for-loop, linearly
assigning the new C 1 to the existing s1 variable in each iteration, before the
final Bye exchange after the loop terminates. Naturally, the API also allows the
equivalent safe implementation, unfolding the recursion for a fixed N :
s1.send(S, Add, i.val, i.val).receive(S, Res, i)..Add/Res chainedN−1 more times..

.send(S, Bye).receive(S, Bye);

The flexbility of the Endpoint API as a native language API is demonstrated
by the session type safe functional style implementation of a Fibonacci client in

10

Fig. 4 (b) using the Adder service. While the structure of the imperative code in
(a) corresponds closely to that of source protocol, the more complicated proto-
col control flow in this more functional style code demonstrates the value of the
session type based Endpoint API in guiding the implementation and promoting
safe protocol compliance. The API ensures that the nested send-receive argu-
ment expression returns the endpoint to the S 1 state in each recursive method
call, and that the recursion terminates with the endpoint in the S 3 state.

State channel linearity. Linear usage of every session channel object in
endpoint implementations is enforced by inlining run-time checks into the gen-
erated Java API following the two cases of the basic approach in § 2.

Repeat use of a state channel raises a LinearityException. The boolean
state indicating linear object consumption, and the associated guard method
called by every generated session operation method, are inherited from a base
LinearSocket that is the superclass of channel classes in Fig. 2 (except EndSocket).

Session completion is treated by generating the SessionEndpoint object to im-
plement the Java Autocloseable interface. The Endpoint API requires the user
to declare the SessionEndpoint in a try-with-resource statement (as in Fig. 4 (a),
line 3), allowing the API to check that a terminal session operation has been
performed when control flow leaves the try-statement; if not, then an excep-
tion is raised. Java IDEs, such as Eclipse, support compile-time warnings when
AutoCloseable resources are not safely handled in an appropriate try statement.

We observe that certain implementation styles using the generated API, such
as fluent method-chaining and functional methods (e.g. above and Fig. 4 (b)),
can help avoid linearity bugs by reducing the use of intermediate state variables
and potentially bad aliasing through state channel assignments.

Session branches. The theoretical languages for which session types were
developed support communication channels as first-class primitives. In particu-
lar, session calculi typically feature an explicit branching primitive, e.g. c&(r, {li :
Pi}i∈I) [6], to atomically receive a message on channel c from r and, depending
on the label li, reduce to the corresponding process continuation Pi. For lan-
guages like Java that lack such I/O primitives, the API generation approach
enables different options.

The basic option supported by our API generation, intended for standard
switch patterns (or if-else cases, etc.), is to separate the branch input action
from the subsequent case analysis on the received message operator (BranchSocket
and CaseSocket for non-unary inputs in Fig. 2). To delimit the cases of a branch
state in a type-directed manner, the API generation creates an enum covering
the permitted operators in each BranchSocket class, e.g. for S in Adder:

enum Adder_S_1_Enum implements OpEnum { Add, Bye }

Fig. 4 (c) lists the main loop and branch in an implementation of S in Adder.
The branch operation of the BranchSocket s1 blocks until the message is received,
and returns the corresponding CaseSocket with the op field, of the enum type
Adder S 1 Ops, set according to the received operator. Using a switch statement
on the op enum, the user calls the appropriate receive method on the CaseSocket

to obtain the corresponding state channel continuation. The API raises an ex-

11

global protocol Smtp(role C, role S) {

220 from S to C; // 220 smtp2.cc.ic.ac.uk ESMTP Exim 4.85 ...

do Initiation(C, S); // First initiation exchange on plain TCP connection

do StartTls(C, S); // Negotiate secure connection

do Initiation(C, S); // Second initiation exchange on secure connection

... // Continuation of SMTP session over secure connection

}

global protocol Initiation(role C, role S) {

Ehlo from C to S; // EHLO user.test.com

rec X { choice at S { 250d from S to C; // 250-smtp2.cc.ic.ac.uk Hello ...

continue X; } // 250-SIZE 26214400, 250-8BITMIME, etc.

or { 250 from S to C; } } // 250 HELP (no dash after 250)

}

global protocol StartTls(role C, role S) {

StartTls from C to S; // STARTTLS

220 from S to C; // 220 TLS go ahead

}

Fig. 5. Simplified excerpt from a Scribble specification of SMTP.

ception if the wrong receive is used, similarly to a cast error, thus introducing
an additional run-time check to maintain session type safety.

