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Abstract. This paper proposes a new bisimulation theory based on multiparty session
types where a choreography specification governs the behaviour of session typed pro-
cesses and their observer. The bisimulation is defined with the observer cooperating with
the observed process in order to form complete global session scenarios and usable for
proving correctness of optimisations for globally coordinating threads and processes. The
induced bisimulation is strictly more fine-grained than the standard session bisimulation.
The difference between the governed and standard bisimulations only appears when more
than two interleaved multiparty sessions exist. This distinct feature enables to reason real
scenarios in the large-scale distributed system where multiple choreographic sessions need
to be interleaved. The compositionality of the governed bisimilarity is proved through the
soundness and completeness with respect to the governed reduction-based congruence.
Finally its usage is demonstrated by a thread transformation governed under multiple ses-
sions in a real usecase in the large-scale cyberinfrustracture.

1 Introduction

Modern society increasingly depends on distributed software infrastructures such as the
backend of popular Web portals, global E-science cyberinfrastructure, e-healthcare and e-
governments. An application in these environments is typically organised into many com-
ponents which communicate through message passing. Thus an application is naturally
designed as a collection of interaction scenarios, or multiparty sessions, each following
an interaction pattern, or choreographic protocol. The theories of multiparty session types
[12] capture these two natural abstraction units, representing the situation where two or
more multiparty sessions (choreographies) can interleave for a single point application,
with each message clearly identifiable as belonging to a specific session.

This paper introduces a new behavioural theory which can reason about distributed
processes globally controlled by multiple choreographic sessions. Typed behavioural the-
ory has been one of the central topics of the study of the 7w-calculus throughout its history,
for example, in order to reason about various encodings into the typed m-calculi [18, 20].
Our theory treats the mutual effects of multiple choreographic sessions which are shared
among distributed participants as their common knowledges or agreements, reflecting the
origin of choreographic frameworks [4]. These features distinct our theory from any type-
based bisimulations in the literature and make the theory applicable to real choreographic
usecase from a large-scale distributed system. Since our bisimulation is based on the reg-
ulation of conversational behaviours of distributed components by global specifications,
we call our bisimulation globally governed bisimulation.

To illustrate the key idea, we first explain the mechanisms of multiparty session types
[12]. Let us consider a simple protocol where participant 1 sends a message of type bool
to participant 2. To develop the code for this protocol, we start by specifying the global
type [12] as G| = 1 — 2: (bool);end where — signifies the flow of communication and
end denotes protocol termination. With agreement on G as a specification for participant
1 and participant 2, each program can be implemented separately. Then for type-checking,
G is projected into local session types: one local session type from 1’s point of view,
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Fig. 1. Resource Managment Example: (a) before optimisation; (b) after optimisation

[2]!(bool) (output to 2 with bool-type), and another from 2’s point of view, [1]?(bool)
(input from 1 with bool-type), against which both processes are checked to be correct.

Now we explain how our new theory can reason about an optimisation of choreogra-
phy interactions (a simplified usecase (UC.R2.13 “Acquire Data From Instrument”) from
[16]). Consider the two global types between three participants (1,2,3):

G,=1—3:(ser).2 —3:(ser).end, Gp=1—2:(sig).end
and a scenario in Figure 1(a) where Client3 (participant 3) uses two services, the first from
Serverl (participant 1) and Server2 (participant 2), and Serverl sends an internal signal
to Server2. The three parties belonging to these protocols are implemented as:
Py =al1](x).b[1](y) x[3]!(v);y[2]'(w); 0 Py = a[2](x).b[2)(y)-(¥[1]7(2); 0 | x[3]!(v); 0)
Py =a[3](x) x[1]2(2);x[2]2(y): 0

where session name a establishes the session corresponding to G,. Client3 (P3) initiates a
session involving three processes as the third participant by @[3](x): Servicel (P;) and Ser-
vice2 (P,) participate to the session a[1](x) and a[2](x), respectively. Similarly the session
corresponding to Gy, is established between Servicel and Service2.

Since from Client3, the internal signal is invisible, we optimise Server2 to a single
thread to avoid an unnecessary thread creation as R, = a[2](x).b[2](y).y[1]2(z);x[3]!(v); 0
in Figure 1(b). Note that both P, and R, are typable under G, and G;,. Obviously, in the
untyped setting, P; | P, and P | R are not bisimilar since in P,, the output action x[3]!(v)
can be observed before the input action y[1]?(z) happens. However, with the global con-
straints given by G, and Gy, a service provided by Server2 is only available to Client3
after Serverl sends a signal to Server2, i.e. action x[3]!(v) can only happen after action
y[1]?(z) in P,. Hence P; | P> and P; | R; are not distinguishable by Client3 and the thread
optimisation of R; is correct.

On the other hand, if we change the global type G, as:

G, =2—3:(ser).1 = 3: (ser).end
then R, can perform both the output to Client3 and the input from Serverl concurrently
since G, states that Client3 can receive the message from Server? first. Hence Py | P, and
Py | R, are no longer equivalent.

The key point to make this difference possible is to observe the behaviour of processes
together with the information provided by the global types. The global types can define
additional knowledge about how the observer (the client in the above example) will col-
laborate with the observed processes so that different global types (i.e. global witnesses)
can induce the different equivalences.

Contributions This paper introduces two kinds of typed bisimulations based on multi-
party session types. The first bisimulation is solely based on local (endpoint) types defined
without global information, hence it resembles the standard linearity-based bisimulation.
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Fig. 2. Syntax for synchronous multiparty session calculus

The second one is a globally governed session bisimilarity which uses multiparty session
types as information for a global witness. We prove that each coincides with a correspond-
ing standard contextual equivalence [11] (Theorems 3.1 and 4.1). The governed bisimula-
tion gives more fine-grained equivalences than the locally typed bisimulation. We identify
the condition when the two semantics exactly coincide (Theorem 4.2). Interestingly our
theorem (Theorem 4.3) shows this difference appears only when processes are running
under more than two interleaved global types. This feature makes the theory applicable
to real situation where multiple choreographies are used in a single, large application.
We demonstrate the use of governed bisimulation through the running example, which is
applicable to a thread optimisation of a real usecase from a large scale distributed system
[16]. The appendix includes auxiliary definitions, the full proofs and a full derivation of a
usecase from [16].

2 Synchronous Multiparty Sessions

This section defines a synchronous version of the multiparty session types. The syntax
and typing follows [3] except we eliminate queues for asynchronous communication. We
chose synchrony since it allows the simplest formulations for demonstrating the essential
concepts of governed bisimulations. The extension to asynchrony is given in [7].

Syntax Figure 2 defines the syntax for synchronous multiparty session calculus. Note the
expression includes name matching (n = n). We call p,p’,q,... (range over the natural
numbers) the participants. For the primitives for session initiation, #[p](x).P initiates a
new session through an identifier # (which represents a shared interaction point) with the
other multiple participants, each of shape u[p](x).Qq where 1 < q < p — 1. The (bound)
variable x is the channel used to do the communications. Session communications (com-
munications that take place inside an established session) are performed using the next
two pairs: the sending and receiving of a value and the selection and branching (where
the former chooses one of the branches offered by the latter). Process c[p]!{e); P sends
a value to p; accordingly, process c¢[p]?(x); P denotes the intention of receiving a value
from the participant p. The same holds for selection/branching. Process 0 is the inactive
process. Other processes are standard. We say that a process is closed if it does not con-
tain free variables. fn(P)/bn(P) and £v(P)/bv(P) denote a set of free/bound names and
free/bound variables, respectively. We use the standard structure rules (denoted by =)
including uX.P = P{uX.P/X}.
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Fig. 3. Operational semantics for synchronous multiparty session calculus

Operational semantics Operational semantics of the calculus are defined in Figure 3.
Rule [Link] defines synchronous session initiation. All session roles must be present to
synchronously reduce each role p on a fresh session name s[p]. Rules [Comm] is for send-
ing a value to the corresponding receiving process where e | v means expression e evalu-
ates to value v. The interaction between selection and branching is defined via rule [Label].
Other rules are standard. We write — for (— U =)*.

Global types, ranged over by G,G’,... describe the whole conversation scenario of a
multiparty session as a type signature. Its grammar is given in Figure 4. The global type
p— q: (U).G says that participant p sends a message of type U to the participant q and
then interactions described in G’ take place. Exchange types U,U’, ... consist of sorts types
S,S, ... for values (either base types or global types), and local session types T, T’ ... for
channels (defined in the next paragraph). Type p — q: {/; : G;}es says participant p sends
one of the labels /; to q. If [; is sent, interactions described in G; take place. In both
cases we assume p # q. Type ut.G is a recursive type, assuming type variables (t,t’,...)
are guarded in the standard way, i.e., type variables only appear under some prefix. We
take an equi-recursive view of recursive types, not distinguishing between ut.G and its
unfolding G{ut.G/t}.We assume that G in the grammar of sorts is closed, i.e., without
free type variables. Type end represents the termination of the session.

Local types are defined in Figure 4 and correspond to the communication actions, rep-
resenting sessions from the view-points of single participants. The send type [p|!(U);T
expresses the sending to p of a value of type U, followed by the communications of 7.
The selection type [p] ® {l; : T;}ics represents the transmission to p of a label /; chosen
in the set {/; | i € I'} followed by the communications described by 7;. The receive and
branching are dual. Other types are the same as global types.

