RCAT: From PEPA to Product form

Jeremy T. Bradley*

Department of Computing, Imperial College London
180 Queen’s Gate, London SW7 2BZ, United Kingdom
Web: http://www.doc.ic.ac.uk/ jb/

1 Introduction

The motivation behind RCAT [1] is very simple: finding steady-state solution
of large Markov processes is computationally very hard, is it possible to break
up the calculation into more manageable pieces and recombine the smaller cal-
culations to regain the full steady-state solution.

This is also the idea behind product form processes; processes whose global
steady state distribution is proportional to the product of the steady-state dis-
tributions of the smaller components in the system. The simplest of these
product forms is Jackson’s theorem [2] that applies to open queueing networks.

Whereas product forms such as Jackson’s theorem operate over queueing net-
works, RCAT operates over the stochastic process algebra components defined
in PEPA [3]. In the same way that Jackson’s theorem relates the global steady-
state probability to the steady-state distributions of the constituent queueing
nodes, so RCAT relates the steady state distribution of the global state space
of the PEPA model to that of the individual PEPA components.

2 Reversed Processes

The reversed process of a stationary Markov process {X; : ¢ > 0} with state
space S, generator matrix () and stationary probabilities 7 is a stationary
Markov process with generator matrix Q" defined by:

/ Terji

i = py ti,j €S (1)

and with the same stationary probabilities 7.

*With help from Peter Harrison and Ashok Argent-Katwala. Produced for 336 Performance
Analysis course 16.03.2007.

1@ 1@

20 2@

Fig. 1. A forward Markov process, F', and its reversed counterpart, R

This means that, if we have both the forward and reversed processes, we can
calculate the equilibrium or steady-state distribution. This is the primary mo-
tivation for RCAT. By providing a straightforward technique for constructing
the reversed process of a PEPA model, we can more easily find the equilibrium
distribution of the original PEPA model.

Theorem 1. (Kolmogorov’s Generalised Criteria) A stationary Markov process
with state space S and generator matriz QQ has reversed process with generator
matriz Q' if and only if:

1. g} = ¢; for every state i € S

2. For every finite sequence of states i1,19,...,5, € S,
o ’ / /
QivisQisis -+ - Qip_1in Qinis = Qiyi, Qinin_1 +** DigioBioiy
where ¢; = —q;; = Zj i Qij 18 the total exit rate from state i.

In Figure 1, we show a simple forward process, F', with generator matrix, Q.
In the reversed process, R, we can use the Kolmogorov Generalised Criteria to
discover the reversed rates in its generator matrix, Q’. Thus comparing total
outbound rates: g1 = A, g2 = 2X\,q3 = A gives, ¢ = ¢lo + ¢ls = N\ ¢h = ¢h =
2X, ¢4 = ¢4 = A. There are two minimal cycles in F, {1 — 2,2 — 3,3 — 1}
and {1 — 2,2 — 1}, gives the following cycle equations:

13052051 = z? 12051 = N?
Resolving these gives: qjo = A\/2,¢15 = A\/2,q5 = 2\, ¢4 = \.

We will use this style of reasoning to determine the reversed rates of PEPA
actions in sequential PEPA components later on.

Once the reversed process rates in @’ have been found, these can be used to
extract the equilibrium distribution, 7. This can be done directly from Equa-
tion (1) or by using a modified version that relates any 7; entry in the steady

state vector to a base value, 7.

j—1 j=1
i i4+1 ;i1
m=m][=m [(2)
im0 di+1,i i L+l

This holds for an irreducible Markov process, where we choose a reference state
0 arbitrarily and find a sequence of connected states, in either the forward or
reversed process, connecting state 0 to state j. Specifically, we require either
Giiy1 >0or g, >0for 0 <i<j—1forany state j.

3 PEPA

3.1 The PEPA language

RCAT is based on the stochastic process algebra PEPA. PEPA [3] is a parsi-
monious stochastic process algebra that can describe compositional stochastic
models. These models consist of components whose actions incorporate random
exponential delays.

The syntax of a PEPA component, P, is represented by:
P = (a,\).P|P+P|PXIP|P/L|A (3)

(a,\).P is a prefix operation. It represents a process which does an action,
a, and then becomes a new process, P. The time taken to perform a is
described by an exponentially distributed random variable with parameter
A. The rate parameter may also take the value T, which makes the action
passive in a cooperation (see below).

