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Abstract—In-memory database systems are among the tech-
nological drivers of big data processing. In this paper we
apply analytical modeling to enable efficient sizing of in-memory
databases. We present novel response time approximations under
online analytical processing workloads to model thread-level fork-
join and per-class memory occupation. We combine these approx-
imations with a non-linear optimization program to minimize
memory swapping in in-memory database clusters. We compare
our approach with state-of-the-art response time approximations
and trace-driven simulation using real data from an SAP HANA
in-memory system and show that our optimization model is
significantly more accurate than existing approaches at similar
computational costs.

Index Terms—Optimization; In-memory Databases; Perfor-
mance; Closed Queueing Networks; Approximation, SAP HANA.

I. INTRODUCTION

In-memory database systems leverage new technologies,
such as SDRAM, flash storage, FPGAs and GPUs, to sharply
optimize database throughputs and latencies. Case studies
show that in-memory databases can achieve tremendous
speedups, outperforming traditional disk-based database sys-
tems by several orders of magnitude [1]. As a result, in-
memory systems are in high commercial demand, in particular
as part of cloud sofware-as-a-service offerings [2]. This poses
new challenges regarding the management of these appli-
cations in cloud infrastructures, since there is virtually no
architectural design, sizing and pricing methodology focused
explicitly on in-memory technologies.

This paper tackles this problem by introducing a novel
provisioning framework specifically tailored to in-memory
databases. We propose a novel optimization-based method-
ology to provision these systems at a reference timescale,
minimizing costs. Our methodology can be applied to in-
memory database clusters that are continuously monitored
and feed performance measurements into our framework. Our
framework enables what-if analyses for various in-memory
database configurations regarding performance and cost with-
out the need to setup experiments physically. In particular, we
seek for load-dispatching routing probabilities that can load
balance in-memory instances for a set of clients respecting
the service level agreement (SLA) in place with the customer.

We use a queueing modeling approach to describe the
levels of contention at resources, in order to establish the
likelihood that a sizing configuration will comply to SLAs.
In particular, since in-memory systems are memory-bound

applications, it is crucial that their sizing models can capture
memory constraints, as memory exhaustion and swapping are
more likely to happen in this class of applications. Conversely,
existing sizing methods for enterprise applications have pri-
marily focused on modeling mean CPU demand and request
response times. Memory occupation is difficult to model as it
requires the ability to predict the probability of a certain mix
of queries being active at a given time. However, probabilistic
models tend to be expensive to solve, leading to slow iteration
speed when used in combination with numerical optimization.
To cope with this issue, we introduce a framework based on
approximate mean-value analysis (AMVA), a classic method-
ology to obtain performance estimates in queueing network
models [3]. We observe in particular that current AMVA
methods are unable to correctly capture the effects of variable
threading levels in in-memory database systems and propose
a correction that markedly improves accuracy. Our approach
retains the same computational properties of AMVA and it is
simple and inexpensive to integrate in optimization programs.

We also demonstrate that multi-start interior point methods
and evolution strategies can be effectively used to solve the
resulting optimization programs, offering different tradeoffs
between accuracy and scalability. In particular, we propose a
simple yet fast mutation function for our evolution strategy
that turns out to be competitive with interior point methods.
Finally, we validate our approach using real traces from a
commercial in-memory database appliance, SAP HANA [4].

The remainder of this paper is organized as follows. Section
II motivates our research objective and gives the problem
statement. Section III introduces the system characteristics of
our in-memory database. A novel response time approximation
is developed in Section IV, combined with a non-linear
optimization program in Section V and evaluated in Section VI
by numerical tests. Finally, Section VII outlines related work,
while Section VIII concludes this paper and gives future work.

II. MOTIVATION AND PROBLEM STATEMENT

In-memory databases are a completely new type of big
data analysis systems capable of processing heavily memory
intensive workloads in a parallel fashion. Their resource man-
agement is a complex and difficult task that includes memory-
aware sizing of these systems across heterogeneous clusters.
Analytical performance models of in-memory databases can
support these sizing decisions by enabling what-if analyses
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Fig. 1. Relative Response Time Error compared with Simulation

for various hardware configurations. It is therefore essential
to develop models that are able to capture the behavior of
in-memory databases across several dimensions. In particular,
performance measures such as response times and throughputs
are key metrics of in-memory systems that need to be modeled
accurately. However, the extensive and variable threading-level
we are faced with cannot be correctly captured by existing
analytical approaches, such as AMVA [3], widely used to
model the performance of multi-tier applications [5], and state-
of-the-art techniques, i.e. fork-join AMVA (FJ-AMVA) [6].
To demonstrate this, we parameterized these two methods
from real traces of our in-memory database SAP HANA and
compared their response time predictions with a validated in-
memory database simulator [7]. We give an excerpt of our
results in Figure 1, which depicts the relative response time
error of AMVA and FJ-AMVA compared with our simulator
under different workload scenarios. We observe that using both
AMVA and FJ-AMVA can result in prediction errors of more
than 50%. We will therefore develop a new performance model
that captures the characteristics of in-memory databases more
accurately.