The relation between global and local types is formalised by the standard projection
function [12]. For example, (p’ — q: (U).G)[p is defined as: [q]{(U);(G[p) if p =P/,
[P']72(U); (G[p) if p = q and G[p otherwise. Then the projection set of s : G is defined as
proj(s:G) ={s[p] : G[p | p € roles(G)} where roles(G) denotes the set of the roles
appearing in G.

Typing system The typing judgements for expressions and processes are of the shapes:
I'kFe:S and I'FPpA

where I" is the standard environment which associates variables to sort types, shared
names to global types and process variables to session environments; and A is the ses-
sion environment which associates channels to session types. Formally we define: I’ ::=
O | 'u:S I''X:Aand A == 0 | A-s[p]:T, assuming we can write
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Fig. 4. Global and local types

I' u:Sif ugdom(I'). We extend this to a concatenation for typing environments as
A-A"=AUA’. Typing A is coherent with respect to session s (notation co(A(s))) if for
all s[p] : Ty, s[q] : Ty € A, T, and Ty are dual each other (it is given by exchanging ! by ?
and @ by & [10]). A typing A is coherent (notation co(A)) if it is coherent with respect
to all s in its domain. We say that the typing judgement I" - P> A is coherent if co(A).

The typing rules are essentially identical to the communication typing system for pro-
grams in [3] (since we do not require queues). We leave the rules in Figure 8 in Appendix
A. The rest of the paper can be read without knowing the typing system.

Type soundness Next we define the reduction semantics for local types. Since session
environments represent the forthcoming communications, by reducing processes session
environments can change. This can be formalised as in [3, 12] by introducing the notion
of reduction of session environments, whose rules are:

L. {s[p] : [a]!(U):T -sla] : [p)2(U): T} —> {slp) : T-s[a] : T'}.
2. {slp] : [a] @ {ls: Ther-slal : [PJ&cly : T/} jes} — {sfp] : Te-slal : [} 1 S ke .
3. AUA — AUA"IfA" — A",

We write —+=—*. Note that A —+ A’ is non-deterministic (i.e. not always confluent)
by the second rule. Then the typing system satisfies the subject reduction theorem [3] such
that: if I' = P> A is coherent and P — P’ then I' - P'> A’ is coherent with A — A’ .

3 Synchronous Multiparty Session Semantics

This section presents a typed behavioural theory for the synchronous multiparty sessions.
The typed bisimulation is defined with the labelled transition system (LTS) between a
tuple of the environments (I",A), which controls behaviours of untyped processes. The
constraint given by the environment LTSs, which accurately captures interactions in the
presence of multiparty sessions, is at the heart of our typed semantics. The next section
extends to more fine-grained LTSs with the additional information of a global witness.

Labels We use the following labels (¢, ¢, ...):

¢ == alAl(s) | a[Al(s) | s[pl[a]!(v) | s[plla]'(a)
| slpllai(s' ') | slpllal?(v) | slplla]@! | splla)&l | <
A role set A is a set of multiparty session types roles. Labels @[A](s) and a[A](s) define
the accept and request of a fresh session s by roles in set A respectively. Actions on
session channels are denoted with labels s[p][q]!(v) and s[p][q]?(v) for output and input of
value v from p to q on session s. Bound output values can be shared channels or session
roles (delegation). s[p][q] @ and s[p][q)&! define the selection and branching respectively.
Label 7 is the standard hidden transition.
Dual label definition is used to define the parallel rule in the label transition system:



(Req)  alp)(0).P A plslpl/x} (Ace) alp)(0).P TP pisip) )

(send) s[p][q]!(e); P ﬁ”P (edv) (Rev)  slplla2(0):P LY pry/ay

(Sel)  s[p] Cﬂ@l P }A@l (Bra) s[p][a)&{l;: P}icr [ML[‘ P,
(Tau) PLP 050 e=v par PL>P’ bn(f) N£n(Q) =0
P10 -5 (vibn(f)nba(!))(P' | Q) Plo-5P 0

0oy p Pl P 5, stellalifa)
P— P né¢fn(l) (Opens) (OpenN) P

P L (vmP v S,)P Bl ])P, (v ayp P <>
P=,P P -5¢ a1

(Res)

?

PP PQ“%‘)P’ ANA =0

(Alpha) AR ]

7 (AcPar)
P— Q P1 | P2

Al(s 7A, ¢
P “alg) P P ) P, ANA' =0, AUA’ not complete w.r.t max (A”)

AuA
o P] ‘P Pl |P2
P “%‘) Pl P, aM) P, ANA' =0, AUA’ complete w.r.t max (4”)
Py | Py =5 (v5)(P] | PY)

We omit the synmetric case of (Par) and conditonals.

PP

(ReqPar)

(TauS)

Fig. 5. Labelled transition system for processes

slplla)!(v) = slallp]?(v) s[pl[a]!(v) = sla][p]?(v) spllal ®! = slallp]&!

Dual labels are input and output (resp. selection and branching) on the same session chan-
nel and on complementary roles. For example, in s[p][q]!(v) and s[q][p]?(v), role p sends
to q and role q receives from p. Another important definition for the session initiation
is the notion of the complete role set. We say the role set A is complete with respect
to n if n = max(A) and A = {1,2,...,n}. The complete role set means that all global
protocol participants are present in the set. For example, {1,3,4} is not complete, but
{1,2,3,4} is. We use £n(¢) and bn(¢) to denote a set of free and bound names in ¢ and
set n(¢) =bn(¢) Ufn(¢).

Labelled transition system for processes Figure 5 gives the untyped labelled transition
system. Rules (Req) and (Acc) define the accept and request actions for a fresh session s
onrole {p}. Rules (Send) and (Rev) give the send and receive respectively for value v from
role p to role q in session s. Rules (Sel) and (Bra) define selecting and branching labels.
The last three rules are for collecting and synchronising the multiparty participants
together. Rule (AccPar) accumulates the accept participants and records them into role set
A. Rule (ReqPar) accumulates the accept participants and the request participant into role
set A. Note that the request action role set always includes the maximum role number
among the participants. Finally, rule (TauS) checks that a role set is complete, thus a new
session can be created under the T-action (synchronisation). Other rules are standard. See

. . .. 14
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transitions =—>——=—- and = for = if ¢ # T otherwise =—.

Typed labelled transition relation We define the typed LTS on the basis of the untyped
one. This is realised by introducing the definition of an environment labelled transition

system, defined in Figure 6. (I",A) N (I'";A’) means that an environment (I", A) allows
an action to take place, and the resulting environment is (I'/,A").
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Fig. 6. Labelled Transition Relation for Environments

The intuition for this definition is that observables on session channels occur when
the corresponding endpoint is not present in the linear typing environment A, and the
type of an action’s object respects the environment (I",A). In the case when new names
are created or received, the environment (I", A) is extended.

The first rule says that reception of a message via a is possible when a’s type (G)
is recorded into I" and the resulting session environment records projected types from G
({s[i] : G[i}ica). The second rule is for the send of a message via a and it is dual to the
first rule. The next four rules are free value output, bound name output, free value input
and name input. Rest of rules are free session output, bound session output, and session
input as well as selection and branching rules. The bound session output records a set
of session types s'[p;] at opened session s’. The final rule (¢ = 7) follows the reduction
rules for linear session environment defined in § 2 (A = A’ is the case for the reduction
at hidden sessions). Note that if A already contains destination (s[q]), the environment
cannot perform the visible action, but only the final t-action.

The typed LTS requires that a process can perform an untyped action ¢ and that its
typing environment (I", A) can match the action .

Definition 3.1 (Typed transition). Typed transition relation is defined as I - P > A LN
G PoAyif (1) P -5 P and (2) (I, A1) —= (I3, Ay) with I} - P A;.

Synchronous multiparty behavioural theory We first define a relation &% as typed re-
lation if it relates two closed, coherent typed terms I' - Pi>Ay #Z I' = P> A,. We often
write ' - P> Ay Z P> As.

Next we define the barb [1]: we write I' = P>A | (g if P = (v a3)(s[p][q]!(v);R | Q)
with s ¢ § and s[q] ¢ dom(A); and I' - P> A |, if P = (v as)(an](s).R | Q) with a ¢ a.
Then we write m for either a or s[p|[q]. We define I' - P>A |},,, if there exists Q such that
P—Qand'FQO>A'|,.

We write A| = A, if there exists A such that A; — A and A, —> A. We now define
the contextual congruence based on the barb and [11].

Definition 3.2 (Reduction congruence). A typed relation % is reduction congruence if
it satisfies the following conditions for each I' - Py >A; Z P, > A; with A| = A;.



1. TFP oA Uy iff T F Pys Ay Uy

2. Whenever I' - Py > Ay #Z P,> A, holds, Py — P implies P, —+ Pj such that I"
P/> Al 7 P,b Al holds with A] = AJ,

3. For all closed context C, such that I = C[P{|>A] and I + C[P;] > A} where A] = A},
[FClP]eAl #T - ClPy)s AL,

The union of all reduction congruence relations is denoted as ==°.

Definition 3.3 (Synchronous multiparty session bisimulation). A typed relation % over
closed processes is a (weak) synchronous multiparty session bisimulation or often a syn-
chronous bisimulation if, whenever I' - Py > Ay Z P> 1> Ay, it holds:

I.TFPoA -5 T - PloAl implies I' - Py> Ay == I - P> A} such that I -
P/>A{ Z Py Al
2. The symmetric case.

