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Abstract 

The challenge of automating the formulation of optimization models is to produce, 
from a problem description, a well-formed model, which is a mathematically accurate 
representation of the real-world decision-making problem being considered, and 
which is suitable for computational purposes. This can be stated more formally as the 
automation problem, which is the problem of providing intelligent (i.e. automated) 
assistance during the formulation stage of the mathematical programming process. In 
this paper, we explore the need to automate model formulation, thus providing a 
background on the automation problem. We also detail a solution to the problem 
which is based on evolutionary search techniques.  
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Notation Guide 

Font Guide:

  
UPERCASE BOLD 
ITALIC 

denotes a subset e.g. A 

UPPERCASE ITALIC denotes a set e.g. D 

lowercase bold denotes a vector e.g. v 

lowercase bold italic denotes a formulation genotype e.g. g 

lowercase italic[equations 
and formulae] 

identifies a variable, set or vector element, also used 
for function names e.g. x, f 

lowercase subscript italic 
[equations and formuale] 

identifies an index e.g. ix

 

italic [body text] identifies a term or concept that will subsequently be 
explained in succeeding text/paragraphs. 

underline italic , underline

 

emphasis e.g. any, any

  

General Symbol and Alphabet Guide:

  

a, b, x, y  general purpose letters for identifying variables  

c objective function co-efficients  

D the set of all the problem characteristics encapsulated in the 
model base the problem domain.  

 

part of e.g. x y means that x is a constituent of the tuple y  

 

element of a set or vector e.g. a b  means a is an element 
of the vector b  

n denotes the dimension of a collection (vectors and sets), in 
terms of the number of components.  

( )f x

 

real-valued function defined over the variable vector x, 
usually denotes an objective function  

( )f x

 

function defined over a variable x  

( )f g

 

the fitness function for a model formulation genotype g  

m

 

a model in the formulation algorithm s model base  

m the model instance chromosome of a model formulation  g; an 
instance is simply a model whose input-data structures have 
been asssigned values i.e. a model that relates to a specific 
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problem instance  

E DE is the set representing the problem characteristics 
input to the formulation algorithm  

o specifically denotes the size of the problem characteristics set 
E, in terms of its number of components.  

W the set formed by taking the intersection of A and E  

v the size of the set W  

A

 

DA is the characteristics set for a model in the 
formulation algorithm s model base  

A A A E , where DA , is the characteristics 
chromosome of a candidate model formulation g i.e. the 
indexed set of problem characteristics encapsulated by the 
formulation g    

g a model formulation genotype i.e. the tuple (m, A)  

g

 

a prototype of a model formulation genotype i.e. one whose 
constituent model has not been instantiated; this is expressed 

formally as a tuple of the form ( , )mg A

  

.( )i jLv g , g

 

The Levenshtein distance between two genotypes ig and jg

  

, ',G G G

 

a generation (i.e. set) of genotypes (i.e. candidate model 
formulations)  

( )h x

 

real-valued function defined over the variable vector x, 
usually used in defining an inequality constraint on x  

( )h x

 

function defined over a  variable x  

p the non-negative undershoot variable for a soft constraint  

q the non-negative overshoot variable for a soft constraint  

R the set of real numbers  

S the set of feasible solutions to a mathematical model  

T

 

the beginning of a time interval ending at the present time 0 
i.e. [ ,0]T   

i

 

the average return on security i within the time interval [ ,0]T 
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x, y, z general purpose letters for identifying variable vectors  

 
the empty set  

ij

 
the covariance between the security i and j within the time 
interval [ ,0]T  

 

load factor for the co-efficients in a goal-programming 
optimization model  

( )n

 

order n  

z identifies an objective function    

Pseudo-code Notation:

  

{ start of segment 
} end of segment 
/* etart of comment 
*/ end of comment 
Start With denotes initialisation sequence in operations 
; line termination 
Input  input sequence, parameters, arguments 
Begin start of block of execution 
End end of block execution  

Special Notes on Subscripts and Superscripts:

  

i, j, t, k indices (when used as subscripts) e.g. ir

  

( )i ie x

 

an equality constraint for the ith model formulation   

( )i if x

 

the objective function for the ith model formulation  

ig

 

the ith genotype in a generation e.g. i Gg  

jG

 

the jth generation produced by a run of the formulation 
algorithm  

( )i ih x

 

an inequality constraint for the ith model formulation  

im

 

the m chromosome for the ith genotype in a generation i.e. 

i im g , where ig is an element of some generation G  

im

 

the ith model in the formulation algorithm s model base 

ip

 

the undershoot variable for the soft constraint created by re-
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formulating the objective of the ith model   

iq

 
the overshoot variable for the soft constraint created by re-
formulating the objective of the ith model  

iA

 
the A chromosome for the ith genotype in a generation i.e. 