Our second challenge is coined by a capacity planning
problem, assigning resources to in-memory databases subject
to memory and utilization constraints. Optimizing memory
occupation for such systems can be computationally expensive
and can introduce local optima due to non-convexity. Hence
we address this by proposing intelligent optimization strategies
and combine these with our new performance model.

Summarizing, our main contributions are:
• A novel analytic reponse time approximation for in-

memory databases that considers thread-level fork join
• An optimization-based formulation for seeking load-

dispatching routing probabilities to minimize memory
swapping for such systems subject to resource constraints

• An experimental validation that reveals the applicability
of local and global search strategies

• Parameterization and evaluation of our models with real
traces of an in-memory database system

To the best of our knowledge there are no methods that com-
bine thread-level fork join models with non-linear optimization
of in-memory databases, and thus represents a novelty in this
research area.

III. IN-MEMORY DATABASE CHARACTERISTICS

A. OLAP Workload Characteristics

In-memory databases are optimized to execute analytical
business transactions, i.e. OLAP. These types of transactions
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(a) Thread Level Parallelism

0 5 10 15 20
0

1

2

3

4

5

6

7

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

Query Class

 

 
Queries 1...22

(b) Execution Times

0 5 10 15 20
0

20

40

60

80

W
ar

m
-u

p
 M

em
o

ry
O

cc
u

p
at

io
n

 in
 G

B

 

 
Queries 1...22

0 5 10 15 20
0

2

4

6

8

N
o

rm
al

iz
ed

P
ea

k 
M

em
o

ry
O

cc
u

p
at

io
n

Query Class

(c) Memory Occupation
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Fig. 2. Workload Characteristics normalized by Query Class 1

represent read-only workloads and can thus be entirely pro-
cessed in main memory. Due to their analytical nature OLAP
workloads are not only computationally intensive but also
show high variability in their threading levels. To emphasize
these diverse characteristics, we analyzed trace logs obtained
from benchmarking experiments running SAP HANA on an
IBM X5 4-socket database server configured with 1TB main
memory [8]. The benchmark was run with a scale factor of
100x and comprised a set of 22 OLAP queries introduced by
SAP-H, an extension to the TPC-H benchmark with emphasis
on analytical processing. We provide the results of our trace
log analysis for all 22 query classes in Figure 2(a)-(c). All
values are obtained from isolated query runs, normalized by
class 1 for confidentiality and shown with their respective
standard deviations. In Figure 2(a) we present the average
number of CPU cores used by each query class and denote
this with thread level parallelism. As expected, we see a strong
variability of the parallelism across all query classes, which
can increase contention for resources under OLAP workload
mixes. This attains further distinction due to the varying
computational expense of OLAP queries, depicted in Figure
2(b). In addition, we reveal the memory intensive character of
OLAP workloads in Figure 2(c) by showing the physical mem-
ory temporarily occupied during the processing of queries,
which varies on gigabyte scale. To emphasize the importance
of compression during the execution of OLAP workloads, we
demonstrate in Figure 2(c) that our corresponding benchmark
dataset with a size of 1.3 TB was reduced to approximately
65GB after a warm-up run for each query class.

B. Request Handling and Demand Characterization

Query planning and execution are important stages during
the processing of OLAP workloads. The first stage involves
a query planner analyzing the query structure and creating an
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Fig. 3. Service Demand Estimation for an OLAP Query

appropriate execution plan. In the second stage, queries are
executed depending on their assigned execution plan, which
defines the number of threads to be requested from an internal
thread pool in order to service a query. All threads pertaining
to a query process are then assigned to processing cores
for execution and are synchronized before a query can leave
the system. Kraft et al. [7] captured this behavior from our
traces to parameterize their in-memory database simulator.
We therefore review this process briefly and subsequently
extend it for use with our analytical model. Since our traces
contain information from isolated runs for all 22 available
query classes, also denoted as job classes, we can estimate two
important model parameters on a per-class basis. In particular,
we are considering the service demand dr and the parallelism
lr. While dr accounts for the average time required by our
in-memory system to service one job of class r, lr describes
the number of CPU cores used on average by query class r.

In Section IV we want to compare our performance model
with FJ-AMVA and the simulator developed in [7]. However,
all three approaches require a different representation of dr.
Hence, we will show in the following how to extract dr
appropriately. To better illustrate this process, we represent
our traces in Figure 3 by an exemplary job that consists
of 7 threads and is executed on a 4-core system. Figure 3
Case 1a shows the core activity, which was sampled during
the execution of our job. We see that over time, all 4 cores
were differently utilized, i.e. attributable to stalling threads or
changes in thread affinity. Based on the sampled core activity,
we divide the execution process of a query into P processing
phases, as illustrated in Case 1b. Each processing phase is
defined by its duration bp and its number of active processing
cores cp, i.e. 4 active cores in processing phase 1 and no
active cores in processing phase 3. As mentioned above, the
extraction of processing phases and active cores was done in
[7], since their simulator requires the parameters bp and cp.
However, we extend this process for use with our analytical
model and determine dr and lr as aggregates of these mea-
surements, dr =

∑P
p=1 bpr and lr = dr

−1∑
p bprcpr.