The maximum bisimulation exists which we call synchronous bisimilarity, denoted by
~°. We sometimes leave environments implicit, writing e.g. P ~* Q. We also write ~ for
untyped synchronous bisimilarity which is defined by the untyped LTS in Figure 5 but
without the environment LTS in Figure 6.

Lemma 3.1. If '+ Pi>A| =° P> A; then A} = A;.

Proof. The proof uses the co-induction method and can be found in Appendix C.2. O
Theorem 3.1 (Soundness and completeness). =% = ~°,

Proof. The proof is a simplification of the proof of Theorem 4.1 in Appendix C.7. a

Example 3.1 (Synchronous multiparty bisimulation). We use the running example from
§ 1. First we explain the LTS for session initialisation from Figure 5. By (Acc) and (Req),

Py Pt ) (). (131140 v12) 050

P 2 o 1) 1760 2 0) 7 T = 32 32200
with

I'FPesi[1]:[3]Y(U);end, I'FPyesi[2]:[3]1(U);end, I'FPies[3]:[1]2(U);[2]2(U);end

12
By (AccPar), we have P, | P, alt12s) P| | Pj. We have another possible initialisation:

al{1,3
P | P all i(m Pl’ | P3’. From both of them, if we compose another process, the set
{1,2,3} becomes complete so that by synchronisation (Taus),

TCEP P Pso0— (vsi)(P | P, | P5)>0
Further we have:
repe|p>0-—"-
(v s2) (s1 [1]3](v): s2[1] [2]1(w): 0 | 2[2][1]?(2); 0 | 51 [2][3]!(): 0) = Q1 > A
with Ag = s1[1] : [3]!{U);end - 51[2] : [3]!{U);end. Then
'O | Pi>Ag-s1[3]: [1]2(U);[2]2(U);end ~* 00

since (I",A) 7/[—> for any ¢ # T (note the condition of Line 3 in Figure 6). However by the

untyped synchronous bisimulation, Q; | P§ % 0 since, e.g. Q) |P’ HHIBL)



4 Globally Governed Behavioural Theory

We introduce the semantics for globally governed behavioural theory. In the previous
section, the local typing (A) constrains the untyped LTS to give rise to a local typed
LTS. In a multiparty distributed environment, communications follow the global protocol,
which controls both an observed process and its observer. The local typing is not sufficient
to maintain the consistency of transitions of a process with respect to a global protocol.
In this section we refine the environment LTS with a global environment E to give a more
fine-grained control over the LTS of the processes.

Global environments and configurations We define a global environment (E,E’,...) as
a mapping from session names to global types.

E == E-s:G | 0

The projection definition is extended to include E as proj(E) = U.gep proj(s: G).

We define a labelled reduction relation over global environments which corresponds
to A — A’ defined in § 2. We use the labels A € {s:p — q: U,s:p — q: [} to annotate
reductions over global environments. We define out(4) and inp(A) as out(s:p —q:
U)=out(s:p—>q:l)=pandasinp(s:p—q:U)=14dnp(s:p—>q:I)=qand
p € Lif p € out(¢) Uinp(¢). We often omit the label A by writing — for A and —

for (L)* The first rule is the axiom for the input and output interaction between two
parties; the second rule is for the choice; the third and forth rules formulate the case that
the action A can be performed under p — q if p and q are not related to the participants in
A; and the fifth rule is a congruent rule.

(s:p=q: (.G 2% (5.6} {sipoq:{li:Giliert Y (5.6
(s:G) X5 {5:G} padi
{s:p—q:(U).G} L{s:p%q: (U).G’}

(s:G} 25 {s:G} iel, pqdA EME
A 2
{s:p—=q:{li:G}ics} = {s:p—q:{li:G}ict} E-Eg—>E'E
As a simple example of the above LTS, consider s : p — q: (U;).p’ — q': {l; : end, 5 :
p' — q : (U,).end}. Since p,q,p’,q’ are pairwise distinct, we can apply the second and
third rules to obtain:

s:p—=q:(U1).p —=q :{li:end,lr:p' —q : (Up).end} g S s:p—q:(U;).end

Next we introduce the governance judgement which controls the behaviour of pro-
cesses by the global environment.

Definition 4.1 (Governance judgement). Let I' = P> A be coherent. We write E, I -
PrA if3E'-E —* E' and A C proj(E").

The global environment E records the knowledge of both the environment (A) of the
observed process P and the environment of its observer. The side conditions ensure that
E is coherent with A: there exist E’ reduced from E whose projection should cover the
environment of P (since E should include the observer’s information together with the
observed process information recorded into A).

Next we define the LTS for well-formed environment configurations.
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Fig.7. The LTS for the environment configuations

Definition 4.2 (Environment configuration). We write (E,I',A) if 3E' -E —* E' and
A Cproj(E").

Figure 7 defines a LTS over environment configurations that refines the LTS over envi-
ronments (i.e (I",A) N (I'";A”))in § 3.

Each rule requires a corresponding environment transition (Figure 6 in § 3) and a
corresponding labelled global environment transition in order to control a transition fol-
lowing the global protocol. [Acc] is the rule for accepting a session initialisation so that it
creates a new mapping s : G which matches I' in a governed environment E. [Req is the
rule for requesting a new session and it is dual to [Acc].

The next seven rules are the transition relations on session channels and we assume
the condition proj(E;) 2 A to ensure the base action of the environment matches one
in a global environment. [Out] is a rule for the output where the type of the value and the
action of (I',A) meets those in E. [In] is a rule for the input and dual to [Out]. [ResN] is
a scope opening rule for a name so that the environment can perform the corresponding
type (G) of a. [ResS] is a scope opening rule for a session channel which creates a set of
mappings for the opened session channel s’ corresponding to the LTS of the environment.
[Sel] and [Bra] are the rules for selection and branching, which is similar to [Out] and [In].
In [Tau] rule, we refined the reduction relation on A in § 2 as follows:

1. {s[p] : [a)!(U): T -s[q] [p]?(UxT'}”H—"#”{s[P]:r[-s[qlzr/}.
2. {sfp): [a) @ {li: TiYier -sla] < )&{Ly T/ jes} =3 {slp] : Ti-sla] : T} I C I,k € L.
3. AUA A AUATiEA 2y A

[Inv] is the key rule: the global environment E; reduces to E] to perform the observer’s
actions, hence the observed process can perform the action w.r.t. E|. Hereafter we write

T
— for —.

Example 4.1 (LTS for environment configuration). Let E=s:p —q: (U).p = q: (U).G,
I'=v:U and A = s[p| : [q](U); T, with G[p =T,, G]q =T, and roles(G) = {p,q}.
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Then (E,I',A) is an environment configuration since if E — E’ then proj(E’) D A
because E "2 . p—q:(U).G, proj(s:p—q:(U).G) =sp] : [a(U);T; - s[q] :
[p]?(U);Tq and proj(s:p — q: (U).G) D A. Then we can apply [Out] to s :p — q:
<U>.GszlﬂU s:Gand (I',s[p] : [q](U); Tp) <l (I',s[p] : T,) to obtain (s:p — q:
(U).G,T',A) sTellali) (s:G,I',s[p]: T,). By thisand E — s : p — q : (U).G, using [Inv],
we can obtain (E,I",A) <l (s:G,I',s[p] : Tp,), as required.

Governed reduction-closed congruency To define the reduction-closed congruency, we

first refine the barb, which is controlled by the global witness where observables of a
configuration are defined with the global environment of the observer.

(E,I',A-slp]: [a)U);T) Ly if sld] & dom(A),3E"-E —" E S:pﬁ):U,A Cproj(E')
(E,T,A-slp]: [a) @4l : Trbier) dup)jq if sla] ¢ dom(A),FE' - E —* E'"B=2F* ke 1,4 C proj (E'),
(E,T",A) lq ifa € dom(I")
We write (I",A,E) |}, if (T,AE) —* (I',A’,E’) and (I',A",E') | .

Let us write 7y C T; if the syntax tree of T» includes Tj. For example, [q]?(U’);T C
[p]!(U);[q)?2(U");T. Then we define: E; UE, = {Ei(s) | E;(s) C Ei(s),i,j € {1,2},i #
JYUE;\ dom(E,) UE; \ dom(E}). As an example of E| Ll E;, let us define:

Ei=s1:p—q:{U)p —q:(Us)p—q:(Us).end-s;:p— q: (Wp).end
Ey=s1:p—q:{(Us)end-so:p —q : (W).p—q: (W).end
Then By UE, =p—q: (U1).p' = q : (U2)p—q:{(Us).end-s;:p = q : (W) p—q:
(W).end.
The behavioural relation with respects to a global whiteness is defined below.

Definition 4.3 (Configuration relation). The relation % is a configuration relation be-
tween two configurations Ey,I" = P> Ay and E;, " - P> Ay, written Ey UE;, I" = P>
AL Z P> A, if E| LUE) is defined.

Proposition 4.1 (Decidability). (/) Given E| and E», a problem whether E| I E; is de-
fined or not is decidable and if it is defined, the calculation of E1 U E; terminates; and (2)
Given E, a set {E' | E —"* E'} is finite.

For the proof, see Appendix C.5.

Definition 4.4 (Global configuration transition). We write E;,I" - P> A LN E) I
P Ay if By, PisAp, P~ Py and (E1, T, A) 5 (B, I, 4).

Below states that the configuration LTS preserves the well-formedness.

Proposition 4.2. (1) (E|,I",A;) LN (En,I3,A) implies that (Ey, I3, A;) is an environ-
ment configuration; and (2) If I' - P> A and P — P’ with co(A), then E,T' - P>A —
E.T'-P>A"and co(A').