Java IDEs are able to statically check exhaustive coverage of enum cases,
and it would also be straightforward to develop a small plugin for, e.g. Eclipse,
to statically check correct handling of branch enum cases for the basic patterns.
§A.2 discusses alternative API generation of branch interfaces, that support
branch subtyping, and do not require any run-time checks for session safety.

4 Use case and further Endpoint API generation features

We have used Scribble and our Java API generation to specify and implement
standardised Internet applications, such as HTTP and SMTP, as real-world use
cases. Using SMTP as an example, we discuss practically motivated extensions
to the core Endpoint API generation presented so far.

SMTP [20] is an Internet standard for email transmission. We specified a subset
of the protocol in Scribble (§A.3) that includes establishing a secure connection
and conducting the main mail transaction. Using the generated Endpoint API, it
was straightforward to implement a compliant client in Java that is interoperable
with existing SMTP servers.

For this section, we focus on a simplified excerpt from the opening stages of
Smtp in Fig. 5 (cf. §A.3: Quit, etc. cases omitted). The client (C) first creates a
plain TCP connection to the server (S) and following the Server 220 welcome
message, the initiation exchange (client EHLO, and the server 250- and 250 list
of service extensions) is performed. The client then starts the negotiation of a
secure channel by StartTls. When the channel is secured, the client and server
conduct the initiation exchange again (the server may now offer different ser-
vice extensions), and the remainder of the session is conducted over the secure
channel. For this running example, we omit the payload types for brevity.

12

State kind Additional method generated for ReceiveSocket (from Fig. 2).

Unary S? ReceiveSocket (|δ(S?)| = 1)

For α = r?l(T0≤i≤n) ∈ δ(S?):
Tret async(r role, l op, Buf<? super FS?> fut)

where Tret is as in Fig. 2, and FS? is the InputFuture generated for this state

Fig. 6. API generation for asynchronous input in unary input states using futures.

Asynchronous I/O permutations and affine inputs. An advanced session
pattern unsupported by basic session types, but studied in later extensions [26,3],
is to take advantage of asynchronous messaging for safe reordering of I/O actions
at an endpoint. For illustration, in Fig. 5, the Ehlo message in Initiation from C

to S is always preceded by a 220 from S to C. It is safe for C to permute these two
actions, sending Ehlo first, then receiving 220. (Note the reverse permutation at
S is unsafe, due to the potential for deadlock from mutual inputs at both ends.)

Our API generation implements support for safe permutations of I/O actions
through the generation of message input futures. For each unary input state, the
ReceiveSocket (from Fig. 2) is generated with an additional async method that
takes the same role and operator types as the corresponding receive method,
and an additional parameter for the subclass of InputFuture that we generate for
this state, e.g. C 1 Future. In contrast to the original receive, async is generated
to return immediately, regardless of whether the expected message has arrived,
returning instead a new input future for this state, via the supplied Buf, and the
successor state channel. The user is free to call sync on the input future, which
blocks the caller until the message is received, at any later point. E.g.

// Assume s1 of type Smtp_C_1 is the initial state channel for C

Buf<Smtp_C_1_Future> buf = new Buf<>(); // The generated InputFuture for this state

s1.async(S, _220, buf).send(S, Ehlo); // "Postponed" input; output done first

String pay1 = buf.val.sync().pay1; // Postponed input now performed via the future

The async operation essentially enables the input transition from the local
EFSM state to be decoupled from the actual message input action in a safe way.
Calling sync on an input future implicitly triggers all pending prior input futures
for the same peer role, safely preserving the FIFO messaging semantics between
each pair of roles in a session. Thus any endpoint implementation using the
generated input futures retains the same safety properties as implementations
using only a regular blocking receive for inputs. (With this extension, receive is
simply generated to combine async and sync in one step.) This scheme naturally
supports the permutation of inputs between different roles.