P; + Py is a choice operation. A race is entered into between components P;
and P,. If P; evolves first then any behaviour of P, is discarded and
vice-versa.

P, Df] Py is the cooperation operator. P; and P run in parallel and synchro-
nise over the set of actions in the set L. If P; is to evolve with an action
a € L, then it must first wait for P to reach a point where it is also ca-
pable of producing an a-action, and vice-versa. In an active cooperation,
the two components then jointly produce an a-action with a rate that re-
flects the slower of the two components (usually the minimum of the two
individual a-rates). In a passive cooperation, where P;, say, can evolve
with an (a, T)-transition, the joint a-action inherits its rate from the Py
component alone.

P/L is a hiding operator where actions in the set L that emanate from the
component P are rewritten as silent 7-actions (with the same appropriate
delays). The actions in L can no longer be used in cooperation with other
components.

A is a constant label and allows, amongst other things, recursive definitions to
be constructed.

Sh
(]

Fig. 2. A sequential PEPA component and its reversed form

3.2 Reversing a sequential component

Reversing a sequential PEPA component, S, is straightforward. The RCAT
tackles the reversal of a parallel PEPA component, P Dfl @, and makes use of
reversing sequential components in its definition.

Definition 1. For all states, S, in a sequential component:

The above definition, states that a reversed sequential component, S, is defined
to be a choice between all of the states that have S as a 1-step successor in the
forward process.

In simple terms, this literally means reversing the direction of the transitions in
the local state space of the component, as shown in Figure 2.

Actions a become @ in the reversed component; rates A become X in the reversed
component. A may be a function of many forward rates and it can be calculated
using Kolmogorov’s Generalised Criteria, as has been shown in Section 2.

3.3 PEPA activity substitution

The substitution function allows an activity a = (a,r) in a PEPA model to be
syntactically replaced with the activity o/ = (a,77):

Definition 2. The activity substitution function is defined as follows:

o (Pla—d'}) ifa=p

B.(P{a— a'}) : otherwise

Pla+— o'} +Q{a — o'}

(B.P){a —a'} = {

(P+Q){a—a'}

(PEEQ{a—a} = Pla—a} M Qla—a’}
where Li(a, \) — (a/, \)} = { (LL \ {a}) U {a} th Zefw%se

It is used by RCAT to replace passive activities with active ones (and active
activities with passive ones) when reversing a parallel component. This is nec-
essary, since one of the side-effects of applying reversal to a parallel component,
P DLQ @, is that cooperating actions that were previously active in the compo-

nent P and passive in () become passive in P and active in) (and vice versa).

4 Reversed Compound Agent Theorem (RCAT)

RCAT defines the reversed PEPA process P D;ﬂ Q@ in terms of slight modifica-
tions of the reversed processes of P and Q.

First we restrict the PEPA model that RCAT operates over. An action is
assumed not to relate to both an active and passive activity within the same
component, i.e. if an action is active in a component, all its instances are active
in that component, if it is passive then all instances of that activity are passive.

Definition 3. The subset of action types in a set L which are passive with
respect to a process P (i.e. are of the form (a,T) in P) is denoted by Pp(L).
The set of corresponding active action types is denoted Ap(L) = L\ Pp(L).

Henceforth, when referring to a reversed agent, we mean an agent that satisfies
Kolmogorov’s criteria: the agent will define a reversed process if and only if the
original process was stationary.

Theorem 2. (Reversed Compound Agent Theorem,)
Suppose that the cooperation P D§ Q@ has a derivation graph with an irreducible
subgraph G. Given that:

1. every passive action type in Pp(L) or Pgo(L) is always enabled in P or Q
respectively (i.e. enabled in all states of the transition graph);

2. every reversed action of an active action type in Ap(L) or Ag(L) is always
enabled in P or Q respectively;

3. every occurrence of a reversed afctionfof an active action type in Ap(L)
or Aq(L) has the same rate in P or Q) respectively.

the reversed agent P DLQ Q, with deriwation graph containing the reversed sub-

graph G, is:
R Xl g*
where:
R* = R{(@p,) < @T)|aecAp(L)}
§* = S{@3q,) — @T)|ac Ag(L)}
R = P{(a,T)« (a,z4) | a € Pp(L)}
S = Qf(a,T) « (a,2q) | a € Po(L)}

where the symbolic rates {x,} are given by:

. :{qa if a € Pp(L)
e D, :ifa € Pg(L)

and p,, G, are the symbolic rates of action types @ in P and Q respectively.