In addition to the core activity, our traces record the number
of threads Jr pertaining to a class r job execution process
as well as the execution times of each individual thread,
excluding the duration in which a thread was not active. This
information was not considered by [7], and thus prompted
us to extract it from the raw traces. We illustrate this in
Figure 3 Case 2a, which lists all 7 threads that belong to our
exemplary job. We denote the execution time of each thread

t pertaining to a job of class r with str and since FJ-AMVA
specifically requires this representation, we will use str for its
parameterization in our experiments. Additionally, FJ-AMVA
assumes that Jr ≤ I . However, for some classes and also for
our example, with J = 7 and I = 4, this is not the case.
Hence, we sort str and use only the first t ≤ I longest running
threads, shown in Case 2b. We justify this, as for the majority
of classes in our traces, where Jr > I , str ≤ 0.2s for t > I .
This means that these threads were not sampled accurately,
since [8] used a sampling interval of 0.2 seconds.

IV. FORK-JOIN MODEL

In this section, we study queueing performance models
for in-memory databases based on multi-core processors. In
addition, we propose an efficient analytical approximation to
these and present all relevant notation in Table I

A. Modeling an in-memory Database
Performance models for in-memory databases need to be

aware of the complexity introduced by OLAP workloads and
require a contention model that accurately captures hardware
and application characteristics. Emphasized by the high level
of query parallelism shown in Figure 2(a), fork-join queues
prove to be an appropriate choice for modeling an in-memory
database. We therefore apply fork-join queues to model the
processing cores of such a system. In particular, we consider
processor sharing (PS) queues in the sense of Baskett et al.
[9], i.e., where service times are i.i.d. generally distributed.
We employ multiclass closed queueing networks (QN) with
a think time model that represents an abstraction of client
think time and inter-activation times of worker threads in the
database, which are dependent on the admission buffer and
thread pool size. In Figure 4 we present our queueing model. It
captures the behavior of jobs split into several tasks on arrival
at the system, which are then assigned to processing cores in a
probabilistic manner. This includes the synchronization aspect
of parallel siblings at the join point and the return to the think
time buffer once a job is completed.

Approaches to solve this type of QNs via simulation, e.g. in
[7], emphasize the difficulty in finding analytical solutions. We
will therefore discuss available approximations to QNs, before
we introduce our novel analytical response time correction to
fork-join queues.

B. Approximations to Fork-Join Queues
The widely used exact analytical solution for closed QNs,

known as mean-value analysis (MVA), determines the re-



TABLE I
MAIN NOTATION

Symbol Description
Workload Parameters

R Number of query classes
bp, cp Length of processing phase p and number of active cores during p
dir, sir Service demand and service time of class r at queue i
lr Number of cores used on average by class r (average degree of parallelism)
str Service time of thread t of class r
Jr Number of threads per class r
~N Population vector with number of jobs per customer class: N1, ..., NR
~Z Vector of per-class think times Z1, ..., ZR

Additional Parameters
Ii Number of available processing cores at server i
pir Probability of class r jobs being routed to queue i

Performance Measures
Xir Per-class throughput at queue i
Wir Per-class residence time at queue i
Air Queue length at arrival instant of class r at queue i
Qir Per-class queue length at queue i
Uir Per-class utilization of queue i
Mir Per-class memory utilization at server i

sponse time Wir for a job of class r at queueing center i
depending on the total number of per-class jobs ~N in a system
as follows [10]:

Wir = dir

(
1 +Air( ~N)

)
. (1)

Here, the definition of Wir includes the queueing time and the
service demand dir = virsir, the product of per-class service
time sir and visits vir. The arrival instant queue Air( ~N)
counts for the total number of jobs queuing or being serviced
at i at the arrival instant of a job of class r. Based on the
arrival theorem for closed QNs, Air( ~N) can be expressed as
Qir( ~N−1r), which designates the queue length with one class
r job less. MVA is applied in recursive fashion, but despite
being analytical it gets intractable for problems with more than
a few customer classes. This is addressed by Bard-Schweitzer
[3], proposing an approximate MVA (AMVA) that employs a
fixed-point iteration and estimates Air via linear interpolation:

Air( ~N) ≈ (Nr − 1)

Nr
Qir( ~N) +

R∑
s=1,s6=r

Qis( ~N). (2)

Synchronization in fork-join queues introduces temporal
delays that cannot be described with the above product-form
models. As MVA and AMVA are not applicable in that case,
more recent approaches tried to address this aspect [6], [11].
Alomari et al. [6] propose a response time approximation
called FJ-AMVA that sorts per-class residence times in de-
scending order and scales them by an appropriate coefficient
for better estimation of the synchronization overhead. This
approach assumes sir to be the mean of the exponentially
distributed service times S̃ir. It can be shown that if sir are the
same at every queue for a particular class r, maxi(sir)× HJr

equals s∗ = E[maxi(S̃ir)], where s∗ becomes the maximum
service time of a job and HJr =

∑Jr

j=1 j
−1 denotes the jth

harmonic number for job class r. In the heterogeneous case,
sir can vary across the queues for each job class, which results
in less synchronization time. FJ-AMVA approximates this by
multiplying Wir with 1/i instead of HJr

.
However, the fork-join approximations in [6], [11] are less

suitable for our model, as both assume exponential distribu-
tions of sir. By contrast, our service times sir and str show a
generally low variability. We point this out in Figure 2(b) and
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2(d), by listing the per-class execution times and their standard
deviations as well as the first 8 longest running threads for
a subset of our query classes. This justifies the need for a
response time correction that does not rely on exponential
service times.

