
Applications of Legendre-Fenchel transformation to
computer vision problems

Ankur Handa, Richard A. Newcombe, Adrien Angeli, Andrew J. Davison

Department of Computing,
Huxley Building,
180, Queens Gate,
SW7 2AZ, London

{ahanda,r.newcombe08,a.angeli,ajd}@imperial.ac.uk,
WWW home page: http://www.doc.ic.ac.uk/∼ahanda

Abstract. We aim to provide a small background on Lengenre-Fenchel
transformation, the applications of which have been increasingly getting
popular in computer vision. A general motivation follows up with stan-
dard examples. Then we take a good view on their applications in solving
various standard computer vision problems e.g. image denoising, optical
flow, image deconvolution etc.

Keywords: Legendre-Fenchel transformation, Convex functions, Optimi-
sation

1 Legendre-Fenchel transformation

Legendre-Fenchel (LF) transformation of a continuous but not necessarily dif-
ferentiable function f : R→ R∪ {∞}, is defined as

f ∗(p) = sup
x∈R

{px− f (x)} (1)

Geometrically it means that we are interested in finding a point x on the func-
tion f (x) such that the slope of line p passing through (x, f (x)) has a maximum
intercept on the y-axis. This happens to be the point on the curve which has a
slope p which is nothing but the tangent at that point.

p = f ′(x) (2)

A vector definition can be written as

f ∗(p) = sup
x∈Rn
{xtp− f (x)} (3)

2 Motivation: Why do we need it?

2.1 Duality

Duality is the principle of looking at a function or a problem from two different
perspectives namely the primal and the dual form. When working in optimi-
sation theory, often and in general a deep understanding of a given function

II

Fig. 1. Image Courtesy: Wikipedia.org

is required. For instance, one would like to know whether a given function is
linear, whether the function is well behaved in a given domain etc. to name
a few. Transformations are one way of mapping the function to another space
where better and easy ways of understanding the function emerge out. Take for
instance Fourier Transform and Laplace Transform. Legendre-Fenchel is one
such transform which maps the (x, f (x)) space to the space of slope and con-
jugate that is (p, f ∗(p)). However, while the Fourier transform consists of an
integration with a kernel, the Legendre Fenchel transform uses supremum as
the transformation procedure. Under the assumption that the transformation is
reversible, one form is the dual of the other. This is easily expressed as

(x, f (x))⇐⇒ (p, f ∗(p)) (4)

p is the slope and f ∗(p) is called the convex conjugate of the function f (x). A
conjugate allows one to build a dual problem which may be easier to solve than
the primal problem. Legendre-Fenchel conjugate is always convex.

3 How to use the Duality

There are two ways of viewing a curve or a surface, either as a locus of points
or envelope of tangents [1]. Now, let us imagine that we want to use the duality
of tangents to represent a function f (x) instead of points. A tangent is parame-
terised by two variables namely the slope p and the intercept it cuts on negative
y-axis (using negative y-axis for intercept is purely a matter of choice) which is
denoted by c. We provide two ways to solve for the intercept and the slope and
arrive at the same result.

III

3.1 Motivation I

Let us denote the equation of line having a slope p and intercept c by

y = px− c (5)

Now imagine this line is to touch the function f (x) at x, then we can equate
both of them and write as

px− c = f (x) (6)

Also suppose that the function f (x) is convex and is x2, a parabola (as an exam-
ple). Then we can solve for quadratic equation

x2 − px + c = 0 (7)

Now this quadratic equation has two roots

x =
p±

√
p2 − 4c
2

(8)

But we know that this line should touch this convex function only at once (if the
function was non-convex, the line could touch the function at two points) and
because we want to use this line as a tangent to represent the function in dual
space. Therefore, the roots of this equation should be equal which is to say that
the determinant of the above quadratic equation should be zero i.e. p2 − 4c = 0
which gives us

f ∗(p) = c =
p2

4
(9)

This is nothing but our Legendre-Fenchel transformed convex conjugate and

p = 2x (10)

is the slope. That is

(x, f (x))⇐⇒ (p, f ∗(p)) (11)

(x, x2)⇐⇒ (p,
p2

4
) (12)

3.2 Motivation II

For we know that

y = px− c (13)

to be a tangent to f (x) at x it must be that

p = f ′(x) (14)

IV

Again, if the function is

f (x) = x2 (15)

we can take the first order derivative to obtain the slope which is

p = f ′(x) = 2x (16)

x = f ′−1(p) =
p
2

(17)

Replacing y we get

y = f (x) (18)

and substituting x we get,

y = f (f ′−1(p)) (19)

y = f (
p
2

) =
p2

4
(20)

and therefore we can solve for c as

c = p f ′−1(p)− f (f ′−1(p)) (21)

c = p
p
2
− p2

4
(22)

c =
p2

4
(23)

4 How about fuctions which are not differentiable
everywhere?

Let us now turn our attention towards the cases where a function may not be
differentiable at a given point x∗ and has a value f (x∗). In this case we can
rewrite our equation as

px∗ − c = f (x∗) (24)

which means

c = px∗ − f (x∗) (25)

is only a linear function of p. So the duality of a non-differentiable point at x
induces a linear function of slope in the dual space. And p can take a value from
[f ′(x∗−), f ′(x∗+)]. This is because the slope of the tangent at a point in the very
small vicinity of x∗ to the left side of it, denoted by x∗− is f ′(x∗−) and the right,

V

Fig. 2. At the point x∗ we can draw as many tangents we want with slopes ranging from
[−1, 1] and they form the subgradients of the curve at x∗.

denoted by x∗+ is f ′(x∗+). At the point of discontinuity in the space of function
f (x), we can draw many tangents with slopes ranging from [f ′(x∗−), f ′(x∗+)]. This
interval is defined as the subgradient. This is explained briefly in the next section.

Therefore, the point of non-differentiability in the primal space can be read-
ily explained in dual space with a continuously varying slope in the range
[f ′(x∗−), f ′(x∗+)] defining a linear function, c(p), of this slope. Therefore, even if
the primal space is non-differentiable, the dual space is not.

4.1 Subdifferential and Subgradient

In calculus, we are, majority of time, interested in minimising or maximising a
function f . The point x̂ which minimises the function is referred to as the criti-
cal point, the minimiser of function i.e. ∇ f (x̂) = 0. Convex functions belong to
the class of functions which have global minimiser. However there are certain
convex functions which are not differentiable everywhere therefore one can not
compute the gradient. A notorious function f (x) = |x| is an example of convex
function which is not differentiable at x = 0. Instead, one defines the subdiffer-
ential. A subdifferential is therefore formalised as ∂ f (x) such that

∂ f (x) = {y ∈ Rn : 〈y, x′ − x〉 ≤ f (x′)− f (x), ∀x′ ∈ Rn} (26)

VI

Fig. 3. An illustration of duality where lines are mapped to points while points are
mapped to lines in the dual space.

