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Abstract
JavaScript has become the most widely used language for client-
side web programming. The dynamic nature of JavaScript makes
understanding its code notoriously difficult, leading to buggy pro-
grams and a lack of adequate static-analysis tools. We believe that
logical reasoning has much to offer JavaScript: a simple description
of program behaviour, a clear understanding of module boundaries,
and the ability to verify security contracts.

We introduce a program logic for reasoning about a broad subset
of JavaScript, including challenging features such as prototype
inheritance and with. We adapt ideas from separation logic to
provide tractable reasoning about JavaScript code: reasoning about
easy programs is easy; reasoning about hard programs is possible.
We prove a strong soundness result. All libraries written in our
subset and proved correct with respect to their specifications will
be well-behaved, even when called by arbitrary JavaScript code.

1. Introduction
JavaScript has become the de-facto language for client-side web
programming. Ajax web applications, used in e.g. Google Docs,
are based on a combination of JavaScript and server-side pro-
gramming. JavaScript has become an international standard called
ECMAScript [13]. Adobe Flash, used in e.g. YouTube, features
ActionScript, a programming language based on ECMAScript.
Even web applications written in e.g. Java, F] or purpose-designed
languages such as Flapjax or Milescript are either compiled to
JavaScript, or they lack browser integration or cross-platform com-
patibility. JavaScript is currently the assembly language of the Web,
and this seems unlikely to change.

JavaScript was initially created for small web-programming
tasks, which benefited from the flexibility of the language and
tight browser integration. Nowadays, the modern demands placed
on JavaScript are huge. Although this flexibility and browser in-
tegration are still key advantages, the inherent dynamic nature of
the language makes current web code based on ECMAScript 3
notoriously difficult to write and use [11, 16, 25]. The expecta-
tion is that ECMAScript 5 and future standards will improve the
situation. However, although the main browsers now support EC-
MAScript 5, the majority of code being written today is in EC-
MAScript 3. Even if there is a wide acceptance of ECMAScript 5,
which is certainly not clear from the current web blogs, it is in-
evitable that ECMAScript 5 libraries will have to interface prop-
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erly with ECMAScript 3 code. We therefore believe that there is
a growing need for general-purpose, expressive analysis tools for
both ECMAScript 3 and 5, which provide simple, correct descrip-
tions of program behaviour and a clear understanding of module
boundaries.

We introduce a program logic for reasoning about ECMAScript 3.
While it is tempting to ignore the ‘ugly’ parts of the language, and
reason only about ‘well-written’ code, in practice JavaScript pro-
grams have to interface with arbitrary web code. Our reasoning is
therefore based on a model of the language that does not shun the
most challenging JavaScript features. For example, the behaviour
of prototype inheritance, and the interplay between scoping rules
and the with statement, is complex. This means that our basic rea-
soning rules must also be complex. We overcome this complexity
by establishing natural layers of abstraction on top of our basic
reasoning. With principled code, we can stay within these layers
of abstraction and the reasoning is straightforward. With arbitrary
code, we must break open the appropriate abstraction layers until
we can re-establish the invariants of the abstraction. In this way,
we are able to provide clean specifications of a wide variety of
JavaScript programs.

Our reasoning is based on separation logic. Separation logic has
proven to be invaluable for reasoning about programs which di-
rectly manipulate the heap, such as C and Java programs [2, 3, 7,
18, 32]. A key characteristic of JavaScript is that the entire state
of the language resides in the object heap, in a structure that im-
perfectly emulates the variable store of many other programming
languages. It is therefore natural to investigate the use of separation
logic to verify JavaScript programs. In fact, we had to fundamen-
tally adapt separation logic, both to present an accurate account of
JavaScript’s emulated variable store (see Section 2: Motivating Ex-
amples) and also to establish soundness. For soundness, it is usual
to require that all the program commands are ‘local’, according to
a definition first given in [18]. Many JavaScript statements are not
local by this definition: for example, even a simple variable read is
non-local because its result may depend on the absence of certain
fields in the emulated variable store. We instead prove soundness
using a concept of weak locality, recently introduced by Smith [27].

In this paper, we reason about a substantial subset of JavaScript,
including prototype inheritance, with, simple functions (no recur-
sive or higher-order functions) and simple eval. Our treatment of
functions and eval is precisely enough to expose fully the com-
plexity of the emulated variable store. Building on the work of
Charlton and Reus [5, 26], we will extend our reasoning to higher-
order functions and complex eval in future. We prove soundness
of our reasoning with respect to a faithful subset of the formal op-
erational semantics of Maffeis et al. [16]. Our soundness result
has powerful implications. Library code written in our subset and
proved correct with respect to their specifications will be well be-
haved, even when called by arbitrary JavaScript code. Our sound-
ness result is constructed in such a way that it will be simple to ex-



Figure 1. A JavaScript emulated variable store

tend to reasoning about higher-order functions and complex eval
in due course.

2. Motivating Examples
As convincingly argued in [11, 16, 24, 25], there are many reasons
why the behaviour of JavaScript programs is complex. For a start,
JavaScript is a dynamically typed, prototype-oriented language,
which does not have a standard notion of variable store. Instead,
JavaScript variables are best regarded as being stored in the heap,
in a structure which imperfectly emulates the variable store. This
structure consists of an abstract list of scope objects, called the
scope chain, analogous to stack frames in other languages. Every
scope object has a pointer to a linked list of prototypes, providing
prototype-based inheritance. Since scope objects inherit data from
their prototypes, the value of a variable cannot be resolved by a
simple list traversal. Variable resolution is further complicated by
the fact that JavaScript objects may share a common prototype.

JavaScript’s behaviour can make apparently simple programs
deceptively counterintuitive. Consider the code C defined below:

x = null; y = null; z = null;
f = function(w){x = v; v = 4; var v; y = v;};
v = 5; f(null); z = v;

What values should the variables x, y and z store at the end of the
program? The correct answer is undefined, 4 and 5 respectively.
We explain how this occurs as we walk through our reasoning.

In Section 6.2 we prove the following triple of this code:{
storeLS(x, y, z, f, v|) ∗ l .= LS

}
C{

∃L. storeLS(|x : undefined, y : 4, z : 5, f : L, v : 5)
∗ l .= LS ∗ true

}
We distinguish a global logical expression l with value LS denoting
the scope chain. The store predicate storeLS(x, y, z, f, v|) states
that the store-like structure referred to by LS contains none of the
program variables mentioned; the variables occur to the left of the
bar. The store predicate storeLS(|x : undefined, y : 4, z : 5, f :
L, v : 5) denotes the final values for all the variables; the variables
occur to the right of the bar with assigned values.

To understand the complexity of the heap structures described
by store predicates, consider the example heap given in Figure 1.
This diagram illustrates a typical shape of a JavaScript variable
store. Each object is denoted by a box. In this example, the cur-
rent list of scope objects is given by l = [l1, l2, l3, l4, lg], where
the li are object addresses and lg is a distinguished object contain-
ing the global variables which must occur at the end of the current
list of scope objects. Each scope object has a pointer to a list of
prototypes, with the arrows representing prototype relationships.
These prototype lists can be shared, but cannot form cycles. In EC-
MAScript 3, prototype lists must either end with the distinguished

object lop or they may be empty. However, many implementations
(SpiderMonkey, V8 and WebKit) allow the programmer to directly
access and change the prototype pointers, allowing incomplete pro-
totype chains ending in null but not allowing the creation of cy-
cles. We work with incomplete prototype chains, since we want
ECMAScript 3 library code to work well with such implementa-
tions.

To look up the value of a variable x in our example heap, we
check each object for a field with name x, starting with l1, checking
the prototype list from l1 then moving along the list of scope
objects. In our example, the x in object l will be found first, since
the whole prototype chain of l2 will be visited before l3. When
reading the value stored in x, this is all we need to know. If we
write to the same variable x, the effect will be to create a new field
x at l2. This new field will override the x field in object l in the
usual prototype-oriented way.

All of this messy detail is abstracted away by the store pred-
icate. The formation of this predicate is subtle and requires some
adaptation of separation logic. As well as the separating conjunc-
tion ∗ for reasoning about disjoint heaps, we introduce the sepish
connective t∗ for reasoning about partially separated heaps. It is
used, for example, to account for the sharing of prototype lists il-
lustrated in Figure 1. We also use the assertion (l, x) 7→ �, which
states that the field x is not present at object address l. This pred-
icate is reminiscent of the ‘out’ predicate in [6] stating that values
are not present in a concurrent list. It is necessary to identify the
first x in the structure: in our example, the x at l is the first x, since
it does not occur in the prototype list of l1 nor in the prototype list
of l2 until l.

Our store predicate allows us to make simple inferences about
variable assignments, without breaking our store abstraction:{

storeLS(x, y, z, f, v|) ∗ l .= LS
}

x = null;{
storeLS(y, z, f, v|x : null)
∗ l .= LS ∗ true

}
where the assertion true hides potentially garbage-collected proto-
type lists.

The evaluation of the function expression function(w) {...}
has the effect of creating a new function object and returning the
address L of that object. The object contains a number of internal
housekeeping fields, including @body which contains the body of
the function and @scope which stores the function closure LS. Our
inference for the function definition is approximately:{

storeLS(f, v|x : null, y : null, z : null) ∗ l .= LS
}

f = function(w) {...} ∃L. storeLS(v|x : null, y : null, z : null, f : L) ∗
(L,@body) 7→ λw.{. . . } ∗ (L,@scope) 7→ LS ∗
l .= LS ∗ true


As well as the store predicate, we assert that the state also

contains object cells such as (L,@scope) 7→ LS. This assertion
means that there is an object with address L in the heap, and
it definitely contains at least the field @scope which has value
LS. The assertion says nothing about any other field of L. We
assert that our function object has fields @body and @scope . The
full specification, given in Section 6.2, is actually a little more
complicated than this. For now, we hide additional housekeeping
fields in the assertion true.