i iA g , where ig is an element of some generation G  

iA

 

the characteristics set for the ith model in the formulation 
algorithm s model base  

iS

 

the set of feasible solutions for the ith model formulation  

ix

 

the vector of variables for the ith model formulation  

ix

 

decision variable denoting the holding in the ith security  

iy

 

the post-solution value of the decision variable ix
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1 Introduction 

As a result of vastly improved solution algorithms, modelling tools, and the 

proliferation of relatively inexpensive computing platforms, mathematical 

programmers are able to solve problems of much greater scale and complexity than 

previously possible. Also, relatively inexperienced programmers or novices have 

greater exposure to mathematical programming; most notably due to solvers 

embedded in popular desktop spreadsheet software. As opposed to the early 

practitioners of mathematical programming, current practitioners, from novice to 

experts, generally speaking, no longer face problems in the numerical computation of 

results; rather it is now possible to solve problems that are more complex or larger 

than the modeller can understand. Instead, the critical and often time consuming tasks 

involved in the creation of mathematical models are: formulating, communicating, 

managing, debugging, simplifying them and understanding their solutions.  

The problems associated with building, using and maintaining mathematical 

programs have led to a concerted attempt within the research community to create an 

Intelligent Mathematical Programming System {IMPS} (Chinneck et al. 1999, 

Greenberg 1991) aimed at tackling these problems. There isn t, as yet, an individual 

IMPS which provides automated support for all stages of the mathematical 

programming process; however there are tools, such as MProbe (Chinneck 2001) and 

ANALYZE (Greenberg 1993) this was actually born out of a consortium formed 

with the specific aim of creating an IMPS (see Greenberg 1991) which provide 

automated support for individual stages of the process.  

In this paper we describe the theoretical foundation an evolutionary 

algorithm for an IMPS that automates the formulation stage of the mathematical 

programming process. We begin by explaining the motivation for automating model 

formulation, and we proceed to describe, in detail, an evolutionary algorithm that can 

be used to automatically formulate mathematical programs using, as input, a set of 

problem characteristics. 

2 Why Automate Model Formulation? 

In order to solve any given real-world problem using optimization techniques, it 

is necessary to formulate (i.e. create) a model, which sufficiently captures its details 
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and is suitable for computational purposes. Consequently, formulation can be 

considered as one of, if not the focal point of the mathematical programming process. 

It is generally carried out after the analysis phase i.e. after a sufficient understanding 

of the real-world problem characteristics has been gained by the modeller(s). In some 

cases, the modeller possesses a priori knowledge of the particular problem domain 

thus removing the need for the analysis phase. Irrelevant of how the problem 

knowledge is gained, a model of the problem ultimately has to be created in order to 

enable a solution to be obtained. Formulation is performed by inferring relationships 

between the problem characteristics (i.e. requirements), decision variables, objectives, 

and constraints limiting the values of the decision variables thus constraining the 

solution space. Therefore, formulation can be viewed as the process of converting the 

identifiable characteristics of a real-world problem into a coherent and accurate 

mathematical representation of it.

 

Whereas this is relatively simple for mathematical programming practitioners, it 

constitutes a barrier to novices and less experienced modellers. Greenberg (2003), 

states clearly that the role of the formulation component (also known as the model 

assistant, see Figure 1) in an IMPS is to assist novices in formulating mathematical 

models. Even if a user possesses detailed knowledge of the problem being solved, a 

lack of knowledge in mathematical programming techniques can hinder the adoption 

of such techniques in tackling decision-making problems. The situation is further 

complicated by the fact that the knowledge requirement is generally not limited to the 

mathematics of optimization, but also to computing knowledge, specifically 

proficiency in either a modelling language or a high-level programming language; 

with the exception of trivial cases, the solutions to mathematical programs can only be 

obtained in a timely fashion by the use of computing power.   

 

Figure 1: Formulation Component of an IMPS 
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Solving the IMPS formulation problem essentially involves automating the model 

formulation process i.e. automatically interpreting the problem characteristics in order 

to produce an optimization model which is an adequate representation of it. The main 

advantages of doing this are: novice and non-specialist users are shielded from the 

mathematical intricacies of optimization; and the need for programming or modelling 

language proficiency is removed. Automation effectively provides access to 

optimization techniques to novices and non-specialists whilst shielding them from the 

complexities of model formulation and implementation.  