In simpler term, a subdifferential is defined as the slope of the line at point x such
that it is either always touching or remaining below the graph of function. For
the same notorious |x| function the differential is not defined at x = 0 because

x
|x| is not defined at x = 0 while subdifferential at point x = 0 is the close interval
[-1, 1] because we can always draw a line with a slope between [-1,1] which
is always below the function. The subdifferential at any point x < 0 is the
singleton set {-1}, while the subdifferential at any point x > 0 is the singleton
{1}. Members of the subdifferential are called subgradients.

4.2 Proof: Legendre-Fenchel conjugate is always convex

f ∗(z) = sup
x∈Rn
{xtz− f (x)} (27)

In order to prove that function is convex we need to prove that for a given
0 ≤ λ ≤ 1 the function should obey Jensen’s inequality i.e.

f ∗(λz1 + (1− λ)z2) ≤ λ f ∗(z1) + (1− λ) f ∗(z2) (28)

Let us expand the left hand side of the inequality to be proved.

f ∗(λz1 + (1− λ)z2) = sup
x∈Rn
{xt(λz1 + (1− λ)z2)− f (x)} (29)

We can rewrite f (x) as

f (x) = λ f (x) + (1− λ) f (x) (30)

VII

and replacing it in the equation above yields a new expression which is

f ∗(λz1 + (1− λ)z2) = sup
x∈Rn
{λ(xtz1 − f (x)) + (1− λ)(xtz2 − f (x))} (31)

But we know that

sup
x∈Rn
{λ(xtz1 − f (x)) + (1− λ)(xtz2 − f (x))} ≤ sup

x∈Rn
{λ(xtz1 − f (x))} + sup

x∈Rn
{(1− λ)(xtz2 − f (x))}(32)

It is the property of supremum which states that

sup {x + y} ≤ sup {x} + sup {y} (33)

Therefore, we can substitute for

sup
x∈Rn
{λ(xtz1 − f (x))} = λ f ∗(z1) (34)

and

sup
x∈Rn
{(1− λ)(xtz2 − f (x))} = (1− λ) f ∗(z2) (35)

We arrive it our desired result which is

f ∗(λz1 + (1− λ)z2) ≤ λ f ∗(z1) + (1− λ) f ∗(z2) (36)

Thefore, f ∗(z) is convex always irrespective of the whether the function f (x) is
convex or not.

5 Examples

5.1 Example 1: Norm function (non-differentiable at zero)

f (y) = ||y|| (37)
f ∗(z) = sup

y∈R

{ytz− ||y||} (38)

By using Cauchy-Schwarz inequality we can also write

||y|| = max
||b||≤1

ytb (39)

Now, we know that the maximum value of ytb is ||y|| so it is trivial to see that

max
||b||≤1

{ytb− ||y||} = 0 ∀y ∈ R (40)

Therefore, we can write the conjugate as

f ∗(z) =
{

0 if ||z|| ≤ 1
∞ otherwise

The fact that the conjugate is ∞ when ||z|| > 1 can be easily explained using
Figure 4.

VIII

Fig. 4. The image explains the process involved when fitting a tangent with slope p =
2 or z = 2. Any line with slope /∈ [-1,1] has to intersect the y-axis at ∞, to be able to be
tangent to the function.

5.2 Example 2: Parabola

f (y) = y2 (41)

LF transform of a function f (y) for an n-dimensional vector y is defined as

f ∗(z) = sup
y∈R

{yz− f (y)} (42)

The function attains maxima when

∂y(yz− y2) = 0 (43)
z− 2y = 0 (44)

z = 2y (45)

substituting the value of y in the above function f ∗(z) we get

f ∗(z) = z
z
2
−
(

z
2

)2
=

1
4

z2 (46)

5.3 Example 3: A general quadratic n-D curve

f (y) =
1
2

yt Ay (47)

Let us assume that A is symmetric, then the LF transform of a function f (y) for
an n-dimensional vector y is defined as

f ∗(z) = sup
y∈Rn

{ytz− f (y)} (48)

IX

Fig. 5. The plot shows the parabola y2 and it’s conjugate which is also a parabola 1
4 z2.

The function attains maxima when

∂y(ytz− 1
2

yt Ay) = 0 (49)

z− 1
2

(A + AT)y = 0 (50)

z− Ay = 0 [∵ A is symmetric] (51)

y = A−1z (52)

substituting the value of y in the above function f ∗(z) we get

f ∗(z) = (A−1z)tz− 1
2

(A−1z)t A(A−1z) (53)

= zt A−1z− 1
2

zt A−1 AA−1z (54)

= zt A−1z− 1
2

zt A−1 AA−1z (55)

=
1
2

zt A−1z (56)

5.4 Example 4: lp Norms

f (y) =
1
p
||y||p ∀ 1 < p < ∞ (57)

Again writing the LF transform as

f ∗(z) = sup
y∈R

{ytz− 1
p
||y||p} (58)

X

∂y(ytz− 1
p
||y||p) = 0 (59)

z− ||y||p−1 y
||y|| = 0 (60)

z = ||y||p−2y (61)

||z|| = ||y||p−1 (62)

||y|| = ||z||
1

p−1 (63)

y =
z

||z||
p−2
p−1

(64)

substituting this value of y into the function gives

f ∗(z) =
zt

||z||
p−2
p−1

z− 1
p
||z||

p
p−1 (65)

=
ztz

||z||
p−2
p−1

− 1
p
||z||

p
p−1 (66)

=
||z||2

||z||
p−2
p−1

− 1
p
||z||

p
p−1 (67)

= ||z||2−
p−2
p−1 − 1

p
||z||

p
p−1 (68)

= ||z||
2(p−1)−(p−2)

p−1 − 1
p
||z||

p
p−1 (69)

= ||z||
2p−2−p+2

p−1 − 1
p
||z||

p
p−1 (70)

= ||z||
p

p−1 − 1
p
||z||

p
p−1 (71)

= (1− 1
p

)||z||
p

p−1 (72)

= (1− 1
p

)||z||
1

1− 1
p (73)

=
1
1

(1− 1
p)

||z||
1

1− 1
p (74)

(75)

Let us call

q =
1

(1− 1
p)

(76)

XI

Therefore, we obtain

f ∗(z) =
1
q
||z||q (77)

1
p

+
1
q

= 1 (78)

5.5 Example 5: Exponential function

Fig. 6. The plot shows the function ex and it’s conjugate which is z(ln z− 1).

f (y) = ey (79)

f ∗(z) = sup
y∈R

{ytz− ey} (80)

(81)

if z < 0 : supy∈R{ytz− ey} is unbounded so f ∗(z) = ∞
if z > 0 : supy∈R{ytz− ey} is bounded and can be computed as

∂y(yz− ey) = 0 (82)
z− ey = 0 (83)

y = ln z (84)

XII

substituting the value of y in the above function f ∗(z) we get

f ∗(z) = z ln z− z = z(ln z− 1) (85)

if z = 0 : supy∈R{ytz− ey} = supy∈R{−ey} = 0

5.6 Example 6: Negative logarithm

f (y) = − log y (86)
f ∗(z) = sup

y∈R

{ytz− (− log y)} (87)

Fig. 7. The plot shows the function -log y and it’s conjugate which is -1 -log (-z).