We know that this program example is challenging, because the
final values of the variables are counterintuitive. All the complexity
of the example occurs within the function call. When JavaScript
calls a function, it performs two passes on the body: in the first
pass, it creates a new scope object and initialises local variables
to undefined; in the second pass, it runs the code in the newly



constructed local scope. Our reasoning reflects this complexity. The
Hoare triple for the function call has the following shape: storeLS(|x : null, y : null, z : null, f : L, v : 5) ∗

(L,@body) 7→ λw.{. . . } ∗ (L,@scope) 7→ LS ∗
l .= LS ∗ true


f(null);{

? ? ?
}

To find a suitable postcondition, we must reason about the
function body. The precondition of the function-body triple given
below is constructed from the first pass of the function call. As
well as containing the precondition of the function call, it contains
a new scope object L′ with fields given by the parameter of the
function and the local variables discovered by the first pass. For
our example, it contains the assertions (L′, w) 7→ null for the
parameter declaration and (L′, v) 7→ undefined for the local
variable declaration. The object L′ also has a @proto field, which
points to null since scope objects do not inherit any behaviour, and
a @this field, which can only be read. We also have the predicate
newobj(L′,@proto,@this, w, v), which asserts the absence from
L′ of all the fields we have not mentioned as parameters. Knowing
this absence of fields is essential if, in the function body, we wish
to write to variables, such as the x and y, which do not appear in the
local scope object. Finally, the new scope object L′ is prepended to
the scope list l.

Using this precondition, we are now able to give the triple
obtained by the second pass of the function call:

∃L′. l .= L′ : LS ∗
storeLS(|x : null, y : null, z : null, f : L, v : 5) ∗
(L,@body) 7→ λw.{. . . } ∗ (L,@scope) 7→ LS ∗
newobj(L′,@proto,@this, w, v)∗
(L′, w) 7→ null ∗ (L′, v) 7→ undefined ∗
(L′,@proto) 7→ null ∗ (L′,@this) 7→ L′′ ∗ true


x = v ; v = 4 ; var v ; y = v;

∃L′. l .= L′ : LS ∗
storeLS(|x : undefined, y : 4, z : null, f : L, v : 5) ∗
(L,@body) 7→ λw.{. . . } ∗ (L,@scope) 7→ LS ∗
newobj(L′,@proto,@this, w, v)∗
(L′, w) 7→ null ∗ (L′, v) 7→ 4 ∗
(L′,@proto) 7→ null ∗ (L′,@this) 7→ L′′ ∗ true


The postcondition follows simply from the three assignments in

the function body: first, variable x gets the value undefined, since
this is the current value of the local v; then the local v is assigned 4;
and, finally, the global variable y is assigned the value of the local
variable v. The var v statement has no effect in the second pass of
the function call.

The postcondition of the function call is the postcondition of the
function body, with local scope object L′ popped off the current
scope list l to obtain:
∃L′. storeLS(|x : undefined, y : 4, z : null, f : L, v : 5) ∗
(L,@body) 7→ λw.{. . . } ∗ (L,@scope) 7→ LS ∗
newobj(L′,@proto,@this, w, v)∗
(L′, w) 7→ null ∗ (L′, v) 7→ 4 ∗ (L′,@proto) 7→ null ∗
(L′,@this) 7→ L′′ ∗ l .= LS ∗ true


Reasoning about the final assignment is straightforward, with z
assigned the value of the global variable v. The final postcondition
is obtained using the consequence rule to hide the function object
and local scope object behind the assertion true, since they are
surplus to requirements, and existentially quantifying local scope
object L:{

∃L. storeLS(|x : undefined, y : 4, z : 5, f : L, v : 5)∗
l .= LS ∗ true

}

Part of the challenge of understanding this example is knowing
the scope of local variable v. In JavaScript, variables can only be
declared local to functions, not other blocks such as if and while.
This can lead to undesirable behaviour, especially when a local
variable overloads the name of a global variable. One controversial
technique for solving this problem is to use the with statement
and a literal object to declare local variable blocks precisely where
they are needed. Using with is often considered bad practice, and
it is deprecated in ECMAScript 5. However, it is widely used in
practice [20, 25] and can certainly be used to improve the program
readability. We are able to reason about even extremely confusing
uses of with. Consider the program C’:

a = {b:1}; with (a){f=function(c){return b}};
a = {b:2}; f(null)

Armed with an operational understanding of JavaScript’s emu-
lated variable store, it is not so difficult to understand that this pro-
gram returns the value 1, even though the value of a.b at the end
of the program is 2. It may not be quite so clear that this program
can fault. It may also execute arbitrary code from elsewhere in the
emulated variable store, leading to a possible security violation.

We only understood this example properly by doing the verifi-
cation. In Section 6.2, we prove the triple:

{storel(a, f|) t∗ (lop, f) 7→ � t∗ (lop,@proto) 7→ null}
C’

{r .
= 1 ∗ true}

A similar proof is possible for with a precondition where a and f
are in the store, and may have arbitrary values. Either precondition
ensures the program returns the value 1 as expected. The obvious
first try was to have just storel(a, f|) as the precondition. This does
not work as, when reasoning about the assigment to the variable
f, we cannot assert that the variable f is not in the local scope.
This is because, as discussed earlier, we cannot make assumptions
about the shape of the prototype chains in the emulated variable
store. With some web code, it is possible for programmers to
directly access and chance the prototype pointers, resulting in the
distinguished object lop not being a part of the emulated variable
store. This means that lop may contain the field f without violating
our proposed precondition. The statement a = {b:1} then results
in the creation of a new object L, with no field f as expected, but
with field @proto pointing to lop:

∃L. (L, b) 7→ 1 ∗ (L, f) 7→ � ∗ (L,@proto) 7→ lop

The with statement makes this new object L the most local cell
in our emulated variable store. But because f is an inherited prop-
erty of L, the meaning of the assignment to f has now changed – it
has become an overriding assignment of a local variable. We write
the new function f into the local-most object L. When the program
returns from the with statement, the function call to f(null) will
fault, since there is no f in scope to call. In many web browsers
(including Chrome, Firefox, and Safari) , this behaviour can be in-
duced by running the program window. proto = null ; C′

in the default starting state. The proto notation allows the
programmer to directly access and change the internal @proto
fields, resulting in a program state which causes the program C′

to fault. Non-standard features such as this are widely used in
practice, and so it is important that our reasoning be robust to
the states they produce. In this case of this example it is possible
to induce A similarly tricky starting state without the use of any
non-standard features, which results in the call to f() executing
arbitrary code not mentioned in our program. Consider running
the program Object.prototype.f = function(c) {C′′};C′



where C′′ is suspicious code. This could result in a security breach
if f is being passed sensitive data.

3. Operational Semantics
We define a big-step operational semantics for a large subset of
JavaScript that represents faithfully the inheritance, prototyping
and scoping mechanisms described in the ECMAScript 3 standard.
Our semantics follows closely the full small-step Javascript seman-
tics of Maffeis, Mitchell and Taly [16], except that we make some
simplifications as discussed in Section 3.5. We work with a big-step
semantics because it connects better to our reasoning.

3.1 Heaps
The JavaScript heap is a partial function H:R ⇀ V that maps
references, r ∈ R = L × X , which are pairs of memory locations
and field names, to values. This structure emphasises the important
role that references play in the semantics of the language. Values
v ∈ V can be basic values v, locations l and lambda abstractions
λx.e. The set of locations L is lifted to a set Lnull containing
the special location null, analogous to a null-pointer in C, which
cannot be in the domain of any heap. We denote the empty heap by
emp, a heap cell by (l, x) 7→ v, the union of two disjoint heaps by
H1 ∗H2, and a read operation by H(l, x).

An object is represented by a set of heap cells addressed by the
same location but with different field names. For ease of notation,
we use l 7→ {x1: v1, . . . , xn: vn} as a shorthand for the object
(l, x1) 7→ v1 ∗ . . . ∗ (l, xn) 7→ vn.

As discussed in Section 2, JavaScript has no variable store. In-
stead, variables are resolved with respect to a scope object implic-
itly known at run time. Scope objects are just objects whose loca-
tions are recorded in the scope chain (we use a standard notation
[ ], e:L,L++ L for lists). Each scope object has a pointer to a pro-
totype list (which need not point to lop). A variable x is resolved
as the property named “x” of the first object in the scope chain
whose prototype list defines “x”. Scoping constructs, such as func-
tion calls and with, cause sub-expressions to be evaluated with re-
spect to a local scope object, by putting the local scope object at
the beginning of the scope chain and then removing it after the sub-
expresisons have been evaluated. All user programs are evaluated
starting from the default scope chain [lg], where lg is the location
of the global JavaScript object, described below. The final object in
any scope chain is always lg , but duplicates in a scope chain are
allowed. For example, the JavaScript program with(window){C}
is perfectly valid1, and (usually) results in the subprogram C being
evaluated in a state in which lg is both the most global and the most
local object.

The auxiliary scope function σ, defined below, returns the loca-
tion of the first object in the scope chain to define a given variable.
It depends on the prototype function π, which returns the location
of the first object in the prototype chain to define the variable.

Scope and prototype resolution: σ(H, l, x) and π(H, l, x).

σ(H, [ ], x) , null

π(H, l, x) 6= null

σ(H, l:L, x) , l

π(H, l, x) = null

σ(H, l:L, x) , σ(H,L, x)

π(H, null, x) , null

(l, x) ∈ dom(H)

π(H, l, x) , l

(l, x) 6∈ dom(H) H(l,@proto) = l′

π(H, l, x) , π(H, l′, x)

1 In web browsers, the window variable usually contains a pointer to the
object lg

The set of variable names X is partitioned in two disjoint sets:
the internal variable namesX I and the user variable names XU .
The internal names X I , {@scope,@body ,@proto,@this} are
not directly accessible by user-defined ECMAScript 3 code, but
are used by the semantics. As noted in Section 2, some imple-
mentations do give programmers direct access to some of these
internal variables, but we do not model those implementation-
dependant programs. We do model all the program states that such
programs might create, and take care not to make strong assump-
tions about the types or values of those suspect internal variables.
In this way, libraries verified using our techniques are robust in
the presence of unverified real-world code. User names are denoted
by x, y, z ∈ XU and are considered a subset of strings; keywords
such as var are not valid variable names. It is worth anticipating
at this point a subtlety of the JavaScript semantics. The evaluation
of a user variable x does not return its value, but rather the refer-
ence l′·x where such value can be found (l′ is obtained using the
σ predicate). In general, the values r ∈ VR returned by JavaScript
expressions can be normal values V or references R. When a user
variable x needs to be dereferenced in an expression, the semantics
implicitly calls the dereferencing function γ, defined below, which
returns the value denoted by the reference.
Dereferencing values: γ(H, r).

r 6= l·x
γ(H, r) , r

π(H, l, x) = null
l 6= null

γ(H, l·x) , undefined

π(H, l, x) = l′

l′ 6= null

γ(H, l·x) , H(l′, x)

We introduce the definition of a well-formed JavaScript heap. A
JavaScript expression can only be evaluated in a sub-heap of a well-
formed heap, with respect to a valid scope chain. All JavaScript
expressions maintain the well-formedness of heaps. A heap H is
well-formed (denoted by H ` �) if its objects and prototype chains
are well-formed (prototype chains must be acyclic, they can end
with null rather than lop), and if it contains the global scope object
lg and the distinguished objects lop and lfp, which we will see
later serve as the default prototypes for new objects and functions.
A scope chain L is valid with respect to heap H , denoted by
schain(H,L), if all the locations in the chain correspond to objects
allocated in H , and if it ends with the global object lg . Formal
definitions are given in [10].