C. Response Time Correction

Thread-level fork-join cannot be expressed with (1). We
therefore propose an analytical response time correction called
TP-AMVA, which considers the placement of tasks in fork-
join queues. We assume equal probabilities of jobs being
routed to a particular queue and consider jobs to not cycle
within the fork-join construct. Hence, dr = vrsr = sr. In
addition, we approximate the fork-join construct with only one
single queue, which decreases processing time and simplifies
its integration into our optimization program. Our correction
has the following form:

Wr = dr

(
1 +

R∑
s=1

Qs δrs
ls
I

)
, (3)

where the response time Wr is calculated as the service
demand dr inflated by a factor that represents the service rate
degradation under processor sharing due to jobs, which already
compete for resources at the same queue. The arrival queue
As is estimated by employing Bard-Schweitzer:

δrs =


Nr − 1

Nr
, s = r

1, s 6= r, ∀s, r.
(4)

Since we record thread-level information for each query class,
we are able to better approximate the fork-join feature. For this
we correct As by the factor ls/I to estimate the per-core queue
length in a system with I cores. The performance measures
Wr, throughput Xr and Qr can then be resolved by employing
the AMVA fixed-point iteration. In addition we approximate
the utilization in a fork-join system with:

U =

R∑
r

Ur
lr
I
. (5)

Before we evaluate this model, we present an alternative
approximation to (3), which is an empirical calibration. It
follows the idea that an arriving class r job affects Wr

depending on its probability pr being routed to a particular
queue in the fork-join construct. Hence, we correct the class
r queue length Qr by multiplying with pr:

Wr = dr

(
1 +

R∑
s=1

Qs δrs
ls
I
prs

)
, (6)



TABLE II
RELATIVE ERROR (%) COMPARED WITH SIMULATION FOR SCENARIO Si

Method S1 S2 S3 S4 S5 S6 S7 S8

AMVA with (lr/I)× sr 91.2 26.1 59.9 46.6 54.5 59.3 58.6 97.1
AMVA with sr 3166.6 471.9 127.3 97.5 367.3 554.3 277.4 649.2
FJ-AMVA 18.4 67.5 27.0 21.5 26.8 43.6 14.2 41.8
probabilistic TP-AMVA 1.8 5.9 11.0 7.9 18.1 3.9 10.6 5.1
static TP-AMVA 4.3 18.2 8.2 11.1 20.4 11.2 12.4 3.9

where prs is defined as:

prs =


lr
I
, s = r

1, s 6= r, ∀s, r.
(7)

We will show experimentally that our two approximations
produce reasonable results under different workload mixes and
are highly competitive compared with FJ-AMVA. During our
evaluation we denote the implementation of (3) with ”static
TP-AMVA” and (6) with ”probabilistic TP-AMVA”.

D. Evaluation

In this section we will evaluate our correction against the
in-memory database simulator in [7] under different scenarios
and include the FJ-AMVA into our comparison.

a) Experimental Setup: We implemented FJ-AMVA, and
TP-AMVA in Matlab and conducted several experiments for
different workload scenarios based on the categories: light,
medium and heavy. Whereas light mixes contain mostly query
classes with small degrees of parallelism and shorter execu-
tion times, heavy mixes comprise query classes with high
parallelism and longer execution times. To further vary the
workload, we increased the number of concurrent users from
1 to 32. Throughout all scenarios we used a fixed think time
extracted from the single user scenario in our trace logs.

We used the following parameterization for the simulator,
TP-AMVA and FJ-AMVA. To increase its capability of captur-
ing resource contention more accurately, we parameterized the
simulator with the fine grained query characteristics defined
by bpr and cpr, introduced in Section III-B. For TP-AMVA
we used the aggregated service demand dr. In contrast, FJ-
AMVA needs to be parameterized with the service times
of jobs at each queue sir. We therefore mapped str, which
naturally represents the service times needed by FJ-AMVA,
onto sir. As a problem of our traces, there was no information
about the placement of threads available. Hence we addressed
this by applying a Monte Carlo Simulation choosing random
permutations of str = {s1r, ..., str} with 1 ≤ t ≤ Jr and
assigning them to queue t, 1 ≤ t ≤ Jr, before running
FJ-AMVA. We then took the average response time of 100
iterations, which seemed reasonable to produce stable results.

Moreover, the task scheduling system in the simulator
required equal routing probabilities to each core, as does our
implementation of TP-AMVA. FJ-AMVA in contrast defines
its routing probabilities pr as probability that a single queue
in the fork-join construct is visited by job class r. For this
case we assumed Jr/I to be a suitable approximation of pr
and thus we used pr = Jr/I to parameterize FJ-AMVA.
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Fig. 5. Response Time Results for different OLAP-based Workload Scenarios

b) Results: We show the results of our experiments in
Figure 5 accompanied by Table II, which depicts the mean
relative response time error compared to the simulator. To give
an impression of how the standard AMVA implementation
(2) performs, we list its mean relative error for a run with
dr = sr and a run that takes the visit ratio into account by
dr = lr/I × sr. As expected, AMVA clearly shows a poor
overall performance. In contrast, both static and probabilistic
TP-AMVA perform reasonably well throughout all scenarios
and follow the trend of the simulator. Both approximations
tend to be more pessimistic once the number of users in-
creases, whereas the response time prediction under light load
appears to be slightly optimistic, i.e. scenario 3. In general,
our probabilistic TP-AMVA captures contention effects better
than its static version, staying below a 20% error rate.