Using an input future more than once has no effect, but input futures are
not linear objects (cf. state channels). An input future may be discarded unused,
treating the input as an affine action [33,25]. In session types (e.g. [16,5]), input
actions are typically treated linearly to prevent unread messages in input queues
corrupting later inputs. Here, safety is preserved by the implicit completion of
pending futures, clearing any potential garbage before the current future itself.

Interface generation for abstract I/O states. The SMTP use case raised a
practical issue in generating Java state channel APIs from session types. While

13

// Action Interfaces (message payloads ommitted for brevity)

interface In_S$220<_S extends Succ_In_S$220> { _S receive(S role, _220 op); }

interface Out_S$Ehlo<_S extends Succ_Out_S$Ehlo> { _S send(S role, Ehlo op); }

interface In_S$250d<_S extends Succ_In_S$250d> { _S receive(S role, _250d op); }

interface In_S$250<_S extends Succ_In_S$250> { _S receive(S role, _250 op); }

// Successor State Interfaces (for the "EHLO" and "250-" messages)

interface Succ_Out_S$Ehlo {

default Branch_S$250d$_250<?,?> to(Branch_S$250d$_250<?,?> cast) { return (..) this; }

}

interface Succ_In_S$250d { ... } // default ‘to’ cast method as above

// Abstract I/O State Interfaces (for the "250-" and "250 " branches)

interface Branch_S$250d$_250<_S1 extends Succ_In_S$250d, _S2 extends Succ_In_S$250>

extends Succ_Out_S$Ehlo, Succ_In_S$250d { // Denotes preceding actions

public static final Branch_S$250d$_250<?, ?> cast = null; // For ‘to’ casts

Cases_S$250d$_250<_S1, _S2> branch(S role);

}

// Protocol branches generate a pair of abstract Branch/Case I/O State Interfaces

interface Cases_S$250d$_250<_S1 extends Succ_In_S$250d, _S2 extends Succ_In_S$250>

extends In_S$250d<_S1>, In_S$250<_S2> { ... } // Denotes available actions

// Concrete state channel classes (for the "250-" and "250 " branches)

class Smtp_C_3 implements Branch_S$250d$_250<Smtp_C_3, Smtp_C_4> { ... }

class Smtp_C_7 implements Branch_S$250d$_250<Smtp_C_7, ...> { ... }

Fig. 7. Selected abstract I/O interfaces and channel classes generated for C in Smtp.

formal session types offer a structural abstraction of communication behaviour
by focusing on the I/O actions between protocol states, the API generation reifies
these states concretely as nominal Java types.

Although nominal channel types are good as protocol documentation (the
default numbering scheme for states can be easily replaced by a user-supplied
mapping from states to more meaningful class names), this example shows a sit-
uation where the nominal types limit code reuse within a session implementation
using the Endpoint APIs generated so far. The repeated initiation pattern is fac-
tored out in the Scribble as a subprotocol, but the two exchanges correspond to
distinct parts of the EFSM (§A.3), and are thus generated with distinct channel
types, preventing this pattern from being factored out in the implementation.

To address this issue, our approach is to supplement the nominal Java channel
types by generating interfaces for abstract I/O states, which we explain through
this example. Fig. 7 lists a selection of the generated concrete state channel
classes and their I/O interfaces. Together, there are four main elements:

(1) For every I/O action, we generate an Action Interface named according to
its session type characterisation, e.g. In S$220 means input of 220 from S. This
interface is parameterised on a Successor State Interface (explained next).
(2) For every I/O action, we generate a Successor Interface to be implemented
by every I/O State Interface (explained next) that succeeds the action, e.g.
Succ Out S$Ehlo is implemented by every state that follows an Out S$Ehlo action.
Every Successor Interface is generated with a default to “cast” method for each

14

1 Succ_In_S$250 doInitiation(Send_S$Ehlo<?> s) { // Take S!Ehlo chan; return succ(S?250)

2 Branch_S$250d$_250<?, ?> b = s.send(S, Ehlo).to(Branch_S$250d$_250.cast);

3 for (Cases_S$250d$_250<?, ?> c = b.branch(S); true; c = b.branch(S))

4 switch (c.getOp()) {

5 case _250d: { b = c.receive(S, _250d).to(Branch_S$250d$_250.cast); break; }

6 case _250: return c.receive(S, _250);

7 } } // (Message payloads ommitted for brevity)

1 doInitiation(// Second init exchange on secure channel

2 doInitiation(new Smtp_C_1(se).async(S, _220) // First init exchange on plain TCP

3 .to(Send_S$StartTls.cast).send(S, StartTls).to(Receive_S$220.cast).async(S, _220)

4 .to(Send_S$Ehlo.cast).wrapClient(S, SSLSocketChannelWrapper::new) // SSL/TLS

5)....; // Remainder of session

Fig. 8. Using the generated I/O State Interfaces to factor out the initiation exchange.