5 Example: Tandem queues

- ® ®

A tandem queue system has two M/M/1 queueing nodes with the output from
queue 1 becoming the input to queue 2. There is an external input at rate y
into queue 1. The service rate at node 7 is p; for 1 <i < 2.

This can be modelled in PEPA with e representing an external arrival, a rep-
resenting an internal transfer between queues and d representing a departure
from the network.

Sys = Py P1Qo

Py € (e7).P

p, ¥ (e,7)-Pns1 + (a,p1).Pry :n >0
Q = (a,T)Qu

Qn = (0, T).Qni1+ (dpi2).Qns in>0

Constructing the subprocesses R and S in the theorem leaves P unchanged.
Substituting the passive activity, (a, T) in @ gives S.

R = P{(a,T)« (a,zq) | a € Pp(L)}
= P
S = Qf(a,T) —(a,74) [a € Po(L)}

This gives:
RO d:Ef (67 7)R1
Rn & (6, ’y).Rn+1 + (a7 M1)~Rn—1 in >0
So d—e/ (a, ,Ta).Sl
Sh o (awTa)'Sn+1 + (da /LQ)'Sn—l in>0

Reversing the sequential components R and S using the definition of Section 3.2
gives us:

Ry ¥ (a,m).R
R, ¥ (@) R+ (€7).Rur in >0
So ¥ (d,7,).S:
Sn = (d,Ty) Sns1 + (@ Ta) Sn_1 ‘n>0

At this stage we can calculate the reverse rates, fi;, fi5, T4, 7y in terms of the for-
ward rates, by using the Kolmogorov Generalised Criteria as used in Section 2.

Comparing exit rates from Ry, So with those from Ry, Sg gives fi; = 7, iy = Tq-
At this stage we don’t worry that some of the forward rates are undefined.

Comparing the minimal cycle, {Ry — Ri,R; — Ry} with {Ry — Ry1,R; —
Ro} and {So — 51,51 — Sp} with {SO — 51,51 — So}, gives ;¥ = yp1,

HoTa = Tqft2.

Solving these gives us T, = p2, 7 = p1, straightforwardly.
Solving for x, is given by the last part of RCAT:

B q, :ifaePp(L)

o P, :ifa e Pg(L)

= P, :sincea € Pg(L)

= I

La

2

Constructing R* and S* is a matter of substituting T rates into the relevant
component.

R = R{(@p,) — (@T)|aeAp(L)}
= R{@m) — @)}

§* = S{@a,) — @7T)|aeAg(L)}
= S

Giving, the reversed process:

Sys = RTDAg*

Ry < (a,T).R]
Ry = (@ T).Riq+ (@ m)R_, in >0
Sy = (d).5%
S = (d7)Shiy + (@ p2).55 4 in >0

To construct the product form from the forward and reversed processes, we have
to look for a path from a start state (e.g. (Py, Qo)) to a generic state (P, Qn).
By inspection this can be achieved by queue P seeing m+n arrivals or e-actions
followed by n a-actions to transfer n jobs from queue P to queue Q.

Using Equation (2), we get:

j—1
Gii

T(Pn,Qn) = 7(P0,Qo) [A

i=0 qi+1,i

m+n—1

n—1
= (P, Qo) [] le&

i—o H1o o M2

m-+n n
= 7(F,Qo) (7> (ﬂl)
H1 H2
= m(Po,Qo)pi"p3
where p; = v/u; is the utilisation of node P for i = 1 and @ for ¢ = 2. This agrees

with the product form obtained from Jackson’s Theorem for open queueing
networks.

References

[1] P. G. Harrison, “Turning back time in Markovian process algebra,” Theo-
retical Computer Science, vol. 290, pp. 1947-1986, January 2003.

[2] J. R. Jackson, “Jobshop-like queueing systems,” Management Science,
vol. 10, no. 1, pp. 131-142, 1963.

[3] J. Hillston, A Compositional Approach to Performance Modelling, vol. 12
of Distinguished Dissertations in Computer Science. Cambridge University
Press, 1996.

