
Efficient Partial-Pairs SimRank Search on Large Graphs

Weiren Yu†, Julie A. McCann†

†Imperial College London, United Kingdom

{weiren.yu, j.mccann}@imperial.ac.uk

ABSTRACT
The assessment of node-to-node similarities based on graph
topology arises in a myriad of applications, e.g., web search.
SimRank is a notable measure of this type, with the intuition
that “two nodes are similar if their in-neighbors are similar”.
While most existing work retrieving SimRank only considers
all-pairs SimRank s(⋆, ⋆) and single-source SimRank s(⋆, j)
(scores between every node and query j), there are appealing
applications for partial-pairs SimRank, e.g., similarity join.
Given two node subsets A and B in a graph, partial-pairs
SimRank assessment aims to retrieve only {s(a, b)}∀a∈A,∀b∈B.

However, the best-known solution [17] is not self-contained
since it hinges on the premise that the SimRank scores with
node-pairs in an h-go cover set must be given beforehand.

This paper focuses on efficient assessment of partial-pairs
SimRank in a self-contained manner. (1) We devise a novel
“seed germination” model that computes partial-pairs Sim-
Rank in O(k|E|min{|A|, |B|}) time and O(|E|+k|V |) mem-
ory for k iterations on a graph of |V | nodes and |E| edges.
(2) We further eliminate unnecessary edge access to improve
the time of partial-pairs SimRank to O(mmin{|A|, |B|}),
where m ≤ min{k|E|,∆2k}, and ∆ is the maximum degree.
(3) We show that our partial-pairs SimRank model also can
handle the computations of all-pairs and single-source Sim-
Ranks, as well as partial-pairs SimRank* (a related notion
of SimRank). (4) We empirically verify that our algorithms
are (a) 38x faster than the best-known competitors, and (b)
memory-efficient, allowing scores to be assessed accurately
on graphs with tens of millions of links.

1. INTRODUCTION
An overarching problem in link analysis is the measure of

relevance between nodes based on graph topology. This type
of relevance, termed link-based similarity, has long pervaded
fertile fields of data management, e.g., link prediction [7],
web page ranking [2], and automatic image captioning [11].
Link-based similarity, unlike its text-based counterpart, is
structure dependent and does not rely on domain knowledge.

With the recurring emergence of many similarity measures,
SimRank [7] has become attractive, due to its concise and
recursive idea that “two nodes are assessed as similar if their
in-neighbors are similar”, along with the base case that “ev-
ery node is most similar to itself ”. Compared with other
link-based measures, SimRank bears two impressive merits:
(1) It exploits global graph topology for both node-pair and
node ranking, unlike PageRank [2] that only ranks nodes.
(2) It also captures multifaceted relations (multiple paths
of different lengths) between nodes, as opposed to Shortest
Path that only tallies a single path of the shortest length.
Hence, SimRank has been widely-accepted as an important
tool for link analysis over the last decade [3–5,7,10,15,17].

However, prior iterative methods (e.g., [13,15]) for assess-
ing SimRank have two limitations:

(1) They mainly consider all-pairs SimRank s(⋆, ⋆) com-
putation, and are not efficient if one needs to assess only
partial-pairs similarities. This is because, even for retriev-
ing a single-pair similarity sk(a, b) between nodes a and b
at iteration k, their iterative models require all-pairs simi-
larities sk−1(⋆, ⋆) at iteration (k − 1) to be determined be-
forehand. We refer to this phenomenon as “high iteration
coupling”. To the best of our knowledge, there are several
pioneering works trying to break the “high iteration cou-
pling” barrier, such as single-pair SimRank [3, 6, 12], and
top-K single-source SimRank [4,9,10], but they still require
excessive time and memory, or deliver probabilistic results.
(see Related Work section for a detailed comparison).

(2) Existing iterative methods for assessing all-pairs Sim-
Rank are not memory-efficient, which is the main obstacle
to handling large graphs. Indeed, [13, 15] require O(|V |2)
memory1 at each iteration to store all-pairs scores from the
previous iteration, which is due to “high iteration coupling”.
Thus, prior methods assessing all-pairs SimRank on a graph
with |V | ≥ 500K, if without loss of exactness, would require

≥ (500K)2 = 250G memory, which is rather impractical. To
address this issue, Lizorkin et al. [13] devised an appealing
heuristic to iteratively eliminate small similarities below a
threshold. This method has the advantage of controlling the
number of node-pairs of non-zero similarities fewer enough
to fit into memory at the expense of exactness. However,
it is difficult for the heuristic to enhance the quality of real
applications. Fortunately, we observe that, if partial-pairs
SimRank can break the “high iteration coupling” nature,
all-pairs SimRank can be divided into several independent
tasks of assessing partial-pairs SimRank with small memory.

1Though [13, 15] claimed their methods require O(|V |) in-

termediate memory, they exclude O(|V |2) memory to write
all-pairs similarity outputs from the previous iteration.

1

ywr0708
文本框
Technical Report

IRDB

AI
DB

IR
AI

v1
v2

v6

v3

v4

v5

Figure 1: A Labeled Citation Network G

To resolve these issues, we consider the following problem.

Problem (Partial-Pairs SimRank Assessment)
Given a digraph G = (V,E), a decay factor C ∈ (0, 1), and

two collections A and B of nodes in V .
Retrieve partial-pairs SimRank {s(a, b)}∀a∈A,∀b∈B

.

Partial-pairs assessment is useful in real applications. First,
it is a unified model, containing as special cases the existing
all-pairs [13, 15], single-source [4, 10], and single-pair [6, 12]
SimRank, when (A,B) is taken to be (V, V), (V, {j}), and
({i}, {j}), respectively, with queries i and j. Thus, it is ap-
plicable to any domains where all-pairs, single-source, and
single-pair SimRank apply. Besides, assessing partial-pairs
SimRank has its own applications, as depicted in Example 1.

Example 1. Figure 1 depicts a citation graph, where each
node is a paper labeled with its relevant research areas, e.g., DB,
IR, AI, and each edge i→ j denotes a paper i cites j. A sci-
entist, who is interested in interdisciplinary research of DB
and AI, can utilize partial-pairs SimRank to assess only sim-
ilarities of papers between DB and AI areas efficiently, with-
out computing paper similarities outside these areas.

The best-known work [17] relevant to our research is a
threshold-based version that retrieves pairs {(a, b)}∀a∈A,∀b∈B

whose SimRank score s(a, b) is above a given threshold θ.
However, [17] is not self-contained as it relies on the premise
that the SimRank scores with node-pairs in an h-go cover2

must be known in advance. Precisely, for a given graph G,
first, [17] adopts a heuristic (i.e., Algorithms 2 and 3 of [17])
to find a portion of node-pairs on the tensor graph G ⊗ G
(known as an h-go cover set). Then, the SimRank scores
with node-pairs in this h-go cover set have to be provided as
an input parameter TB (in Algorithms 1 and 4 of [17]) and
materialized, aiming to find the similarities of other node-
pairs in A × B but outside the h-go cover set. However, it
is hard to know in advance the SimRank scores of the h-
go cover set (i.e., the input parameter TB of Algorithms 1
and 4). In addition, there is no rigorous complexity analysis
in [17]. This highlights our need to focus on the efficiency of
assessing partial-pairs SimRank in a self-contained manner.

There are two challenges of assessing partial-pairs scores.
(1) Due to “high iteration coupling”, it is difficult to break
the holistic nature of the conventional iterative models for
retrieving only partial-pairs SimRank in a self-contained style.
(2) It is a grand challenge to improve both time and mem-
ory for partial-pairs SimRank without loss of accuracy, since
even for computing a single-pair score, the prior works [6,12]
have comparable complexities of all-pairs SimRank [13,15].

1.1 Contributions
In this paper, we make the following key contributions:

2An h-go cover of a graph is a set of nodes whose removal
leaves the graph without simple paths longer than h. [17]

• We first design a fast “seed germination” iterative model to
retrieve partial-pairs SimRank in a self-contained fashion,
in O(k|E|min{|A|, |B|}) time and O(|E| + k|V |) memory
for k iterations on a graph of |V | nodes and |E| edges,
where |A| and |B| are the sizes of two query node subsets
A and B, respectively. (Section 3.1)

• We then propose a pruning strategy, coupled with a hash-
ing structure, to eliminate unnecessary computation with
no loss of accuracy, which can further speed up the time of
partial-pairs SimRank to O(mmin{|A|, |B|}), where m ≤
min{k|E|,∆2k} and d is the maximum degree. (Section 3.2)

• By setting A = V and B = {j}, our partial-pairs SimRank,
as a special case, also improves the time of single-source
SimRank to O(min{k|E|,∆2k}). In comparison, the fastest
known top-K version [10] needs O(∆2k) time. (Section 4.1)

• As a by-product, we derive an O(|E|+ k|V |)-memory effi-
cient all-pairs SimRank algorithm, by dividing it into inde-
pendent tasks of partial-pairs SimRank, whose total time,
O(min{k|E|,∆2k}|V |), is comparable to the best-known

all-pairs SimRank [13,15], yet without using O(|V |2) mem-
ory to store scores from previous iterations. (Section 4.2)

• We extend our methods to partial-pairs SimRank* [16], a
semantically-enhanced version of SimRank. (Section 4.3)

The empirical evaluations on real and synthetic data ver-
ify that (a) our partial-pairs SimRank is self-contained, and
runs drastically faster than the best-known competitors, and
(b) our methods are memory-efficient, allowing SimRank be-
ing assessed accurately on large graphs with over 69M links.

1.2 Related Work
The problem of efficient SimRank computation has been

well-studied, starting from the work of Jeh and Widom [7],
and continuing with a long line of research, [3,4,6,10–13,15,
17]. A comparison of our results (in terms of computational
time, memory, and accuracy) to those in previous works is
summarized in Table 1. We categorize these works below.

1.2.1 Partial-Pairs SimRank
The most relevant work to our research is proposed by

Zheng et al. [17]. They gave (1) an estimated shortest-path
bound for SimRank scores to prune unlikely node-pairs, and
(2) heuristics to find an h-go cover set, and stored the Sim-
Rank scores of the h-go cover set, based on which, other
scores can be computed easily. However, by using only the
algorithms of [17], it is hard to determine in advance the
scores of node-pairs in the h-go cover set. Our work dif-
fers from [17] in that our methods are more efficient and
self-contained, needing no determination of extra SimRank
scores in advance. We also analyze the complexity bound.

Sun et al. [14] provided a top-K link-based similarity join,
with an e-function that generalizes PageRank and SimRank.
They also obtained e-function bounds to prune unlikely nodes,
requiring O(k2|E|) time to estimate the upper bound of a
single-pair score. However, our methods can accurately com-
pute |A| × |B| pairs of scores in O(k|E|min{|A|, |B|}) time.