Surprisingly, FJ-AMVA lacks in its accuracy across most
scenarios. Its response time prediction is too optimistic under
medium mixes, i.e. scenario 3, and too pessimistic under light-
medium load (scenarios 1 and 2). In most of our scenarios,
we observed a very pessimistic start for FJ-AMVA, when only
few concurrent users are active. This can be explained, when
looking at the parallelism of our query classes. Some of our
queries, such as class 1, are highly parallel with str ≈ dr,∀i,
and thus contain almost no synchronization time. This is why
the summation over Wir in FJ-AMVA, despite its scaling
factor 1/i, results in a response time that is too high. However,
this effect seems to diminish when the load grows and better
reflects the increasing congestion for those cases. From the
results, we conclude that FJ-AMVA in its proposed form is not
suitable for modeling OLAP-based query workloads, whereas
our correction turns out to be reasonably accurate and due to its
simplistic model a good choice for the optimization program
we present in the next section.
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V. OPTIMIZATION PROBLEM

Given a parallel system with memory and resource con-
straints, such as an SAP HANA in-memory database clus-
ter, we are interested in how to dispatch workloads while
minimizing memory swapping. We further include utilization
constraints to avoid over-provisioning in such environments
by limiting the CPU utilization per server. In order to solve
this constrained problem, we develop a non-linear optimization
program based on our approximation probabilistic TP-AMVA,
taking above mentioned constraints into account.

A. Cluster Model

We consider a simplified model of an in-memory database
cluster with K servers, as depicted in Figure 6. This model
contains a separate fork-join closed QN for each server, which
simplifies the evaluation. However, the servers in our cluster
are not completely independent, but share the same workload
~N . We therefore define Nir = Nr × pir, 1 ≤ i ≤ K as
the percentage of workload that goes to server i, with pir
designating the probability of routing a class r request to
server i.

Our optimization program aims at minimizing memory
swapping, and thus minimizes the overall memory occupation
M of an in-memory database cluster. To reduce the complexity
of the optimization problem, we employ a less complex model
for estimating M for each server by multiplying the per-
class queue length with the per-class physical peak memory
consumption mr, (8b). We hereby make the pessimistic as-
sumption that memory occupation grows as a function of the
queue length Q and neglect that query classes could share
data residing in main memory. Additionally, we assume that
forking of new threads and joining is not related to the change
of memory consumption.

B. Non-linear Optimization Problem

We minimize the memory occupation M by finding the
routing probabilities pir to achieve near optimal workload
placement. This results in the optimization problem given by
Equation (8), with its decision variables pir, Xir and Wir.
We integrated our probabilistic TP-AMVA in (8f) and defined
δirs = (Nir − 1)/Nir × (lir/Ii) for s = r and δirs = 1 in
case of s 6= r. In addition, we added memory and utilization
constraints in form of Mmax

i and Umax
i . From a performance

point of view, our method uses less variables compared to FJ-
AMVA, which would introduce M2 additional binary variables
to sort the response times. This gets further attention, when
looking at the nature of our optimization problem, which is

be non-convex. Hence, we expect the number of local optima
to grow when increasing the number of classes and servers as
well as introducing different constraints for each server. This
exacerbates the problem of finding a globally optimal solution
and requires strategies such as multi-start optimization.

Mmin = min
pir,Xir,Wir

K∑
i=1

Mi (8a)

s.t.: Mi =
∑
r

Qirmir, ∀i (8b)

Ui =
∑
r

Xir
lir
Ii
dir, ∀i (8c)

Nir = pir Nr, ∀i, r (8d)
Qir = XirWir, ∀i, r (8e)∑

r

Qir =
∑
r

Uir

(
1 +

R∑
s=1

Qis δirs
lis
I

)
, ∀i (8f)

Qir = Nir −Xir Zir, ∀r (8g)
Wir ≥ dir, ∀i, r (8h)∑

i

pir = 1, ∀r (8i)

pir, Xir,Wir ≥ 0 ∀i, r (8j)
Mi ≤Mmax

i , ∀i (8k)
Ui ≤ Umax

i , ∀i (8l)

VI. NUMERICAL RESULTS

Our goal is to get insights in how workload placement
effects the memory occupation across a cluster of in-memory
databases under given constraints. We are further interested
in how the performance and accuracy of multi-start based ap-
proaches for our optimization problem compare to each other.
Based on empirical evidence, we show that local optimization
algorithms such as interior-point are able to find good solutions
under multi-start in comparison to global optimization algo-
rithms, such as evolution strategies. In addition, we find that
local optimization algorithms deliver solutions for instances
up to 8 Servers and 4 classes in less than 10 minutes but lack
under larger scenarios, whereas our evolution strategy handles
up to 36 servers and 22 classes given the same amount of
time.