∂y(yz + log y) = 0 (88)

z +
1
y

= 0 (89)

y = −1
z

(90)

Substituting this value back into the equation we get

f ∗(z) =
1
−z

z + log(1/− z) (91)

f ∗(z) = −1− log(−z) (92)

This is only valid if z < 0

XIII

6 Summary of noteworthy points

– The Legendre-Fenchel transform only yields convex functions
– Points of function f are transformed into slopes of f ∗, and slopes of f are

transformed into points of f ∗
– The Legendre-Fenchel transform is more general than the Legendre trans-

form because it is also applicable to non-convex functions as well as non-
differentiable functions. The Legendre-Fenchel transform reduces to Leg-
endre transform for convex functions.

7 Applications to computer vision

Many problems in computer vision can be expressed in the form of energy min-
imisations [7]. A general class of the functions representing these problems can
be written as

min
x∈X
{F(Kx) + G(x)} (93)

where F and G are proper convex functions and K ∈ Rn×m. Usually, F(Kx)
corresponds to regularisation term of the form ||Kx|| and G(x) corresponds to
the data term. The dual form can be easily derived by replacing F(Kx) with it’s
convex conjugate, that is

min
x∈X

max
y∈Y
{〈Kx, y〉 − F∗(y) + G(x)} (94)

because F is a convex function then, by definition of Legendre-Fenchel trans-
formation

F(Kx) = max
y∈Y
{〈Kx, y〉 − F∗(y)} (95)

We know that dot product is commutative so we can re-write

〈Kx, y〉 = 〈x, KTy〉 (96)

and in case the dot product is defined on hermitian space we can write it as

〈Kx, y〉 = 〈x, K∗y〉 (97)

where K∗ is the adjoint conjugate of K which is more general. Going back to
Eqn. 94, the equation now becomes

min
x∈X

max
y∈Y
{〈x, K∗y〉 − F∗(y) + G(x)} (98)

Now by definition

min
x∈X
{〈x, K∗y〉 + G(x)} = −G∗(−K∗y) (99)

XIV

because

max
x∈X
{〈x, K∗y〉 − G(x)} = G∗(K∗y) (100)

min
x∈X
{−〈x, K∗y〉 + G(x)} = −G∗(K∗y) (101)

min
x∈X
{−〈x,−K∗y〉 + G(x)} = −G∗(−K∗y) (102)

min
x∈X
{〈x, K∗y〉 + G(x)} = −G∗(−K∗y) (103)

Under the weak assumptions in convex analysis , min and max can be switched
in Eqn. 98, the dual problem then becomes

max
y∈Y
{−G∗(−K∗y)− F∗(y)} (104)

Primal Dual Gap is then defined as

min
x∈X
{F(Kx) + G(x)} −max

y∈Y
{−G∗(−K∗y)− F∗(y)} (105)

For the primal-dual algorithm to be applicable, one should be able to compute
the proximal mapping of F and G, defined as:

ProxγF(x) = arg min
y

1
2
||x− y||2 + γF(y) (106)

Therefore, one can formulate the minimisation steps as

yn+1 = ProxσF∗ (yn + σKxn) (107)

xn+1 = ProxτG(xn − τK∗yn+1) (108)

xn+1 = xn+1 + θ(xn+1 − xn) (109)

Note that being able to compute the proximal mapping of F is equivalent to
being able to compute the proximal mapping of F∗, due to Moreau’s identity:

x = ProxτF∗ (x) + τProxF/τ(x/τ) (110)

It can be shown that if 0 ≤ θ ≤ 1 and στ||K||2 < 1, xn converges to the minimser
of the original energy function.

7.1 Premilinaries

Given a and x are column vectors where the dot product 〈a, x〉 can be written
as

〈a, x〉 = aTx (111)

Then we can write the associated derivates with respect to x as

∂aTx
∂x

=
∂xTa

∂x
= a (112)

XV

We will be representing a 2-D image matrix as a vector in which the elements
are arranged in lexicographical order.

Am,n =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n

 =



a1,1
a1,2

...
a1,n
am,1

...
am,n


(113)

The divergence of matrix where elements are stacked in a vectorial fashion can
be derived using the following

divA =


∂

∂x 0 · · · 0 0 · · · ∂
∂y 0 0 · · · 0 0 · · · 0

0 ∂
∂x · · · 0 0 · · · 0 ∂

∂y 0 · · · 0 · · · 0
...

...
. . .

...
...

. . .
...

...
...

. . .
...

. . .
...

0 0 · · · 0 0 · · · ∂
∂x 0 0 · · · 0 · · · ∂

∂y





ax
1,1

ax
1,2
...

ax
1,n

ax
m,1
...

ax
m,n

ay
1,1

ay
1,2
...

ay
1,n

ay
m,1
...

ay
m,n



(114)

7.2 Representation of norms

We will be using the following notational brevity to represent the L1 norm:

Etv(u) = ||∇u||1 (115)

||∇u||1 =
W

∑
i=1

H

∑
j=1
|∇ui,j| (116)

|∇ui,j| =
√

(∂xui,j)2 + (∂yui,j)2 (117)

where the partial derivatives are defined on discrete 2D grid as follows

∂xui,j = u(i, j)− u(i− 1, j) (118)
∂yui,j = u(i, j)− u(i, j− 1) (119)

XVI

For Maximisation we will be using gradient as

pn+1 − pn

σp
= ∇pE(p) (120)

For Minimisation we will be using gradient as

pn − pn+1

σp
= ∇pE(p) (121)

NOTE the switch in the iteration numbers in Maximisation and Minimisation.
For brevity, ui,j is denoted by u.