I/O state that implements it.

(3) For every state, we generate an I/O State Interface named according to its
session type characterisation, e.g. Branch S$250d$ 250 is a branch state for the
cases of 250d and 250 from S. This interface: (a) extends all the Successor In-
terfaces for the actions that lead to a state with this I/O characterisation; (b)
extends all the Action Interfaces permitted by this state; and (c) is parame-
terised on each of its possible successors, passed through to the corresponding
Action Interface. E.g. the Branch S$250d$ 250 state interface is: (a) reached by
an Out S$Ehlo or an In S$250d action; (b) permits In S$250d and In S$250 actions
(in its counterpart Cases interface); and (c) is succeeded by S1 and S2.
(4) Finally, each concrete channel class (e.g. Smtp C 3) implements its I/O State
Interface, instantiating its generic parameters with its concrete successors. The
other contents of the channel class are generated as previously.

The naming scheme for these generated I/O interfaces is not dissimilar to more
formal notations for session types, but restricted to the current state and imme-
diate actions with the continuations captured in the successor type parameters.

Using the state channel API generated for C with the I/O interfaces in Fig. 7,
we factor out one method to implement both initiation exchanges in Fig. 8
(top). The method accepts any state channel with the Send S$Ehlo interface
and performs the send. This returns the Successor Interface Succ Out S$Ehlo, for
which the only I/O State Interface (in this example) is Branch S$250d$ 250. Hence
the call to the generated to on line 2, although operationally a run-time type
cast on the state channel, is a safe cast because the it is guaranteed to be valid
for all possible successor states at this point. The cast returns a state channel
with this interface, and the branch is implemented using a switch according to
the relevant I/O State Interfaces. We directly return the Succ In S$250 Successor
Interface after receiving the 250 in the second case.

As the above method is implemented using I/O State Interfaces only, we can
reuse it to perform both initiation exchanges as in Fig. 8 (bottom). doInitiation
returns a Succ In S$250, which may concretely be either the state after the first
initiation exchange (to send StartTls) or the second (remainder of session).
Although the generated I/O State Interface limits the subsequent to cast to

15

these two cases, this cast relies on the run-time check for safety. In summary,
our Java API generation offers static safety of casting between abstract I/O
states and concrete state channels when successor states share the same I/O
State Interface, as in Fig. 8, which we believe corresponds to situations where
such factoring under common I/O interfaces is the most useful. Otherwise, safety
is preserved by a form of hybrid session type checking via the generated cast.

5 Related and future work

Many programming languages based on session types have been developed in
the past decade. See [43] for a recent comprehensive survey. Some of the most
closely related work was mentioned in § 1; here we give additional discussions.
Static session type checking. A static MPST system uses local types to type
check programs (binary session types can be used directly). An implementation of
static session type checking, following standard presentations [15,16,5], typically
requires two key elements: (1) a syntactic correspondence between local type
constructors and I/O language primitives, and (2) a mechanism, such as linear
or uniqueness typing, or restrictions on pointer/reference aliasing, that enables
precise tracking of channel endpoint values or objects through the control flow
of the program. [19] is an extension of Java for binary session types, and [40]
for multiparty session types, along these lines. Both introduce new syntax for
declaring session types and special session constructs to facilitate typing, with an
additional analysis to deal with aliasing of channels. Without such extensions, it
is difficult to perform static session type checking in a language like Java without
being extremely conservative in the programs that pass type checking. Our API
generation approach confers benefits of session types directly to native Java
programming, and can be readily generalised for many other existing languages.

Implementations of static session typing in Haskell [35,34] are able to benefit
from powerful typing features (in these works, indexed parameterised monads)
to ensure linearity of session types without language extensions. An earlier im-
plementation [28] instead relies on implicit threading of a single channel through
a computation to avoid any aliasing that may violate linearity.