A. Evaluation Scenarios

We varied the number of server instances and classes in
K,R = 2, 4, 8, 16 and the workload N in 8K and 10K
(light load) and 32K and 40K (heavy load). Our per-class
populations Nr are obtained by equally dividing N across all
classes, allowing fractional Nr. To investigate how R affects
the total memory occupation M , we clustered our set of 22
classes with k-means (a priori normalized with z-score) across
the three dimensions parallelism lr, service demand dr and
memory occupation mr, depicted for R = 2, 4, 8 in Figure
7. Finally, we set different constraints to affect the workload
placement: Mmax

i = 512GB, Umax
i = 0.95 for i ≤ K/2 and

Mmax
i = 128GB, Umax

i = 0.99 for i > K/2.
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Fig. 7. Normalized k-means Clusters for different Numbers of Query Classes

B. Solution Methods
We compare the minimization of memory swapping for

three different methods (local and global):
• yp: YALMIP [14] employing fmincon and the interior

point algorithm
• fm: fmincon configured with the interior point algorithm
• es: (µ+ λ) - evolution strategy [12]

Both methods fm and es, call our external solver to approx-
imate the response time Wir and throughput Xir. As our
methods rely on AMVA, which supports only cases with
Nir ≥ 1, we applied the approximation proposed in [13],
setting Qir := 0 when Nir < 1. Under method yp we had
to avoid the indirect division by pir in δirs and introduced an
additional optimizing variable.

With method es we implemented an evolutionary algorithm
called evolution strategy. In contrast to genetic algorithms,
which represent solution candidates by a string of bits, evo-
lution strategies employ a real valued encoding of solution
candidates and therefore require self-adaptive mutation func-
tions. In particular, we implemented a (µ + λ) evolution
strategy (es), configured with a uniform parent selection and
a ”best selection” as environmental selection. Individuals (i.e.
solution candidates) are represented by the routing probability
matrix pir. On a population of µ = 20 parent individuals we
perform a uniform selection 100 times to produce λ = 100
mutants in each generation. In particular, we had to develop
our own adaptive mutation to alter individuals obeying the
constraints (8i) and (8j). To create a mutant we randomly select
a server x and a class y and subsequently modify the routing
probability pxy by adding a new value ∆p. We choose ∆p uni-
formly from the interval [pxy−pxy/ ((g mod 20) + 1) , pxy +
(1− pxy) / ((g mod 20) + 1)]. The amount of change intro-
duced by this mutation in form of ∆p is adapted throughout the
optimization depending on the current number of generations
g. Moreover, we determine the fitness of each individual
by its memory occupation M . To ensure compliance with
the given constraints, our implementation penalizes violations
of (8k),(8l) by impairing the fitness. Finally, from the 120
individuals after mutation, the 20 fittest are selected into the
next generation.
C. Evaluation Methodology

We implemented our approaches in MATLAB employing
fmincon and its interior-point algorithm for yp and fm,, while
es relies on an evolution strategy. Moreover, method es
does not depend on MATLAB proprietary toolbox functions,
and therefore could be implemented in another programming
language to further decrease processing time.

TABLE IV
MEMORY OCCUPATION AND EXECUTION TIMES. TIMEOUT: 1800S† .

Instances Memory Occupation in GB Time in s
K R N/K fm es es-fS fm es es-fS
2 2 8 78.9 78.9 79.4 2.3 1800.0 0.1
2 4 8 43.4 43.4 45.4 3.9 1800.0 0.1
2 8 8 23.5 23.5 24.3 20.5 1800.0 0.3
4 2 8 157.8 157.9 158.1 3.5 1800.0 0.1
4 4 8 85.7 85.7 87.5 30.0 1800.0 0.2
4 8 8 46.1 46.2 47.7 320.9 1800.0 0.4
8 2 8 315.7 315.7 315.8 21.6 1800.0 0.1
8 4 8 170.6 170.9 176.8 240.1 1800.0 0.2
8 8 8 91.6 91.6 95.3 1800.0 1800.0 0.4
2 2 32 316.4 316.4 322.5 1.5 1800.0 0.1
2 4 32 237.6 239.1 270.3 6.2 1800.0 0.3
2 8 32 121.8 123.4 146.3 31.4 1800.0 0.7
4 2 32 632.4 632.7 640.8 4.1 1800.0 0.1
4 4 32 379.6 379.8 443.0 82.1 1800.0 4.2
4 8 32 215.9 216.2 237.5 389.7 1800.0 0.7
8 2 32 1264.7 1265.2 1265.8 34.0 1800.0 2.1
8 4 32 752.5 755.6 765.9 965.5 1800.0 14.5
8 8 32 414.0 416.0 542.0 1800.0 1800.0 1.7

16 2 32 2529.3 2529.4 2531.8 576.9 1800.0 3.2
16 4 32 1504.8 1486.7 1552.0 1800.0 1800.0 51.2
16 8 32 N/A∗ 818.6 847.8 timeout 1800.0 25.0
16 16 32 N/A∗ 385.4 442.2 timeout 1800.0 3.1
†fm,es were stopped after 1800s or in case of fm when P = 10 solutions found
∗No single solution found by fm

Our scenarios were evaluated on an Intel Core i5 CPU with
2.60GHz and two physical cores. To cope with different local
optima, we randomized P = 10 initial points for every tuple
(K,R,N/K) and ran fmincon using MATLAB’s MultiStart
solver. Subsequently, we report the average of the cumulative
execution time for all P local solver runs at a timeout of 1800
seconds to understand the performance at short time scales.