7.3 ROF Model

A standard ROF model can be written as

min
u∈X
||∇u||1 +

λ

2
||u− g||22 (122)

We know that the convex conjugate of ||.|| norm is an indicator function

δ(p) =
{

0 if ||p|| ≤ 1
∞ otherwise

∴ ||∇u||1 = max
p∈P

(
〈p,∇u〉 − δP(p)

)
(123)

Therefore, we can write the ROF function as

min
u∈X

max
p∈P
〈p,∇u〉 +

λ

2
||u− g||22 − δP(p) (124)

Let us call this new function E(u, p)

1. Compute the derivative with respect to p i.e. ∂pE(u, p) which is

∂pE(u, p) = ∂p

(
〈p,∇u〉 +

λ

2
||u− g||22 − δP(p)

)
(125)

∂p

(
〈p,∇u〉

)
= ∇u [proof given] (126)

∂p

(λ

2
||u− g||22

)
= 0 (127)

∂pδP(p) = 0 [∵ indicator function i.e. constant function](128)
⇒ ∂pE(u, p) = ∇u (129)

XVII

2. Compute the derivate with respect to u i.e. ∂uE(u, p) which is

∂uE(u, p) = ∂u

(
〈p,∇u〉 +

λ

2
||u− g||22 − δP(p)

)
(130)

∂u

(
〈p,∇u〉

)
= ∂u

(
− 〈u, divp〉

)
= −divp (131)

∂u

(λ

2
||u− g||22

)
= λ(u− g) (132)

∂uδP(p) = 0 (133)
⇒ ∂uE(u, p) = −divp + λ(u− g) (134)

3. Use simple gradient descent

pn+1 − pn

σ
= ∂pE(u, p) = ∇un (135)

pn+1 = pn + σ∇un (136)

pn+1 =
pn + σ∇un

max(1, |pn + σ∇un|) (137)

un − un+1

τ
= ∂uE(u, p) = −divp + λ(un+1 − g) (138)

un+1 =
un + τdivpn+1 + τλg

1 + τλ
(139)

7.4 Huber-ROF model

The interesting thing about Huber model is that it has a continuous first deriva-
tive, so a simple gradient descent on the function can bring us to the minima
while if we were to use Newton-Raphson method which requires the second
order derivative, it wouldn’t be possible to do so because the second derivative
of Huber model is not continuous. So, the function we want to minimise is

min
u∈X
||∇u||hα +

λ

2
||u− g||22 (140)

where ||.||h is the Huber-Norm and is defined as

||x||α =

{
|x|2
2α if |x| ≤ α
|x| − α

2 if |x| > α

The convex conjugate of a parablic function can be written as

f ∗(p) =
α

2
||p||22 ∀||p|| ≤ α (141)

and the conjugate of ||.|| function is the same indicator function

f ∗(p) =
{

α
2 if α < ||p|| ≤ 1
∞ otherwise (142)

XVIII

Therefore the minimisation can be re-written as

min
u∈X

max
p∈P

(
〈p,∇u〉 − δP(p)− α

2
||p||2 +

λ

2
||u− g||22

)
(143)

Minimisation The minimisation can be carried out following the series of steps

1. Compute the derivative with respect to p i.e. ∂pE(u, p) which is

∂pE(u, p) = ∂p

(
〈p,∇u〉 − δP(p)− α

2
||p||2 +

λ

2
||u− g||22

)
(144)

∂p

(
〈p,∇u〉

)
= ∇u (145)

∂p

(λ

2
||u− g||22

)
= 0 (146)

∂p

(
δP(p)

)
= 0 [∵ p is an indicator function] (147)

∂p

(α

2
||p||2

)
= αp (148)

⇒ ∂pE(u, p) = ∇u− αp (149)

2. Compute the derivate with respect to u i.e. ∂uE(u, p) which is

∂uE(u, p) = ∂u

(
〈p,∇u〉 − δP(p)− α

2
||p||2 +

λ

2
||u− g||22

)
(150)

∂u

(
〈p,∇u〉

)
= ∂u

(
− 〈u, divp〉

)
= −divp (151)

∂u

(λ

2
||u− g||22

)
= λ(u− g) (152)

∂uδP(p) = 0 (153)

∂u

(α

2
||p||2

)
= 0 (154)

⇒ ∂uE(u, p) = −divp + λ(u− g) (155)

3. Use simple gradient descent

pn+1 − pn

σ
= ∂pE(u, p) = ∇un − αpn+1 (156)

pn+1 =
pn + σ∇un

1 + σα
(157)

pn+1 =
pn+σ∇un

1+σα

max(1, | p
n+σ∇un

1+σα |)
(158)

un − un+1

τ
= ∂uE(u, p) = −divp + λ(un+1 − g) (159)

un+1 =
un + τdivpn+1 + τλg

1 + τλ
(160)

XIX

8 TVL1 denoising

TVL1 denoising can be rewritten as

min
u∈X
||∇u||1 + λ||u− f ||1 (161)

This can be further rewritten as a new equation where λ is subsumed inside the
norm i.e.

min
u∈X
||∇u||1 + ||λ(u− f)||1 (162)

We know that the convex conjugate of ||.|| norm is an indicator function

δ(p) =
{

0 if ||p|| ≤ 1
∞ otherwise

∴ ||∇u||1 = max
p∈P

(
〈p,∇u〉 − δP(p)

)
(163)

and ||λ(u− f)||1 = max
q∈Q

(
〈q, λ(u− f)〉 − δQ(q)

)
(164)

Therefore, we can write the TVL1 denoising function as

min
u∈X

max
p∈P

max
q∈Q
〈p,∇u〉 + 〈q, λ(u− f)〉 − δP(p)− δQ(q) (165)

Let us call this new function E(u, p, q)

1. Compute the derivative with respect to p i.e. ∂pE(u, p, q) which is

∂pE(u, p, q) = ∂p

(
〈p,∇u〉 + 〈q, λ(u− f)〉 − δP(p)− δQ(q)

)
(166)

∂p

(
〈p,∇u〉

)
= ∇u [proof given] (167)

∂p

(
〈q, λ(u− f)〉

)
= 0 (168)

∂pδP(p) = 0 [∵ indicator function i.e. constant function](169)
∂pδQ(q) = 0 (170)

⇒ ∂pE(u, p, q) = ∇u (171)

2. Compute the derivate with respect to q i.e. ∂uE(u, p, q) which is

∂qE(u, p, q) = ∂q

(
〈p,∇u〉 + 〈q, λ(u− f)〉 − δP(p)− δQ(q)

)
(172)

∂q

(
〈p,∇u〉

)
= 0 (173)

∂q

(
〈q, λ(u− f)〉

)
= λ(u− f) (174)

∂qδP(p) = 0 (175)
∂qδQ(q) = 0 (176)

⇒ ∂qE(u, p, q) = λ(u− f) (177)