Proof. The proof for Part 1 can be found in Appendix C.4. Part 2 is verified by simple
transitions using [Tau] in Figure 7. co(A’) is derived by Theorem A.1. O

11



The definition of the reduction congruence for governance follows. Below we define
E.-'tPrAl,if P, and (E,I';A) |,

Definition 4.5 (Governed reduction congruence). A configuration relation & is gov-
erned reduction congruence if E,I' - Py >A % P> A; then

1. ETFPv>A ), ifandonlyif E,TTF P >Ay )y,

2. Py —» P{ifand only if P, =+ P, and E,I' - P[> A # Pj> A

3. For all closed context C, such that E,I" - C[P;]>A{ and E,I" - C[Py|>A) then E,I" -

ClP|>A] Z CP]> AL

The union of all governed reduction congruence relations is denoted as =,.
Globally governed bisimulation and its properties This subsection introduces the glob-
ally governed bisimulation relation definition and studies its main properties.

Definition 4.6 (Globally governed bisimulation). A configuration relation % is a glob-
ally governed weak bisimulation (or governed bisimulation) if whenever E,I" - P >A| Z P>
Ay, it holds:

1. E,TFPioA —5 E| T+ Pl Al implies E,I" - Pyo Ay == E}.T" - P> A} such
that E{ UES, "+ P{>A] Z Py1> A).
2. The symmetric case.
The maximum bisimulation exists which we call governed bisimilarity, denoted by ~,.
We sometimes leave environments implicit, writing e.g. P~ Q.

Lemma 4.1. (1) = is congruent; and (2) =; C ~,

Proof. The proof of (1) is by a case analysis on the context structure. The interesting case
is the parallel composition, which uses Proposition 4.2. See Appendix C.6. The proof of
(2) follows the facts that bisimulation has a stratifying definition (the proof method uses
the technique from [1]) and that the external actions can always be tested (the technique
from [8]). The proof can be found in Appendix C.7. O

Theorem 4.1 (Sound and completeness). zg, = %z,.

The relationship between ~* and ~; is given as follows. See Appendix C.8 for the proof.

Theorem 4.2. Iff()r all E, E,F = P, DA] %;, PQDAQ thenI' - P [>A1 ~ T+ P2[>A2. Also
if [ Pi>Ay & T Pyb Ay, then for all E, E,T" - PL> Ay &% Pyi Ay,

To justify the above theorem, consider the following processes:

Py = s [1][3]10):s21]2]10):0 | 51 [2][3]10):2[2][1]2(0):
Py = s [1][3]1(6):0 | 52 1][2]1w):0 | s1 (2131 (v): s2 20 1)2

then we have P| =° P;. By the above theorem, we expect that for all £, we have E,I" -

Pi>Ayand E,I' - P,> A, then E + P mg, P,. This is in fact true because the possible E

that can type P; and P, are:
Ei=s51:1-3:(U)2—3:(U)end-sp:1—2:(W).2—3:(W).end
Ey=151:2—-3:(U).1 -»3:(U).end-sp:1—2:(W).2—3:(W).end

Note that all E that are instances up-to weakening (see Lemma C.2) are E; and Ej.

12



To clarify the difference between ~° and ~ g, we introduce the notion of a simple
multiparty process defined in [12]. A simple process contains only a single session so
that it satisfies the progress property as proved in [12]. Formally a process P is simple
when it is typable with a type derivation where the session typing in the premise and the
conclusion of each prefix rule is restricted to at most a single session (i.e. any I' - P> A
which appears in a derivation, A contains at most one session channel in its domain,
see [12]). Since there is no interleaving of sessions in simple processes, the difference
between ~* and =, disappears.

Theorem 4.3 (Coincidence). Assume P, and P> are simple. If 3E - E.I" = Py > A %Z,
P>Ay thenT' - Pi>A =° P> Aj.

Proof. The proof follows the fact that if P is simple and I" - P> A L P'S A then JE -
E.I'+-PrA %5 P'> A’ to continue that if Py, P, are simple and 3E -E,I" = P> A =~
P>Ay thenVE,E, ' - P >A| =3 P2 >A;. The result then comes by applying Lemma 4. 2
The details of the proof are in the Appendix C.9. ad

3]1(x);0 | s[2][1](v);0

To justify the above theorem, consider: P, = s[1][2]?(x);s[1][3]
1 —3:(U).end then E

and P, = s[1][3]!{v);0. It holds that for E =s:2 — 1: (U).
P =3 P2 We can easily reason P; =° P.

Example 4.2 (Governed bisimulation). Recall the example from § 1 and Example 3.1. O
is the process corresponding to Example 3.1, while O, has a parallel thread instead of the
sequential composition (this corresponds to Pj | R, in § 1).

01 = s3] s2[1][2]1w); 0 | 52[2][1]2(x):0 | 51[2][3]1(v); 0
02 = s1[1][3]1(w)ss2[1][2]1(w); 0 | 52 [2][1]?(x); 51 [2][3](v); 0

Assume: I'=v:S-w:S
A = s1[1]: [3]1(S);end s [2] : [3]1(S);end - sp[1] : [2]!(S);end - sp[2] : [1]?(S);end

Then we have I' - Q> A and I' - Q> > A. Now assume the two global witnesses as:

Ey=51:1-3:(5).2—3:(S).end-sp:1—2:(S).end
Ey=s51:2—3:(S).1 »3:(S).end-sp:1—2:(S).end

Then the projection of E| and E, are given as:

proj(Er) = si[1] : [3]1(S);end s [2] : [3]1(S);end - s [3] : [1]2(S); [2]?(S); end
s2[1] : [2]1(S);end - 52[2] : [1]2(S); end

proj(Ez) = sl[l} :[3]1(S);end - sy [2] : [3]!(S);end - s3] : [2]2(S);[1]2(S); end:
s2[1] 2 [2]1(S);end - 55[2] : [1]2(S); end

with A C proj(E;) and A C proj(Ez). The reader should note that the difference be-
tween E; and E; is the type of the participant 3 at s;.

By definition, we can write: E;,I" - Q> A and E;,I" - Q> A for i = 1,2. Both pro-
cesses are well-formed global configurations under both witnesses. Now we can observe

) S2IBI)
r0isa P e g A but TF QoA /5 . Hence I'F Q1A #° Q35 A. By

the same argument, we have: E,I" = Q1 >A %, Q> >A. On the other hand, since E; forces

s[2][3]!1(v)
to wait the action s[2][3]!{(v), E|, ' - Q;>A #— .Hence Q and Q, are bisimilar under

Ey,ie E\,I'+Q1>A ~, 0>>A. This concludes the optimisation is correct.
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The above example for the thread transformation is the minimum to demonstrate a
difference between =, and ~". This discipline can be applied to general situations where
multiple agents need to interact following a global specification. We tested the real world
usecase UC.R2.13 “Acquire Data From Instrument” from the Ocean Observatories Ini-
tiative (OOI) [16] Use Case library (Release 2). In this usecase, a user program (U) is
connected to the Integrated Observatory Network (ION), which provides the infrastruc-
ture between users and remote sensing instruments. The user requests, via an ION agent
service (A), the acquisition of data from an instrument (I). In the implementation, the [ON
agent (A) is realised by two sub ION agents (A1 and A2) which internally interact and syn-
chronise together. We are able to reason that the behaviour of A1 and A2 is equated by A
by ~, applying the thread transformation technique in Example 4.2. See Appendix D.

5 Related and Future Work

As atyped foundation for structured communications programming, session types [10, 19]
have been studied over the last decade for a wide range of process calculi and program-
ming languages. Recently several works developed multiparty session types and their
extensions. While typed behavioural equivalences are one of the central topics of the 7-
calculus, surprisingly the typed behavioural semantics based on session types have been
less explored, and the existing ones only focus on binary (two-party) sessions. Our work
[15] develops an asynchronous binary session typed behavioural theory with event oper-
ations. An LTS is defined on session type process judgements and ensures session typed
properties, such as linearity in the presence of asynchronous queues. The work [17] proves
the proof conversions induced by Linear Logic interpretation coincide with an observa-
tional equivalence over a strict subset of the binary synchronous session processes. The
main focus of our paper is multiparty session types and governed bisimulation, whose
definitions and properties crucially depend on information of global types. In the first
author’s PhD thesis [14], we studied governed bisimulations can be systematically de-
veloped under various semantics including three kinds of asynchronous semantics by
modularly changing the LTS for processes, environments and global types. For governed
bisimulations, we can reuse all of the definitions among four semantics by only changing
the conditions of the LTS of global types to suit each semantics. Another recent work [5]
gives an a fully abstract encoding of a binary synchronous session typed calculus into a
linearly typed m-calculus [2]. We believe the same encoding method is smoothly applica-
ble to ~* since it is defined solely based on the projected types (i.e. local types). However
a governed bisimulation requires a global witness, hence the additional global information
would be required for full abstraction.

The constructions of our work are hinted by [9] which studies typed behavioural se-
mantics for the m-calculus with IO-subtyping where a LTS for pairs of typing environ-
ments and processes is used for defining typed testing equivalences and barbed congru-
ence. On the other hand, in [9], the type environment indexing the observational equiva-
lence resembles more a dictator where the refinement can be obtained by the fact that the
observer has only partial knowledge on the typings, than a coordinator like our approach.
Several papers have developed bisimulations for the higher-order m-calculus or its vari-
ants using the information of the environments. Among them, a recent paper [13] uses a
pair of a process and an observer knowledge set for the LTS. The knowledge set contains
a mapping from first order values to the higher-order processes, which allows a tractable
higher-order behavioural theory using the first-order LTS.