The default initial state H∅ is the smallest well-formed heap
that also contains the special function object le (the eval function)
and its prototype lep:

H∅ ,

(
lg 7→ {@proto : lop,@this : lg} ∗ obj(lop, null)

∗ obj(lfp, lop) ∗ obj(le, lep) ∗ obj(lep, lop)

)
where obj(l, l′) denotes an object at location l which is empty
except for the prototype l′:

obj(l, l′) , (l,@proto) 7→ l′

We conclude this section by defining the heap update −[−]
operation which will be used by the semantics. Many JavaScript
expressions update a heap cell if it is present, or create it if it is not
present. We reflect this form of update in our heap update operation.

Update H[(l, x) 7→ v].

(l, x) 6∈ dom(H) l 6= null

H[(l, x) 7→ v] , H ∗ (l, x) 7→ v

(H ∗ (l, x) 7→ v)[(l, x) 7→ v′] , H ∗ (l, x) 7→ v′

H[(null, x) 7→ v] , H[(lg , x) 7→ v]

The last rule says that an update to a non-allocated reference
(whose location is null) has the effect of allocating and updat-
ing a new global variable, which mimicks JavaScript’s behaviour



of implicitly creating global variables when a variable name is first
used.

3.2 Values and Expressions
To aid our presentation, we introduce the syntax of all JavaScript
programs, statements and expressions simply as expressions. Our
operational semantics will only describe the behaviour of well-
formed programs, as defined by [16].

Syntax of terms: values v and expressions e.

v ::= n | m | undefined | null
e ::= e; e | x | v | if(e){e}{e} | while(e){e} | var x

| this | delete e | e⊕ e | e.x | e(e) | e = e
| function (x){e} | function x(x){e} | new e(e)
| {x1 : e1 . . . xn : en} | e[e] | with(e){e}

where ⊕ ∈ {+,−, ∗, /,&&, ||,==, .}

A basic value v can be a number n, a string m (including the user
variable names), the special constant undefined or the null loca-
tion. The operator⊕ denotes a standard number and boolean opera-
tor, or string concatenation. Expressions e include sequential com-
position, variable lookup, literal values, conditional expressions,
loops, local variable declaration, this, deletion, arithmetic and
string concatenation, object property lookup, function call and eval,
assignment, function declaration, recursive functions, constructors,
literal objects, computed access and the with statement.

3.3 Evaluation Rules
An expression e is evaluated in a heap H , with respect to a scope
chain L. If it successfully terminates, it returns a modified heap H ′
and a final value r. Selected evaluation rules are given below and
then discussed. See [10] for the full definition. Recall that the set
of variables is a subset of the set of strings, that a heap value v can
be a basic value v, a memory location l or a function closure λx.e,
and that a return value r can also be a reference l·x.

Operational semantics: H,L, e−→H′, r.

Notation: H,L, e
γ−→H′, v , ∃r.(H,L, e−→H′, r ∧ γ(H′, r) = v).

(Definition)
H,L, e−→H′, v

H,L, var e−→H′, undefined

(Value)
H,L, v−→H, v

(Member Access)
H,L, e

γ−→H′, l
l 6= null

H,L, e.x−→H′, l·x

(Computed Access)
H,L, e1

γ−→H1, l
l 6= null

H1, L, e2
γ−→H′, x

H,L, e1[e2]−→H′, l·x

(Variable )
σ(H,L, x) = l

H, L, x−→H, l·x

(Object)
H0 = H ∗ obj(l, lop)

∀i ∈ 1..n.

(
Hi−1, L, ei

γ−→H′i, vi
Hi = H′i[(l, xi) 7→ vi]

)
H,L, {x1:e1, . . . , xn:en}−→Hn, l

(Binary Operators)
H,L, e1

γ−→H′′, v1

H′′, L, e2
γ−→H′, v2

v1⊕ v2 = v

H,L, e1⊕ e2−→H′, v

(Assignment)
H,L, e1−→H1, l·x
H1, L, e2

γ−→H2, v
H′ = H2[(l, x) 7→ v]

H,L, e1=e2−→H′, v

(This)
σ(H,L,@this) = l1
π(H, l1,@this) = l2
H(l2,@this) = l′

H,L, this−→H, l′

(Function)
H′ = H ∗ obj(l, lop) ∗ fun(l′, L, x, e, l)
H,L, function (x){e}−→H′, l′

(Function Call)
H,L, e1−→H1, r1 This(H1, r1) = l2 γ(H1, r1) = l1
l1 6= le H1(l1,@body) = λx.e3 H1(l1,@scope) = L′

H1, L, e2
γ−→H2, v

H3 = H2 ∗ act(l, x, v, e3, l2) H3, l:L′, e3
γ−→H′, v′

H,L, e1(e2)−→H′, v′

(Eval)
H,L, e1

γ−→H1, le H1, L, e2
γ−→H2, m

parse(m) = e H2, L, e
γ−→H′, v′

H,L, e1(e2)−→H′, v′

(With)
H,L, e1

γ−→H1, l
H1, l:L, e2−→H′, r

H,L, with(e1){e2}−→H′, r

We briefly discuss some of the evaluation rules that show non-
standard features typical of JavaScript. Rule (Definition) for var e
simply executes e and throws away the return value. The var dec-
laration is only used by defs (defined below) to identify function
local variables. Rule (Variable) uses σ to determine the scope ob-
ject where a given variable can be found, without de-referencing
the variable. Rules (Member/Computed Access) return a reference
to the object field denoted by the corresponding expressions. Rule
(Object) uses the obj notation introduced in Section 3.1 to introduce
a fresh, empty object at location l, and then initializes its fields ac-
cordingly. Freshness is ensured by well-formedness of H and dis-
jointness of ∗. Rule (Binary Operators) assumes the existence of a
semantic version ⊕ for each syntactic operator ⊕. Each ⊕ is a
partial function, defined only on arguments of a basic type (in this
case numbers or strings) and returning results of some other (possi-
bly the same) basic type, corresponding to the intended meaning of
the operation. Rule (Assignment) is quite subtle. Suppose we have
the expression x=4. Now consider Figure 1. If x were defined as a
field of the object l1 then x=4 would be an overwriting assignment.
The value of the field x in the object l1 would be overwritten with
the value 4. If x were not found anywhere, then it would be created
as a global variable – a field of the object lg . Finally, consider the
actual case in this figure: x is found to be a field of object l, which
is a prototype of l2, which is in the scope chain. In this case, x=4
is an overriding assignment, with the effect of creating a new field
x in the object l2 to override the existing x in l. This complexity is
handled in two places. Firstly, the variable rule uses the σ predicate
(defined in Section 3.1) to return a reference l2·x. Note that the σ
predicate does not return a reference to l·x precisely because we
wish to model this behaviour. Secondly, the heap update operation
H2[...] manages the business of either overwriting an existing field,
or in this case, creating a new field. Rule (This) resolves the this
identifier. As we will see, when executing a method of an object, we
use the internal variable @this to store the location of that object.
When executing a function call, @this points to the global object
lg . The (This) rule uses π and σ to retrieve the value of @this which
is then returned by the this statement. Rule (Function) introduces
the notation fun(l′, L, x, e, l) ,

l′ 7→ {@proto: lfp, prototype: l,@scope:L,@body :λx.e}
to allocate a fresh function object at location l′. The internal pro-
totype of the new function object points to the standard function
prototype object lfp. The rule also creates a new empty object at l
and stores a pointer to it in the prototype field of the new func-
tion. If the function is ever used as a constructor (using the new
keyword) then the object pointed to by this prototype field will
serve as the prototype of the newly constructed object. Note that the
field is mutable, and so may be used by a programmer to emulate a
class-like inheritance structure.



Recall from Section 2 that JavaScript function calls be surpris-
ingly complex. We now describe rule (Function Call), which uses
two auxiliary functions This and act. Recall also that the rule (This)
uses internal @this fields to determine the semantics of the this
keyword. The values of the @this fields are determined by the
(Function Call) rule using the auxiliary function This:

This(H, l·x) , l [(l,@this) 6∈ dom(H)]

This(H, r) , lg [otherwise]

To understand This, first notice that every newly created local scope
object has a @this field, while no other objects ever will2. The
(Function Call) rule finds a pointer to a function in the location
l·x. If l is a regular object (which has no @this field), then the
function must be a method of that object, and so the @this field of
our new local scope object should point to l. On the other hand, if
l is a special local scope object (which has a @this field), then the
function must be a regular function (and not a method), and so the
@this of our new local scope object should point to lg . This unique
behaviour precisely captures the behaviour of the ECMAScript 3
this keyword. The auxiliary function act describes the allocation
of a new local scope object: act(l, x, v, e, l′′) ,

l 7→ {x: v,@this: l′′,@proto: null} ∗ defs(x, l, e)

The object is allocated at address l, and contains a function pa-
rameter x with value v, the internal fields @this,@proto and the
local variables declared in an expression e. The auxiliary function
defs, defined in [10], searches the function body for instances of
the var keyword, and sets all the appropriate fields of our new lo-
cal scope object to the value undefined, as discussed in Section 2.
Rule (Eval) looks like an ordinary function call, but the function
being called isn’t an ordinary function object. It is the special built-
in object le. It assumes a partial function parse that parses a string
m into a JavaScript expression e, only if there are no syntax errors.

The control expressions are mostly standard (see [10]), except
for the unusual (With) rule that evaluates e2 in the local scope
represented by the object obtained by evaluating e1.

3.4 Safety
An important sanity property of the evaluation relation is that it
preserves well-formedness of the heap, for any valid scope chain.

Theorem 1 (Well-Formedness). Let H,L be such that H ` � and
schain(H,L). If H,L, e−→H ′, r then H ′ ` �.