Other session-based systems, such as Mungo [27]/Bica [14] based on types-
tates in Java, Links [23]/Jolie [21] for web services and Pabble [32]/ParTypes [24]
based on indexed dependent types for parallel programs also require syntax ex-
tensions or annotations to be implemented as static typing for most mainstream
languages. We believe our hybrid API generation approach is an interesting al-
ternative option for implementing related forms of behavioural types.
Dynamic session verification by run-time monitoring of I/O actions [9,30,29]
is the primary verification method in Scribble [39]. Run-time session monitoring
is subject to common trade-offs of dynamic verification (§ 1). Monitoring can
be applied directly to existing languages, but endpoint implementations must
use a specific API or be instrumented with appropriate hooks for the monitor
to intercept the actions. Monitoring also verifies only the observed execution
trace, not the implementation itself. Our cheaper hybrid verification approach

16

allows certain benefits of static types to be reclaimed for free, including static
protocol error detection, up to the linearity condition on state channels, and
other IDE assistance for session programming, such as code generation (e.g. ses-
sion method completion, branch case enumeration) and partial static checking
of linearity (e.g. unused state channel variables, unhandled session resources).
Code generation from session types. The code generation framework in [31]
(§ 1) works by targetting a specific context, that is, parallel MPI programs in C.
In contrast, our API generation approach uses session types for lighter-weight
generation of types, rather than programs. Programming using a generated Java
Endpoint API is amenable to varied user implementations in terms of local
control flow (e.g. imperative or functional) and concurrency (e.g. multithreaded
or event-driven) via standard Java language features and existing libraries.

References

1. L. Bocchi, T.-C. Chen, R. Demangeon, K. Honda, and N. Yoshida. Monitoring
Networks through Multiparty Session Types. In FMOODS/FORTE’13, volume
7892 of LNCS, pages 50–65. Springer, 2013.

2. L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In
CONCUR, volume 6269 of LNCS, pages 222–236. Springer, 2010.

3. T. Chen, M. Dezani-Ciancaglini, and N. Yoshida. On the preciseness of subtyping
in session types. In PPDP’14, pages 135–146. ACM, 2014.

4. CoCo:PoPs: Communication-based Computation: Practicalities of Programming
with Sessions. School of Computing Science, University of Glasgow. 8–9 June,
2015. http://groups.inf.ed.ac.uk/abcd/cocopops/.

5. M. Coppo, M. Dezani-Ciancaglini, L. Padovani, and N. Yoshida. A gentle intro-
duction to multiparty asynchronous session types. In SFM-15:MP, volume 9104 of
LNCS, pages 146–178. Springer, 2015.

6. M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, and L. Padovani. Global Progress
for Dynamically Interleaved Multiparty Sessions. MSCS, 760:1–65, 2015.

7. O. Dardha, E. Giachino, and D. Sangiorgi. Session Types Revisited. In PPDP’12,
pages 139–150. ACM Press, 2012.

8. R. Demangeon and K. Honda. Full abstraction in a subtyped pi-calculus with
linear types. In CONCUR’11, volume 6901 of LNCS, pages 280–296. Springer,
2011.

9. R. Demangeon, K. Honda, R. Hu, R. Neykova, and N. Yoshida. Practical Inter-
ruptible Conversations: Distributed Dynamic Verification with Multiparty Session
Types and Python. Formal Methods in System Design, pages 1–29, 2015.

10. P.-M. Deniélou and N. Yoshida. Multiparty Session Types Meet Communicating
Automata. In ESOP’12, volume 7211 of LNCS, pages 194–213. Springer, 2012.

11. P.-M. Deniélou and N. Yoshida. Multiparty Compatibility in Communicating Au-
tomata: Characterisation and Synthesis of Global Session Types. In ICALP’13,
volume 7966 of LNCS, pages 174–186. Springer, 2013.