14



We record a choreographic type as the witness in the environment to obtain fine-
grained bisimulations of multiparty processes. The highlight of our bisimulation construc-
tion is an effective use of the semantics of global types for LTSs of processes (cf. [Inv] in
Figure 7 and Definition 4.4). Global types can give a guidance how to coordinate parallel
threads giving explicit protocols, hence it is applicable to a semantic-preserving optimi-
sation (cf. Example 4.2 and Appendix D). While it is known that it is undecidable to
check P = Q in the full m-calculus, it is an interesting future topic to investigate auto-
mated bisimulation-checking techniques for the governed bisimulations for some subset
of multiparty session processes.
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A Appendix for Typing Rules

A.1 Two projections
The relation between global and local types is formalised by the standard projection func-
tion [12].

Definition A.1 (Global projection and projection set). The projection of a global type
G onto a participant p is defined by induction on G:

' —q:(U).Glp P —q:{li:Gi}ier[p
[ U);G[p p=p [al®{li: Gi[p}tier P=V
=1 [P?(U);G[p p=4q =< [P1&{li : Gi[p}icr P=2q
Glp otherwise Gi[p ifvVjel Gi[p=Gjlp
(nt.G)[p= { lelzt;i(G[P) Etlele?wise tp=t endfp=end

Then the projection set of s : G is defined as proj(s: G) = {s[p] : G[p | p € roles(G)}
where roles(G) denotes the set of the roles appearing in G.

We also need the following projection from a local type T to produce binary session
types for defining the equivalence relations later.

Definition A.2 (Local projection). The projection of a local type T onto a participant p
is defined by induction on 7'

PIHU): T[q = {!Ta[if;ﬂq o owise | [PI2(U):T[a = {?T(Ffl);ﬂq otherwise
. _ [ o{li:Tila}lier a=p
ple{li:T}icrla= Tilq “ ifVie I.T,[q="Ti[q
) _ J&{li:Ti[q}ier a=p
[pl&clli: Tihierfa = | 7,74  ifvie L.T;[qa=Ti[q

The rest is similar as Definition A.1.

The duality over the projected types are defined as: end = end, t = t, ut.T = ut.T,
NORT =2AU)T,2U )T =KU )T, &{li : T;}ier = &{1;: Tiicr and &{1; : Ti}ier = ®{l;:
Ti}ic1. We note that if p,q € roles(G) then (G[p)[q = (G[q)][p.

A.2 Typing system and its properties

The typing judgements for expressions and processes are of the shapes:
I'Fe:S and T'FPrA

where I is the standard environment which associates variables to sort types, shared
names to global types and process variables to session environments; and A is the ses-
sion environment which associates channels to session types. Formally we define:

I ==0 | Cu:S| T''X:A and A == 0| A-sp|:T

assuming we can write I -u : S if u & dom(I"). We extend this to a concatenation for typing
environments as A- A’ = AUA’. We define coherency of session environments as follows:

16



Definition A.3 (Coherency). Typing A is coherent with respect to session s (notation
co(A(s))) if Vs[p] : Tp,,s[q] : Ty € A with p # q then T,[q = T, [p. A typing A is coherent
(notation co(A)) if it is coherent with respect to all s in its domain. We say that the typing
judgement I' - P> A is coherent if co(A).

The typing rules are essentially identical to the communication typing system for
programs in [3] (since we do not require queues).

We say a typing A is fully coherent (notation £co(A)) if it is coherent and if s[p] : T, €
A then for all g € roles(T;), s[q] : Ty € A.

I'Fe;:bool

I u:Stu:S [Name] I'Ftt,£f£f:bool [Bool
I'Fe; and e :bool

[And]

I'ta:(G) I'PrA-x[p]:G[p

max(roles(G)) =p I'ta:(G) I'kPrA-xp|:G[p

— [MReq] [MAcc]
I' +alp](x).P>A 't alp](x).P>A
I'-e:S I'FPrA-c:T Send] I'x:SEPrA-c:T Reey]
I'tclqle);PrA-c:[q(S);T I'tc[q)?(x);PrA-c:[q?2(S);T
C'EP>A-c:T CEPoA-c:T-x:T
Dele: SRecv
TFcgiy;PoA-c: [qUT ;T ¢ T [Deleg] T'Fc[q?(x);PoA-c: [qUT');T | }
FFPoA-c:T Sel TFPoA-c:T Yiel Bra
Fl—c[qj @li;PDAfZ[qJ@{liIT}},’e[ F"C[qj&{litl:’i}ieij'Ci[q]&{ll‘:Ti}ig[
I'FP>rA T'EPR>A, ANA =0 [Cond] I'Fe:bool I'FPrA T'FQOpA ]
T'EP | P>A-A 't if e then P else QA
A 1 I'a: FP>A
Aend only [Inac] [-a:(G)FPrA [NRes]
I'HorA I'k(va)PrA
feo({s[1]: Ty ...s[n] : T,,})
I'EPoA-s[1]:Ty...s[n]: T, X :
SU:Th- sl : T SRes] I-X:AFXoA[Va] X ATPPA b
' (vs)PrA I'FuX pPrA

Fig. 8. Typing System for Synchronous Multiparty Session Calculus

Figure 8 defines the typing system. Rule [Name] types a shared name or shared variable
to type S. Boolean tt, ££ are typed with the bool type via rule [Bool]. Logical expressions
are also typed with the bool type via rule [And], etc. Rules [MReq] and [MAcc] check
that the local type of a session role agrees with the global type of the initiating shared
name. Rules [Send] and [Recv] prefix the local type with send and receive local types
respectively, after checking the type environment for the sending value type (receiving
variable type resp.). Delegation is typed under rules [Deleg] and [Srecv] where we check
type consistency of the delegating/receiving session role. Rules [Sel] and [Bra] type select
and branch processes respectively. A select process uses the select local type. A branching
process checks that all continuing process have a consistent typing environments. [Conc]
types a parallel composition of processes by checking the disjointness of their typing
environments. Conditional is typed with [If], where we check the expression e to be of
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bool type and the branching processes to have the same typing environment. Rule [Nres|
defines the typing for shared name restriction. Rule [Sres] uses the full coherency property
to restrict a session name. Recursive rules [Var] and [Rec] are standard. Finally the inactive
process 0 is typed with the complete typing environment, where every session role is
mapped to the inactive local type end. The following theorem is proved in [3].

Theorem A.1 (Subject reduction). IfI" - P> A is coherent and P —+ P' then I' = P'> A’
is coherent with A — A’ .

B Appendix for Sections 2 and 2
We list the omitted definitions from Section 2 and
P=P|0 P|Q=Q|P (P|Q)|R=P|(Q|R) P=q P uX.P=P{uXx.P/X}

(Q
(va)(vaYP= (vi)(vn)P (vn)(va)P=(van')P (vn)0=0
(vn)(P)[Q = (vn)(P|Q) n¢fn(Q)

Fig. 9. Structural Congruence for Synchronous Multiparty Session Calculus

The structural congruence rules are defined in figure 9.
We define the roles occurring in a global type and the roles occurring in a local type.

Definition B.1 (Roles).
— We define roles(G) as the set of roles in protocol G. Note that for all u: G € T,
roles(G) ={1,2,...,n} for some n.

— We define roles(T) on local types as:

roles(end) = 0 roles(t) =0 roles(ut.T)=roles(T)

roles([p|(U);T) = {p} Uroles(T) roles([p]?(U);T) = {p} Uroles(T)
roles([p|®{li: Ti}icr) = {p} Uroles(T) roles([p|&{/i: T;}icr) = {p}Uroles(T)

C Proofs for Bisimulation Properties

C.1 Parallel Observer Property

Lemma C.1. IfFl—PIDAl,Fl—PQDAQ andE,Fl—Pl |P2DA then

1. A=AlUA), AiINA =0
2. E,F"P]DA] andE71"}—P2l>A2

Proof. Part 1 is obtain from typing rule [Conc]. Part 2 is immediate from part 1, since
A C A (resp. A C Ap). O
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C.2 Proof for Lemma 3.1

Proof. We use the coinduction method which is implied by the bisimilarity definition.
Assume that for I' - P> A =° P> Ay, we have A| = A,. Then by the definition of
=, there exists A such that

Al —>*AandA2 —*A (D

Now assume that I" - P, > A —— P{>Af then, I' F P> Ay LN Py > A) and by the typed

transition definition we get (I, A;) N (I',A}), (I', A7) N (I',A}). We need to show
that A} = AJ.

We prove by a case analysis on the transition L on (I';Ay) and (I, Ay).

— Case { = 7: We use the fact that — with = coincides with —s. Then by Theo-
rem A.1, we obtain if I' = P> A; and P, — P| then I" - P{>A{ and A — A] or
A=Al
For the reversed direction, if I" - P,> Ay and P, = P} then I" - Pji> A} and Ay —*

A}. From the hypothesis on I" - P[> A and I" - P, > A, we obtain there exists A such
that A] —* A and A} —* A, as required.