D. Results
We show the results of our optimization program for all

three methods (yp,fm,es) in Table III and Table IV. We further
report the cumulative execution time for yp and fm and the
time until the first non-violating solution, es-fS, was found by
es.

At first, we were interested in how clustering of classes
affects memory optimization. In our case we observe an
inversely proportional behavior of the memory occupation M
once the number of classes R increases, i.e. instances (2,2,8)
and (2,8,8). This can be explained by the way we calculate Nr

from the fixed ratio N/K, but comparing the instances (2,2,32)
and (2,8,32), where Nr = 8 for both cases, we see that a large
difference in M remains. We also discover non-monotonicity
in the overall cluster utilization U with increasing R. We show
this in Table V, for a light and heavy load scenario. We impose
this on classes with high parallelism and long execution times
that are less often merged into a cluster with short running and
sequential queries when R increases, as depicted in Figure 7.
From this we conclude that the more classes are aggregated,
the more inaccurate gets the estimate for M and U , given that
the ratio N/K remains constant.

Another question we wanted to address is how our opti-
mization program handles workload placement under the given
constraints Mmax

i and Umax
i defined in section VI-A. We

therefore investigated the two instances (8,2,8) and (8,2,32) in
more detail, which represent light and medium load scenarios.
Table VI shows the routing probabilities pir and per-server



TABLE III
MEMORY OCCUPATION IN GB AFTER OPTIMIZATION AND EXECUTION TIMES (SECONDS). TIMEOUT: 1800S.

Instances Memory Occupation M U #Success Time
K R N/K yp fm es fm-wL es-fS util yp fm yp fm es-fS
2 2 10 98.785 98.766 98.766 98.766 98.769 0.06 10 10 10.854 1.531 0.088
2 4 10 55.948 54.411 54.411 54.412 54.916 0.29 10 10 6.762 5.387 0.174
2 8 10 29.976 28.740 28.740 28.740 29.137 0.28 10 10 8.950 31.181 0.266
4 2 10 197.486 197.389 197.389 197.389 197.527 0.06 10 10 4.623 2.495 0.097
4 4 10 110.972 107.603 107.546 107.603 108.631 0.29 10 10 23.365 30.590 0.196
4 8 10 59.875 56.969 56.973 56.984 57.996 0.28 10 10 33.796 310.091 0.591
8 2 10 394.973 394.734 394.777 394.777 396.131 0.06 10 10 13.243 10.741 0.123
8 4 10 221.943 215.207 215.094 215.207 224.463 0.29 8 10 120.311 361.588 0.227
8 8 10 119.734 113.816 113.831 113.940 117.097 0.28 10 8 225.114 1800.0 0.307

2 2 40 406.262 405.953 405.953 405.953 406.265 0.22 10 10 2.880 0.901 0.090
2 4 40 294.652 275.047 275.049 450.281 464.117 0.57 10 10 42.553 4.614 0.229
2 8 40 175.348 153.627 153.632 163.693 182.861 0.65 9 10 110.886 21.943 0.437
4 2 40 808.495 806.713 806.715 806.713 869.295 0.22 10 10 4.152 5.279 0.108
4 4 40 576.103 523.964 523.202 898.970 601.682 0.74 4 10 140.280 50.368 0.261
4 8 40 N/A 282.765 282.987 298.619 323.393 0.70 0 10 326.607 512.695 0.652
8 2 40 1616.150 1611.224 1613.448 1618.257 1635.765 0.22 10 10 9.793 39.926 0.804
8 4 40 N/A 1046.952 1064.830 1104.935 1125.542 0.66 0 10 321.963 557.260 1.472
8 8 40 N/A 563.991 558.313 563.991 638.667 0.78 0 2 1082.164 1800.0 1.260

16 2 40 3230.662 3221.031 3221.331 3236.513 3407.598 0.22 10 10 37.569 618.416 9.045
16 4 40 N/A 2093.377 2089.978 2144.155 2159.830 0.75 0 7 748.109 1800.0 16.054
16 8 40 N/A N/A 1122.456 N/A 1159.027 0.74 0 0 timeout timeout 47.863
16 16 40 N/A N/A 483.828 N/A 646.131 0.55 0 0 timeout timeout 0.797

memory occupation Mi for the two solutions found by fm.
Under light load we see that fm tries to achieve as little
interference as possible between the two classes, resulting
in maxi(Mi) = 52.4GB. Moreover, as no constraints are
violated, the placement can be an arbitrary permutation across
i, but needs to remain fixed for r. Once the workload grows
to Nir = 128, which is a normal scenario for SAP HANA
dealing with more than 128 parallel connections, the memory
constraints for server 5-8 are violated. At this point we observe
a workload shift towards servers 1-4, occupying 250.9GB on
each. This suggests that our approach is able to optimize
constrained workload placement reasonably well.