Although the theorem is about end-to-end well-formedness, its
proof (reported in [10]) shows that starting from a well-formed
state and scope chain, all the intermediate states and scope chains
visited during the computation are also well-formed, and all the
locations occurring in intermediate return values correspond to
objects effectively allocated on the heap.

3.5 JavaScript Subset
We work with a subset of JavaScript, in order to limit the size and
complexity of our semantics for this paper. Our subset is substantial
and, despite some minor ommisions and simplifying assumptions
discussed below, faithful to the ECMAScript 3 standard. A signif-
icant property of our semantics is that our programs will run reli-
ably in states generated by any valid JavaScript program (including
those reached by programs using non-standard features that we do
not model, such as proto ), or getters and setters. Our reasoning
of Section 5 will therefore interface well with real-world JavaScript
programs.

We do not model implicit type-coercion functions. Adding them
is straightforward but would add significantly to the length of our

2 except lg in some, but not all implementations – [13] is silent on the issue

presentation. We have no boolean type. Instead, where control
structures (if and while) require a boolean, we use other types
with semantics equivalent to the type conversion that occurs in
JavaScript. Values such as 0 and null behave like false and val-
ues such as 1 and "string" behave like true. For simplicity, we
use an implicit return statement for functions. Moreover, our func-
tions take only one parameter, rather than the arbitrary list of pa-
rameters usual in JavaScript, and do not have the arguments ob-
ject or the constructor property. As mentioned in Section 3.2,
we simplify our presentation of JavaScript programs, statements
and expressions, into a single class of expressions. We also omit
several JavaScript constructs such as labels, switch and for, as
they do not contribute significantly to the problem of program rea-
soning. In this presentation we only consider the core language EC-
MAScript 3, and do not model the many standard libraries which
browsers make available to programmers. Instead of exceptions, we
have a single error condition denoted fault. Our reasoning conser-
vatively avoids faults. This means that programs which are proved
using our fault-avoiding local Hoare reasoning will run without
throwing exceptions in JavaScript interpreters.

4. Assertion Language
Our assertion language follows that of Parkinson and Bierman [4,
23], in their work on reasoning about Java. They use assertions of
the form (l, x) 7→ v to denote that a partial heap contains the object
l with field x which has value v. Using the separating conjunction
∗ [18], the assertion ((l, x) 7→ v) ∗ ((l, y) 7→ w) declares that a
heap contains an object l which must have two separate fields x, y
with the appropriate values. The assertion (l, x) 7→ v ∗ (l, x) 7→ w
is unsatisfiable since it declares two fields x for l.

This style of reasoning is not enough for JavaScript. We must
also assert negative information about fields not being in the heap,
and extend the structural assertions of separation logic to account
for partial separation due to shared prototype chains. Recall the
example of a JavaScript emulated variable store in Figure 1 of
Section 2. To find the value of x in the store, we must not only
determine that the object l has a field x but also determine that
no earlier fields named x occur in the emulated store. We use
assertions (l, x) 7→ � to declare that an heap contains an object l
which does not have a field x. The assertion (l, x) 7→ �∗(l, y) 7→ w
declares that the heap contains an object l which does not have field
x but does have field y. The assertions (l, x) 7→ v ∗ (l, x) 7→ � and
(l, x) 7→ � ∗ (l, x) 7→ � are unsatisfiable. Thus, the assertion
(l, x) 7→ � states the full knowledge that field x is not in object l.

Now consider what happens when we want to describe the state
of more than one variable at a time. In the Section 5 we introduce
a predicate σ which allows us to assert, for example “The variable
x is found in the store in object l2”: σ( , l, x, l2) or “The variable y
is not in the store”: σ( , l, y, null). Both of these assertions must
make use of the @proto fields in order to navigate the variable
store, but the first assertion does not mention any y field, and the
second assertion does not mention any x field. In order to make
both assertions about the same variable store, we need a way for
them to share their common parts. To do this, we introduce the
sepish conjunction P t∗Q which allows partial separation between
heaps. We can use t∗ to describe the state of more than one variable
in a given store: σ( , l, x, l2) t∗ σ( , l, y, null) and we shall see in
Section 5 that it also turns out to be invaluable when defining the σ
predicate itself.

An assertion P may be satisfied by a triple (h, L, ε) of an
abstract heap h, a scope chain L, and a logical environment ε. An
abstract JavaScript heap is a partial functionH:R⇀ V∪{�} that
maps references, r ∈ R = L×X to values v or �. Abstract heaps
thus declare information about fields not being present in an object,
as well as the fields that are present. We also define an evaluation



function b c which takes an abstract heap to a concrete heap:

bhc(l, x) , h(l, x) iff (l, x) ∈ dom(h) ∧ h(l, x) 6= �

We use this function in Section 5 to define the relationship between
our reasoning with Hoare triples and the behaviour of programs.

We define a logical environment ε, which is a partial function
from logical variables X ∈ X L to logical values VL , which may
be a return value r, any expression e, � or a list Ls of logical
values. We also define logical expressions E, which are different
from program expressions in that they can not read or alter the heap.
Expressions E are evaluated in a logical environment εwith respect
to a current scope chain L.

Logical expressions and evaluation: JEKLε .

v ∈ VL ::= e | r | � | Ls ε : X L ⇀ VL

E ::= X Logical variables
| l Scope list
| v Logical values
| E ⊕ E Binary Operators
| E :E List cons
| E ·E Reference construction
| λE .E Lambda values

JvKLε , v JlKLε , L JXKLε , ε(X)

JE1:E2KLε , JE1KLε :Ls if JE2KLε = Ls

JE1 ·E2KLε , l·x if JE1KLε = l ∧ JE2KLε = x

JE1 ⊕ E2KLε , r⊕ r′ if JE1KLε = r ∧ JE2KLε = r′

JλE1.E2KLε , λx.JE2KLε if JE1KLε = x

Assertions include the standard boolean assertions, structural
assertions of separation logic and our new sepish connective, basic
assertions for describing cells in a JavaScript heap, expression
equality, set and list assertions, and quantification over logical
variables.

Assertions.

P ::= P ∧ P | P ∨ P | ¬P | true | false Boolean assertions
| P ∗ P | P −∗ P | P t∗ P Structural assertions
| (E ,E) 7→ E | � JavaScript heap assertions
| E = E Expression equality
| E ∈ SET Set membership
| E ∈ E List element
| ∃X. P | ∀X. P Quantification

Notation: E 6 ◦E , ¬(E ◦ E) for ◦ ∈ {=,∈}
E1 ◦̇E2 , E1 ◦ E2 ∧ � for ◦ ∈ {=, 6=,∈, /∈}.

The structural assertions ∗ and −∗ are standard separation logic
assertions. The separating conjunction P ∗Q says that the heap may
be split into two disjoint heaps, one satisfying P and the other Q.
The right adjoint P −∗Q says that, whenever the heap is extended
by a heap satisfying P , then the resulting heap satisfies Q. It is
useful in creating some of our layers of abstraction in Section 6.
The sepish connective P t∗Q is novel. It says that the heap may be
split into two heaps, one satisfying P and the otherQ, but these two
heaps need not be disjoint. They may share zero or more common
cells. We shall see in Section 5 that this is particularly useful
when reasoning about the emulated variable store. It is possible
to define −t∗ analogously with −∗, but since this is not useful for
JavaScript reasoning we omit it here. Note that P ∧ Q ⇒ P t∗ Q
and P ∗Q ⇒ P t∗Q, but neither of the reverse implications hold.
The assertion (E1,E2) 7→ E3 declares information about a cell,
including the information that field E2 does not occur in object
E1. Assertion � says that the heap is empty. The notation SET
denotes a literal set, or a named set such as X , the set of JavaScript
field names. Note that since there are sets for numbers, strings and

locations, we can use set inclusion to assert the type of a particular
JavaScript value.

The logical operators bind in order ¬,t∗, ∗,∧,∨,−∗.
The satisfaction relation h, L, ε |= P is defined below (the cases

for the boolean assertions are not given as they are standard).

Satisfaction of assertions: h, L, ε |= P .

h, L, ε |= P ∗Q ⇐⇒ ∃h1, h2. h ≡ h1 ∗ h2∧
(h1, L, ε |= P ) ∧ (h2, L, ε |= Q)

h, L, ε |= P −∗Q ⇐⇒ ∀h1. (h1, L, ε |= P ) ∧ h# h1
=⇒ ((h ∗ h1), L, ε |= Q)

h, L, ε |= P t∗Q ⇐⇒ ∃h1, h2, h3.
h ≡ h1 ∗ h2 ∗ h3 ∧ (h1 ∗ h3, L, ε |= P ) ∧ (h2 ∗ h3, L, ε |= Q)

h, L, ε |= (E1,E2) 7→ E3 ⇐⇒ h ≡ (JE1KLε , JE2KLε ) 7→ JE3KLε
h, L, ε |= � ⇐⇒ h = emp

h, L, ε |= E1 = E2 ⇐⇒ JE1KLε = JE2KLε
h, L, ε |= E ∈ SET ⇐⇒ JEKLε ∈ SET
h, L, ε |= E1 ∈ E2 ⇐⇒ JE1KLε is in the list JE2KLε
h, L, ε |= ∃X. P ⇐⇒ ∃v. h, L, [ε|X � v] |= P
h,L, ε |= ∀X. P ⇐⇒ ∀v. h, L, [ε|X � v] |= P

We have given a direct definition of the sepish connective. When
logical variables range over heaps, it can be derived: P t∗ Q ⇔
∃R. (R −∗ P ) ∗ (R −∗ Q) ∗ R. It remains to be seen what natural
logical properties are satisfied by this connective.

5. Program Reasoning
We follow the example of previous separation logic work in giving
small axioms and inference rules which precisely capture the be-
haviour of all JavaScript expressions except for the usual approxi-
mation for while and conservative approximations of function call
and eval. These last two constructs are interesting, and will be
the focus of future work as outlined in Section 8. Because our rea-
soning captures the full complexity of JavaScript semantics, par-
ticularly with respect to the emulated variable store and the with
command, it is possible to prove extremely subtle programs. Unfor-
tunately, proving any program at this level of abstraction involves a
lot of detail which most programmers would rather avoid. For this
reason we also provide several layers of abstraction which make it
possible to reason at a much more natural high level about well be-
haved JavaScript programs. We discuss these further in Section 6.

Our fault-avoiding Hoare triples take the form: {P}e{Q},
which means “if e is executed in a state satisfying P , then it will
not fault, and if it terminates it will do so in a state satisfying Q”.
The postcondition Q may refer to the special variable r, which is
equal to the return value of e.