12. S. Gay and M. Hole. Subtyping for Session Types in the Pi-Calculus. Acta Infor-
matica, 42(2/3):191–225, 2005.

13. S. Gay and V. T. Vasconcelos. Linear type theory for asynchronous session types.
JFP, 2009.

http://groups.inf.ed.ac.uk/abcd/cocopops/

17

14. S. Gay, V. T. Vasconcelos, A. Ravara, N. Gesbert, and A. Z. Caldeira. Modular
session types for distributed object-oriented programming. In POPL, pages 299–
312. ACM, 2010.

15. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type dis-
ciplines for structured communication-based programming. In ESOP’98, volume
1381 of LNCS, pages 22–138. Springer-Verlag, 1998.

16. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types.
In POPL’08, pages 273–284. ACM, 2008. A full version will appear in JACM.

17. R. Hu, D. Kouzapas, O. Pernet, N. Yoshida, and K. Honda. Type-Safe Eventful
Sessions in Java. In ECOOP’10, volume 6183 of LNCS, pages 329–353. Springer,
2010.

18. R. Hu, R. Neykova, N. Yoshida, and R. Demangeon. Practical interruptible con-
versations: Distributed dynamic verication with session types and python. In RV
2013, volume 8174 of LNCS, pages 148–130. Springer, 2013.

19. R. Hu, N. Yoshida, and K. Honda. Session-based distributed programming in Java.
In ECOOP, volume 5142, pages 516–541. Springer, 2008.

20. IETF. Simple Mail Transfer Protocol. https://tools.ietf.org/html/rfc5321.
21. Jolie homepage. http://www.jolie-lang.org/.
22. J. Lange, E. Tuosto, and N. Yoshida. From Communicating Machines to Graphical

Choreographies. In POPL’15, pages 221–232. ACM Press, 2015.
23. Links homepage. http://groups.inf.ed.ac.uk/links/.
24. H. A. Lopez, E. R. B. Marques, F. Martins, N. Ng, C. Santos, V. T. Vasconcelos,

and N. Yoshida. Protocol-based verification of message-passing parallel programs.
In OOPSLA’15. ACM, 2015.

25. D. Mostrous and V. T. Vasconcelos. Affine sessions. In Coordination, volume 8459
of LNCS, pages 115–130. Springer, 2014.

26. D. Mostrous and N. Yoshida. Session typing and asynchronous subtyping for the
higher-order π-calculus. Inf. Comput., 241:227–263, 2015.

27. Mungo. Mungo Project, 2015. http://www.dcs.gla.ac.uk/research/mungo/.
28. M. Neubauer and P. Thiemann. An Implementation of Session Types. In PADL,

volume 3057 of LNCS, pages 56–70. Springer, 2004.
29. R. Neykova, L. Bocchi, and N. Yoshida. Timed Runtime Monitoring for Multiparty

Conversations. In BEAT’14, volume 162 of EPTCS, pages 19–26, 2014.
30. R. Neykova and N. Yoshida. Multiparty Session Actors. In COORDINATION’14,

volume 8459 of LNCS. Springer, 2014.
31. N. Ng, J. G. Coutinho, and N. Yoshida. Protocols by Default: Safe MPI Code

Generation based on Session Types. In CC’15, LNCS. Springer, 2015.
32. N. Ng, N. Yoshida, and K. Honda. Multiparty Session C: Safe Parallel Program-

ming with Message Optimisation. In TOOLS’12, volume 7304 of LNCS, pages
202–218. Springer, 2012.

33. F. Pfenning and D. Griffith. Polarized substructural session types. In FoSSaCs’13,
volume 9034 of LNCS, pages 3–22. Springer, 2015.

34. R. Pucella and J. A. Tov. Haskell session types with (almost) no class. In Haskell
’08: Proceedings of the first ACM SIGPLAN symposium on Haskell, pages 25–36.
ACM, 2008.