1.2.2 Single-Source SimRank
Lee et al. [10] proposed TopSim-SM via a random surfing

process for top-K s(⋆, j) search in O(∆2k) worst-case time.
They also used heuristics to merge some repeated nodes,
truncate low scores, and prioritize propagation. Their meth-
ods have the merits of fast speed when the top-K size is very

2

Paper Algorithm Type Time Memory Accuracy Notes

[17] SJR
partial
pairs

not given < O(|V |2) Ck hard to analyze its complexity as it is not self-contained (only
works when SimRanks in an h-go cover are given in advance)

This PrunPar-SR O(min{k|E|,∆2k}min{|A|, |B|}) O(|E|+ k|V |) Ck |A| and |B| are the query size of partial node-pair sets (A,B)

[3] PSimRank
single
pair

O(kN) O(|E|+N |V |) probabilistic N is the number of sampling random walks via Monte Carlo

[12] SingPair O(kd2 min{∆k, |V |2}) O(|V |2) Ck d is the graph average dgree; ∆ is the graph maximum degree
[6] ISP O(k|E|2 − |E|) O(|V |2) Ck an enhanced version of [12] based on position matrix
This PrunPar-SR O(min{k|E|,∆2k}) O(|E|+ k|V |) Ck a special case of PrunPar-SR when (A,B) := ({i}, {j})

[4] SimMat

single
source

O(r|V |2 + r|V |) O(r|V |2) not given r (≤ |V |) is the low rank of singular value decomposition
[9] Monte-Carlo-SR O(k2|E|+ k(P +N)|V |) O(|E|+ P |V |) probabilistic P is the iterations to build a node index via Monte Carlo
[10] TopSim-SM O(∆2k) O(∆2k + |V |) Ck complexity exponentially grows with the iteration number k
This PrunPar-SR O(min{k|E|,∆2k}) O(|E|+ k|V |) Ck a special case of PrunPar-SR when (A,B) := (V, {j})

[7] SimRank

all
pairs

O(kd2|V |2) O(|V |2) Ck a naive algorithm via radius-based pruning

[11] NI-Sim O(r4|V |2) O(r2|V |
2
) not given a non-iterative model via singular value deposition

[13] Psum O(kmin{|V ||E|, |V |3

log2 |V |
}) O(|V |2) Ck needs O(|V |2) memory to store all the outputs for each iteration

due to “high iteration coupling” barrier

[15] OIP O(kd′|V |2) O(|V |2) Ck d′ (≤ |E|/|V |) depends on common in-neighbours sharing
This PrunPar-SR O(min{k|E||V |,∆2k|V |}) O(|E|+ k|V |) Ck a special case of PrunPar-SR when (A,B) := (V, V)

Table 1: A comparison of our results to previous works in terms of computational time, memory usage, and accuracy

small, e.g., K=50 (≪ |V |), but are not efficient for a larger
top-K that will lead to more iterations k, since O(∆2k) grows
exponentially w.r.t. k. In contrast, our “seed germination”
method, covering single-source SimRank as a special case,
can avoid this exponential growth.

Kusumoto et al. [9] has proposed an algorithm via Monte
Carlo method, called Monte-Carlo-SR, that retrieves top-
K single-source SimRank in O(k2|E| + k(P + N)|V |) time,
where P and N are the sampling parameters. Their method
can avoid the exponential growth of the O(∆2k) time in [10].
However, [9] delivers probabilistic results, and is slower than
our “seed germination” model since it does not consider the
computation sharing for single-source SimRank retrieval.

Recently, Fujiwara et al. [4] has devised an appealing
matrix-based SimMat in O(r|V |) time (exclude preprocess-
ing time) to retrieve top-K s(⋆, j), where r is the low rank
of approximation. Their approach is deterministic, but re-
quires O(r|V |2) precomputation time to determine input
matrices L and R for Algorithm 2 of [4], which is costly.

1.2.3 All-Pairs SimRank
Our focus is devoted to [11, 13, 15] as they are the state

of the art. Lizorkin et al. [13] proposed an excellent method
of partial sums memoization, reducing the time of all-pairs
SimRank to O(k|V ||E|). They also devised a threshold-
pruning heuristic and essential node-pairs selection for fur-
ther improvement. Yu et al. [15] used a fine-grained cluster-

ing strategy for sub-summation sharing, yielding O(kd′|V |2)
time with d′ ≤ |E|/|V |. Li et al. [11] used singular value de-

composition for assessing SimRank in O(r4|V |2) time, but
it is not always efficient when the target rank r is not small.
None of these methods are memory-efficient; [13,15] require

O(|V |2) to store all-pairs scores from the previous iteration.

1.2.4 Single-Pair SimRank
The earliest mention of single-pair SimRank can be traced

back to Fogaras et al. [3] who estimated s(a, b) from the first
hitting time of two random surfers starting from nodes a and
b. However, [3] delivers probabilistic results. To enhance
search quality, Li et al. [12] devised an iterative model in

O(kd2 min{∆k, |V |2}) worst-case time and O(|V |2) memory,
where d is the graph average degree. Recently, [6] has also
employed position probability to reduce the time of [12] to

O(k|E|2−|E|). All the bounds of these deterministic single-
pair SimRank are still expensive.

There has also been work [1, 8, 16] on SimRank variants.
Antonellis et al. [1] extended SimRank for query rewriting.
Jin et al. [8] integrated automorphism (role similarity) into
SimRank. Yu et al. [16] devised SimRank*, by tallying more
paths to enrich SimRank semantics. In Section 4.3, we also
extend our methods to partial-pairs SimRank*.

2. PRELIMINARIES
Based on the idea that “two nodes are assessed as similar

if their in-neighbors are similar”, SimRank has two forms:

(1) Basic Form [7, 13]. Given a digraph G = (V,E), for
any node a ∈ V , we denote by I(a) := {x ∈ V |∃(x, a) ∈ E}
the in-neighbor set of a, and |I(a)| the in-degree of a.

The SimRank similarity between nodes a and b, s(a, b), is
defined as (i) s(a, b) = 0, if I(a) or I(b) = ∅; (ii) otherwise,

s(a, b) =

{
1, a = b;

C
|I(a)||I(b)|

∑

(i,j)∈I(a)×I(b) s(i, j), a 6= b.
(1)

where C ∈ (0, 1) is a decay factor.

(2) Matrix Form [5, 11]. Let S ∈ R
|V |×|V | be a SimRank

matrix whose entry [S]i,j is the score s(i, j), W the column
normalized adjacency matrix whose entry [W]i,j = 1/|I(j)|
if ∃ an edge i → j, and 0 otherwise, and I the |V | × |V |
identity matrix. Then, SimRank can be also defined as

S = C ·WT · S ·W + (1− C) · I, (2)

where (⋆)T is the matrix transpose. The term (1 − C) · I
in Eq.(2) ensures all the diagonal entries of S are maximal,
which guarantees that every node is most similar to itself.

3. OUR SOLUTIONS
Our solutions to partial-pairs SimRank involve two ideas:

(1) We devise a novel “seed germination” iterative model
that breaks “high iteration coupling” of the existing models.
(2) In light of this, we design a pruning strategy to further
skip unnecessary computation, without loss of accuracy.

The following notations are used throughout this paper.
(1) ej is a |V | × 1 vector of all 0s except for a 1 in j-th entry.
(2) For matrix X, (a) let [X]

⋆,j
be the j-th column of X,

(b) [X]i,⋆ the i-th row of X, (c) [X]i,j the (i, j)-entry of X.

3

3.1 A “Seed Germination” Iterative Model
We first formulate the existing “high iteration coupling”

barriers, and then propose our “seed germination” methods.

3.1.1 “High Iteration Coupling” Barrier
Let Sk denote the k-th iterative SimRank matrix whose

entry [Sk]i,j = sk(i, j). Then, S in Eq.(2) can be iterated as

Sk = C ·WT · Sk−1 ·W+ (1− C) · I. (3)

By post-multiplying by ej on both sides of Eq.(3), and using
the fact that X · ej = [X]

⋆,j
, it follows that

[Sk]⋆,j
︸ ︷︷ ︸

j-th column

= C ·WT · Sk−1
︸ ︷︷ ︸

entire matrix

·[W]
⋆,j

+ (1− C) · ej , ∀j. (4)

Intuitively, Eq.(4) indicates that, even for finding only a
single column [Sk]⋆,j , the entire matrix Sk−1 (not [Sk−1]⋆,j)

at iteration (k − 1) must be known in advance. Thus, it is
hard for the conventional Eq.(3) to find only partial-pairs
SimRank, without iteratively computing scores of others.
We call this the SimRank “high iteration coupling” barrier.

3.1.2 Partial Series Form ofSk

To break the barrier of “high iteration coupling”, we first
express Sk as a partial series form. This is because, from
Eq.(4), we notice that the computational bottleneck of [Sk]⋆,j
is the appearing of the entire matrix Sk−1 on the right-hand
side. To prevent its appearing, we have the following lemma.

Lemma 1. For every k = 0, 1, · · · , the k-th iterative Sim-
Rank matrix Sk derived from Eq.(3) can be expressed as

Sk = (1− C) ·
∑k

l=0 C
l · (WT)

l
·Wl. (5)

(The proof can be readily completed by induction on k,
and is omitted here, due to space limitations.)

Lemma 1 tells us that Sk in Eq.(3) is actually the k-th
partial sum of the infinite SimRank power series.

3.1.3 Duplicate Computation inSk

Lemma 1 is introduced for efficiently computing [Sk]⋆,j .

Unfortunately, Eq.(5), if carried out naively, contains many
duplicate computations, as illustrated below.

First, we post-multiply by ej on both sides of Eq.(5):

[Sk]⋆,j = (1− C)
∑k

l=0 C
l · (WT)

l
·Wl · ej

= (1− C)
(
ej +

∑k

l=1 C
l · (WT)

l
·Wl−1 · [W]⋆,j

)
(6)

Since [W]
⋆,j

is a vector in Eq.(6), if the multiplications in

(WT)l ·Wl−1 · [W]
⋆,j

are grouped from “right-to-left” as

WT · . . . ·
(
WT

︸ ︷︷ ︸

l

·
(
W · . . . ·

(
W ·

(
W

︸ ︷︷ ︸

l−1

·[W]⋆,j
))))

,

then we can safely avoid usingmatrix-matrix multiplications
while preventing the appearing of the entire matrix Sk−1

throughout the summation of computing [Sk]⋆,j in Eq.(6).

Specifically, to compute (WT)
l
·Wl−1 ·[W]

⋆,j
, our “right-to-

left association” needs (2l−1) matrix-vector multiplications,
whereas the traditional way entails (a) (2l−2) matrix-matrix

multiplications (T ← (WT)
l
·Wl−1) and (b) one matrix-

vector multiplication (T · [W]
⋆,j

), being rather expensive.
However, only the “right-to-left association” is not enough

since there is duplicate computation across many summands.
For example in Eq.(6), by writing out the terms for l = 2, 3:

l = 2 :WT ·WT ·W · [W]⋆,j
::::::::

l = 3 :WT ·WT ·WT ·W ·W · [W]⋆,j
::::::::

we notice that there are many common parts shared by the
summands of l = 2 and l = 3, such as W · [W]

⋆,j
(wavy

underlined) and WT ·WT ·W (underlined). Unfortunately,
it is hard to maximally share these common parts among
the summands of different l while employ “right-to-left as-
sociation” to prevent matrix-matrix multiplications at the
same time, since some common parts sharing may destroy
the “right-to-left association”. As an example for l = 2, 3,
our only opportunity seems to memoize the common parts
W · [W]

⋆,j
, in order to secure the “right-to-left association”.

Otherwise, if we memoized more common parts for sharing
(e.g., WT ·WT ·W), matrix-matrix multiplications would be
unnecessarily involved in Eq.(6) during [Sk]⋆,j computation.

3.1.4 A “Seed Germination” Iterative Model for
Single-Source SimRank

To eliminate duplicate computation across the summands
in Eq.(6) and also guarantee the “right-to-left association”,
we now propose our “seed germination” model.