5.1 Auxiliary Predicates
For our reasoning rules, we require predicates that correspond to
the functions used by the operational semantics in Section 3.3. This
presents us with two distinct challenges: sharing and precision. We
describe each challenge in turn. First, sharing: consider the scope
function σ from Section 3.1 when searching for a variable y in
the example heap given in Figure1. Since y is not present in the
emulated store, σ will check the entire structure before returning
null to indicate that y cannot be found. What is of interest to us is
the order in which the cells in the store will be checked. Notice that
the cell l will be checked twice, and the cell lop will be checked
three times. This is because the cells l and lop are shared between
the footprint of the prototype chain of the object l2 and the object
l4. In addition lop is also shared by the prototype chain of the
object lg . As we shall see below, we can describe these partially
shared structures using our partially separating conjunction t∗. Next
we describe the challenge of precision: consider again using the
function σ to search for a variable, but this time to search for the
variable x. Consider two possible emulated variable stores, one



precisely as shown in Figure 1, and the other identical but for the
omission of the object whose prototype is the object l. In each of
these stores, the σ function will return the same value – the location
l2. In our program reasoning we wish our σ predicate (which will
correspond to the σ function of the operational semantics) to be
more precise. We wish to be able to distinguish between these two
possible cases. With these two challenges in mind, we first give,
and then explain the logical predicates σ, π and γ.

Logical predicates: σ, π, γ.

σ([ ], [ ], , null) , �
σ([Ls],St : Sc,Var ,St) , ∃L. π(Ls,St ,Var ,L) ∗ L 6 .= null

σ((Ls1 : Ls2),St : Sc,Var ,L) ,
π(Ls1,St ,Var , null) t∗ σ(Ls2,Sc,Var ,L)

π([ ], null, , null) , �
π([St ],St ,Var ,St) , ∃V. (St ,Var) 7→ V ∗V 6 .= �
π((St : Ls),St ,Var ,L) ,
∃N. (St ,Var) 7→ � ∗ (St ,@proto) 7→ N ∗ π(Ls,N,Var ,L)

γ([ ],Val ,Val) , Val 6 ∈̇ R
γ(Ls,L·X , undefined) , π(Ls,L,X , null) ∗ L 6 .= null

γ(Ls,L1 ·X ,Val) ,
∃L2. π(Ls,L1 ,X ,L2) t∗ (L2,X ) 7→ Val ∗Val 6 .= �

These predicates closely follow the structure of the functions de-
fined in 3.1, using t∗ to manage the challenge of sharing prototype
chains mentioned earlier. The predicate σ( , L, x, l) holds only for
abstract heaps h such that the function from Section 3.1 gives us
σ(bhc, L, x) = l, meaning that the value of the variable x in the
emulated variable store given by the list L can be found in the
object (or a prototype of the object) at address l. However, re-
call the challenge of precision mentioned earlier. In order to dis-
tinguish between all the possible heaps which satisfy the pred-
icate σ( , L, x, l), we specify the first argument Ls. The predi-
cate σ(Ls, L, x, l) is “precise” in the sense that for any abstract
heap h, it holds for at most one subheap of h. The first argument
Ls is a list of lists, which specifies the exact cells which must
be visited (and the order in which they must be checked) in or-
der to determine which object in the emulated variable store de-
fines the variable x. For example, recall the heap illustrated in Fig-
ure 1. If the cell with prototype l has address l′, then the predicate
σ([[l1], [l2, l

′, l]], l, x, l2) is satisfied by the abstract heap consist-
ing of the x and @proto fields of the four objects in the lower left
corner of that diagram. Notice that we do not need to visit every
object in the variable store in order to discover the location of the
variable x. In the spirit of the small axioms of separation logic, our
predicate holds for the smallest possible heap in which we can be
sure of discovering the variable we are interested in.

The predicates π and γ are similar in that they mirror their
operational counterparts, with the addition of one extra argument
to make them precise. In the case of π and γ the first argument Ls
is a list of addresses, rather than a list of lists of addresses, because
each predicate only has to walk down at most one prototype chain.

The inference rules also require logical predicates correspond-
ing to a number of other auxiliary semantic functions. We define
newobj and fun predicates, which assert the existence of a fresh
object and function object, and decls that returns the local variables
of an expression. In order to reason about function call, we define
the defs predicate in [10]. The other predicates are reported below.

Auxiliary predicates

This(L· ,L) , (L,@this) 7→ � where L 6= lg
This(L· , lg) , ∃V. (L,@this) 7→ V ∗V 6 .= �

True(E) , E 6 ∈̇ {0, “ ”, null, undefined}
newobj(L,V1, . . . ,Vn) , ∗V∈X\{V1...Vn}(L,V ) 7→ �

fun(F ,Env ,Var ,Body,Proto) ,
(F ,@scope) 7→ Env ∗ (F ,@body) 7→ λVar .Body ∗
(F , prototype) 7→ Proto ∗ (F ,@proto) 7→ lfp

decls(X ,L, e) , x1, . . . , xn where (L, xi) ∈ dom(defs(X ,L, e))

5.2 Inference Rules
We define below some inference rules {P}e{Q} for reasoning
about JavaScript expressions. The full list can be found in [10].

Inference rules: {P}e{Q}.

(Definition)
{P}e{Q} r 6∈ Q
{P}var e{Q ∗ r .

= undefined}

(Value)
{�}v{r .

= v}

(Variable)
P = σ(Ls1, l, x,L) t∗ γ(Ls2,L·x,V )

{P}x{P ∗ r .
= L·x}

(Variable Null)
P = σ(Ls, l, x, null)
{P}x{P ∗ r .

= null·x}

(Member Access)
{P}e{Q ∗ r .

= V } Q = R ∗ γ(Ls,V ,L) ∗ L 6 .= null

{P}e.x{Q ∗ r .
= L·x}

(Computed Access)
{P}e1{R ∗ r .

= V1 } R = S1 ∗ γ(Ls1,V1,L) ∗ L 6
.
= null

{R}e2{Q ∗X ∈̇ XU ∗ r .
= V2} Q = S2 ∗ γ(Ls2,V2,X )

{P}e1[e2]{Q ∗ r .
= L·X}

(Object)
∀i ∈ 1..n.

(
Pi = Ri ∗ γ(Lsi,Yi ,Xi ) {Pi−1}ei{Pi ∗ r .

= Yi}
)

Q =

Pn ∗ ∃L.
 newobj(L,@proto, x1, . . . , xn) ∗

(L, x1) 7→ X1 ∗ . . . ∗ (L, xn) 7→ Xn ∗
(L,@proto) 7→ lop ∗ r .

= L


x1 6= · · · 6= xn r 6∈ fv(Pn)

{P0}{x1:e1, . . . , xn:en}{Q}

(Binary Operators)
{P}e1{R ∗ r .

= V1 } R = S1 ∗ γ(Ls1,V1 ,V3 )
{R}e2{Q ∗ r .

= V2 } Q = S2 ∗ γ(Ls2,V2 ,V4 )
V = V3 ⊕V4

{P}e1⊕ e2{Q ∗ r .
= V }

(Assign Global)
{P}e1{R ∗ r .

= null·X}
{R}e2{Q ∗ (lg ,X ) 7→ � ∗ r .

= V1 } Q = S ∗ γ(Ls,V1 ,V2 )

{P}e1 = e2{Q ∗ (lg ,X ) 7→ V2 ∗ r .
= V2 }

(Assign Local)
{P}e1{R ∗ r .

= L·X}
{R}e2{Q ∗ (L,X ) 7→ V3 ∗ r .

= V1 } Q = S ∗ γ(Ls,V1 ,V2 )

{P}e1 = e2{Q ∗ (L,X ) 7→ V2 ∗ r .
= V2 }

(Function)

Q =

 ∃L1,L2. newobj(L1,@proto) ∗ (L1,@proto) 7→ lop ∗
newobj(L2,@proto, prototype,@scope,@body) ∗
fun(L2, l, x, e,L1) ∗ r .

= L2


{�}function (x){e}{Q}



(Function Call)
{P}e1{R1 ∗ r .

= F1 }

R1 =

(
S1 t∗ This(F1 ,T ) t∗ γ(Ls1,F1 ,F2 )∗
(F2 ,@body) 7→ λX .e3 ∗ (F2 ,@scope) 7→ Ls2

)
{R1}e2{R2 ∗ l .= Ls3 ∗ r .

= V1 } R2 = S2 ∗ γ(Ls4,V1 ,V2 )

R3 =

 R2 ∗ ∃L. l
.
= L:Ls2 ∗ (L,X ) 7→ V2 ∗

(L,@this) 7→ T ∗
(L,@proto) 7→ null ∗ defs(X ,L, e3)∗
newobj(L,@proto,@this,X , decls(X ,L, e3))


{R3}e3{∃L. Q ∗ l .= L:Ls2} l 6∈ fv(Q) ∪ fv(R2)

{P}e1(e2){∃L. Q ∗ l .= Ls3}

(With)
{P ∗ l .= L}e1{S ∗ l .= L ∗ r .

= V1 } S = R ∗ γ(Ls,V1 ,L1 )
{S ∗ l .= L1 :L}e2{Q ∗ l .= L1 :L} l 6∈ P,Q,R
{P ∗ l .= L}with(e1){e2}{Q ∗ l .= L}

(While)
{P}e1{S ∗ r .

= V1 } S = R ∗ γ(Ls,V1 ,V2 )
{S ∗ True(V2 )}e2{P}
Q = S ∗ False(V2 ) ∗ r .

= undefined r 6∈ fv(R)

{P}while(e1){e2}{Q}

(Frame)
{P}e{Q}
{P ∗R}e{Q ∗R}

(Consequence)
{P1}e{Q1} P =⇒ P1 Q1 =⇒ Q

{P}e{Q}

(Elimination)
{P}e{Q}
{∃X. P}e{∃X. Q}

(Disjunction)
{P1}e{Q1} {P2}e{Q2}
{P1 ∨ P2}e{Q1 ∨Q2}

Although most of the rules correspond closely to their seman-
tics counterparts, some rules deserve further comment. Rule (Def-
inition) shows the use of the reserved variable r to record the re-
sult of an expression. Rule (Variable) shows the use of t∗ to ex-
press the overlapping footprint of predicates σ and π. Rule (Assign
Global) shows the use of � to assert that certain known memory
cells are available for allocation. Rule (Function Call) describes
JavaScript’s dynamic functions but does not support higher order
reasoning. Rule (Frame) does not have the usual side condition be-
cause JavaScript stores all its program variables on the heap, so
any variable modified by an expression is necesarilly contained en-
tirely within the footprint of the expression. Rules (Consequence),
(Elimination) and (Disjunction) are standard.