XX

3. Compute the derivate with respect to u i.e. ∂uE(u, p, q) which is

∂uE(u, p, q) = ∂u

(
〈p,∇u〉 + 〈q, λ(u− f)〉 − δP(p)− δQ(q)

)
(178)

∂u

(
〈p,∇u〉

)
= ∂u

(
− 〈u, divp〉

)
= −divp (179)

∂u

(
〈q, λ(u− f)〉

)
= λq (180)

∂uδP(p) = 0 (181)
∂uδQ(q) = 0 (182)

⇒ ∂uE(u, p) = −divp + λq (183)

4. Use simple gradient descent

pn+1 − pn

σ
= ∂pE(u, p, q) = ∇un (184)

pn+1 = pn + σ∇un (185)

pn+1 =
pn + σ∇un

max(1, |pn + σ∇un|) (186)

qn+1 − qn

σ
= ∂qE(u, p, q) = λ(un − f) (187)

qn+1 = qn + σλ(un − f) (188)

qn+1 =
qn + σλ(un − f)

max(1, |qn + σλ(un − f)|) (189)

un − un+1

τ
= ∂uE(u, p, q) = −divpn+1 + λqn+1 (190)

un+1 = un + τdivpn+1 − τλqn+1 (191)

8.1 Image Deconvolution

min
u∈X
||∇u||1 +

λ

2
||Au− g||22 (192)

The problem can be written in terms of saddle-point problem as

min
u∈X

max
p∈P
〈p,∇u〉 +

λ

2
||Au− g||22 − δP(p) (193)

Minimisation The minimisation can be carried out following the series of
steps

XXI

1. Compute the derivative with respect to p i.e. ∂pE(u, p) which is

∂pE(u, p) = ∂p

(
〈p,∇u〉 − δP(p) +

λ

2
||Au− g||22

)
(194)

∂p

(
〈p,∇u〉

)
= ∇u (195)

∂p

(λ

2
||Au− g||22

)
= 0 (196)

∂p

(
δP(p)

)
= 0 [∵ p is an indicator function] (197)

⇒ ∂pE(u, p) = ∇u (198)

2. Compute the derivate with respect to u i.e. ∂uE(u, p) which is

∂uE(u, p) = ∂u

(
〈p,∇u〉 − δP(p) +

λ

2
||Au− g||22

)
(199)

∂u

(
〈p,∇u〉

)
= ∂u

(
− 〈u, divp〉

)
= −divp (200)

∂u

(λ

2
||Au− g||22

)
= λ

(
AT Au− AT g

)
(201)

∂uδP(p) = 0 (202)

⇒ ∂uE(u, p) = −divp + λ

(
AT Au− AT g

)
(203)

∂u||Au− g||22 = ∂u(Au− g)T(Au− g) (204)

(Au− g)T(Au− g) = ((Au)T − gT)(Au− g) (205)

((Au)T − gT)(Au− g) = (uT AT − gT)(Au− g) (206)

(uT AT − gT)(Au− g) = uT AT Au− uT AT g + gT Au + gT g (207)

∂uuT AT Au = ∂uuT Bu [Lets say B is AT A] (208)

∂uuT Bu = (B + BT)u (209)
∂uuT AT Au = (AT A + (AT A)T)u (210)
∂uuT AT Au = (AT A + AT A)u (211)
∂uuT AT Au = 2AT Au (212)

XXII

3. Use simple gradient descent

pn+1 − pn

σ
= ∂pE(u, p) = ∇un (213)

pn+1 = pn + σ∇un (214)

pn+1 =
pn + σ∇un

max(1, |pn + σ∇un|) (215)

un − un+1

τ
= ∂uE(u, p) = −divpn+1 + λ

(
(AT A)

1
un+1 − AT g

)
(216)

un+1
(

I + τλAT A
)

= un + τdivpn+1 + τλAT g (217)

un+1 =
(

I + τλAT A
)−1

(un + τdivpn+1 + τλAT g) (218)

(219)

This requires matrix inversion. In some cases the matrix may be singular be-
cause it is generally sparse and therefore inversion is not a feasible solution.
Therefore, one resorts to using Fourier Analysis.

Another alternative is to dualise again with respect to u, which then yields

min
u∈X

max
p∈P,q∈Q

〈p,∇u〉 + 〈Au− g, q〉 − δP(p)− 1
2λ
||q||2 (220)

1. Compute the derivative with respect to p i.e. ∂pE(u, p, q) which is

∂pE(u, p) = ∇u (221)

2. Compute the derivate with respect to q i.e. ∂qE(u, p, q) which is

∂qE(u, p, q) = Au− g− 1
λ

q (222)

3. Compute the derivate with respect to u i.e. ∂uE(u, p, q) which is

∂uE(u, p, q) = −divp + ATq (223)

XXIII

4. Use simple gradient descent

pn+1 − pn

σp
= ∂pE(u, p, q) = ∇un (224)

pn+1 = pn + σp∇un (225)

pn+1 =
pn + σp∇un

max(1, |pn + σp∇un|) (226)

qn+1 − qn

σq
= ∂qE(u, p, q) = Aun − g− 1

λ
qn+1 (227)

qn+1 =
qn + σq Aun − σqg

1 + σq
λ

(228)

un − un+1

τ
= ∂uE(u, p) = −divpn+1 + ATqn+1 (229)

un+1 = un + τdivpn+1 − τATqn+1 (230)

This saves matrix inversion. One of the benefits of using the Legendre-
Fenchel transformation.

Interesting tip Imagine we have a function of the form

E = (h ∗ u− f)2 (231)

where ∗ operator denotes the convolution. If one wants to take the derivate
with respect to u, one can make use of the fact that h ∗ u can be expressed as
a linear function of sparse matrix D, i.e. Du. Rewriting the equation we can
derive

E = (Du− f)2 = (Du− f)T(Du− f) (232)

Now it is very trivial to see the derivative of this function with respect to u.
Referring to the Eqn. 76 in the [2], we can then write the derivative of E with
respect to u as follows

∂E
∂u

= 2DT(Du− f) (233)

Du = h ∗ u (234)
DT(Du− f) = h̃ ∗ (h ∗ u− f) (235)

where h̃ is the mirrored kernel, i.e. h̃ ≡ h(−x)

8.2 Optic Flow

Optic flow was popularised by Horn and Schunk’s seminal paper [4] which
has over the next two decades sparked a great interest in minimising the en-
ergy function associated with computing optic flow and it’s various different