Case ¢ = a[p|(s) or £ =a[p|(s): Then

(T, A1) 5 (T, Ay +s[p] : Ty-...-s[q) : Ty)

and
(I, Ay) == (I, A -s[p] : Ty ... -s[q] : Ty)

We set
A'=A-slp|l:Ty-...-s[q): Ty

to obtain A{ —* A" and A} —* A, by the coinduction hypothesis (1).

— Case ¢ = s[p|[q]!(v):
We know from the definition of environment transition, that s[q] ¢ dom(A;) and s[q] ¢
dom(A), thus s[q] ¢ dom(A) We set

Ay =s[p] : [q]!(v): T - Af

and
Ay = sfp] : [Q)!(w): T A
s0
A =slp]: [q]!(v);T- A"
by (1). We set A’ = s[p] : T - A” to obtain A —* A’ and A; —* A",
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— Case £ = s[p][q]!(s'[p']):
We know from the definition of environment transition, that s[q] ¢ dom(A;) and s[q] ¢
dom(A,), thus s[q] ¢ dom(A). We set

Ay =s[p] : [q]T"):T- A
and
Ay =s[p] : [q] (T"):T- 47
S0
A =slp]: [q!(v):T-A"
by (1). We set A’ = s[p] : T-A” - {s[p;] : T;} to obtain A{ —* A" and A} —* A"

— The remaining cases on session channel actions are similar.

C.3 Weakening - Strengthening

The following lemmas are essential for invariant properties.

Lemma C.2 (Weakening).

1. IfE,I' = P> A then
- E-s:G,I'FP>A.
- E=EFE5:Gand3G" -{s:G'} = {s:G} thenE'-s: G, ' - P> A.
2. If(E,T,A) -5 (E,I",A") then
~ (E-s:G,,A) -5 (E-s:G,I",A)
—-IfE=Es:Gand {s: G} — {s: G} then (E’-s:G/,F7A)L>(E’-s:
G/,F/,A/)
3 IETFP>A = P>A
- E'SZG,Fl—PlezngQDAQ
- IfE=E"s:Gand{s:G'} -»C {s: G} thenE'-s:G',I' - PI>Ay =, P,> Ay

Proof. We only show Part 1. Other parts are similar.

— From the governance judgement definition we have that E —* E| and proj(E;) 2
A.
LetE-s:G—E;-s:G.Thenproj(E;-s:G) =proj(E;)Uproj(s:G) Dproj(E;) 2
A.

— From the governance judgement definition we have that E-s: G —* E| -s: G and
proj(E;-s:Gp) 2 A.
LetE -s:G —*E;-s: G —* E{-S: G1. Then the result is immediate.

Lemma C.3 (Strengthening).

1. IfE-s:G,I'+PrAE|-s:Gyand

- Ifs¢ fn(P) then E,I' - P> A

- If3G' {s:G} - {s:G'} = {s: G} thenE' -5 : G, ' - PrA
2 If(E-s:G,I,A) -5 (E'-5: G,I",A") then
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- (E,T',A) -5 (E',T",A")

- If3G {s:G} = {s: G} = {s: G} S(E-5:G',I",A) N (E'-s:G T A
3. IfE'SZG,F}—Plez,El %gPQDAQ,EQ

- Ifs¢ tn(P) then E,I' - P> Ay =y P> Ay

- If3G {s:G} = {s:G'} = {s: G} E-s: G, T FP>Ay =, P> Ay

Proof. We prove for part 1. Other parts are similar.

— From the governance judgement definition we have that E-s: G —* E; -5 : G and
proj(E;-s:Gy) =proj(E;)Uproj(s: Gi) D A. Since s ¢ fn(P) then s ¢ dom(A),
then proj(s:Gi)NA =0.So proj(E;) 2 A and E —"* Ej.

— The result is immediate from the definition of governance judgement.

C.4 Configuration Transition Properties
Lemma C4.

B8 B then (sTp) [aU):Tyosla): 1205y} C pro3 (E) and {s[p] - Tyosla:
Ty} C proj(E’).

— I E P E then {s[p] : [a] @ {I : Tip}.slal : [p)&{li : Tig}} € proj(E) and {s[p) :
Tip,sla] : Tiq} € proj(E’)

Proof. Part 1: We apply induction on the definition structure of s : p — q: U. The base
case

{s:ip—q: (U).GY Y (5. G
is easy since
{slp]: (p = q: (U).G)[psld]: (p = q: {U).G)[q} =
{sp] : [al(U): Tp,slq] : [p]?(U): Tq} S proj(s:p—q: (U).G)

and
{slp] : G[p,sla] : Gla} = {s[p] : Tp,s[a] : Tq} S proj(s: G)
The main induction rule concludes that:
{s:p = q:).G} %Y {5: 61

ifp#p and q#q and {s: G} i O {s: G'}. From the induction hypothesis we know
that:

{slp] : [ {U): Ty, s(al = [p]2(U); Tq} € proj(s: G)
{s[p] : Ty, sla) : Ty} € proj(s: G')
to conclude that:
{slpl: (p' = ' : (U).G)[p,sld]: (p' = q': (U).G)[q} =
{slp] : G[p,sld] : G[q} =
{slp] : [ U ): Ty, s[d] : [p]?(U); Tq} € proj(s: G)
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and

{slp]: (p' = q': (U).G)[p,sld]: (p' = q': (U).G)[a} =
{s[p] : G'[p,sld] : G'[q} =
{s[p] : T, s[q] : Ty} C proj(s: G)

as required.
Part 2: Similar. O

Proof for Proposition 4.2

Proof. (1) We apply induction on the definition structure of N
Basic Step:

Case: £ =1[s|(A).
From rule [Acc] we get

(E1.Ti, A1) = (Er-s: G.I5. Ar - {s[pi] < s[pi}prea)
From the environment configuration definition we get that
JE|-E; —" Ey, proj(Ej) 2 A
We also get that proj(s: G) 2 {s[pi] : s[pi}ica. So we can safely conclude that
Ei-s:G—"E|-5:G,proj(Ei-s:G) D A;-{s[pi] : s[pi}pca

Case: { =1d[s](A). Similar as above.

Case: ¢ = s[p|[q]!(v).
From rule [Out] we get

(E1,T,A-slp]: [q!(U):T) —= (Es,[,A-s[p]: T) )
proj(Ey) 2 A-sp]:[qU):T 3)
E; S:}H—q;UEz “4)

From 3, we obtain proj(E1) 2 A-{s[p] : [q](U); T -s[q] : [p]?(U); T’} and from 4 and
Lemma C.4, we obtain that proj(E;) 2 A-{s[p]: T -s[q] : T'}.
Case: ¢ = s[p][q]!(s'[F"])-

(Ev,T,As[p] : [ (TP):T) — (Er-s:G,IA-s[p]: T-{slpi] :s[pi})  (5)
)

proj(En) A-slp]: [T ): T (6)
sip=q:T)

E, — E 7

proj(s:G) 2 {s[pi]:s[pi} ®)

From 6 we get proj(Ey) 2 A-{s[p]: [q]{U);T -s[q] : [p]?(U); T’} and from 7 and lemma
C.4 we get that proj(Ey) D A-{s[p|: T-s[q] : T’} D A-s[p] : T. From 8 we get that
proj(Ez-s:G) D A-s[p]: T -{s[p:] : s[p:} as required.
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The rest of the base cases are similar.
Inductive Step:

The inductive rule for environment configuration is [nv]. Let (E1,I7,41) N (Ex,13,A7).
From rule [Inv] we get:

E, —" E| )
¢

(Ei71—i7Al) — (E2713’A2) (10)
From the inductive hypothesis we know that for 10 3E3 - E; —* E3 and Ay C proj(E3).
The result is then trivial from 9. O
Lemma C.5.
L If(E,T,A)) 5 (E',\T", Ay) then (T, Ay) — (I, A)
2. If(E,T,A)) =5 (E'.I" Al) and Ay = Ay then (E,T",Ay) == (E'.I", A})
3. If([C,A) LN (I', Ay ) then there exists E such that (E,I",A) LN (E'.I"",Ay)
4. If (E,T,A sp]: T,) - (E',.I",A’ -s[p] : T,) then (E,I",A) - (E',T", A")
5. If(E,[,A) 5 (E',T Az) then (E,[',A;-A) —5, (E/,[',Ay- A)

provided that if (E,T" A) (E,T",A") then £ £ 1’

Proof. Part 1:
The proof for part 1 is easy to be implied by a case analysis on the configuration transition
definition with respect to environment transition definition.

Part 2:
By the case analysis on /.
Case ¢ = 7: The result is trivial.
Case ¢ = a[p|(s) or £ = a[p](s): The result comes from a simple transition.
Case ¢ = s[p|[q]!{v): A = A, implies Aj —* A and A, —* A for some A and A =
A-slp]: [q]U):T
(E,I",Ay) = (E,I',A) L as required.
Case ¢ = s[p|[q]!(s'[p']): A1 = A, implies A —* A and A; —* A for some A and
A=A"s[p]: [q{T");T
(E,I",Ay) = (E,I',A) L as required.
The remaining cases are similar.

Part 3:
We do a case analysis on /.
Cases ¢ = 1,0 =a[p|(s),£ = a[p](s): The result holds for any E.
Case ¢ = s[p][q]!(v) : Aj = A] - A} with A]" = s[p] : [q]{U); T} - ... - s[r] : T, Choose
E=E"-s:GwithA! Cproj(s:G)ands|q]: [p]?(U);Ty € proj(s:G)and A; C proj(E)
By the definition of configuration transition relation, we obtain (E,I",A) N (E, T, A),
as required.