Theorem 1. Given a query j, the single-source SimRank
[Sk]⋆,j at iteration k can be computed as

[Sk]⋆,j = (1−C) · vk, (7)

where vector vk is iterated as: ∀l = 1, · · · , k

vl = C ·WT · vl−1 + uk−l with v0 = uk (8)

after vectors u0,u1, · · · ,uk are iterated as: ∀l = 1, · · · , k

ul = W · ul−1 with u0 = ej (9)

Proof. We show that [Sk]⋆,j obtained from Eqs.(7)–(9)

is exactly the k-th partial sum in Eq.(6).
First, successive substitution applied to Eq.(9) yields ul =

Wl · ej . Thereby, [Sk]⋆,j in Eq.(6) can be rewritten as

[Sk]⋆,j = (1− C) ·
∑k

l=0 C
l · (WT)

l
· ul (10)

Next, we show that successive substitution applied to Eq.(8)

yields vk =
∑k

l=0 C
l · (WT)

l
· ul. Fixing l and pre-multiplying

by Ck−l(WT)
k−l

on both sides of Eq.(8) produce

Ck−l(WT)
k−l
· vl = Ck−l+1(WT)

k−l+1
· vl−1 + Ck−l(WT)

k−l
· uk−l

Then, taking sums
∑k

l=1 (⋆) on both sides yields

k∑

l=1

Ck−l · (WT)
k−l
· vl

︸ ︷︷ ︸

=vk+
k−1∑

l=1
Ck−l·(WT)k−l·vl

=

k∑

l=1

Ck−l+1 · (WT)
k−l+1

· vl−1

︸ ︷︷ ︸

=
k−1∑

l=0
Ck−l·(WT)k−l·vl

+

k∑

l=1

Ck−l · (WT)
k−l
· uk−l

︸ ︷︷ ︸

=
k−1∑

l=0
Cl·(WT)l·ul

Eliminating
∑k−1

l=1 Ck−l · (WT)
k−l
· vl on both sides gets

vk = Ck · (WT)
k
· v0 +

∑k−1
l=0 Cl · (WT)

l
· ul =

∑k

l=0 C
l · (WT)

l
· ul

Combining this with Eq.(10) yields Eq.(6).

As an illustrative example, the last column of Figure 3
depicts how Theorem 1 computes [S3]⋆,j step by step.

Theorem 1 provides a novel iterative algorithm for com-
puting single-source SimRank [Sk]⋆,j . It works as follows.

Given query j and iteration number k, it first utilizes Eq.(9)
to iteratively compute k auxiliary vectors u1,u2, · · · ,uk.
Using u1, · · · ,uk, it then iteratively obtains vk from Eq.(8).

4

j

j

j

p3

p2

p1

j p′

Figure 2: Merge paths p1, p2, p3 to a compact tree p′

For each iteration l in Eq.(8), once vl is computed, vl−1 and
uk−l can be freed. This iterative process continues until l
reaches k. Finally, applying vk to Eq.(7) returns [Sk]⋆,j .

Theorem 1 can effectively skip duplicate multiplications
across the summands in Eq.(6). Precisely, our method only
requires 2k matrix-vector multiplications (k multiplications
for W · ul−1 in Eq.(9) and k for WT · vl−1 in Eq.(8)).
In contrast, even though “right-to-left association” is used,
Eq.(6) requires (2l − 1) matrix-vector multiplications for
the l-th summand; thus, for k summands, Eq.(6) requires
∑k

l=1 (2l − 1) = k2 matrix-vector multiplications in total.

3.1.5 Main Idea
Intuitively, the idea of our method in Theorem 1 to elimi-

nate computational redundancies is an efficient “seed germi-
nation” way of tallying “specific” paths for assessing [Sk]⋆,j .
To clarify this, we begin with the following lemma.

Lemma 2. The single-source [Sk]⋆,j in Eq.(6) tallies the

weighted sum of k length-2l “specific paths” (l = 1, · · · , k):

l length
︷ ︸︸ ︷
⋆← ◦ ← · · · ← ◦ ←
︸ ︷︷ ︸

(WT)l

◦

l−1 length
︷ ︸︸ ︷
→ ◦ → · · · →
︸ ︷︷ ︸

Wl−1

◦ → j
︸ ︷︷ ︸

[W]◦,j

(11)

where ◦ and ⋆ denote any node in graph G.

(The proof can be readily completed by the adjacency ma-
trix power property. We omit it here, due to space limits.)

Lemma 2 suggests that assessing [Sk]⋆,j in Eq.(6) is actu-
ally the process of tallying the weighted sum of the “specific”
paths in (11). Hence, the problem of eliminating duplicate
computation in [Sk]⋆,j boils down to the merging of repeti-

tive node access when tallying paths (11) of different length.
Furthermore, the “right-to-left association” in Eq.(6), in the
context of paths tallying, is associated with the order of node
access in paths (11) from right end j to left end ⋆.

Based on Lemma 2, we describe the essence of our method
in Theorem 1, with an example of assessing [S3]⋆,j .

The conventional Eq.(6) using only the “right-to-left as-
sociation” would carry out the following calculation:

[S3]⋆,j = (1− C)
(
ej +

path p1
︷ ︸︸ ︷

W
T · [W]

⋆,j
+

path p2
︷ ︸︸ ︷

W
T ·

(
W

T ·
(
W · [W]

⋆,j

))

+W
T ·

(
W

T ·
(
W

T ·
(
W ·

(
W · [W]⋆,j

))))

︸ ︷︷ ︸
path p3

)
,

where each summand corresponds to tallying a kind of “spe-
cific” paths pi, as shown in Figure 2.3 When tallying these
paths from right end j to left end ⋆, we observe that there
are many repetitive node access (enclosed with dotted lines).
For instance, node j and its in-neighbors are repeatedly ac-
cessed when paths p1, p2, p3 are tallied; the 2-hop in-neighbors
of node j are repeatedly accessed when p2 and p3 are tallied.

3p1, p2, p3 in Figure 2 are right-aligned at node j for merging,
corresponding to the “right-to-left association” computing.

j 1

j 2

j
3

j
4

j 5

j 6

u1

u2

v2

v1v1

v2

v3 v3 v3

u3

u0

u1 := W · ej

v2

v3

u2 := W · u1 = W
2 · ej

u3 := W · u2 = W
3 · ej

v1 := C ·WT · v0 + u2

v0 := u3(v0)

(ej)

= C ·WT ·W3 · ej +W
2 · ej

v2 := C ·WT · v1 + u1

= C · (WT)
2
·W3 · ej +W

T ·W2 · ej +W · ej

v3 := C ·WT · v2 + u0

= C ·
∑3

l=0 (W
T)

l
·Wl · ej

u0 := ej

Paths Tallied via “Seed Germination”

“seed” nodes

new “bud” nodes

old “germinated”

Step Associated with Iterations

nodes

Figure 3: Example of assessing [S3]⋆,j via “seed germina-

tion” iteration, by tallying paths in tree p′

To eliminate redundancies, we first merge these paths into
a compact tree p′ (in Figure 2), and then efficiently access
all nodes in tree p′ via “seed germination” iteration.

Figure 3 visualizes our “seed germination” iteration step-
by-step for tallying paths in p′ for [S3]⋆,j , starting from j.
Each step corresponds to one iteration, at which we need to
select “seed” nodes to produce new “bud” nodes, aiming to
minimize repetitive node access for tallying p1, p2, p3 in p′.
For example, in “Step 1” row of Figure 3, we select node j as
the “seed” to produce its “bud” nodes (◦). This process is
associated with the iteration u1 := W·ej . Moreover, in each
step, we can choose as “seed” nodes either the new “bud”
nodes from the last step (e.g., “seeds” in Steps 1–4), or the
mixture of the new “bud” nodes and the old “germinated”
nodes from several prior steps (e.g., “seeds” in Steps 5–6).
For example, in “Step 5” row, the selected “seed” nodes
(encircled with red dotted line) consist of two parts: one is
the new “bud” nodes from Step 4 (boxed with blue dotted
line, associated with the term (C·WT ·v0) in v1); the other is
the old “germinated” nodes from Step 2 (boxed with green
dashed line, associated with the term u2 in v1), both of
which are integrated into v1 in Step 4 and used as “seeds”
in Step 5. In contrast, the conventional Eq.(6) tallies each
of the paths p1, p2, p3 in Figure 2 independently, by choosing
only one “seed” to produce only one “bud” in one path pi
at each step, incurring excessive computational cost.

(See Appendix B.1 for a detailed numerical example of
our “seed germination” iteration.)

3.1.6 Complexity of Single-Source SimRank
We next analyze the complexity of single-source SimRank.

Theorem 2. Given a graph G = (V,E) and query j ∈ V ,
it takes O(k|E|) time and O(|E|+k|V |) memory to assess the
k-th iterative single-source SimRank [Sk]⋆,j via Theorem 1.

Proof. Assessing [Sk]⋆,j via Theorem 1 has three phases:

(1) Iteratively obtaining u0,u1, · · · ,uk from Eq.(9). For
any fixed l, it requires O(|E|) time and O(|V |) memory to
compute ul, which is dominated by the matrix-vector multi-
plication (W · ul−1). Once computed, u0, · · · ,uk are mem-
oized, which will be reused in subsequent iterations Eq.(8).
Thus, this phase requires O(k|E|) time and O(k|V |) memory
for k iterations, plus O(|E|) memory to store the graph.

(2) Iteratively computing vk via Eq.(8). It takes O(|E|)
time and O(|V |) memory to compute vl per iteration, which
is dominated by the matrix-vector multiplication (WT ·vl−1).
Once vl is derived, vl−1 and uk−l are freed. Thus, this phase
takes O(k|E|) time and O(|V |) memory for k iterations.

5

(3) Computing [Sk]⋆,j from vk via Eq.(7). This phase

requires O(|V |) time and O(|V |) memory for vector scaling.
Taking (1)–(3) together, the total complexity is bounded

by O(k|E|) time and O(k|V |+ |E|) memory.

In Section 3.2, this complexity will be further improved.

3.1.7 Applying to Partial-Pairs SimRank
We now apply the “seed germination” model of Theorem 1

to partial-pairs SimRank.
Let us first introduce the following notations. Given two

subsets A and B of nodes in V , for any |V | × |V | matrix X,
we denote by [X]

A,B
the |A| × |B| submatrix of X that lies

on the intersection of each row in A with each column in B;
[X]A,⋆ the |A| × |V | submatrix of X selecting all rows in A;

[X]⋆,B the |V |× |B| submatrix of X selecting all columns in

B. For instance, given subsets A = {1, 3} and B = {1, 2, 4}
of node set V = {1, 2, 3, 4}, and SimRank matrix S ∈ R

4×4,
below is the partial-pairs SimRank matrix [S]

A,B
.

S =







1 2 3 4

1 s11 s12 s13 s14
2 s21 s22 s23 s24
3 s31 s32 s33 s34
4 s41 s42 s43 s44







⇒ [S]
A,B

=

[
s11 s12 s14
s31 s32 s34

]

(12)

We now consider the “seed germination” iteration for partial-
pairs SimRank. Recall that its counterpart for single-source
SimRank is based on two main ideas: one is the “right-to-left
association” trick that avoids matrix-matrix multiplications;
the other is to skip duplicate computation across the sum-
mations of Eq.(6) by tallying compacted paths in a “seed
germination” manner. Indeed, the latter idea can be readily
ported to partial-pairs SimRank, whereas the former is not
a natural extension since it is unclear whether the “right-to-
left association” is still well suited for partial-pairs SimRank.
To shed light on this, we first provide the following lemma.

Lemma 3. Given two subsets A and B of a node set V ,
the partial-pairs SimRank matrix [S]

A,B
can be obtained from

the entire |V | × |V | matrix S via the transformation below:

[S]A,B = [I]A,⋆ · S · [I]⋆,B. (13)

(Please refer to Appendix A.1 for a detailed proof.)

Intuitively, to transform S ∈ R
|V |×|V | to [S]

A,B
∈ R

|A|×|B|,

Lemma 3 constructs [I]
A,⋆
∈ R

|A|×|V | (“row-selector”) and

[I]
⋆,B
∈ R

|V |×|B| (“column-selector”) such that Eq.(13) holds.

For example in Eq.(12), we find ∃ [I]A,⋆ = [e1 e3]
T ∈ R

2×4

and [I]
⋆,B

= [e1 e2 e4] ∈ R
4×3 s.t. [S]

A,B
= [I]

A,⋆
·S·[I]

⋆,B
.

Lemma 3 is introduced for efficiently computing [S]
A,B

.