XXIV

formulations [5][6][9]. Writing the standard L1 norm based optic flow equation

min
u∈X,v∈Y

{
||∇u||1 + ||∇v||1 + λ|I1(x + f)− I2(x)|

}
(236)

where f is a flow vector (u, v) at any pixel (x, y) in the image. For brevity (x, y)
is replaced by x. Substituting p for dual variable corresponding to∇u, q for∇v
and r for I1(x + f)− I2(x), we can rewrite the original energy formulation in it’s
primal-dual form as

(237)
max

p ∈P,q∈Q,r∈R
min

u ∈X,v∈Y

{
〈p,∇u〉 + 〈q,∇v〉

+ 〈r, λ(I1(x + f)− I2(x))〉 − δp(P)− δq(Q)− δr(R)
}

We have used the same trick for writing the dual formulation corresponding to
the I1(x + f)− I2(x) by subsuming the λ inside, we used while writing the dual
formulation of the data term in TV-L1 denoising equation 164. Various derivates
required for gradient descent can be computed as shown below

1. Compute the derivate with respect to p i.e. ∂pE(u, v, p, q, r) which is

∂pE(u, v, p, q, r) = ∇u (238)

2. Compute the derivate with respect to q i.e. ∂qE(u, v, p, q, r) which is

∂qE(u, v, p, q, r) = ∇v (239)

3. Compute the derivate with respect to r i.e. ∂rE(u, v, p, q, r) which is

∂rE(u, v, p, q, r) = λ(I1(x + f)− I2(x)) (240)

4. Compute the derivate with respect to u i.e. ∂rE(u, v, p, q, r) which is

∂uE(u, v, p, q, r) = −divp + ∂u(〈r, λ(I1(x + f)− I2(x))〉) (241)

Linearising around f0, we can rewrite the above expression involving r as

(242)〈r, λ(I1(x+ f)− I2(x))〉 = 〈r, λ(I1(x+ f0)− I2(x))+(f − f0)t[IxIy]T)〉.

We can expand the terms involving f and f0 as

I1(x+ f0)− I2(x)+(f − f0)t[IxIy]T = I1(x+ f0)− I2(x)+(u−u0)tIx +(v−v0)tIy

(243)

It is easy to then expand the dot-product expression involving r as

(244)〈r, λ(I1(x + f0)− I2(x) + (f − f0)t[IxIy]T)〉
= λ〈r, I1(x + f0)− I2(x)〉+ λ〈r, (u−u0)tIx〉+ λ〈r, (v− v0)tIy〉

XXV

〈r, (u− u0)tIx〉 = 〈r, Ix(u− u0)〉 = rtIx(u− u0) = 〈Ix
Tr, (u− u0)〉 (245)

Ix is a diagonal matrix composed of entries corresponding to gradient along
x-axis for each pixel and similarly Iy is composed of gradient along y-axis.
The derivative of E with respect to u can be then written as

∂uE(u, v, p, q, r) = −divp + λIx
Tr (246)

5. Compute the derivate with respect to v i.e. ∂vE(u, v, p, q, r) which is

∂vE(u, v, p, q, r) = −divq + λIy
Tr (247)

Gradient descent equations then follow straightforward

1. Maximise with respect to p

pn+1 − pn

σp
= ∇un (248)

pn+1 =
pn + σp∇un

max(1, |pn + σp∇un|) (249)

2. Maximise with respect to q

qn+1 − qn

σq
= ∇vn (250)

qn+1 =
qn + σq∇vn

max(1, |qn + σq∇vn|) (251)

3. Maximise with respect to r

rn+1 − rn

σr
= λ(I1(x + f n)− I2(x)) (252)

rn+1 =
rn + σrλ(I1(x + f n)− I2(x))

max(1, |rn + σrλ(I1(x + f n)− I2(x))|) (253)

4. Minimise with respect to u

un − un+1

σu
= −divpn+1 + λIx

Trn+1 (254)

5. Minimise with respect to v

vn − vn+1

σv
= −divqn+1 + λIy

Trn+1 (255)

XXVI

8.3 Super-Resolution

The formulation was first used in [8] but we will describe here the minimisation
procedue below.

min
u∈X

{
λ||∇û||hεu +

N

∑
i=1
||DBWiû− f̌i||

ξh
εd

}
(256)

With λ > 0, let us now rewrite the conjugate for λ||.|| we see

f ∗(p) = sup
u∈R

(
〈p,∇u〉 − λ||∇u||

)
(257)

f ∗(p) = λ sup
u∈R

(
〈 p

λ
,∇u〉 − ||∇u||

)
(258)

Let us now denote p
λ = k, then we can write

f ∗(p) = λ sup
u∈R

(
〈k,∇u〉 − ||∇u||

)
(259)

f ∗(p) = λ f ∗(k) (260)

But we know that supu∈R

(
〈k,∇u〉 − ||∇u||

)
is an indicator function defined

by

f ∗(k) =
{

0 if ||k|| ≤ 1
∞ otherwise (261)

Therefore, we can write the f ∗(p) as

f ∗(p) =
{

0 if ||k|| ≤ 1
∞ otherwise (262)

Now replace k by p
λ we can then come to an expression

f ∗(p) =

{
0 if || p

λ
|| ≤ 1

∞ otherwise
(263)

The saddle-point formulation then becomes

(264)
min
u ∈X

max
p̂,q̌

{
〈 p̂,∇û〉 − εu

2λh2 || p̂||
2 − δ{| p̂|≤λh2}

+
N

∑
i =1

(
〈q̂i , DBWiû − f̌i〉

ξh
X −

εd
2(ξh)2 ||q̌||

2 − δ{|q̌i |≤(ξh)2}

)}
Minimisation Minimisation equations can be written as follows

XXVII

1. Compute the derivative with respect to p i.e. ∂pE(u, p) which is

∂pE(û, p̂, q̌) = ∂p

{
〈 p̂,∇û〉 − εu

2λh2 || p̂||
2 − δ{| p̂|≤λh2}

+
N

∑
i=1

(
〈q̂i , DBWiû − f̌i〉

ξh
X −

εd
2(ξh)2 ||q̌||

2 − δ{|q̌i |≤(ξh)2}

)}
(265)

∂p

(
〈p,∇u〉

)
= ∇u (266)

⇒ ∂pE(u, p) = ∇u− εu

λh2 p̂ (267)

2. Compute the derivate with respect to qi i.e. ∂uE(u, p, qi) which is

∂q̌i E(û, p̂, q̌i) = (ξh)2(DBWiû− f̌i)− ∂q̌i

(
εd

2(ξh)2 ||q̌i||2
)

(268)

⇒ ∂q̌i E(û, p̂, q̌i) = (ξh)2(DBWiû− f̌i)−
εd

(ξh)2 q̌i (269)