Remaining cases are similar.
Part 4:
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(E,I',A-slp|: T;,) N (E',I',A” - s[p] : T,) implies that s[p] ¢ subj(¢). The result then
follows from the definition of configuration transition.

Part 5:
Case ¢ = 7,/ = a[p|(s),¢ = alp](s): The result holds by definition of the configuration
transition.
Case ( = s[p][q]!(U): we have that A; = A] - s[p] : [q]!(U);T and E el g, slq] € 4,
then by definition of weak configuration pair we have A = A” - s[q] : q[U][T]?() ; and

(E,T",A) APAY) Bt this contradicts with the assumption £ % ¢/, so s[q] ¢ A. By the

s !
definition of configuration pair transition we get that (E,I",A; - A) “TellaliUy (E,I",Ay-A).
Remaining cases are similar.
O

C.5 Proof of Proposition 4.1

(1) since Ty C T, is a syntactic tree inclusion, it is reducible to a problem to check the
isomorphism between two types. This problem is decidable [21]. (2) the global LTS has
one-to-one correspondence with the LTS of global automata in [6] whose reachability set
is finite. g

C.6 Proof for Lemma 4.1

Proof. Since we are dealing with closed processes, the interesting case is parallel com-
position. We need to show that if E,I" - P> A ~, Q> A, then for all R such that E,I" I-
P|R>A3,E.I'=Q|R>Asthen E,I' =P | R>A3 =g Q | R>Ay.
Let
S={(E,T-P|RvA;, ET'+Q|RrAs) |
E.I'P>A; =, 0> Ay,
VR-E,I'+P|R>A3,E,[' - Q| R>Ay}

Before we proceed to a case analysis, we extract general results. Let ' - P> A, I
O> Ay, ' R>As, ' P|R>A3,I" - Q| R> Ay then from typing rule [Conc] we get

A3 = A UA; (11
Ay = A UAs 12)
ANAs =0 (13)
ArNAs =10 (14)

We prove that S is a bisimulation. There are three cases:
Case: E,I'F P |RoAy — E' T+ P' | R A

From typed transition definition we have that:

PIR-5 PR (15)
(E.T,43) 5 (E',T,4%) (16)

Transition (15) and rule (Par) (LTS in Figure 5) imply:
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p-45p (17)

From (11), transition (16) can be written as (E,I",A; U As) LN (E',I",A] U As), to con-
clude from Lemma C.5 part 4, that:

(E.T',A1) = (E'.I",A) (18)
subj(¢) ¢ dom(As) (19)

Transitions 17 and 18 imply E,I" F P> A LN E'.I' - P'>A{. From the definition of set
Swe getthat E,I"F Qo Ay == E' ' - Q' A},

From the typed transition definition we have that:
4
0=0 (20)
(E.,4) = (E'.I",4)) 1)

From 19 and part 5 of Lemma C.5 we can write: (E,I", A U As) N (E'.I",A, UAs), to

imply from 20 that E,I" - P | R> A4 N E'.I" - P'| R>A} as required.
Case: 2

E-TFP|RoA; 5 E'FP |RbA,

From the typed transition definition we have that:

PRSP R (22)
(E.I',A3) = (E,I", &) (23)
From 22 and rule (Tau) we get
J AN (24)
R R (25)

From 11 transition 23 can be written (E,I",A; UAs) — (E,T", A UAL), to conclude that
(E,T,A) = (E.T.A]) (26)
(E.T",As) = (E.T,4%) @7)

From 24 and 26 we conclude that E,T" - P> A LI E,I' - P'>A{ and from 25 and 27
ETFRoAs - E,T'FR>AL
From the definition of set S we get that E,T" - Q> A, Ny I+ Q'>AL, implies
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0= ¢ (28)
(E,T,4) == (E,T",A}) (29)

From 25 we get that Q | R == Q' | R’ and (E,[",A,UAs) = (E,I",A} UAL), implies

ETFQ|RoA == E'F Q' |R > A
Case: 3

ET+P|RoAs -5 E'+P|R'> A}

C.7 Proof for Lemma 4.1

Proof. We take into advantage the fact that bisimulation has a stratifying definition.

— R, is the union of all configuration relations, E,I" = P>A; R Q> Aj.
- E.I'=P>A~g, O> Ay if
o ELFPoA 5 E TP oAl thenE ' QvAy == E' '+ Qv A, and E/,T" -
PrAj~, 0'>A)
e The symmetric case.

~ 0 _ ~
- ™&n _QOSiSn ~&i

From coinduction theory, we know that (N, =, ) =~.
To this purpose we define a set of tests T(N, E:,) to inductively show that:

If E,['FP>A; 2, oA, implies
E,TFP | T(N,0)>A; 22 Py | T(N,0,) > Ay implies
Vn, E,I' = P > A=, P > Ay implies
E.I'-P>A=P>A

We give the definition for (N, 7,):

T(N,succ,ly) = Q(N,n,0}) | ... | Q(N,n, )
where

to define
~ Q(N.a,alA](s) - &) =aln)(x)-Q(N.s[n], &) | ... | a[p](x).Q(N,sp). &) i € 1
= Q(N,s[al,s[p][a]?(v) - £x) = sla][p]!(v); Q(N,s[al, fu)
— O(N,s[a,s[pl[al&! - u) = s[a][p] ® 1 Q(N ,s[al, Ln B
= O(N,a,alA](s) - ln) = alg](x).Q(N,slg], i) | ... | alp](x)-Q(N,s[p],£i),i € 1.



= O(N,sal,s[p][q]!(v) - &) B B
=s[q[p]?(x);if x €N thsn O(N,s[ql,,) else (v b)(b[1](x).Q(N,s[q],,))-
— O(N,s[q],s[pl[a]!(s'[P']) - £n) B B
= s[q][p]?(x);if x € N then QO(N,s[q], ) else (v b)(b[1](x).Q(N,s[a],ln)).
= O(N.,s[a],s[p]la] & L tn)

= s[q][pl&{l : Q(N,s[a],0u), L (v b)(b[1](x).Q(N,s[q],{u))}.
— Q(N,n,0) =R.

where R = (v b)(b[1](x).R’) or R = 0. R completes the session type on session channel n
and is used to keep processes typed.

From the definition of T'(N, £,,) we can show that VT (N, £-0,), T (N, (-£,,) N T'(N,{,), =
0.

We prove the required result inductively:

E.I' - P >A3 =, P> Ay implies

Ve £, choose TN, (- 0, E, T FPy | T(N,L-0,) Ay 22 Py | T(N,£-£,) > Ay implies
E.I'+ P |T<N€ 0> Ay = Pl | T(N,G) > Al

E.TEP | T(N,0)>Ay — Py |T(N Z)DAz then by induction hypothesis
P{~,, P; implies

Vn,E,I' = P > A=, P> Ay implies

E,Fl‘P]DAl Rg P>A

We need to show that if
E,THP | T(NL-B)>A = Py | T(N,L-0,)> Ay
then

E,T'FP|T(N,0-0,))>Ay — P | T(N,0,)>A] E,T'F Py | T(N,0p)>Ay — Py | T(N,0,) > A}

We perform a case analysis on E,I" - P > A3 i) P, DAé:
_E,TFPoA P p >Aj implies, E,I" - Pi | T(N,s[p][a]2(v) - 0)>A =E,T'+
7

]?
ZI|Q<N7s[pLs[p][q}?<v>- )] ... |Q(N,n, Gy oAy — P | Q(N,s[pl, 0} | ... | Q(N,n, L)
1-

E,T'F Py | T(N,s[p][q]?(v)-£,)> Ay needs to match the reduction, E FFP2|T<N s[p][a]?2(v) -
0> Ay = E,TF P | T(N,s[pl[a?2(v) - £,) > Ay — E,T' =Py | T'(N,4,) > Ay —
—E,['-P| T'(N, Z>>A§

~ ETFPioay ™) Bk A implies, BT - Py | T(N,alA](s) - [,) Ay = E.T" -
Py | Q(N,a,alA](s)-¢ 6)] ... | O(N,n, ly>A) — E JTEP|O(N,a,t;)| ... | Q(N,n,l;j)>
A

E,['F Py | T(N,alA](s)-0,)> Az needs to match the reduction E,I" - Py | T(N,a[A](s)-

0> Ay = E.L F PY | T(N,a[A](s) - 6,) > AY — E,T = Py | T'(N,0,) > A} —
E,T'+P, | T'(N,0) > A}
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_ E.TFPoAy ™Y b Al implies, E,TF Py | TN, s[pl (]! (v) - ) > Ay = E, T F

Pi | Q(N,s[pl,s[pllg]!(v)- &) | ... | Q(N,n, B> Ay = E,T' =P Q(N,s[p], 03} | ... | Q(N,n, Gi)>
Aj.

EI'EPR | T(N, s[p][a]!(v) - ) >As needs to match the reduction, £, I FP%| T(N,s[p|[a]!(v)-
b)>Ay - E. I EPZ’” | T(N,s[p|[a]!(v) - ly)>AY) —+ E,.T' =P | T"(N,ly)> A —
E,LFPy| TN, 0> A
O
C.8 Proof for Lemma 4.2
Proof. We prove directionif VE,E,I' = Pi>A| =, B>Ay thenI' = P> A = T P> A,
IfI - P Ap —5 P> Al then P — P and (I, A) -5 (I, A)).