To obtain an Eq.(6)-like formula for partial-pairs SimRank,
we first pre-multiply by [I]

A,⋆
and post-multiply by [I]

⋆,B
on

both sides of Eq.(5), and then apply Lemma 3, which yields

[Sk]A,B = (1− C)
(

[I]A,B +
k∑

l=1

Cl[WT]A,⋆(W
T)

l−1
Wl−1[W]⋆,B

)

(14)

However, unlike single-source SimRank, the “right-to-left as-
sociation” trick to Eq.(6) may or may not apply to Eq.(14),
depending on the sizes of node collections A and B, and the
graph structure. This is because both [WT]

A,⋆
and [W]

⋆,B

in Eq.(14) are rectangular matrices. As the matrix multipli-
cation satisfies the associative law, for each fixed l in Eq.(14),

the multiplication orders in [WT]
A,⋆

(WT)
l−1

Wl−1[W]
⋆,B

can be tactically adjusted to reduce its computational cost.

Lemma 4. For every fixed l in the summation of Eq.(14),

[WT]
A,⋆
· (WT)

l−1
·Wl−1 · [W]

⋆,B
can be efficiently com-

puted in O
(
2(l−1) ·min{|A|, |B|} · |E|+∆|A||B|

)
worst-case

time, by grouping all the matrix multiplications from “left-
to-right” (resp. “right-to-left”) if |A| < |B| (resp. |A| ≥ |B|).

Proof. We shall consider the following three cases:
(1) If multiplications are grouped from “left-to-right” as

(((((
[WT]A,⋆ ·W

T
)
·WT

)
· . . . ·WT

︸ ︷︷ ︸

l−1

)
·W

)
· . . . ·W

)

︸ ︷︷ ︸

l−1

·[W]⋆,B

then the total time is bounded byO(2(l−1)|A||E|+∆|A||B|).
(2) If multiplications are grouped from “right-to-left” as

[WT]A,⋆ ·
(
WT · . . . ·

(
WT

︸ ︷︷ ︸

l−1

·
(
W · . . . ·

(
W ·

(
W

︸ ︷︷ ︸

l−1

·[W]⋆,B
)))))

then the total time is bounded byO(2(l−1)|B||E|+∆|A||B|).
(3) If multiplications are grouped from “both ends” to

meet at a contain position p” (p = 2, 3, · · · , 2(l − 1)) as
(((

[WT]A,⋆ ·W
T
)
·WT

)
· . . .

)

︸ ︷︷ ︸
p terms

·
(
· . . . ·

(
W ·

(
W · [W]⋆,B

)))

︸ ︷︷ ︸

(2l−p) terms

then it needs O((p−1)|A||E|+(2l−p−1)|B||E|+ |V ||A||B|)
time in total. Note that the last part requires O(|V ||A||B|)
time (in lieu of O(∆|A||B|)) since either of the two remaining
rectangular matrices may not be sparse.

Apart from the above cases, other grouping orders of ma-
trix multiplications beyond our consideration (e.g., group-
ing from a position p ∈ [2, 2(l−1)] to two ends) would incur
excessive costs, since at least O(|V ||E|) time is needed for
every multiplication of two |V | × |V | matrices, which will
dominate the total time.

Based on the above analysis, it suffices to show that the
optimum time is achieved by Case (1) or Case (2). Indeed,
the time of Case (3) can be written as O(f(p)), with

f(p) = (p− 1)|A||E|+ (2l − p− 1)|B||E|+ |V ||A||B|

= p(|A| − |B|)|E|+ z (∀p = 2, 3, · · · , 2(l − 1))

and z := (2l − 1)|B| − |A|+ |V ||A||B|. Thus, the minimum

value of f(p) occurs at p =
{

2, if |A|≥|B|;
2(l−1), if |A|<|B|.

We can verify the time of Cases (1) and (2) is better than
O(f(2(l−1))) and O(f(2)), respectively. Thus, the optimum
time cannot be achieved by Case (3), ∀p ∈ [2, 2(l − 1)].

Lemma 4 implies that a unidirectional order of grouping

all matrix multiplications in [WT]A,⋆(W
T)

l−1
Wl−1[W]⋆,B

can attain the optimum computational time. It comprises
our aforementioned “right-to-left association” trick of single-
source SimRank as a special case when (A,B) := (V, {j}).

In what follows, we can tacitly assume that |A| ≥ |B|; oth-
erwise, the given A and B can be swapped without affecting
the results, due to SimRank symmetry (s(a, b) = s(b, a)).
With this assumption, the unidirectional grouping order in
Lemma 4 refers particularly to “right-to-left association”,
the same as the grouping order for single-source SimRank.
As such, our method of tallying paths in a compact tree for
single-source SimRank can be readily ported to partial-pairs
SimRank, as illustrated in Theorem 3.

Theorem 3. Given two subsets A and B of nodes in V
(we assume |A| ≥ |B| without loss of generality), the partial-
pair SimRank [Sk]A,B

at iteration k can be computed as

[Sk]A,B = (1− C) · (C · [WT]A,⋆ ·Vk−1 + IA,B) (15)

6

Algorithm 1: Par-SR (G,C, k,A,B)

Input : a graph G = (V, E), decay factor C, #-iteration k,
two subsets A and B of nodes in V .

Output: the partial-pairs similarities [Sk]A,B .

1 if |A| < |B| then swap A and B ;
2 initialize the column normalized adjacency matrix W of G ;
3 foreach j ∈ B do
4 initialize u0 := ej ;
5 for l := 1, · · · , k do
6 compute [ul]i := [W]i,⋆ · ul−1 (∀i ∈ V) ;

7 initialize v0 := uk ;
8 for l := 1, · · · , k − 1 do

9 compute [vl]i := C · [W]T⋆,i ·vl−1 + [uk−l]i (∀i ∈ V);

10 free vl−1 and uk−l ;

11 compute [Sk]A,j := (1−C) · (C · [W]T⋆,Avk−1 + [I]A,j) ;

12 free vk−1 ;

13 if A and B were swapped then return [Sk]
T
A,B ;

14 else return [Sk]A,B ;

where Vk−1 ∈ R
|V |×|B| is iterated as: ∀l = 1, · · · , k − 1

Vl = C ·WT ·Vl−1 +Uk−l with V0 = Uk (16)

after U0,U1, · · · ,Uk ∈ R
|V |×|B| are iterated as: ∀l = 1, · · · , k

Ul = W ·Ul−1 with U0 = I⋆,B (17)

(The proof is similar to that of Theorem 1. We omit it here.)

Theorem 3 provides an algorithm, referred to as Par-SR,
to iteratively assess partial-pairs SimRank [Sk]A,B

in a self-
contained manner. One can easily verify by direct manipula-
tion that Par-SR correctly computes partial-pairs SimRank.

3.1.8 Complexity of Partial-Pairs SimRank
We now analyze the complexity of Par-SR in Algorithm 1.

Theorem 4. Given a graph G = (V,E) and two subsets
of nodes A and B, Par-SR needs O(k|E|min{|A|, |B|}) time
and O(k|V |+ |E|) memory to compute [Sk]A,B. 4

Proof. Without loss of generality, we shall only consider
the case when |A| ≥ |B|. For each j ∈ B, Par-SR consists
of three phases: (a) compute u0, · · · ,uk (Lines 5–6), (b)
obtain vl (Lines 8–10), and (c) assess [Sk]A,j (Lines 11–

12). In each phase, it can be verified that O(k|E|), O(k|E|)
and O(d|A|) time (resp. O(k|V |), O(k|V |) and O(|V |) mem-
ory) are required. Thus, the total complexity is bounded
by O(k|B||E|) (resp. O(k|A||E|)) time and O(k|V | + |E|)
memory for |A| ≥ |B| (resp. |A| < |B|).

It is worth mentioning that, for achieving high memory
efficiency, for every column index j ∈ B, we first compute
[U0]⋆,j , · · · , [Uk]⋆,j ∈ R

|V |×1 in Eq.(16) as: ∀l = 1, · · · , k

[Ul]⋆,j = W · [Ul−1]⋆,j with [U0]⋆,j = ej (18)

Using columns [U0]⋆,j , · · · , [Uk]⋆,j (notmatrices U0, · · · ,Uk),

we then solve [Vl]⋆,j in Eq.(16) as: ∀l = 1, · · · , k − 1

[Vl]⋆,j = C ·WT [Vl−1]⋆,j + [Uk−l]⋆,j with [V0]⋆,j = [Uk]⋆,j (19)

Once [Vl]⋆,j is computed, [U0]⋆,j , · · · , [Uk]⋆,j are all freed.
This process continues until each j ∈ B is walked through.
4In the next section, we shall further improve the complexity
of Par-SR via a pruning strategy, without loss of exactness.

Compared with Eqs.(16) and (17), our trick in Eqs.(18) and
(19) that converts matrix-matrix multiplications (e.g., W ·
Ul−1) into matrix-vector multiplications (e.g., W·[Ul−1]⋆,j)
has high memory efficiency.

3.1.9 Iteration Accuracy
The following theorem shows that our “seed germination”

iterative model can achieve exactly the same accuracy as the
conventional iterative counterparts (e.g., [6,7,12,13,15,17]).

Theorem 5. For any iteration number k = 0, 1, · · · , the
gap between the partial-pairs SimRank [Sk]A,B

in Algorithm 1

and the exact one [S]A,B is bounded by

‖[Sk]A,B
− [S]

A,B
‖
max
≤ Ck+1,

where ‖X‖max := maxi,j{|[X]i,j |} is the entry-wise max norm.

Proof. It follows from Eq.(14) that ‖[Sk]A,B
− [S]

A,B
‖
max
≤

(1−C)
∞∑

l=k+1

Cl ‖[WT]
A,⋆

(WT)
l−1

W
l−1[W]

⋆,B
‖
max

︸ ︷︷ ︸
≤1

≤ Ck+1.

Theorem 5 implies that, for attaining a given accuracy ǫ,
the total number of iterations for Par-SR is k = ⌈logcǫ⌉ − 1.
In practice, since the decay factor C = 0.6 is a preferable
setting [13], a typical value of k = 9 suffices to guarantee
ǫ = 0.69+1 = 0.006 < 0.01 accurate to two decimal places.

Indeed, the effect of k is a speed-accuracy trade-off. The
higher k indicates more complexity to compute summands of
Eq.(14), but makes [Sk]A,B

even closer to the exact [S]
A,B

.
This is consistent with our interpretation of the “seed ger-
mination” model in Figure 2, where we have discerned that
the increasing of k implies more paths pi to be merged into
a compact tree p′, leading to high accuracy yet more costs.

3.2 Eliminating Unnecessary Edge Access
After the “seed germination” iteration has been devised to

assess partial-pairs SimRank in O(k|E|min{|A|, |B|}) time,
our pruning strategy in this section will further reduce the
time to O(mmin{|A|, |B|}), with m ≤ min{k|E|,∆2k}.

3.2.1 TraditionalSpMxM Redundancy
Recall that the computational time of Par-SR is domi-

nated by the matrix multiplications (W ·Ul−1) in Eq.(17)
and (WT ·Vl−1) in Eq.(16). In Section 3.1, we simply adopt
standard sparse matrix multiplications (SpMxM), by view-

ing W ∈ R
|V |×|V | as a sparse matrix with |E| nonzeros.5

However, there exists unnecessary edge access in SpMxM.
To clarify this, let us interpret SpMxM in the context of

our “seed germination” paradigm.6 When SpMxM is used
to compute W · [Ul−1]⋆,j , it can be written entry-wisely as

[Ul]i,j =
∑

y∈O(i) [W]
i,y
· [Ul−1]y,j with [U0]i,j =

{
1, i=j
0, i6=j , ∀i, j (20)

where O(i) is the out-neighbor set of node i. Consequently,
∑

i∈V
|O(i)| = |E| edges are accessed to computeW·[Ul−1]⋆,j

via SpMxM, which contains redundancy in general.

Example 2. Recall graph G in Figure 1, and our iterative
process of finding its [S]

A,B
with A = {3, 4} and B = {2, 5}.

According to Theorem 3, when SpMxM is directly applied to

5Real graphs are often sparse with |E| ≪ |V |2 in practice.
6For space interests, our focus will be devoted to (W ·Ul−1)
in Eq.(17), which also suits (WT ·Vl−1) in Eq.(16).