5.3 Soundness
We show that our inference rules are sound with respect to the
semantics of Section 3.3. When proving the soundness of any
system involving the frame rule, it is usual to first show the locality
of the programming language, and use that property to show the
soundness of the frame rule [18]. Unfortunately, many JavaScript
statements are not local according to this standard definition. We
therefore use the recently introduced notion of weak locality from
Smith’s thesis [27].

Definition 2 (Soundness of a Hoare triple). A Hoare triple {P}e{Q}
is sound if, for all abstract leaps, scope chains and environments
h, L, ε, it satisfies the following two properties:

Fault Avoidance : h, L, (ε \ r) |= P =⇒ bhc, L, e 6−→ fault

Safety : ∀H, r. h, L, (ε \ r) |= P ∧ bhc, L, e−→H, r
=⇒ ∃h′. H = bh′c ∧ h′, L, [ε|r � r] |= Q.

Theorem 3 (Soundness). All derivable Hoare triples {P}e{Q}
are sound according to Definition 2.

The proof (reported in [10]) involves showing that the predicates
used by the language rules correspond to the auxiliary functions
used by the semantics, showing that all JavaScript expressions are

weakly local with respect to their preconditions and finally showing
that all our inference rules are sound.

6. Layers of Abstraction
As mentioned in Section 5, using the rules given so far, reason-
ing about any JavaScript program involves a great deal of detail
that most programmers need never consider. Most of the time, pro-
grammers will work at a higher level of abstraction, for example,
treating the emulated variable store as if it were a regular variable
stack. This is a good practice for so long as the abstraction holds,
however, if the program happens to come across a corner case that
breaks the abstraction, its resulting behaviour may seem almost in-
explicable. This may be a particular problem when writing library
code, since the programmer has no control over the programming
discipline of the client who uses the library. In this section we intro-
duce explicit formalisms for several such abstractions. Many more
are possible, but those presented here are enough to demonstrate
the concept and reason about some interesting programs. We are
able to use these formalisms to reason at a much more comfortable,
high level about many well behaved programs. Crucially, we know
exactly what the boundaries of these layers of abstraction are, so we
can ensure that our programs remain safely within the abstraction.
If we wish, we can even choose to temporarily break an abstrac-
tion, execute some particularly subtle low-level code, re-establish
the abstraction and continue to work at the high level.

6.1 Layer 1: Exploring the Scope List
Central to reasoning about JavaScript variables are the σ and π
predicates. The first abstraction layer consists of alternative ver-
sions of these predicates which make reasoning about certain com-
mon cases simpler. The σ predicate unrolls from the global end of
the scope rather than from the local end which makes modifying
a variable easier to specify. It makes use of ¬σ which says that a
variable does not exist in a particular partial scope. The ¬σlg predi-
cate does the same, but excludes lg from its footprint, which makes
reasoning about global variable instantiation simpler. We give lem-
mas such as the equivalence of σ and σ , and several useful triples
about variable assignment. The proofs are in [10].

Layer 1 Predicates.

σ(Ls,Sc,Var , null) , ¬σ(Ls,Sc,Var , null)
σ(Ls1++(Ls2 : [ ]),Sc,Var ,L) ,
¬σ(Ls1,Sc,Var ,L) ∗ ∃L2. π(Ls2,L,Var ,L2 ) ∗ L2 6

.
= null

¬σ([ ],St : Sc, ,St) , �
¬σ(Ls2 : Ls,St : Sc,Var ,End) ,

π(Ls2,St ,Var , null) t∗ ¬σ(Ls,Sc,Var ,End)

¬σlg ([ ],St : Sc, ,St) , �
¬σlg (Ls2 : Ls,St : Sc,Var ,End) ,

πlg (Ls2,St ,Var , null) t∗ ¬σlg (Ls,Sc,Var ,End)

πlg ([ ], null, , null) , �
πlg ([ ], lg , , null) , �
πlg ([St ],St ,Var ,St) , ∃V. (St ,Var) 7→ V ∗V 6 .= �
πlg ((St : Ls),St ,Var ,L) , ∃N. (St ,Var) 7→ � ∗

(St ,@proto) 7→ N ∗ πlg (Ls,N,Var ,L)

These predicates give us much more flexibility to reason at a
low level about JavaScript variables found in various places in the
emulated variable store. At this level, it is possible to prove quite
general specifications about programs with many corner cases.
A good example of this sort of reasoning is simple assignment
statements. We prove the following general triples about simple
assignments. The first three triples deal with the assignment of a
constant to a variable, in the cases of variable initialisation, variable
override, and variable overwrite respectively. The fourth triple deals



with assigning the value of one variable to another. All four are
proved sound in [10].

Simple assignments.

P = σ(L1++((lg :L2 ):L3 ), l, x, null)

Q =

 ∃L′1,L′3,Sc,G. ¬σlg (L′1, l, x, lg)t∗
π(L2 ,G, x, null) t∗ ¬σlg (L′3,Sc, x, null) ∗ (lg , x) 7→ v∗

(lg ,@proto) 7→ G ∗ l .= ++(lg :Sc) ∗ r .
= v


{P}x = v{Q}

P = σ(L1++[L:L2 ]), l, x,L) t∗ (L, x) 7→ � t∗ γ(L:L2 ,L·x,V )

Q =

(
∃L′.¬σ(L1 , l, x,L) ∗ (L, x) 7→ v ∗ (L,@proto) 7→ Pr ∗
π(L2 ,Pr , x,L′) t∗ (L′, x) 7→ V ∗ r .

= v

)
{P}x = v{Q}

P = σ(L1++[[L]], l, x,L) t∗ (L, x) 7→ V ∗V 6 .= �
Q = ¬σ(L1 , l, x,L) ∗ (L, x) 7→ v ∗ r .

= v

{P}x = v{Q}

P =

(
σ(Ls1, l, y,Ly) t∗ γ(Ls2,Ly ·y,Vy) t∗
σ(L1++((L:[ ]):[ ]), l, x,L) t∗ (L, x) 7→ V ∗V 6 .= �

)
Q = σ(Ls1, l, y,Ly) t∗ ¬σ(L1 , l, x,L) ∗ (L, x) 7→ Vy ∗ r .

= Vy

{P}x = y{Q}

Compared to the (Assign -) inference rules, these triples have
a clear footprint, and more clearly describe the destructive effects
of assignment. Yet, they appear complex and difficult to compose.
It would be useful to be also able to ignore some information
about the exact structure of the variable store, while retaining the
information we care about: the mappings of variable names to
values. To do this, we introduce a new store predicate.

6.2 Layer 2: a Simple Abstract Variable Store
The predicates below provide a convenient abstraction for an emu-
lated variable store.
The store Predicate.

storeL(X1 . . .Xn |X ′1 :V1 . . .X ′m :Vm ) ,
∃Ls1 . . . ,Lsn,Ls′1, . . . ,Ls′m,Ls′′1 , . . . ,Ls′′m. thischain(L) t∗
t∗i∈1..n ¬σ(Lsi,L,Xi , null) t∗ (lg ,Xi ) 7→ �
t∗j∈1..m σ(Ls′j ,L,X

′
j ,Lj) t∗k∈1..m γ(Ls′′k ,Lk ·X ′k ,Vk )

thischain([ ]) , �
thischain(L : Sc) , (L,@this) 7→ ∗ thischain(Sc)

The assertion storel(a, b|x : 1, y : 2) describes a heap emu-
lating a variable store in which the variables a and b are certainly
not present, and in which the variables x and y take the values 1
and 2 respectively. The subscript l says that the variable store being
described is the current variable store which the program will ac-
cess. The variables a and b can be re-ordered, as can the variables
x and y. To facilitate program reasoning at this level of abstraction,
we provide several inference rules, all of which are proved (using
previous levels of abstraction) in [10].

We start with rules for variable initialisation and overwrite/override,
with a constant and then with the value of a variable.

Writing to a store.

Let Q1 = storel(X1 . . .Xn|x:v,X′1:V1 . . .X′m:Vm).
Let Q2 = storel(X1 . . .Xn|x:V, y:V,X′1:V1 . . .X′m:Vm).

x 6= X1 6= · · · 6= Xn 6= X′1 6= · · · 6= X′m
P = storel(x,X1 . . .Xn|X′1:V1 . . .X′m:Vm)

{P}x = v{Q1 ∗ true ∗ r .
= v}

x 6= X1 6= · · · 6= Xn 6= X′1 6= · · · 6= X′m
P = storel(X1 . . .Xn|x:V,X′1:V1 . . .X′m:Vm)

{P}x = v{Q1 ∗ true ∗ r .
= v}

x 6= y 6= X1 6= · · · 6= Xn 6= X′1 6= · · · 6= X′m
P = storel(x,X1 . . .Xn|y:V,X′1:V1 . . .X′m:Vm)

{P}x = y{Q2 ∗ true ∗ r .
= V}

x 6= y 6= X1 6= · · · 6= Xn 6= X′1 6= · · · 6= X′m
P = storel(X1 . . .Xn|x:V′, y:V,X′1:V1 . . .X′m:Vm)

{P}x = y{Q2 ∗ true ∗ r .
= V}

One limitation of this level of abstraction is that the abstraction
only covers a static (and unknown) list of emulated scope frames.
If we call a function which adds a new emulated scope frame to the
emulated store, then the rules above are insufficient to reason about
our program. The following rules allow us to reason at this level
of abstraction about a program which alters a global variable from
within a new local scope frame.

Writing to a store from a deeper scope.

Let Q = storeLS

(
X1, . . . ,Xn|x : V′,X′1 : V′1, . . . ,X

′
m : V′m

)
and

S = (L,@proto) 7→ null ∗ (L, x) 7→ � ∗ (L, y) 7→ V′ ∗ l .= L : LS.

x 6= y 6= X1 6= · · · 6= Xn 6= X′1 6= · · · 6= X′m
P1 = storeLS

(
x,X1, . . . ,Xn|X′1 : V′1, . . . ,X

′
m : V′m

)
{P1 ∗ S}x=y{Q ∗ S ∗ true}

x 6= y 6= X1 6= · · · 6= Xn 6= X′1 6= · · · 6= X′m
P2 = storeLS

(
X1, . . . ,Xn|x : V,X′1 : V′1, . . . ,X

′
m : V′m

)
{P2 ∗ S}x=y{Q ∗ S ∗ true}

Finally, we provide two rules for a more general case of store-
interaction. In these cases the value which is to be written to the
variable is the result of computing some arbitrary expression. These
lemmas are therefore necessarily more complicated, since they
must incorporate some features of sequential composition. We in-
sist that whatever the expression does, it must not alter the variable
store in a way that changes the visible values of the variables.