3. Compute the derivate with respect to u i.e. ∂uE(u, p, qi) which is

∂uE(û, p̂, q̌i) = −divp + (ξh)2
N

∑
i=1

∂u(q̌T
i (DBWiû− f̌i)) (270)

⇒ ∂uE(û, p̂, q̌i) = −divp + (ξh)2
N

∑
i=1

(WT
i BTDT q̌i) (271)

4. Use simple gradient descent

pn+1 − pn

σp
= ∂pE(u, p) = h2∇un − εu

λh2 pn+1 (272)

pn+1 − pn = σph2∇hun −
σpεu

λh2 pn+1 (273)

pn+1 =
σph2∇hun + pn

1 + σpεu
λh2

(274)

pn+1 =
pn+1

max(1, |p
n+1|
λ)

(275)

XXVIII

q̌n+1
i − q̌n

i
σq

= (ξh)2(DBWiûn − f̌i)−
εd

(ξh)2 q̌n+1
i (276)

q̌n+1
i − q̌n

i = σq(ξh)2(DBWiûn − f̌i)−
σqεd

(ξh)2 q̌n+1
i (277)

q̌n+1
i =

q̌n
i + σq(ξh)2(DBWiûn − f̌i)

1 + σqεd
(ξh)2

(278)

q̌n+1
i =

q̌n+1
i

max(1, |q̌n+1
i |)

(279)

ûn − ûn+1

τ
= ∂uE(û, p̂, q̌i) = −divpn+1 + (ξh)2

N

∑
i=1

(WT
i BTDT q̌n+1

i) (280)

ûn+1 = ûn − τ

(
− divpn+1 + (ξh)2

N

∑
i=1

(WT
i BTDT q̌n+1

i)

)
(281)

8.4 Super Resolution with Joint Flow Estimation

Let us now try to turn our attention towards doing full joint tracking and super
resolution image reconstruction. Before we derive anything let’s try to formu-
late the problem from bayesian point of view. We are given the downsampling,
blurring operators and we want to determine the optical flow between the im-
ages and reconstruct the super resolution image at the same time. The posterior
probability can be written as

P(û, {ŵi}N
i=1|{ f̌i}N

i=1, D, B) (282)

Using standard bayes rule, we can write this in terms of likelihoods and priors
as

P(û, {ŵi}N
i=1|{ f̌i}N

i=1, D, B) ∝
N

∏
i=1

P(f̌i|ŵi , û, D, B)P(ŵi , û, D, B) (283)

P(f̌i|ŵi , û, D, B) is our standard super resolution likelihood model and under
the L1 norm can be expressed as follows

− logP(f̌i|ŵi , û, D, B) = ||DBû(x + ŵi)− f̌i|| (284)

while P(ŵi , û, D, B) marks our prior for the super resolution image and the flow.
It can be easily simplied under the assumption that flow prior is independent
of super resolution prior.

P(ŵi , û, D, B) =
{ N

∏
i=1

P(ŵi)
}

P(û) (285)

XXIX

The priors are standard TV-L1 priors and can be written as

− logP(ŵi) = µi{||∇ŵxi|| + ||∇ŵyi||} (286)

and

− logP(û) = λ||∇û|| (287)

The combined energy function can be written as

E(û, {ŵi}N
i=1) =

N

∑
i=1
||DBû(x + ŵi)− f̌i|| +

N

∑
i=1

µi{||∇ŵxi|| + ||∇ŵyi||} + λ||∇û||

(288)

We dualise with respect to each L1 norm and obtain the following expression

(289)
E(û, {ŵi}N

i=1) =
N

∑
i=1
〈qi , DBû(x + ŵi)− f̌i〉

+
N

∑
i=1

µi{〈rxi ,∇ŵxi〉 + 〈ryi ,∇ŵyi〉} + λ〈p,∇û〉

Optimising with respect to qi

qn+1
i − qn

i
σq

= DBûn(x + wn
i)− f̌i (290)

Optimising with respect to p

pn+1 − pn

σp
= ∇un (291)

Optimising with respect to rxi

rn+1
xi − rn

xi
σrx

= ∇wn
xi (292)

Optimising with respect to ryi

rn+1
yi − rn

yi

σry

= ∇wn
yi (293)

XXX

Optimising with respect to ŵxi The linearisation around the current solution
leads to expanding the flow equation as

DBû(x + ŵn
i)− f̌i = DBû(x + ŵn−1

i + ˆdw
n
i)− f̌i (294)

(295)

(296)DBû(x + ŵn−1
i + ˆdw

n
i)− f̌i = DB{û(x + ŵn−1

i) + ∂xû(x + ŵn−1
i) ˆdw

n
xi

+ ∂yû(x + ŵn−1
i) ˆdw

n
yi} − f̌i

Replacing ˆdw
n
xi and ˆdw

n
yi by ŵn

xi − ŵn−1
xi and ŵn

yi − ŵn−1
yi respectively we can

rewrite the above equation as

(297)
DBû(x + ŵn−1

i + ˆdw
n
i)− f̌i = DB{û(x+ŵn−1

i)+∂xû(x + ŵn−1
i)(ŵn

xi− ŵn−1
xi)

+ ∂yû(x + ŵn−1
i)(ŵn

yi − ŵn−1
yi)} − f̌i

Treating now ŵn−1
i to be constant, we can minimise the energy function with re-

spect to ŵxi and ŵn
yi respectively. The obtained update equations can be written

as

ŵn
xi − ŵn−1

xi
σw

= ∂ŵxi

{
〈qi , DB

{
û(x + ŵn−1

i) + ∂xû(x + ŵn−1
i)(ŵn

xi − ŵn−1
xi)

+ ∂yû(x + ŵn−1
i)(ŵn

yi − ŵn−1
yi)

}
− f̌i〉 + 〈rxi ,∇ŵxi〉 + 〈ryi ,∇ŵyi〉

}
(298)

ŵn
xi − ŵn−1

xi
σw

= IT
x BT DTqn

i − divrn
xi (299)

or

ŵn+1
xi − ŵn

xi
σw

= IT
x BT DTqn+1

i − divrn+1
xi (300)

Ix = diag(∂x(û(x + ŵn
i))) (301)

Optimising with respect to ŵyi Similar optimisation scheme with respect to
ŵyi yields a similar update equation

ŵn+1
yi − ŵn

yi

σw
= IT

y BT DTqn+1
i − divrn+1

yi (302)

Iy = diag(∂y(û(x + ŵn
i))) (303)

Optimisations with respect to qi, wxi, wyi, rxi and ryi are done on a coarse-
to-fine pyramid fashion.