7

v1

v3

v4

v6

v1

v2

v3
v4

v5

v6

v5

...

...

...

...

= [W]∗,5

[U2]∗,5 [U0]∗,5

[U1]∗,5

= W · [U1]∗,5 = e5

Figure 4: Edges Accessed for [U2]⋆,5 := W · [U1]⋆,5 Com-
putation during “Seed Germination” Iterations

v1 v2 v3 v4 v5 v6

v1

v2
v3

v4
v5
v6

[U1]∗,5W

·
= +· ·

[U1]3,5 [U1]4,5[W]∗,3 [W]∗,4· = · ·+

Figure 5: Eliminating redundant multiplications by using
Eq.(21) to express W · [U1]⋆,5 as combinations of only two

columns ([W]
⋆,3 and [W]

⋆,4) of W

compute e.g., [U2]⋆,5 := W · [U1]⋆,5 with [U1]⋆,5 := [W]⋆,5,
Figure 4 depicts the corresponding edges accessed by SpMxM.

Specifically, SpMxM computes (W · [U1]⋆,5) by viewing W

as a sparse matrix; the scanning of all nonzero entries at
each nonzero row of W (i.e., [W]1,⋆, [W]3,⋆, [W]4,⋆, [W]6,⋆
in Figure 5) is equivalent to the access of all out-links (with
dashed and blue solid arrows) of each node (i.e., v1, v3, v4, v6),
respectively. Consequently, SpMxM requires |E| = 8 edges
access for computing (W · [U1]⋆,5).

However, we observe that only 2 (with solid blue arrows)
out of |E| = 8 edges are the useful access with contributions
to scores [S2]⋆,5, as they are the essential parts that forms
the path ◦ → ◦ → v5 tallied by our “seed germination” itera-
tions; other edges accessed in dashed arrows (associated with
nonzeros in W except [W]1,3 and [W]6,4) are redundant as

they cannot make ◦ → ◦ → v5 contribute to [S2]⋆,5.

Example 2 suggests unnecessary edge access involved in
SpMxM. Indeed, such redundancies are often serious in real
assessment, as evidenced by our experiments in Section 5,
e.g., nearly 38% edges of DBLP are redundant access. This
hampers the efficiency of our partial-pairs assessment.

3.2.2 Pruning Redundant Edge Access
To eliminate unnecessary edge access of SpMxM for partial-

pairs assessment, our main idea of computing [Ul]⋆,j in

Eq.(18) is to express (W · [Ul−1]⋆,j) as combinations of
columns of W as follows:

W · [Ul−1]⋆,j =
∑

x∈Dj
αx · [W]

⋆,x
with αi := [Ul−1]i,j

and Dj := {x ∈ V | [Ul−1]x,j 6= 0 and I(x) 6= ∅} (21)

The benefit of using this expression to compute (W·[Ul−1]⋆,j)
is that we can effectively skip unnecessary multiplications in
SpMxM, by pruning off a set of edges that are not germinated
from query node j (called “wild edges”). Indeed, we observe
that the “wild edges” accessed for computing (W ·[Ul−1]⋆,j)

are the incoming edges of node x ∈ V \Dj whose [Ul−1]x,j is

zero, since successive substitution applied to Eq.(18) yields
[Ul−1]⋆,j = Wl−1 · ej = [Wl−1]⋆,j , which indicates that

[Ul−1]x,j (i.e., [W
l−1]

x,j
) tallies the weights of length-(l−1)

paths from node x to query j. Thus, there are no length-
(l− 1) paths from x to j whenever [Ul−1]x,j = 0. This tells

us that all in-links of node x ∈ V \Dj are not originally ger-
minated from query j with l steps; they are “wild edges”
that can be safely pruned when (W · [Ul−1]⋆,j) is computed.

Example 3. Recall Example 2 and the iterative process
in Figure 5: [U2]⋆,5 := W · [U1]⋆,5 with [U1]⋆,5 := [W]

⋆,5.

Using our method of Eq.(21) to compute (W · [U1]⋆,5) needs

only 2 edges access (denoted as blue solid arrow in Figure 4),
corresponding to 2 multiplications, i.e.,

α3 · [W]⋆,3 + α4 · [W]⋆,4 with α3 := [U1]3,5, α4 := [U1]4,5,

as pictured in Figure 5, where symbols $, 5, N in a square
denote nonzero entries. Precisely, given [U1]⋆,5 := [W]

⋆,5,

Eq.(21) first finds D5 := {x ∈ V | [U1]x,5 6= 0} = {v3, v4}

(framed in red dotted line in Figure 5), implying that all the
in-links of node x /∈ D5 are “wild edges” (in dashed arrows)
that are not originally germinated from query v5 with 2 steps.
Then, Eq.(21) prunes off such “wild edges”, by converting
(W · [U1]⋆,5) to a combination of only two columns [W]

⋆,3

and [W]
⋆,4, with respective coefficients [U1]3,5 and [U1]4,5,

as visualized in Figure 5. Thus, computing (W · [U1]⋆,5) via

Eq.(21) needs only 2 multiplications, as opposed to SpMxM

scanning all nonzeros of W with |E| = 8 multiplications.

3.2.3 Hashing Strategy
To efficiently compute the combinations

∑

x∈Dj
αx · [W]⋆,x

in Eq.(21), besides using compressed column storage for W,
we also leverage a hashing strategy to eliminate unnecessary
zero entry-wise vector additions. Precisely, we first build an
empty hash table in such a way that the hash maps the
node index i (hash key) to its value [Ul]i,j (the result of
∑

x∈Dj
αx · [W]

i,x
). To obtain [Ul]⋆,j , for each x ∈ Dj we

pick all nonzero entries of [W]⋆,x one by one, and search the
hash table for the picked entry. If the entry exists in the
table, we increase its value by (αx · [W]

i,x
); otherwise, we

enter it in the hash table with the initial value (αx · [W]
i,x

).
After all entries for ∀x ∈ Dj are entered in the hash table,
the final result of

∑

x∈Dj
αx · [W]

⋆,x
is derived. For example

in Figure 5, our hashing method of computing (W · [U1]⋆,5)

via Eq.(21) only needs 2 operations to enter [U1]3,5 · [W]
⋆,3

and [U1]4,5 · [W]⋆,4 in the hash table.

3.2.4 Pruning Algorithm
By integrating our pruning and hashing methods into the

partial-pairs SimRank, we now provide an enhanced version
of Par-SR, referred to as PrunPar-SR, in Algorithm 2.

One can readily verify, by direct manipulation and Eq.(21),
that PrunPar-SR (1) correctly prunes redundant edge access
with a-priori zero scores in [Sk]A,B, and (2) returns exactly
the same accuracy as Par-SR.

Regarding its complexity, we have the following theorem.

Theorem 6. Given a graph G = (V,E) and two subsets
of nodes A and B, PrunPar-SR requires O(mmin{|A|, |B|})
worst-case time and O(|E|+ k|V |) memory for k iterations,
with m ≤ min{k|E|,∆2k} and ∆ the maximum degree of G.

Proof. We can readily verify that the total complexity
of PrunPar-SR is dominated by Lines 6–7 and Lines 10–11.

First, we show that, for every l, Lines 6–7 requires O(ml)
time in the worst case, with ml ≤ min{|E|,∆l}.

8

Algorithm 2: PrunPar-SR (G,C, k,A,B)

Input/Output: the same as Algorithm 1.
1-2 the same as Lines 1–2 of Algorithm 1 ;

3 foreach j ∈ B do
4 initialize u0 := ej ;
5 for l := 1, · · · , k do
6 set D := {x ∈ V | [ul−1]x 6= 0 and I(x) 6= ∅} ;

7 ul :=
∑

x∈D [ul−1]x · [W]⋆,x via hashing ;

8 initialize v0 := uk ;
9 for l := 1, · · · , k − 1 do

10 set D := {x ∈ V | [vl−1]x 6= 0 and O(x) 6= ∅} ;

11 vl := C ·
∑

x∈D [vl−1]x · [W]Tx,⋆+uk−l via hashing ;

12 free vl−1 and uk−l ;

13 set D := {x ∈ V | [vk−1]x 6= 0 and O(x) 6= ∅} ;

14 [Sk]A,j := (1− C) · (C ·
∑

x∈D [vk−1]x[W]Tx,A + [I]A,j)

via hashing ;
15 free vk−1 ;

16-17 the same as Lines 13–14 of Algorithm 1 ;

(i) On one hand, for each x ∈ Dj , it takes O(|I(x)|) time
to compute (αx · [W]

⋆,x
), where |I(x)| is the in-degree of x.

Thus, the total time of Lines 6–7 is bounded by

O(
∑

x∈Dj
|I(x)|) ≤ O(

∑

x∈V
|I(x)|) = O(|E|).

(ii) On the other hand, let |ul−1| be #-nonzeros in ul−1.
Then, computing ul := W · ul−1 via Line 7 implies that

|ul| ≤ min{∆ · |ul−1|, |V |} with |u0| = 1. (22)

This is because (W ·ul−1) can be viewed as linear combina-
tions of |ul−1| columns of W; each column has at most ∆
nonzero entries. Thus, in the worst case when the position
of each nonzero in each column is different from one another,
there are at most min{∆ · |ul−1|, |V |} nonzero entries in ul.
Successive substitution applied to Eq.(22) yields

|ul−1| ≤ min{∆l−1, |V |}.

Hence, the cost of computing (W ·ul−1) via Line 7 requires
linear combinations of ∆l−1 columns of W in the worst case.
Since there are at most ∆ nonzero entries (i.e., ∆ multipli-
cations via hashing) in each column, the total time is O(∆l).

Taking (i) and (ii) together, Lines 6–7 require O(ml) total
time in the worst case, with ml ≤ min{|E|,∆l}.

Similarly, we can show that, for every l, Lines 10–11 yield
O(m̃l) time in the worst case, where m̃l ≤ min{|E|,∆k+l}.

This is because computing vl via Line 11 can be viewed
as linear combinations of |vl−1| rows of W, then plus uk−l.
Since there are at most ∆ nonzeros in each row of W and
at most ∆k−l nonzeros in uk−l, we have

|vl| ≤ min{∆·|vl−1|+∆k−l, |V |} with |v0| ≤ min{∆k, |V |}.

Successive substitution applied to this produces

|vl−1| ≤ min{∆k−l+1 · ∆
2l−1

∆2−1
, |V |}.

Hence, the cost of computing vl via Line 11 requires linear

combinations of ∆k−l+1 · ∆
2l−1

∆2−1
rows of W in the worst case,

then plus uk−l. Since there are at most ∆ nonzeros (i.e., ∆
multiplications via hashing) in each row, and ∆k−l nonzeros
in uk−l, the total time for computing vl can be bounded by

O(∆ ·∆k−l+1 · ∆
2l−1

∆2−1
+∆k−l) = O(∆k+l) in the worst case.

Thus, for k iterations, PrunPar-SR takes O(m) total time

with m =
∑k

l=0 max{m̃l, ml} ≤ min{k|E|,∆2k}.

It is worth mentioning that the O(mmin{|A|, |B|}) time
of PrunPar-SR with m ≤ min{k|E|,∆2k}, on dense graphs7,
has the same complexity bound of Par-SR. However, in prac-
tice, PrunPar-SR runs much faster than Par-SR, especially in
the first several iterations. In Section 5, we shall further
experimentally evaluate the speedup of PrunPar-SR.

4. EXTENSIONS
We next provide three other consequences of PrunPar-SR.

4.1 Improving Single-Source SimRank
For any query j in a graph G = (V,E), by setting A := V

and B := {j} in PrunPar-SR, we have the following corollary.

Corollary 1. For any query j in a graph G = (V,E),
it is in O(min{k|E|,∆2k}) time and O(|E|+ k|V |) memory
to compute single-source SimRank sk(⋆, j) for k iterations.