From part 3 of Lemma C.5 we choose E such that (E,",A;) LN (E'.I'",A}). Since
VE,E,I' = Pi>A| =4 P,> A it can now be implied that, E,I" = P > Ay i> E'.I' -
Pl Al implies, E,I" - Py> Ay == E',T" - Pyi> A} implies, P, == P} and (E,T", Ay) =
(E'.I'",A}).

From part 1 of Lemma C.5 we get (I",A3) N (I'",A}) implies I' - Py > Ay =5 P> A
as required.

We prove direction if I' = Pi>A; =° I' = P> Ay then VE,E, I' - Pi > Ay =g P> As.
Let E,TFPysAy —— P/ Al then

p 5P (30)
(E,[,A) -5 (E'.T",A)) G1)

If T+ PiA —5 Pl>Al then P — P, (T, A)) —= (I, A]), T Py Ay - Py Al
From the last implication we get

P, =% P, (32)
([,40) == (I, Ab) (33)
Al = A2 (34)

We apply part 2 of Lemma C.5 to 31 and 34 to get (E,I",A;) N (E',I",A}). From the
last result and 32 we get E,T" - Py> Ay == E'. " - Py A

C.9 Proof for Theorem 4.3
Proof. We follow the requirement of part 3 of Lemma C.5 to show that if P is simple and

FFPrA ST HPoA then3E-E,T'FPoA S E TFP A

From that point on we apply part 2 of Lemma C.5 to get that if P, P; are simple and
JE-E,I'-Pi>A; =g Bb>AythenVE E, I' - Pi>Ay =4 P,>A>. By applying Lemma 4.2
we are done. O
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D Usecase: UC.R2.13 “Acquire Data From Instrument” from the
Ocean Observatories Initiative (OOI) [16]

The governance bisimulation can be used in numerous ways: it can be applied to the op-
timisation and verification of distributed systems, and the correctness of service commu-
nication. In this section, we present a usecase based on the real world usecase UC.R2.13
“Acquire Data From Instrument” from the Ocean Observatories Initiative (OOI) [16],
where we intent to show the optimisation and verification of network services.

In this usecase we assume a user program (U) which is connected to the Integrated
Observatory Network (ION). The ION provides the interface between users and remote
sensing instruments. The user requests, via the ION agent services (&), the acquisition of
processed data from an instrument (I). More specifically the user requests from the ION
two different formats of the instrument data. In the above usecase we distinguish two
points of communication coordination: i) an internal [ON multiparty communication and
ii) an external communication between ION instruments and agents and the user. In other
words it is natural to require the initiation of two multiparty session types to coordinate
the services and clients involved in the usecase.

The behaviour of the multiparty session connection between the User (U) and ION is
dependent on the implementation and the synchronisation of the internal ION session.

Next we present three possible implementation scenarios and compare their behaviour
with respect to the user program. Depending on the ION requirements we can chose the
best implementation with the correct behaviour.

D.1 Usecase Scenario 1

In the first scenario the user program (U) wants to acquire the first format of data from
the instrument (I) and at the same time acquire the second format of the data from an
agent service (4). The communication between the agent (4) and the instrument happens
internally in the ION on a separate private session.

— A new session connection s; is established between (U), (I) and (A).
— A new session connection s, is established between (A) and (I).

— (I) sends raw data through s, to (A).

— (&) sends processed data (format 1) through s; to (U).

— (A) sends acknowledgement through s, to (I).

— (I) sends processed data (format 2) through s; to (U).

The above scenario is implemented as follows:

Lh|A|U

where

Ip = a[i0](s1).b[10](s2) 52[10][a1]!(rd); 52[10] [a1]?(x); 51 [10] [u] {(pd); 0
A = alay](s1)-bla1](s2)-52[a1][10]?(x); 51[as][u]!(pd); s2[a1][10] ! (ack); 0
U = alul(s1)-s1[u][21]?(x); s1[u][10]?(y); 0

and i is the instrument role, a; is the agent role and u is the user role.
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D.2 Usecase scenario 2

Use case scenario 1 implementation requires from the instrument program to process raw
data in a particular format (format 2) before sending them to the user program. In a more
modular and fine-grain implementation, the instrument program should only send raw
data to the ION interface for processing and forwarding to the user. A separate session
between the instrument and the ION interface and a separate session between the ION
interface and the user make a distinction into different logical and processing levels.

To capture the above implementation we assume a scenario with the user program (U),
the instrument (I) and agents (A1) and (A4,):

— A new session connection s is established between (U), (A1) and (A>).
— A new session connection s, is established between (A, A>) and (I).
— (I) sends raw data through s, to (A}).

— (A1) sends processed data (format 1) through s; to (U).

— (41) sends acknowledgement through s; to (I).

— (I) sends raw data through s> to (43).

— (&) sends processed data (format 2) through s; to (U).

— (A2) sends acknowledgement through s; to (I).

The above scenario is implemented as follows:

I [A|A2|U
where
Iy = bli](s2)-52[i][a1] ! (rd); s2[1][a1] ?2(x); 52[1] [ao] H(rd)s s2[1] [21] 2(x); 0
Ay = alay](s1)-b[ai](s2)-s2[a1][1]?(x); 51 [a1][u] ! {pd); 52 [as][1] !{ack); 0
As = alay](s1).b[az](s2).52[a] [1]2(x); 51 [a2] [u] | (pd); s2[a2] [1] ! (ack); O
U =alu](s1).s1[u][a1]?(x); 51 [u][22]?(y); 0

and 1 is the instrument role, a; and a, are the agent roles and u is the user role. Fur-
thermore for session s; we have that role 10 (from scenario 1) = a,, since we want to
maintain the session s; as it is defined in the scenario 1.

D.3 Usecase scenario 3

A step further is to enhance the performance of usecase scenario 2 if the instrument (I)
code in usecase scenario 2 can have a different implementation, where raw data are sent
to both agents (A1, Ay) before any acknowledgement is received. ION agents can process
data in parallel resulting in an optimised implementation.

— A new session connection s is established between (U), (A1) and (A>).
— A new session connection s, is established between (A, A>) and (I).
— (I) sends raw data through s, to (A}).

— (I) sends raw data through s> to (A3).

— (A1) sends processed data (format 1) through s; to (U).

— (A1) sends acknowledgement through s; to (I).
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— (A7) sends processed data (format 2) through s; to (U).
— (A7) sends acknowledgement through s; to (I).
— A new session connection s is established between (U), (A1) and (A,).

The process is now refined as

IZ‘A[ |A2|U

where
b = b[i](s2).s2[1][a1]!(rd); s2[1] [ao] H{rd)s s2[1] [a1] 2(x); 52[1] [21] 2(x); 0

and i implements the instrument role, a; and a, are the agent roles and u is the user role.

D.4 Bisimulations

The main concern of the three scenarios is to implement the Integrated Ocean Network
interface respecting the multiparty communication protocols.
Having the user process as the observer we can see that typed processes:

F|—10|AI>A0
F}—Il |A1 |A2DA1

are bisimilar (using /=*) since in both process we observe the following labelled transitions
(recall that 10 = a,) :

re 10 | A[>A0 L} a[s]ﬂi}io) 51 [aﬂﬂ;@d) 51 [i(M(pd)

and
T a[S](Ei;lz) 5] [aﬂﬂ;@@ 51 [aﬂ[_u];<Pd>

LA |ApA —

The two implementations (scenario 1 and scenario 2) are completely interchangeable
with respect to ~=°.

If we proceed with the case of the scenario 3 we can see that typed process I
L | Aj | Ay Ay cannot be simulated (using &*) by scenarios 1 and 2, since we can observe
the execution:

s](a1,22) s !(pd
TEL A Ay A 5 Plrge) silallliied)

By changing the communication ordering in the ION private session s, we changed
the communication behaviour on the external session channel s;. Nevertheless, the com-
munication behaviour remains the same if we take into account the global multiparty
protocol of 51 and the way it governs the behaviour of the three usecase scenarios.

Hence we use . The definition of the global environment is as follows:

E =s):a; —u: (PD).ag — u: (PD).
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Fig. 10. Three usecases from UC.R2.13 “Acquire Data From Instrument” in [16]

The global protocol governs processes I1 | A| | Az (similarly Iy | A) and I, | A} | A2 to

1 [az][u]! 1 [a1][u]!
always observe action sl M@d) after action sl M<pd> for both processes.

Also note that the global protocol for s, is not present in the global environment,
because s, is restricted. The specification and implementation of session s, are abstracted
from the behaviour of session s7.

E Concluding remarks

The bisimulation techniques developed in this paper present interests in both the theo-
retical and the applied aspects. We developed semantics for typed environments and use
them to define labelled transition semantics for typed processes. We show that session type
bisimulations can be defined, either by taking only the local session information of each
process into account (=) or by taking the global session protocols into account (~2;). We
show that the corresponding bisimulations are reduction-closed, barb preserving congru-
ences. Theorem 4.2 shows the relation between the two typed bisimulation approaches:
if two terms are equivalent by the governed bisimulation ~; under all governed environ-
ments, then they are also bisimilar by ~*.

Our bisimulation techniques can also be used for proving correctness of the global
optimisations and verifications of systems. Usually systems based on services are imple-
mented using different levels of abstractions, and thus use a set of multiparty protocols,
one for each level of abstraction. A possible change on the implementation of a service
level may lead to the change of the entire system behaviour (see Appendix D for a detailed
example). Our techniques are used to reason about the correctness of the optimisation in
such systems since the governed bisimulation can take the global overview of the systems
into account.
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