Destructive store Initialisation.

x 6= X1 6= · · · 6= Xn 6= X′1 6= · · · 6= X′m
R = storel(x,X1 . . .Xn|X′1:V1 . . .X′m:Vm)
{R ∗ P}e{R t∗ γ(LS ,V′,V) ∗Q ∗ r .

= V′} r 6∈ fv(Q)

S =

(
storel

(
X1 . . .Xn|x:V,X′1:V1 . . .X′m:Vm

)
t∗ γ(LS ,V′V) ∗Q ∗ true ∗ r .

= V

)
{R ∗ P}x = e{S}

x 6= X1 6= · · · 6= Xn 6= X′1 6= · · · 6= X′m
R = storeL:SLS (x,X1 . . .Xn|X′1:V1 . . .X′m:Vm) t∗ ¬σ(Nsls, l, x,L)
{R}e{R t∗ γ(LS ,V′,V) ∗Q ∗ r .

= V′} r 6∈ fv(Q)

S =

(
storeL:SLS

(
X1 . . .Xn|x:V,X′1:V1 . . .X′m:Vm

)
t∗

¬σ(Nsls, l, x,L) t∗ γ(LS ,V′,V) ∗Q ∗ true ∗ r .
= V

)
{R ∗ P}x = e{S}

It may seem surprising that we only provide lemmas for destruc-
tive variable initialisation, and not for destructive variable update.
This is because such an update rule would be unsound: The destruc-
tive expression might have the side effect of overriding the variable
we wish to update. This serves to further demonstrate the need for
the low level reasoning introduced earlier in this paper. We can use
higher level abstractions such as the store predicate where they are
sound, but if we wish to reason about programs with side-effecting
expressions, we will sometimes be forced to reason at a lower level.
The scope of a variable. The store abstraction gives us the tools
we need to easily reason about programs with large numbers of
variables. For example, consider the program from Section 2:

x = null; y = null; z = null;
f = function(w){x=v;v=4;var v;y=v;};
v = 5; f(null); z = v;



{
storel(x, y, z, f, v|)

}
x = null;y = null;z = null;{

storel(f, v|x : null, y : null, z : null) ∗ true
}

f = function(w){x=v ; v=4 ; var v ; y=v}; ∃L. storel(v|x : null, y : null, z : null, f : L) ∗
(L,@body) 7→ λw.{. . . } ∗
(L,@scope) 7→ LS ∗ true


v = 5; storel(|x : null, y : null, z : null, f : L, v : 5) ∗

(L,@body) 7→ λw.{. . . } ∗
(L,@scope) 7→ LS ∗ true


f(null); ∃L′. storel(|x : undefined, y : 4, z : null, f : L, v : 5) ∗

newobj(L′,@proto,@this, w, v) ∗ (L′) 7→ null ∗
(L′, w) 7→ null ∗ (L′, v) 7→ 4 ∗ true


[Frame]{

storel(|x : undefined, y : 4, z : null, f : L, v : 5)
}

z = v;{
storel(|x : undefined, y : 4, z : 5, f : L, v : 5) ∗ true

}
[Frame] storel(|x : undefined, y : 4, z : 5, f : L, v : 5) ∗

newobj(L′,@proto,@this, w, v) ∗ (L′) 7→ null ∗
(L′, w) 7→ null ∗ (L′, v) 7→ 4 ∗ true


[Cons/Var Elim]{
∃L. storel(|x : undefined, y : 4, z : 5, f : L, v : 5) ∗ true

}

∃L′,LS. l .= L′ : LS ∗
storeLS(|x : null, y : null, z : null, f : L, v : 5) ∗
(L,@body) 7→ λw.{. . . } ∗ (L,@scope) 7→ LS ∗
newobj(L′,@proto,@this, w, v) ∗ (L′,@proto) 7→ null ∗
(L′, w) 7→ null ∗ (L′, v) 7→ undefined ∗ (L′,@this) 7→ ∗ true


x=v;v=4;var v;y=v;
∃L′,LS. l .= L′ : LS ∗
storeLS(|x : undefined, y : 4, z : null, f : L, v : 5) ∗
newobj(L′,@proto,@this, w, v) ∗ (L′,@proto) 7→ null ∗
(L′, w) 7→ null ∗ (L′, v) 7→ 4 ∗ true


Figure 2. A proof of the variable scopes program.

With the store predicate and the lemmas given above, reasoning
about this program is simple. A proof of the main program is
shown in Figure 2. It relies on a simple proof of the function body
summarised here and given in full in [10].
Reasoning about with. This level of abstraction also leads itself
to reasoning about the notorious with statement. Re-consider the
with example from Section 2 (where f implicitly returns b):

a = {b:1}; with (a){f=function(c){b}};
a = {b:2}; f(null)

This program demonstrates the importance of modeling with cor-
rectly. Notice that when correctly modeled, the closure of the func-
tion f will refer to the object {b:1}, which was pointed to by the
variable a at the time that f was defined. However, even though the
variable a is changed to point to a different object before f(null)
is called, the closure continues to point to the object {b:1}. Thus
the program normally returns the value 1, not 2.

We can reason about this program using the store predicate.
The proof is in Figure 3. This proof relies on a sub-proof for the
invocation of the function f(null), which culminates with the
judgement {P}b{P ∗ r .

= 1}, where P is



∃LS,L,F,L′,LOC. l .= LOC : L : LS ∗
storeLS(|a : L′, f : F) t∗ (lop, f) 7→ � t∗
(lop,@proto) 7→ null ∗ true ∗
(L, b) 7→ 1 ∗ (L, f) 7→ � ∗ (L,@proto) 7→ lop ∗
(L′, b) 7→ 2 ∗ (L′, f) 7→ � ∗ (L′,@proto) 7→ lop ∗
(F,@body) 7→ λw.{b} ∗ (F,@scope) 7→ L : LS ∗
(LOC, b 7→ � ∗ (LOC,@proto) 7→ null



Let P = (L, b) 7→ 1 ∗ (L,@proto) 7→ lop ∗ true{
storel(a, f|) t∗ (lop, f) 7→ � t∗ (lop,@proto) 7→ null

}
a = {b:1};{
∃L. storel(f|a : L) t∗ (lop, f) 7→ � t∗
(lop,@proto) 7→ null ∗ (L, f) 7→ � ∗ P

}
with (a){ ∃LS,L. l .= L : LS ∗

storeLS(f|a : L) t∗ (lop, f) 7→ � t∗
(lop,@proto) 7→ null ∗ (L, f) 7→ � ∗ P


f=function(c){b}
∃LS,L,F. l .= L : LS ∗
storeLS(|a : L, f : F) t∗ (lop, f) 7→ � t∗
(lop,@proto) 7→ null ∗ (L, f) 7→ � ∗
(F,@body) 7→ λw.{b} ∗ (F,@scope) 7→ L : LS ∗ P


}; ∃LS,L,F. l .= LS ∗

storeLS(|a : L, f : F) t∗ (lop, f) 7→ � t∗ (lop,@proto) 7→ null ∗
(L, f) 7→ � ∗ (F,@body) 7→ λw.{b} ∗ (F,@scope) 7→ L : LS ∗ P


a = {b:2};
∃LS,L,F,L′. l .= LS ∗
storeLS(|a : L′, f : F) t∗ (lop, f) 7→ � t∗ (lop,@proto) 7→ null ∗
(L, f) 7→ � ∗ (L′, b) 7→ 2 ∗ (L′, f) 7→ � ∗ (L′,@proto) 7→ lop ∗
(F,@body) 7→ λw.{b} ∗ (F,@scope) 7→ L : LS ∗ P


f(null)
∃LS,L,F,L′,LOC. l .= LS ∗
storeLS(|a : L′, f : F) t∗ (lop, f) 7→ � t∗ (lop,@proto) 7→ null ∗
(L, f) 7→ � ∗ (L′, b) 7→ 2 ∗ (L′, f) 7→ � ∗ (L′,@proto) 7→ lop ∗
(F,@body) 7→ λw.{b} ∗ (F,@scope) 7→ L : LS ∗
(LOC, b 7→ � ∗ (LOC,@proto) 7→ null ∗ P ∗ r .

= 1


{r .

= 1 ∗ true}

Figure 3. Reasoning about with.

For space reasons we reason here about only the case in which
neither a nor f are in the variable store. The same techniques in
tandem with the disjunction rule can be used to prove the more
general precondition:

storel(a, f|) t∗ (lop, f) 7→ � t∗ (lop,@proto) 7→ null ∨
storel(f|a : ) t∗ (lop, f) 7→ � t∗ (lop,@proto) 7→ null ∨
storel(a|f : ) t∗ (lop, f) 7→ � t∗ (lop,@proto) 7→ null ∨
storel(|a : , f : ) t∗ (lop, f) 7→ � t∗ (lop,@proto) 7→ null


Notice that even in the more general case, we constrain our precon-
dition with the assertion (lop, f) 7→ � t∗ (lop,@proto) 7→ null.
The requirement for this term may seem surprising. Consider
running the above program in a state satisfying storel(a, f|) t∗
(lop, f) 7→ 4. In this case, when the assignment to f is made, the
function pointer will be written to the cell (L, f), rather than into
the global variable store. Since the variable store does not contain a
function value for the variable f, the call to f(null) will cause the
program to fault. The problem is potentially even worse if (lop, f)
contains a function pointer. In this case, the call to f(null) will not
fault, but rather will execute whatever code it finds. This kind of
unpredictability could lead to very confusing bugs. In the case of
a system like Facebook which attempts to isolate user-application
code from host-page code, it could even lead to a security flaw.

6.3 Layer 3: a Recursive Abstract Variable Store
While reasoning using the store predicate, it is possible to handle
large numbers of assignments and small numbers of function calls.
However, for more function calls, another abstraction is called for.
We choose to represent an abstract variable store as a list of lists
of variable-value pairs, with the most local scope frame at the
head of the outer-list. The list [[x = 4], [y = 5], [x = 6, z = 7]]
represents a store in which the global scope contains the vari-
ables x and z, an intermediate scope adds the variable y, and the
local-most scope overrides the variable x. The list elements of
variable-value pairs can be represented in our logical expression
language as lists containing two elements. For readability, we use
the notation x = v above. We define the recursive store pred-



icate recstoreL(EmptyVars,FullVars) which describes an ab-
stract variable store FullVars , which does not contain the variables
in the list EmptyVars .