All of our methods (yp,fm,es) produce similar results re-
garding M for instances where all P solver runs completed
successfully, i.e. (4,2,10). We explain this due to the same
algorithm that is used to solve the queueing models. Though
theoretically identical yp applies the interior-point algorithm,
whereas fm and es depend on a fixed-point iteration, on which
we impose the slightly different results between yp and fm. In
contrast, we expect a higher computational cost for fm due
to the external solver call. However, during our experiments
we observed that despite slightly more efficient code produced
by YALMIP, yp needed more iterations to converge than fm
at same tolerances levels for the stopping criteria. Looking at
the execution times, we see that yp and fm are able to find
solutions in less than 180 seconds for 4 servers and 4 classes,
if not necessarily for all P initial conditions. Our Evolution
Strategy seems more efficient, as it reports the first solution
after 47.9 seconds in scenarios such as (16,8,40), where yp
and fm were timed out before a single successful solution was
found. We explain this due to the implementation of es, which
involves less evaluations of the objective function per iteration.
Due to the increasing number of decision variables in larger
scenarios, yp required up to 400MB of main memory under
(16,8,40). By contrast, our external solver based methods fm
and es require only a few megabytes. Concluding the results,

TABLE V
AVERAGE SERVER UTILIZATION FOR 8-SERVER SCENARIO (K=8)

N/K=8 N/K=32
R=2 R=4 R=8 R=2 R=4 R=8

0.05 0.24 0.22 0.18 0.76 0.71

we showed that both techniques interior point based methods
and evolution strategies can be effectively used to solve our
constrained memory optimization problems.

VII. RELATED WORK

Research into in-memory database performance started in
2002 when [16] introduced fundamental cost models including
the entire memory hierarchy in a database system. Nowadays,
on-demand provisioning of these systems drives research fur-
ther into database optimization employing QNs [17].

In [18] classification-based machine learning is used to
schedule tenants in multi-tenant databases. The authors char-
acterize tenant and node-level behavior based on performance
metrics collected from database and OS layer and validate their
framework in a PostgreSQL environment. However, in this
work scheduling constraints are only approximated. Workload
characterization and response time prediction via non-linear
regression techniques for in-memory databases are proposed
in [19]. The authors derive tenant placement decisions by
employing first fit decreasing scheduling, but evaluate on
small scale only. [20] propose a new framework for managing
performance SLOs under multi-tenancy scenarios. Their work
combines mathematical optimization and boolean functions
to enable what-if analyses regarding SLOs, but relies on
brute force solvers and ignores OLAP workloads. In [21]
query demands are quantified by a fine-grained CPU sharing
model including largest deficit first policies and a deficit-based
version of round robin scheduling. The methodology applies to
database-as-a-service platforms and is validated on a prototype
of Microsoft SQL Azure. This work neglects characteristics
for memory occupation. [22], [23] introduce frameworks for
non-linear cost optimization regarding SLA violations and



TABLE VI
WORKLOAD PLACEMENT UNDER SCENARIOS (8,2,8) AND (8,2,32)

N/K i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8
7 pi1 0 0.167 0.167 0 0.167 0.167 0.167 0.167
7 pi2 0.500 0 0 0.500 0 0 0 0
7 Mi 0.6GB 52.4GB 52.4GB 0.6GB 52.4GB 52.4GB 52.4GB 52.4GB

28 pi1 0.200 0.200 0.200 0.200 0.100 0 0.100 0
28 pi2 0 0 0 0 0 0.5 0 0.5
28 Mi 250.9GB 250.9GB 250.9GB 250.9GB 128.0GB 2.5GB 128.0GB 2.5GB

resource usage, applied to web service based applications and
cloud databases. Their work either relies purely on constraint
definitions or does not consider closed QNs. [24] proposes a
framework for multi-objective optimization of power and per-
formance. The methodology applies to software-as-a-service
applications and it is validated using a commercial software,
SAP ERP. The approach is based on simulation and does not
consider thread-level fork-join.

[25]–[27] use multi-variate regression and analytical mod-
els of closed QNs to predict query performance based on
logical I/O interference in multi-tenant databases. However,
these methods require detailed query access pattern and are
evaluated for small numbers of jobs and batch workloads only.
Ignored by the latter, thread-level fork join is addressed by [7]
and [6], but despite using similar techniques, their approaches
are either computationally expensive or rely on exponential
service time distributions.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have made several contributions, which
include a novel analytic response time approximation that
models thread-level fork join and per-class memory occupa-
tion in in-memory systems. In addition, we have developed
an optimization based formulation that facilitates our ana-
lytic approximation and efficiently seeks for load dispatching
routing probabilities to minimize memory swapping in in-
memory database clusters. Furthermore, we have shown that
our models exceed the accuracy of existing approaches using
real traces from a commercial in-memory database appliance,
SAP HANA, for validation.

Directions for future work include a more sophisticated
model to estimate memory consumption as well as a proof of
concept for our models through thorough experimentation and
validation with different hardware configurations. In addition,
we plan to implement our provisioning framework in a real
in-memory database system and extend it by new features to
include shared memory access and multi-tenancy.
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