In contrast to the best-known single-source SimRank [4,
9, 10], Corollary 1 has the following advantages: (1) Unlike
the O(∆2k) time of [10] that increases exponentially w.r.t. k,
our method scales well to |E|. (2) The Monte Carlo method
of [9] delivers probabilistic results, whereas our algorithm is

deterministic. (3) [4] needs O(r|V |2) preprocessing time for
a low-rank factorization, but our method has no such costs.

4.2 Reducing Memory for All-Pairs SimRank
By settingA := V andB := V , another variant of PrunPar-

SR is a memory-efficient algorithm for all-pairs SimRank.

Corollary 2. Given a graph G = (V,E), all-pairs Sim-
Rank sk(⋆, ⋆) can be computed in O(min{k|E||V |,∆2k|V |})
time and O(|E|+ k|V |) memory for k iterations.

Compared with the best-known all-pairs SimRank [15]

that takes O(kd′|V |2) time with d′ ≤ |E|/|V |, Corollary 2
achieves high computational efficiency. Moreover, it breaks
the “high iteration coupling” barrier of the conventional
SimRank that requires to store O(|V |2) scores from previous
iterations. In addition, our method is easy to be parallelized
since each column [Sk]⋆,j can be computed simultaneously.

4.3 Porting to Partial-Pairs SimRank*
Recently, the previous work of [16] has found the “zero-

similarity” problem of the existing SimRank model, namely,
two nodes a and b are assessed as dissimilar (i.e., s(a, b) = 0)
if there are no nodes with equal distance to both a and b.
To resolve this problem, SimRank* has been proposed:

S̃ = C
2
· (S̃ ·W+W

T · S̃) + (1− C) · I. (23)

However, the existing iterative method of SimRank* [16]
also has a SimRank-like “high iteration coupling” barrier.
To fix this problem, we now present a “seed-germination”
iterative model for partial-pairs SimRank* computation.

Theorem 7. Given two subsets A and B of nodes in V
(we assume |A| ≥ |B| without loss of generality), the partial-

pair SimRank* [S̃k]A,B
at iteration k can be computed as

[S̃k]A,B
= (1− C) · ([WT]

A,⋆
·Vk−1 + [I]

A,B
) (24)

where Vk−1 ∈ R
|V |×|B| can be iterated column by column

independently as follows: ∀j ∈ B, ∀l = 1, · · · , k − 1,

[Vl]⋆,j = WT · [Vl−1]⋆,j + [Uk−l]⋆,j with [V0]⋆,j = [Uk]⋆,j (25)

7Here, a dense graph refers to a graph with |E| = O(|V |2).

9

after U0,U1, · · · ,Uk ∈ R
|V |×|B| are iteratively updated via

the following two phases: for every column index j ∈ B,
(1) initialize, ∀l = 0, · · · , k,

[Ul]⋆,j = C
2
· [Ul−1]⋆,j with [U0]⋆,j = ej , (26)

(2) update, ∀α = 0, · · · , k − 1, ∀l = α, · · · , k − 1,

[Uk−1+α−l]⋆,j = [Uk−1+α−l]⋆,j +W · [Uk+α−l]⋆,j . (27)

(Please refer to Appendix A.2 for a detailed proof of The-
orem 7, and Appendix B.2 for a running example.)

5. EXPERIMENTS
Our experiments on real and synthetic data will evaluate

(1) the time, memory and accuracy of our partial-pairs Sim-
Rank, and (2) the high efficiency of its extension to single-
source and all-pairs SimRank, and SimRank* model [16].

5.1 Experimental Setting
We use both real and synthetic data in our experiments.

(1) Real Data. For efficiency evaluation, we use 6 graphs8:
(a) P2P, a Gnutella peer-to-peer file sharing network, where

each node is a host labeled with the number of its connected
hosts (categorized into e.g., leaf, ultrapeer), and an edge a
connection from one host to another in the graph topology.
(b) DBLP, a co-authorship DBLP graph, where a node is an

author labeled with his expertise (e.g., DB, IR) categorized
by his conference publications. An edge is a co-authorship.
(c) WebS, a web graph from stanford.edu, where each node

is a page, labeled with its “importance” ordered by the Page-
Rank values that are split into 200 equal-sized buckets. Each
directed edge is a hyperlink between them.
(d) AM, an Amazon product co-purchasing graph, where a

node is a product labeled with product category, and rating.
An edge links products a and b if a is co-purchased with b.
(e) CitP, a US patent network, in which a node is a patent

labeled with grant date, country of first inventor, technolog-
ical category. Edges are directed citations made by patents.
(f) SocL, a LiveJournal social network, in which nodes are

members labeled with their communities, countries, and ages
(crawled from Tartu site9), and edges are friendships.

The size |G|(|V |, |E|) of the graphs is shown as follows.
Data |G| (|V |, |E|) d Data |G| (|V |, |E|) d

P2P 27.1K (6.3K, 20.8K) 3.3 AM 3.8M (403K, 3.4M) 8.4
DBLP 49.5K (13.2K, 36.3K) 2.7 CitP 20.3M (3.8M, 16.5M) 4.4
WebS 2.6M (282K, 2.3M) 8.2 SocL 73.8M (4.8M, 69.0M) 14.2

(2) Synthetic Data. To produce synthetic nework SYN, we
use a generator GTgraph10, controlled by |V | and |E|.

(3) Query Generator. (a) For partial-pairs {s(a, b)}∀a∈A,∀b∈B

assessment, we generate query pairs (A,B) as follows: For
queries on real graphs, the labels are taken from the datasets;
for synthetic graphs, we randomly sample A and B from V ,
controlled by their size |A| and |B|. To ensure that the se-
lected nodes in A and B can comprehensively cover a broad
range of any possible queries, we first divide all nodes or-
dered by their density (|E|/|V |) into 10 equal-sized buckets,
and then randomly sample ⌈ 1

10
|A|⌉ and ⌈ 1

10
|B|⌉ nodes, re-

spectively, from each bucket. (b) For single-source s(⋆, j)
assessment on both real and synthetic graphs, we randomly

8http://snap.stanford.edu/data/index.html
9http://community.livejournal.com/tartu/profile

10http://www.cse.psu.edu/˜madduri/software/GTgraph/index.html

select query j from V in a similar way. For every experiment,
the average performance is reported over all test queries.

(4) Algorithms. We implement the following, all in VC++.
Algorithm Description Type

PrunPar-SR our algorithm in Sect. 3.2, with pruning
partial
pairs

Par-SR our algorithm in Sect. 3.1, without pruning
PrunPar-SR* variation of PrunPar-SR ported to SimRank*
SJR SimRank-based similarity join [17]
TopSim-SM top-K random walk based SimRank [10] single

sourceSimMat top-K matrix-based SimRank [4]
Psum partial sum memoization SimRank [13]

all
pairs

OIP fine-grained memoization SimRank [15]
Psum-SR* partial sum memoization SimRank* [16]
Memo-SR* edge concentration SimRank* [16]

(5) Parameters. We set the following default parameters:
(a) C = 0.6, the decay factor suggested in [13]. (b) k = 10,
the number of iterations that ensures sk(⋆, ⋆) accurate to 2
decimal places as Ck+1 = 0.610+1 < 0.01, according to [13].

(6) Accuracy Metric. For accuracy comparison, we adopt
Normalized Discounted Cumulative Gain (NDCG) at posi-

tion p w.r.t. query j, NDCGp(j) =
1

IDCGp(j)

∑p

i=1
2s(i,j)−1
log2 (1+i)

,

where s(i, j) is the similarity score between nodes i and j,
and IDCGp(j) is a normalized factor ensuring the “true”
NDCG ordering to be 1. Since all the compared algorithms
come from SimRank and SimRank* families, we can choose
all-pairs scores of [13] and [16] as their baselines.

All experiments are run with an Intel Core(TM) i7-4700MQ
CPU @ 2.40GHz CPU and 32GB RAM, on Windows 7.

5.2 Experimental Results

5.2.1 Time Efficiency
We run algorithms PrunPar-SR, Par-SR, SJR, and SingPair

on six real datasets. By randomly issuing different queries,
we compare their total time of assessing partial-pairs Sim-
Rank. Figure 6a depicts the results. (1) On each dataset,
PrunPar-SR and Par-SR are always faster than SJR and SingPair.
This is because our “seed germination” iterative model can
merge repeated node access into a compact tree, significantly
reducing the cost in the summations. (2) On P2P and CitP,
PrunPar-SR is almost 5x faster than Par-SR. This suggests
that our pruning is powerful on small density graph, which
is consistent with our analysis in Section 3.2. (3) When
the data size becomes larger, the time of each algorithm in-
creases in general. However, SJR will crash on large AM,
CitP, SocL, due to its expensive cost for finding an h-go
cover on the tensor graph. SingPair only survives on small
P2P due to large memory. However, PrunPar-SR and Par-
SR scale well to large graphs, which is consistent with our
complexity analysis in Section 3.

Figure 6b compares the time of PrunPar-SR, Par-SR, SJR
with respect to the different query pairs (A,B) on DBLP.
The results show that (1) for various queries, PrunPar-SR
consistently outperforms Par-SR, SJR. (e.g., it is 2.4x, 39.6x
faster than Par-SR, SJR, respectively, for query (DB,DM).)
(2) In all cases, SJR exhibits the worst performance since it
computes every node-pair score in (A,B) one by one without
computation sharing, unlike our “seed germination” method
that merges repetitive node access. (3) When the query size
of (A,B) grows, the time for PrunPar-SR, Par-SR increases.
This is in good agreement with our complexity analysis.

Figure 6c indicates how elapsed time changes with |A| on
WebS, fixing |B| = 338. The trend shows that (1) when |A|
grows, the time for PrunPar-SR, Par-SR grows accordingly;
however, the growing ratio begins to reduce when |A| > 103,

10

P2P DBLP WebS AM CitP SocL
1

101
102
103
104
105

Query Size |A| × |B|
(Ave Deg. d)

3.7K
(3.3)

3.3M
(2.7)

14M
(8.2)

17.2M
(8.4)

42.5M
(4.4)

19.6M
(14.2)

E
la
p
se
d
T
im

e
(s
ec
)

PrunPar-SR

Par-SR

SJR

SingPair

(a) Time on Real Data

(DB,DM) (IR,DB) (AI,DB) (IR,AI) (DB,W3) (DM,AI)1

101

102

103

104

105 Query Size
|A| × |B|

1.2M

405K

4.5M

678K

1.7M 1.6M

Query Pairs (A,B) (DBLP)

E
la
ps
ed

T
im

e
(s
ec
)

PrunPar-SR

Par-SR

SJR

(b) Vary (A,B) on DBLP

1 101 102 103 104
1

101

102

103

104

105
Query Size |B| = 338

Query Size |A|

E
la
ps
ed

T
im

e
(s
ec
)

PrunPar-SR

Par-SR

SJR

(c) Vary |A| on WebS

PrunPar-SR Par-SR

k = 3 k = 6 k = 9

101

103

105
|A| × |B| = 14M

d = 8.2

(WebS)

E
la
ps
ed

T
im

e
(s
ec
)

k = 3 k = 6 k = 9

101

103

105
|A| × |B| = 42.4M

d = 4.38

(CitP)

(d) Vary k on WebS and CitP

P2P DBLPWebS AM CitP SocL
0.01

1

102

104

106

Iter: k = 4

E
la
ps
ed

T
im

e
(s
ec
)

PrunPar-SR Par-SR
TopSim-SM SimMat
SJR SingPair

(e) Time for SS (Single Source)

4 5 6 7 8
0.1

101

103

105

d = 4.37
top-K = 100

Iterations

E
la
ps
ed

T
im

e
(s
ec
)

PrunPar-SR
Par-SR
TopSim-SM

(f) Vary k on CitP for SS

DBLP AM SocL
0.01

101

104

Iter

k = 10

(SimRank)

A
ve

T
im

e
/
C
ol
.
(s
ec
)

PrunPar-SR
OIP
Psum

DBLP AM SocL
0.01

102

106

Iter

k = 10

(SimRank*)