35. M. Sackman and S. Eisenbach. Session types in haskell, 2008. draft.
36. Scribble. Java Endpoint API tools (CoCo:PoPs version). https://github.com/

scribble/scribble-java/tree/8788ee40ae8e7614bc50bfea86698febc901c066.
37. Scribble. Latest version of the Java Endpoint API generation tools. https://

github.com/rhu1/scribble-java/tree/rhu1-research.

https://tools.ietf.org/html/rfc5321
http://www.jolie-lang.org/
http://groups.inf.ed.ac.uk/links/
http://www.dcs.gla.ac.uk/research/mungo/
https://github.com/scribble/scribble-java/tree/8788ee40ae8e7614bc50bfea86698febc901c066
https://github.com/scribble/scribble-java/tree/8788ee40ae8e7614bc50bfea86698febc901c066
https://github.com/rhu1/scribble-java/tree/rhu1-research
https://github.com/rhu1/scribble-java/tree/rhu1-research

18

38. Scribble. Open source github repository. https://github.com/scribble/

scribble-java.
39. Scribble. Project homepage. www.scribble.org.
40. K. C. Sivaramakrishnan, K. Nagaraj, L. Ziarek, and P. Eugster. Efficient session

type guided distributed interaction. In COORDINATION, volume 6116 of Lecture
Notes in Computer Science, pages 152–167. Springer, 2010.

41. B. Toninho, L. Caires, and F. Pfenning. Higher-order processes, functions, and
sessions: A monadic integration. In ESOP’13, volume 7792 of LNCS, pages 350–
369. Springer, 2013.

42. P. Wadler. Proposition as Sessions. In ICFP’12, pages 273–286, 2012.
43. Survey on languages based on behavioural types. http://www.di.unito.it/

~padovani/BETTY/BETTY_WG3_state_of_art.pdf.

A Appendix

Future work. As future work, we plan to extend our methodology to handle
events [17] and interrupt messages [18], which currently rely on syntax extensions
or purely dynamic monitoring.

A.1 Appendix: Overview

The Scribble local protocol projected from Adder in Fig. 1 (a) for C is:

local protocol Adder_C(self C, role S) {

rec X { // Projected recursive type

choice at C {

Add(Int, Int) to S;

Res(Int) from S;

continue X; // The recursive case

} or {

Bye() to S;

Bye() from S;

} } }

A.2 Appendix: Further API generation features

Choice subtyping. Session subtyping [12] for choices allows a select operation
to be safely typed as depending on a superset of the cases actually required, and
dually a branch operation to be safely typed as supporting a subset of the cases
actually offered. Practically speaking, select subtyping is very natural, allowing
an implementation to concretely pursue any one option out of those available
according to the protocol specification. Select subtyping is implicitly supported
by our API generation since Java typing, in conjunction with linearity checking,
allows exactly one send method to be selected from those permitted by the
SendSocket.

The practical benefit of branch subtyping in our setting is to allow safe reuse
of session branch code in contexts that depend on a subset of the supported
cases. For this purpose, our implementation generates (alongside Fig. 3) for

https://github.com/scribble/scribble-java
https://github.com/scribble/scribble-java
www.scribble.org
http://www.di.unito.it/~padovani/BETTY/BETTY_WG3_state_of_art.pdf
http://www.di.unito.it/~padovani/BETTY/BETTY_WG3_state_of_art.pdf

19

Additional method generated for BranchSocket Adder S 1 (from Fig. 3)
S 1 branch(C role, Adder_S_1_Handler h) void

Gen. i/face Abstract session operation methods Return

S 1 Handler handle(Adder_S_2 s, Add op, Buf<? super Integer> pay1,

Buf<? super Integer> pay2) void

handle(Adder_S_3 s, Bye op) void

Fig. 9. Branch handler callback API generation for S in Adder.

each branch state a message handler callback interface with an abstract handler
method for each case. Java typing requires the user to implement at least the
specified cases, hence this code can be directly reused as an implementation of
another branch interface featuring a subset of compatible cases (e.g. if a branch
case is deleted from the source protocol specification during development).

For S in the Adder example (Fig. 1 (a)), the API generation for branch han-
dlers generates the method and interface in Fig. 9. The new branch method
specifies an additional parameter for the generated Adder S 1 Handler interface.
The user implements this interface by continuing the session in each handle

method following the channel type of the first parameter, according to the case
that the operator and payload types of the other parameters are received. As
before, the new branch method is generated to block until a message is received.
The API then calls the handle method for the received operator on the supplied
handler object, passing a new instance of the successor state channel for this
session endpoint.

This approach essentially reflects the inverse direction of branch subtyping,
wrt. select subtyping, in the generated Java types via the inverse control flow of
the callback interface. Unlike the branch in § 3, the handler API introduces no
additional run-time checks, but requires the user to program in an event-driven
style.