XXXI

Optimising with respect to û Given the current solution for ŵn
i we can write

û(x + ŵn
i) as a linear function of û by multiplying it with warping matrix Wn

i û

ûn+1 − ûn

σû
= −

(N

∑
i=1

(W(n+1)
i)T BT DTqn+1

i − divpn+1
)

(304)

9 Setting the step sizes

The constants τ and σ are usually very easy to set if the operator K in the equa-
tion

min
x∈X

F(Kx) + G(x) (305)

is a simple operator, in which case τ and σ can be easily found from the con-
straint that τ σ L2 ≤ 1, where L is the operator norm i.e. ||K||. For instance if we
try to look at our problem of ROF model and dualise it we can see that

min
u∈X
||∇u||1 +

λ

2
||u− g||22 (306)

using p as a dual to ∇u and q as a dual to u− g we can reduce this to it’s dual
form

min
u∈X

max
p∈P

max
q∈Q
〈p,∇u〉 − δP(p) + 〈q, u− f 〉 − 1

2λ
q2 (307)

Let us denote that we want to use a single dual variable y as a substitute for
concatenated vector of p and q, only to simply this equation to obtain an ex-
pression in the form of Eqn. 94 so that we treat our u in this equation as x there.
We can then rewrite this above expression very simply in x and y as

min
x∈X

max
y∈Y
〈Kx, y〉 − F∗(y) + G(x) (308)

where our K now is

K =
(
∇
I

)
, x = u, y =

(
p
q

)
, F∗(y) =

(
δP(p)

qT f + 1
2λ q2

)
and G(x) =

(
0
)

(309)

It is easy to see that if K has a simple form, we can write the closed form solution
of the norm of K, i.e. ||K||. However, if K has some complicated structure e.g. in
the case of deblurring or super resolution K would have different entries in each
row and it’s hard to come up with a closed form solution of the norm of K in
which case one would like to know how to set the τ and σ so that we can carry
out the succession of iterations for our variables involved in minimisation. A
new formulation from Pock et al. [10] describe a way to set the τ and σ such
that the optimality condition of convergence still holds. It is

τj =
1

∑N
i=1 |Kij|2−α

and σi =
1

∑M
j=1 |Kij|α

(310)

where generally α = 1.

XXXII

10 When to and when not to use Duality: What price do we
pay on dualising a function?

It may at first seem a bit confusing that adding more variables using duality
makes the optimisation quicker. However, expressing any convex function as a
combination of simple linear functions in dual space makes the whole problem
easy to handle. Working on primal and dual problems at the same time brings
us closer to the solution very quickly. Switching between min and max between
the optimisation means a strong duality holds.

10.1 If the function is well convex and differentiable, should we still
dualise?

Let us take an example of a function which is convex and differential every-
where. We take the ROF model and replace the L1 norm with the standard L2
norm, i.e.

E(u,∇u) = min
u∈X
||∇u||22 +

λ

2
||u− g||22 (311)

If we were to use the standard Euler-Lagrange equations, we will obtain the
following update equation

un+1 − un

σu
= −∂E(u,∇u)

∂u
(312)

where ∂E(u,∇u)
∂u is defined according to Euler-Lagrange equation as

∂E(u,∇u)
∂u

=
∂E
∂u
− ∂

∂x

(
∂E
∂ux

)
− ∂

∂y

(
∂E
∂uy

)
(313)

where ofcourse our ||∇u||2 is defined as (u2
x + u2

y) where ux is the derivative
with respect to x and similarly for y. Now if we were to write the gradient
descent update step with respect to u, we will obtain the following update-
equation.

un+1 − un

σu
= −(λ(u− f)− 2

∂

∂x
(ux)− 2

∂

∂y
(uy)) (314)

It therefore involves the Laplacian which is nothing but the

∇2u =
∂ux

∂x
+

∂uy

∂y
=

∂2u
∂x2 +

∂2u
∂y2 (315)

Therefore our minimisation with respect to u takes us to the final gradient step
update as

un+1 − un

σu
= −(λ(u− f)− 2∇2u) (316)

XXXIII

It is therefore clear that if we were to use the Euler-Lagrange equations, we
will still have to compute the derivative of the regulariser in order to update
with respect to u. However, if we were to dualise the function, we could see the
data-term and regulariser-term are decoupled. Following is the Primal-Dual
min-max equation for the same problem.

min
u∈X

max
p∈P

max
q∈Q
〈p,∇u〉 − 1

2
p2 + 〈q, u− f 〉 − 1

2λ
q2 (317)

Optimising with respect to p

pn+1 − pn

σp
= ∇un − pn+1 (318)

pn+1 =
pn + σp∇un

1 + σp
(319)

Optimising with respect to q

qn+1 − qn

σq
= un − f − 1

λ
qn+1 (320)

Optimising with respect to u

un − un+1

σu
= −divpn+1 + qn+1 (321)

It is clear that while updating q we only work on u− f and while updating p we
only work on ∇u. The equations we obtain are system of linear equations and
are pointwise separable. While in the case of Euler-Lagrange we will have to
approximate the Laplacian operator with a kernel which makes the solution at
on point dependent on the neighbours. Therefore, the Primal-Dual form decou-
ples the data and the regulariser terms. It makes the problem easier to handle.

References

1. Rockafellar. T.: Convex Analysis. II
2. Matrix Cookbook: http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/

3274/pdf/imm3274.pdf XXIII
3. http://gpu4vision.icg.tugraz.at/

4. B.K.P. Horn and B.G. Schunck.: Determining optical flow. Artificial Intelligence, vol
17, pp 185-203, 1981. XXIII

5. Simon Baker and Ian Matthews: Lucas-Kanade 20 Years On: A Unifying Framework,
International journal of computer vision, Volume 56, Number 3, 221-255 XXIV

6. C. Zach, T. Pock and H. Bishof: A Duality Based Approach for Realtime TV-L1 Optical
Flow, Proceedings of the DAGM conference on Pattern recognition, 2007. XXIV

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/imm3274.pdf
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/imm3274.pdf
http://gpu4vision.icg.tugraz.at/

XXXIV

7. Chambolle, A., Pock, T.: A First-Order Primal-Dual Algorithm for Convex Problems,
Journal of Mathematical Imaging and Vision XIII

8. Unger, M., Pock, T., Werlberger, M., Bishof, H.: A covex approach for variational
Super-Resolution, XXVI

9. Steinbruecker, F., Pock, T., Cremers, D.: Large Displacement Optical Flow Computa-
tion without Warping, International Conference on Computer Vision 2009 XXIV

10. Pock, T., Chambolle, A.:Diagonal preconditioning for first order primal-dual algo-
rithms in convex optimization, International Conference on Computer Vision 2011
XXXI

	Applications of Legendre-Fenchel transformation to computer vision problems