PrunPar-SR*
Memo-SR*
Psum-SR*

(g) Ave Time per Col for All Pairs

2 5 10 15 20 25
0.1

101

103

105

|V | = 105

k = 10top-K = 100 ;

Ave Degree d

E
la
ps
ed

T
im

e
(s
ec
)

PrunPar-SR
Par-SR
TopSim-SM
SimMat

(h) Vary d on SYN for SS

P2P DBLPWebS AM CitP SocL
0

0.2

0.4

0.6

0.8

1
Ave Deg. d

3.3
2.7

8.2 8.4

4.4

14.2

P
ru
ni
ng

R
at
io

(%
)

Partial Pair (k = 10)

Single Source (k = 4)

(i) PrunPar-SR Pruning Power

P2P DBLP WebS AM CitP SocL
0.1

1

101

102

103 Query Size

|A| × |B|

3.7K

3.3M

14.0M 17.2M

42.5M
19.6M

M
em

or
y
(M

B
)

PrunPar-SR

Par-SR

SJR

SingPair

(j) Memory on Real Data

5 10 15 20 25
30

35

40

45

50
(|V |, |E|) = (100K, 500K)

(|A|, |B|) = (25K, 35K)

Iterations k

M
em

or
y
(M

B
)

PrunPar-SR

Par-SR

(k) Memory vs. k on SYN

P2P DBLP WebS AM CitP SocL
0.1

101

103
Iter: k = 4

M
em

or
y
(M

B
)

PrunPar-SR
Par-SR
TopSim-SM
SimMat
SJR

(l) Memory on Real Data for SS

DBLP AM SocL
0.1

1

101

102

103
Iter

k = 10

(SimRank)

M
em

or
y
(M

B
)

PrunPar-SR
OIP
Psum

DBLP AM SocL
1

101

102

103
Iter

k = 10

(SimRank*)

PrunPar-SR*
Memo-SR*
Psum-SR*

(m) Memory on Real Data for All Pairs

P2P DBLP WebS AM CitP SocL
0.7

0.8

0.9

1

Iter: k = 4

Queries: 1000

(SimRank)

N
D
C
G

50
0

PrunPar-SR Par-SR

TopSim-SM SimMat

SJR SingPair

DBLP AM SocL
0.8

0.9

1

Iter: k = 10

Queries: 1000

(SimRank*)

PrunPar-SR*
Memo-SR*

(n) Accuracy on Real Data

50 200 350 500 650 800
0.7

0.8

0.9

1
Iter: k = 4

Queries: 1000

Top-K Size

N
D
C
G
K

PrunPar-SR
Par-SR
TopSim-SM

(o) Accuracy vs. Top-K Size

Figure 6: Performance Evaluations on Real and Synthetic Datasets

which is due to the “right-to-left association” trick in our
“seed germination” model that swaps A and B if |A| > |B|.
(2) SJR crashes as |A| ≥ 100, whereas PrunPar-SR, Par-SR
scale well with |A|. (3) The speedup of PrunPar-SR on DBLP
is more obvious than that on WebS, due to small density.

Figure 6d depicts the effect of iteration k on the PrunPar-
SR and Par-SR time on WebS and CitP. We see that (1) the
PrunPar-SR and Par-SR time is directly proportional to k.
(2) When k = 6, 9, the time difference between Par-SR and
PrunPar-SR on CitP is more pronounced than that on WebS.
This is because CitP has small average degree, compared
with WebS, which agrees with our complexity predictions
that d has a large impact on the PrunPar-SR.

Figure 6e compares the time efficiency of the single-source
SimRank algorithms on six real datasets when k = 4. The
results show that (1) The PrunPar-SR and Par-SR time ex-
hibit a similar trend to partial-pairs assessment in Figure 6a.
(2) The speedup of PrunPar-SR is more obvious on P2P,
DBLP, CitP due to their small average degree. (3) PrunPar-
SR consistently outperforms TopSim-SM by +9.2x; however,
on DBLP and CitP, TopSim-SM is faster than Par-SR. This
is due to the small degrees of DBLP and CitP, implying that
TopSim-SM is more sensitive to d than Par-SR, given k.

Figure 6f presents how the time for PrunPar-SR, Par-SR,
TopSim-SM changes with k on CitP for single-source queries.
(1) When k < 6, TopSim-SM is faster than Par-SR; however,
when k > 6, Par-SR outperforms TopSim-SM. (2) When k
grows, the linear increasing trend of TopSim-SM in the log-y

scale axis indicates that the TopSim-SM time will exponen-
tially increase with respect to k with fixing degree d, which
highlights a limitation of TopSim-SM for computing scores
of all nodes w.r.t. a query. In contrast, the PrunPar-SR time
increases with k < 6, but this increase slows greatly when
k > 6, due to its pruning on “seed germination” model.

Figure 6g compares the average time to compute each col-
umn of all-pairs SimRank matrix for PrunPar-SR, OIP and
Psum, and the all-pairs SimRank* for PrunPar-SR*, Memo-
SR* and Psum-SR*, respectively. For SimRank, OIP and
Psum crash on AM and SocL due to their large memory for
storing all-pairs scores from the previous iteration. For Sim-
Rank*, this also occurs on Memo-SR* and Psum-SR* for the
same reason. However, PrunPar-SR* can execute on large
graphs, due to our partial-pairs method that computes the
entire SimRank matrix column by column independently,
where each column computation can fit into memory.

Figure 6h depicts the effect of d on the time for PrunPar-
SR, Par-SR, TopSim-SM, SimMat on a synthetic dataset for
single-source SimRank assessment with k = 10 and |V | =
100K. We can see that (1) when d increases, TopSim-SM
crashes for d ≥ 6 due to the TopSim-SM time being too
sensitive to d when k is large; however, for the remaining al-
gorithms, the increasing trend is relatively steep w.r.t. d. (2)
when d is smaller (< 5), PrunPar-SR is much better than Par-
SR, illustrating the effectiveness of our pruning technique on
graphs with low density. (3) SimMat is less sensitive to d,
due to its SVD that may destroy graph sparsity.

11

Figure 6i reports the pruning power of PrunPar-SR on six
real datasets for partial-pair and single-source SimRank as-
sessment, respectively. The pruning ratio is defined as

(1− # of edges accessed by PrunPar-SR
of edges accessed by Par-SR

)× 100%.

The results show that the pruning power is more significant
on graphs with small degrees (P2P, DBLP, CitP), but is less
efficient on graphs with larger degrees (WebS, AM). The
larger the degree d, the fewer the number of nonzeros in uk

or Uk during our “seed germination” iteration, as expected.

5.2.2 Memory Efficiency
Figure 6j shows the memory efficiency of PrunPar-SR, Par-

SR, SJR, SingPair for partial-pairs assessment on real data.
We observe that SJR requires more memory than PrunPar-
SR and Par-SR on P2P, DBLP; and it crashes on the re-
maining four datasets. This is because SJR needs to store
the h-go cover set that could be very large on the tensor
graph, whereas PrunPar-SR and Par-SR require to memoize
only auxiliary Uk for k iterations.

Figure 6k shows the memory of PrunPar-SR and Par-SR
w.r.t. the growing k on synthetic data, when query size of
(A,B) is fixed. It can be discerned that (1) when k grows,
the memory consumption increases steadily. This is because
PrunPar-SR and Par-SR require to memoize k intermediate
Uk after k iterations. (2) Given k, PrunPar-SR needs slightly
more memory than Par-SR, due to its hashing strategy.

Figure 6l compares the memory for single-source SimRank
on real data. For k = 4, TopSim-SM that computes all
nodes w.r.t. a query only survives on small P2P and DBLP,
which requires large memory because SimMap(x) needs to
be stored for each node x. SimMat only survives on small
P2P and DBLP as well since it requires considerable memory
to store the decomposed matrices vis SVD. SJR crashes on
all the datasets except for P2P because it needs to find an
h-go cover set on a large tensor graph. In contrast, PrunPar-
SR and Par-SR for single source SimRank are highly memory
efficient since they only need to store k vectors.

Figure 6m shows the memory of the all-pairs SimRank
and SimRank* algorithms on DBLP, AM, SocL. On AM and
SocL, OIP and Psum crashes for SimRank, whereas Memo-
SR* and Psum-SR* crash for SimRank* because they re-
quire quadratic memory space to store all-pairs similarities
from the previous iterations. In contrast, PrunPar-SR and
PrunPar-SR* compute the whole similarity matrix column
by column, requiring considerably less memory.

5.2.3 Accuracy
Figure 6n shows the accuracy of single-source algorithms

for both SimRank and SimRank* on real datasets. We ran-
domly select 1000 queries, use the average NDCG500 as
accuracy measure. Using the all-pairs similarities as the
baselines, our results on all the datasets show that for Sim-
Rank (resp. SimRank*), PrunPar-SR, Par-SR, SJR, SingPair
(resp. PrunPar-SR*, Memo-SR*) do not sacrifice accuracy
for high computational efficiency. However, the accuracy
for TopSim-SM and SimMat is slightly lower as their compu-
tational paradigms are based on top-K search.

Finally, Figure 6o shows the top-K size affects the NDCGK

of PrunPar-SR, Par-SR, TopSim-SM. The results show that
with increasing size of top-K, the accuracy of TopSim-SM is
gradually reduced, compared with PrunPar-SR and Par-SR
which do not compromise accuracy at all, as expected.

6. CONCLUSIONS
This paper focuses on efficient computation of partial-

pairs SimRank. (1) A “seed germination” model is proposed
to compute partial-pairs SimRank in O(k|E|min{|A|, |B|})
time and O(|E| + k|V |) memory. (2) A pruning strategy
is devised to skip redundant edges access for further speed-
ing up partial-pairs computation to O(mmin{|A|, |B|}) time
with m ≤ min{k|E|,∆2k}. As a by-product, our partial-
pairs SimRank model not only as a special case improves the
computation of the fastest known single-source SimRank,
but also induces a memory-efficient algorithm for all-pairs
SimRank that can break “high iteration coupling”. We also
show that our techniques can be readily extended to partial-
pairs SimRank* computation. Finally, our experimental re-
sults on real and synthetic data have verified the superiority
of our algorithms on large graphs against the baselines.

Acknowledgment
This work forms part of the Big Data Technology for Smart
Water Network research project funded by NEC Corpora-
tion, Japan.

7. REFERENCES
[1] I. Antonellis, H. G. Molina, and C. Chang. SimRank++:

Query rewriting through link analysis of the click graph.
PVLDB, 1(1), 2008.

[2] P. Berkhin. Survey: A survey on PageRank computing.
Internet Mathematics, 2(1), 2005.

[3] D. Fogaras and B. Rácz. Scaling link-based similarity
search. In WWW, 2005.

[4] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, and M. Onizuka.
Efficient search algorithm for SimRank. In ICDE, pages
589–600, 2013.

[5] G. He, H. Feng, C. Li, and H. Chen. Parallel SimRank
computation on large graphs with iterative aggregation. In
KDD, 2010.

[6] J. He, H. Liu, J. X. Yu, P. Li, W. He, and X. Du. Assessing
single-pair similarity over graphs by aggregating
first-meeting probabilities. Inf. Syst., 42:107–122, 2014.

[7] G. Jeh and J. Widom. SimRank: A measure of
structural-context similarity. In KDD, 2002.

[8] R. Jin, V. E. Lee, and H. Hong. Axiomatic ranking of
network role similarity. In KDD, 2011.

[9] M. Kusumoto, T. Maehara, and K. ichi Kawarabayashi.
Scalable similarity search for SimRank. In SIGMOD
Conference, pages 325–336, 2014.

[10] P. Lee, L. V. S. Lakshmanan, and J. X. Yu. On top-k
structural similarity search. In ICDE, 2012.

[11] C. Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, and T. Wu.
Fast computation of SimRank for static and dynamic
information networks. In EDBT, 2010.