A.3 Appendix: SMTP use case

Scribble global protocol for SMTP. The excerpt in Fig. 5 is simplified from
the global protocol listed in Fig. 10.

Endpoint FSM for C in Smtp (Fig. 10) is depicted in Fig. 11. The EFSM
for the simplified excerpt in Fig. 5 corresponds to states 1–8 without the Quit

transitions to the terminal state. The generated channel classes Smtp C 3 and
Smtp C 7 in Fig. 7 correspond to states 3 and 7 respectively. The I/O state in-
terface Branch S 250d 250 (Fig. 7), implemented by both these channel classes,
is an abstraction of the current state and immediate actions at these two states,
parameterised on their continuations.

20

IDE support for session programming. Fig. 12 shows a screenshot of a
implementation of C for Smtp (Fig. 10) using the generated Endpoint API in
Eclipse. There is a protocol error because the input of 250 on line 77 (an async)
is commented out. This is of course a compile-time error in Java, and reported
by Eclipse. This implementation also uses the generated input futures (§ 4, Asyn-
chronous I/O permutations) to safely follow the protocol at this endpoint with-
out actually reading the, e.g., 354 message (this simple implementation is choos-
ing to discard these basic acknowledgements).

A.4 Appendix: Generated Endpoint API Javadoc

Example Javadoc for generated Endpoint API. Fig. 13 shows a screenshot
of the API documentation generated by the standard Javadoc tool from the Java
Endpoint API generated for Adder for C (Fig. 3). The automatically generated
documentation for an Endpoint API can be read by the user as a target language
oriented specification of the source protocol (for the given role), and may often
be more concise and clear than common protocol specification formats such as
English prose and typically informally used notations such as UML, message
sequence charts and BPMN.

21

sig <java> "..." from "..._220.java"

as 220;

// etc. for 250, 235, 535, 501, ...

sig <java> "..." from "...Ehlo.java"

as Ehlo;

// etc. for StartTls, Auth, Mail, ...

global protocol SMTP(role S, role C) {

220 from S to C;

do Ehlo(S, C);

}

global protocol Ehlo(role S, role C) {

choice at C {

Ehlo from C to S;

rec X {

choice at S {

250d from S to C;

continue X;

} or {

250 from S to C;

do StartTls(S, C);

} }

} or {

Quit from C to S;

} }

global protocol

StartTls(role S, role C) {

choice at C {

StartTls from C to S;

220 from S to C;

do SecureEhlo(S, C);

} or {

Quit from C to S;

} }

global protocol

SecureEhlo(role S, role C) {

choice at C {

Ehlo from C to S;

rec X {

choice at S {

250d from S to C;

continue X;

} or {

250 from S to C;

do Auth(S, C);

} }

} or {

Quit from C to S;

} }

global protocol Auth(role S, role C) {

rec Y {

choice at C {

Auth from C to S;

choice at S {

235 from S to C;

do Mail(S, C);

} or {

535 from S to C;

continue Y;

} or

... // 501 Invalid base64 Data, etc.

} or {

Quit from C to S;

} } }

global protocol Mail(role S, role C) {

rec Z1 {

choice at C {

Mail from C to S;

choice at S {

501 from S to C;

continue Z1;

} or {

250 from S to C;

rec Z2 {

choice at C {

Rcpt from C to S;

choice at S {

250 from S to C;

continue Z2;

} or

...

} or {

Data from C to S;

354 from S to C;

rec Z3 {

choice at C {

DataLine from C to S;

continue Z3;

} or {

Subject from C to S;

continue Z3;

} or {

DataEnd from C to S;

250 from S to C;

continue Z1;

} } } } }

} or {

Quit from C to S;

} }

}

Fig. 10. An interoperable subset of SMTP with secure connection establishment and
the main mail transaction.

22

Fig. 11. Endpoint FSM for C in Smtp (Fig. 10).

23

Fig. 12. A statically detected protocol error in an implementation of C in Smtp (Fig. 10)
in Eclipse according to the MPST-generated Endpoint API.

24

Fig. 13. Javadoc API documentation for the Endpoint API generated for Adder for C

(Fig. 3).

	Hybrid Session Verification through Endpoint API Generation