The Recursive recstore predicate.

recstoreL([x1
′, · · · xm′], [[x1 = V1, · · · , xn = Vn]]) ,

storeL(x1
′, · · · xm′|x1 : V1, · · · , xn : Vn)

recstoreL:LS ([x1
′, · · · xm′], ([x1 = V1, · · · , xn = Vn] : Sc)) ,

recstoreLS ([x1
′, · · · xm′],Sc) ∗ (L,@proto) 7→ null ∗ L 6 .= lg ∗

∗i∈1..m (L, xi′) 7→ � ∗j∈1..n (L, xj) 7→ Vj ∗
nonesL([x1, · · · , xn],Sc)

nonesL( , [ ]) , �

nonesL(Locs, ([x1 = V1, · · · , xn = Vn] : Sc)) ,
∗i∈1..n((xi ∈ Locs ∧ �) ∨ (xi 6∈ Locs ∧ (L, xi) 7→ �)) ∗
nonesL((x1 : · · · : xn : Locs),Sc)

Notice that recstore uses the store predicate to constrain the
global-most scope frame in the abstract scope list, while being
rather more restrictive about more local scope frames. Local scope
frames must be emulated by JavaScript objects which have a null
prototype, and which are not the lg object. These criteria are met
by the emulated scope frames created by a normal function call,
and are not normally met by with calls. This makes this abstraction
ideal for reasoning about programs with many function calls and no
internal uses of the with statement. Notice however that we do not
outlaw with calls in the enclosing scope, represented here by a top-
level use of the store predicate. This means that this abstraction will
facilitate reasoning about libraries which are written in a principled
way, and which may be called by unprincipled clients.

We provide several rules for reasoning at this level of abstrac-
tion in [10], the most interesting of which are destructive variable
initialisation and update.

Destructive recstore update.

R = recstorel((x : EmpVars), (Locals++[Globals]))
{R ∗ P}e{R ∗Q ∗ r .

= Var}
r 6∈ fv(Q)
S = recstorel((EmpVars), (Locals++[x = Var : Globals]))

{R ∗ P}x = e{S ∗Q ∗ true}

R = recstorel((Emps), (Locs++((x = Var) : Curr)++Globs))
{R ∗Globs 6 .= [ ] ∗ P}e{R ∗Globs 6 .= [ ] ∗Q ∗ r .

= Var ′}
r 6∈ fv(Q)
∀LS ∈ Locs. (x = ) 6∈ LS
S = recstorel((Emps), (Locs++((x = Var ′) : Curr)++Globs))

{R ∗Globs 6 .= [ ] ∗ P}x = e{S ∗Globs 6 .= [ ] ∗Q ∗ r .
= V }

Notice that we may not safely update variables in the global
portion of the abstract variable store with the results of potentially
destructive expressions. This is for the same reason as the corre-
sponding restriction on the store predicate in Section 6.2, there is
a corner case which would lead to very unexpected behaviour. At
this level of abstraction however, we have an advantage: we can be
sure that the local abstract scope frames were constructed in a more
principled way, and so we are able to reason about updating them
with destructive expressions using the second rule above.
Form validation. Consider a web form with a number of manda-
tory text fields and a submit button. If the button is “disabled” when
the page loads, then an event handler on the form can be used to
regularly check if valid data has been entered in all the fields be-
fore enabling the button. Let us assume that the programmer has
separated the concerns of parsing the web page and of validating
the data. The data validation function will be called with a single
parameter: an object with one field for each text value to check,
a count of those text values, and boolean toggle corresponding to


recstorel

[] ,

 data = L,
checkField = &undefined,
i = &undefined

 , []
 ∗

(L, numEntries) 7→ N ∗ (L, buttonDisabled) 7→ ∗
(L, 0) 7→ TXT0 ∗ . . . ∗ (L,N) 7→ TXTN


. . . checkForm . . .

∃L′. recstorel([ ], [[data = L, checkField = L′, i = N], [ ]]) ∗
(L, numEntries) 7→ N ∗
(L, 0) 7→ TXT0 ∗ . . . ∗ (L,N) 7→ TXTN ∗ (

TXT0 6
.
= ”” ∗ . . . ∗ TXTN 6

.
= ”” ∗

(L, buttonDisabled) 7→ 0

)
∨(L, buttonDisabled) 7→ 1




Figure 4. The specification of checkForm.

whether the submit button should be disabled. An example function
which might perform the validation check is:

checkForm = function(data) {
data.buttonDisabled = 0;
var checkField = function(text) {

if(text == "") {data.buttonDisabled = 1;}}
var i = 0;
while(i < data.numEntries) {

checkField(data[i]); i = i+1;}}

Notice that this code deals with variables in a principled way. It
makes use of no global variables, preferring instead to use function
parameters and local variables. The repeated work of the loop body
is factored into a function which could be expanded to provide
extra functionality or used elsewhere with little cost in readability.
Using the recstore abstraction it is straightforward to show that the
function body satisfies the specification given in Figure 4.

7. Related Work
This paper is the first to propose a program logic for reasoning
about JavaScript. Our program logic adapts ideas from separation
logic, and proves soundness with respect to a big-step operational
semantics derived from the semantics of Maffeis, Mitchell and
Taly [16]. In this section, we discuss related work on separation
logic and the semantics of JavaScript.

We build on the seminal work of O’Hearn, Reynolds and
Yang [18], who introduced separation logic for reasoning about
C-programs, and on the work of Parkinson and Bierman [22], who
adapted separation logic to reason about Java. We made several
adaptations to their work in order to reason about JavaScript. As
in [21], we use assertions of the form (l, x) 7→ 5 to denote that
a field x in object l has value 5. We extend these assertions by
(l, x) 7→ �, which denotes that the field is not in l. This is in-
spired by Dinsdale-Young et al.’s use of the ‘out’ predicate to state
that values are not present in a concurrent set [6]. We introduce the
sepish connective t∗ to account for partially-shared data structures.
We have not seen this connective before, which is surprising since
shared data structures are common for example in Linux. There
has been much work on various forms of concurrent separation
logic with sharing [8, 19, 31], but they all seem to take a different
approach than our t∗ connective.

Most work on separation logic proves soundness by requiring
that commands are local. Javascript commands are inherently non-
local, since their behaviour changes depending on where the pro-
gram variables reside in JavaScript’s emulated variable store. We
base our soundness result on weak locality, recently introduced by
Smith in his PhD thesis [27]. At a similar time, Vafeiadis proved
soundness of concurrent separation logic [30], using an elegant
technique which does not rely on traditional locality. This tech-
nique differs from Smith’s in that it does not aim to be compatible



with existing locality proofs. Smith’s technique allows the re-use
of existing locality proofs when available.

We prove our soundness result with respect to a big-step op-
erational semantics of JavaScript derived from the one of Maffeis
et al. [16]. They define a small-step operational semantics of the
complete ECMAScript 3 language, at the same level of abstrac-
tion where a JavaScript programmer reasons. In contrast, [12] pro-
vide a definitional interpreter of JavaScript written in ML, which
has the advantage of being directly executable, but includes im-
plementation details that obscure the semantic rules. Elsewhere,
Guha et al. [11] compile JavaScript to an intermediate Scheme-
like language. Their approach helps defining type-based analyses
on the object language, but does not enjoy the one-to-one corre-
spondence between semantic-rules and inference-rules exploited
by our approach. Moreover, in some cases the compilation-phase
introduces a loss of precision (for example in the case of the with
construct). There are also a number of more abstract models of
JavaScript, which have proven useful to study selected language
features [1, 28, 33], but that are not sufficiently concrete for our
purpose. Overall, we have chosen the semantics in [16] because it
appears to the most faithful to the actual JavaScript semantics. As
Richards et al. argue in [25], all the unusual features of JavaScript
are well-used in the wild, and cannot be easily abstracted away.

8. Conclusions and Future Work
We have defined a program logic for reasoning about JavaScript,
based on an operational semantics faithful to the ECMAScript stan-
dard. We have adapted separation logic to reason about a JavaScript
subset, modelling many complex features, such as for example pro-
totype inheritance and with. We reason about the full dynamic na-
ture of JavaScript’s functions, but do not provide higher-order rea-
soning. We also provide only conservative reasoning about eval.
Full reasoning about these features will be technically challeng-
ing, although we believe that we can build on the recent work
of [5, 9, 26].

Due to our choice of operational semantics, we have been able
to prove a strong soundness result. All syntactically correct library
code, proved using our reasoning to be correct with respect to their
specifications, will be well behaved, even when called by arbitrary
JavaScript code possibly containing features not currently included
in our semantics. Also, our soundness result can be extended com-
positionally to include more sophisticated reasoning about higher-
order functions and eval.

We have given several examples of our reasoning, demonstrat-
ing through short snippets of code that JavaScript is fiendish to un-
derstand, and our reasoning can help. The with example in Sec-
tion 6.2 shows a potential bug that could easily go unnoticed for
some time, and perhaps lead to security holes in sanitised mashup
environments. Despite the complexity of the language and the sub-
tlety of the bug, reasoning about this and other examples is made
surprisingly simple by our abstraction layers.

We hope that this work will form the core of a larger body
of work on client-side web programming. For example, Thie-
mann [29] defines a type-safe DOM API, and Smith [27] develops
a context-logic for reasoning about DOM Core Level 1. It would
be valuable to integrate these approaches to DOM modelling with
the JavaScript reasoning presented here.

Maffeis et al. [14, 15, 17] developed techniques to build secure
JavaScript mashups out of untrusted code. They prove security
properties of their enforcement mechanisms, but do not study their
functional correctness. Our logics makes that analysis possible.
We also intend to develop reasoning for higher level libraries such
as jQuery, Prototype.js and Slidy. This high level reasoning about
JavaScript libraries will take the idea of our layers of abstraction to
the next level. To make this program reasoning genuinely useful

for JavaScript programmers, it is essential that we provide tool
support. We intend to produce analysis tools capable of spotting
bugs such as the one described in the with example in Section 6.2,
and integrate our tools with IDEs such as Eclipse or Visual Studio.
Acknowledgments. Maffeis is supported by EPSRC grant EP/I004246/1.
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