[12] P. Li, H. Liu, J. X. Yu, J. He, and X. Du. Fast single-pair
SimRank computation. In SDM, 2010.

[13] D. Lizorkin, P. Velikhov, M. N. Grinev, and D. Turdakov.
Accuracy estimate and optimization techniques for
SimRank computation. VLDB J., 19(1), 2010.

[14] L. Sun, R. Cheng, X. Li, D. W. Cheung, and J. Han. On
link-based similarity join. PVLDB, 4(11):714–725, 2011.

[15] W. Yu, X. Lin, and W. Zhang. Towards efficient SimRank
computation on large networks. In ICDE, pages 601–612,
2013.

[16] W. Yu, X. Lin, W. Zhang, L. Chang, and J. Pei. More is
simpler: Effectively and efficiently assessing node-pair
similarities based on hyperlinks. PVLDB, 7:13–24, 2013.

[17] W. Zheng, L. Zou, Y. Feng, L. Chen, and D. Zhao. Efficient
SimRank-based similarity join over large graphs. PVLDB,
6(7):493–504, 2013.

12

“seed” nodes

new “bud” nodes

old “germinated”
nodes

v5{v3, v4}

v5
{v3, v4}

{v1, v6}

v5
{v3, v4}

{v1, v6}v3

v5
{v3, v4}

{v1, v6}
v3{v2, v5, v6}{v2, v4}

{v2, v3, v4}{v2, v5, v6} {v2, v5, v6}
v5

v5
{v3, v4}

{v1, v6}
v3{v2, v5, v6}

v5
{v3, v4}

{v1, v6}
v3{v2, v5, v6}{v2, v4}

{v2, v3, v4}
{v2, v4}

1

2

3

4

5

6

u1 := W · e5 = [0, 0, 0.5, 0.5, 0, 0]T

u2 := W · u1 = [0.5, 0, 0, 0, 0, 0.5]T

u3 := W · u2 = [0, 0, 0.5, 0, 0, 0]T

v1 := C ·WT · u3 + u2 = [0.5, 0.1, 0, 0, 0.15, 0.8]T

v2 := C ·WT · v1 + u1 = [0, 0.26, 0.8, 0.98, 0, 0]T

v3 := C ·WT · v2 + u0 = [0, 0.16, 0, 0, 1.534, 0.48]T

[S]⋆,5 := (1− C) · v3 = [0, 0.064, 0, 0, 0.617, 0.192]T

Paths Tallied via “Seed Germination” Step Associated with Iterations

Figure 7: A Numerical Example of “Seed Germination” Model for Computing [S3]⋆,5

APPENDIX

A. DETAILED PROOFS

A.1 Proof of Lemma 3

Proof. Let A = {a1, · · · , a|A|} and B = {b1, · · · , b|B|}
be two node subsets of V . It can be directly verified that

[I]
A,⋆
· S · [I]

⋆,B
= [ea1 | · · · |ea|A|

]T · S · [eb1 | · · · |eb|B|
]

=







eT
a1
· S · eb1 . . . eT

a1
· S · eb|B|

...
. . .

...
eT
a|A|
· S · eb1 · · ·e

T
a|A|
· S · eb|B|






=







[S]
a1,b1

. . . [S]
a1,b|B|

...
. . .

...
[S]

a|A|,b1
· · ·[S]

a|A|,b|B|






= [S]

A,B
.

A.2 Proof of Theorem 7

Proof. We prove this by showing that successive substi-
tution applied to Eq.(24)–(27) yields the power series form
of SimRank* (see Eq.(7) of [16]), i.e.,

[S̃k]A,B
= IA,⋆

(
(1−C) ·

∑k

l=0

(
C
2

)l
·
∑l

α=0

(
l

α

)
· (WT)

α
·Wl−α

)
I⋆,B .

First, for every j ∈ B, Eq.(26) implies [Ul]⋆,j :=
(
C
2

)l
·ej .

Then, successive substitution leveraged to Eq.(27) produces

[Uα]⋆,j =
∑k

l=α

(
C
2

)l(l

l−α

)
Wl−α−1[W]

⋆,B
, ∀α ∈ [0, k − 1].

Next, analogous to the proof of Theorem 3, one can verify
that successive substitution used to Eqs.(24) and (25) yields

[S̃k]A,B
= IA,⋆

(
(1−C) ·

∑k

α=0

∑k

l=α

(
C
2

)l
·
(
l

α

)
· (WT)

α
·Wl−α

)
I⋆,B .

Finally, interchanging the order of double summations, i.e.,
∑k

α=0

∑k

l=α
f(l, α) =

∑k

l=0

∑l

α=0 f(l, α), gets our result.

B. ILLUSTRATIVE EXAMPLES

B.1 A Numerical Example of “Seed Germina-
tion” Model in Figure 3

We now detail the process to show how our “seed germina-
tion” iterative model computes the single-source SimRank
scores [S3]⋆,5 with respect to query node v5 at iteration k = 3

step by step in Figure 1. (given the damping factor C = 0.6)
There are six steps in total. They are depicted concisely

in Figure 7, and explained in detail as follows:

1. We first select the query node v5 as the “seed” node,
and find all the in-neighbors of v5 (i.e., {v3, v4}). Nodes
{v3, v4} are the “bud” nodes germinated from v5).

The resulting vector u1 has two nonzero elements (the
3rd and 4th), associated with {v3, v4}, i.e., all the in-
neighbors of v5.

2. We next choose {v3, v4} as the “seed” nodes, and then
find all their in-neighbour nodes, which are {v, v}. Nodes
{v, v} are the “bud” nodes germinated from {v3, v4}.

The resulting vector u2 has two nonzero entries (the
1st and 6th) associated with {v, v}, i.e., all the in-
neighbors of {v3, v4}.

3. Similarly, we next choose {v, v} as the “seed” nodes,
and then find all their in-neighbors, which is {v3}.

The resulting vector u3 has only one nonzero entry in
the 3rd element, associated with {v3}, i.e., all the in-
neighbors of {v, v}.

4. Since our goal is to compute [Sk]⋆,5 for k = 3 iterations,
after the above 3 steps we are now ready to select the
new “seed” nodes and consider their out-neighbours.
We first choose {v3} as the “seed” nodes, and then find
all its “bud” nodes {v1, v2, v5, v6} = {v2, v5, v6}∪{v, v}
(which consists of two parts: (a) all the out-neighbors
of {v3}, i.e., {v2, v5, v6}, and (b) the previously “ger-
minated” nodes in Step 2, i.e., {v, v}).

The resulting vector v1 has 4 nonzero entries (the 1st,
2nd, 5th, and 6th), associated with {v1, v2, v5, v6} =
{v2, v5, v6}∪{v, v}, where (1) the first part is {v2, v5, v6},
i.e., all the out-neighbours of {v3}, which corresponds
to all nonzero entries of WT · u3 ; (2) the second part
is {v, v}, i.e., the previously “germinated” nodes in
Step 2, which corresponds to all nonzero entries of u2.
Both parts are combined into the nonzero entries of v1.

5. Similarly, we next choose {v2, v5, v6} ∪ {v, v} (i.e., the
old “bud” nodes in Step 4) as the new “seed” nodes,
and then find all their new “bud” nodes

{v2, v3, v4} = ({v2, v4} ∪ {v2, v3, v4}) ∪ {v3, v4}

(which consists of two parts: (a) all the out-neighbors
of {v2, v5, v6}∪{v, v}, i.e., {v2, v4}∪{v2, v3, v4}, and (b)
the previously “germinated” nodes in Step 1, i.e., {v3, v4}.

13

The resulting vector v2 has 3 nonzero entries (the 2nd,
3rd, and 4th), associated with

{v2, v3, v4} = ({v2, v4} ∪ {v2, v3, v4}) ∪ {v3, v4} ,

where (1) the first part is {v2, v4}∪{v2, v3, v4}, i.e., all
the out-neighbors of “seed” nodes {v2, v5, v6}∪{v1, v6},
which corresponds to all the nonzero elements of WT ·
v1; (2) the second part is {v3, v4}, i.e., the previously
“germinated” nodes in Step 1, which corresponds to all
nonzero entries of u1. Both parts are combined into
the nonzero entries of v2.

6. Finally, we choose {v2, v4}∪{v2, v3, v4}∪{v3, v4} (i.e., the
old “bud” nodes in Step 5) as the new “seed” nodes,
and then find all their new “bud” nodes

{v2, v5, v6} = ({v5} ∪ {v2, v5, v6} ∪ {v2, v5, v6}) ∪ {v5}

(which consists of two parts: (a) all the out-neighbors
of {v2, v4} ∪ {v2, v3, v4} ∪ {v3, v4}, i.e.,

{v5} ∪ {v2, v5, v6} ∪ {v2, v5, v6} ,

and (b) the previously given query node {v5}.

The resulting vector v3 has 3 nonzero entries (the 2nd,
5th, and 6th), associated with

{v2, v5, v6} = ({v5} ∪ {v2, v5, v6} ∪ {v2, v5, v6})∪ {v5} ,

where (1) the first part is {v5}∪{v2, v5, v6}∪{v2, v5, v6},
i.e., all the out-neighbors of the “seed” nodes

{v2, v4} ∪ {v2, v3, v4} ∪ {v3, v4} ,

corresponding to all nonzeros of WT ·v2; (2) the second
part is {v5}, i.e., the previously given query node {v5},
which corresponds to e5. Both parts are combined into
the nonzero entries of v3.

Then, scaling the resulting vector v3 produces the final
result [S3]⋆,5.

B.2 An Example of Partial-Pairs SimRank*

Example 4. Given two subsets of nodes A = V and B =
{j}, and iteration number k = 3, Theorem 7 computes Sim-

Rank* scores [S̃3]⋆,j as follows. For notational convenience,

we abuse ul and vl to denote [Ul]⋆,j and [Vl]⋆,j, respectively.

First, Eq.(26) initializes u0, · · · ,u3 as

u0 := ej , u1 := C
2
ej , u2 :=

(
C
2

)2
ej , u3 :=

(
C
2

)3
ej .

Then, by virtue of Eq.(27), u0, · · · ,u3 are updated as

α l update {u2+α−l}0≤α≤l≤2

0
0 u2 := u2 +W · u3 =

((
C
2

)2
I+

(
C
2

)3
W

)

ej

1 u1 := u1 +W · u2 =
((

C
2

)
I+

(
C
2

)2
W+

(
C
2

)3
W2

)

ej

2 u0 := u0 +W · u1 =
(

I+
(
C
2

)
W+

(
C
2

)2
W2 +

(
C
2

)3
W3

)

ej

1
1 u2 := u2 +W · u3 =

((
C
2

)2
I+ 2

(
C
2

)3
W

)

ej

2 u1 := u1 +W · u2 =
((

C
2

)
I+ 2

(
C
2

)2
W + 3

(
C
2

)3
W2

)

ej

2 2 u2 := u2 +W · u3 =
((

C
2

)2
I+ 3

(
C
2

)3
W

)

ej

Next, using u0, · · · ,u3, Eq.(25) computes v0,v1,v2 as

l update {vl}0≤l≤2

0 v0 := u3 =
(
C
2

)3
ej

1 v1 := WT · v0 + u2 =
((

C
2

)3
WT + 3

(
C
2

)3
W+

(
C
2

)2
I
)

ej

2
v2 := WT · v1 + u1=

((
C
2

)3
(WT)

2
+ 3

(
C
2

)3
WTW + 3

(
C
2

)3
W2

+
(
C
2

)2
WT + 2

(
C
2

)2
W+

(
C
2

)
I
)

ej

Finally, [S̃3]⋆,j can be computed from v2 by Eq.(24) as

[S̃3]⋆,j=(1−C) ·
(
WT · v2 + ej

)

=(1−C) ·
∑3

l=0

(
C
2

)l
·
∑l

α=0

(
l

α

)
· (WT)

l−α
·Wα · ej ,

which is the first 3rd sums of SimRank* power series.

14