An example of a mathematical programming system, which provides support for 

automated model formulation, is MIMI (Chesapeake Decision Sciences). It provides a 

full set of capabilities for graphical representation of models and data for scheduling 

problems. In addition to windows and pull-down menus, the user has a collection of 

icons representing process units or machines, which can be used to change the model 

by simply repositioning them on the screen. These graphical features provide an 

interactive and precise picture of plant operations and scheduling options, thus 

enabling users to specify the problem characteristics utilising natural language. The 

specified characteristics are processed by the system to create an optimization model 

matching the user-supplied input.  

3 A Genetic Algorithm for Model Formulation 

This section presents an algorithm, which automates the formulation of 

optimization models by adapting techniques from artificial intelligence. It utilises 

encodings of the domain-specific knowledge of experts, and applies evolutionary 

search strategies to map a given set of problem characteristics to one or more output 

models. In simple terminology, the solution is an evolutionary algorithm which 

employs heuristics or rules to map a set of real-world problem characteristics to a set 

of candidate models, and by performing the selection, mutation and crossover genetic 

operations, it evolves new model formulations which provide fitter  matches to an 

instance of the real-world problem being considered. The algorithm terminates when 

it is no longer possible to evolve new model formulations from the pool of candidates.  

Evolutionary algorithms rely on the principles of natural selection in order to 

determine, evolve or find the solution to a given problem such algorithms are 

frequently categorized under the general heading of evolutionary search techniques. 
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Evolutionary search techniques, specifically genetic algorithms have been used with 

great success in the past to generate computer programs spurning a new field of 

endeavour called genetic programming (Koza 1992) or GP for short. Genetic 

programs are a special class of genetic algorithms which are concerned with 

automating the generation of whole computer programs, relying on tree based 

structures (see Figure 2 for an example) for encoding complex logic structures (e.g. 

operators) within a chromosome i.e. computer program formulation. In general, GP 

implementations require: a set of input parameters called terminals e.g. a set of real 

numbers; a set of functions required to solve a problem (e.g. adding two numbers), 

where the functions are also normally supplied by the user as input or generated 

randomly; a fitness measure; and a criterion for terminating a run. The GP works by 

combining a terminal and a function set in a population of programs (parse trees as in 

Figure 2), which are then individually evaluated against some fitness criteria, and the 

operators of selection, crossover, and mutation, applied to produce the next 

generation. For example, consider a genetic program which generates LISP 

expressions, if the set of numbers {9, 4, and 7} are specified as the input terminals, 

the fitness measure x specified as the result of evaluating the candidate LISP 

expression, and the termination condition given as x= 9*4*7 , then given the right 

set of input functions, the algorithm may generate an output parse tree similar to that 

shown in Figure 2 note that in LISP operators precede their arguments, for example, 

a+b is expressed as (+ a b). 

 

Figure 2: Parse tree for the LISP expression (SQRT (*9(*4 7))) 

Genetic programming as a field proves that it is possible to generate computer 

programs utilising evolutionary search strategies, in particular genetic algorithms. If 

optimization models are viewed in a declarative programming context (i.e. as a 
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collection of algebraic modelling language constructs), then it is possible to utilise 

similar evolution-based techniques to generate them. However, it is not possible to 

utilise a straightforward or generic genetic programming approach to achieve this 

because of three principal reasons.  

The first of which is that genetic programming either relies on the user to specify 

a set of input functions for creating an initial generation, or generates them randomly. 

The major motivation for automating model formulation is to shield the users from 

the complexities of optimization modelling; clearly, forcing the user to specify 

functions or operators defeats this purpose.  Secondly optimization models have a 

semantic as well as syntactic meaning, therefore cannot be viewed purely as computer 

programs Semantic meaning in the context of optimization models refers to the real-

world problem characteristics embodied by the model i.e. the real-world meaning of 

model structures, including parameters, variables, objective and constraints.  

Thirdly, it is also not possible to specify termination conditions or fitness 

functions in the genetic programming sense, because these are dependent on the 

semantic meaning of the model. As such, a means is required to ensure that the 

generated models or instances have the semantic characteristics intended by the user 

i.e. to ensure that the generated model matches the problem s characteristics. 

The evolutionary algorithm described in this paper builds on the wealth of 

research results in genetic algorithms and genetic programming, and utilises heuristics 

to ensure the semantic integrity of the generated models. The following schematic 

(Figure 3) provides a visual illustration of the algorithm. As is shown in the figure, the 

algorithm entails that the problem characteristics are supplied at the onset, and it relies 

on a model base  and a set of encoded rules to map these characteristics to a pre-

formulated set of models. This rule-based mapping process effectively constitutes the 

first phase of the algorithm, and is responsible purely for generating an initial 

population of models as input to the evolutionary phase of the algorithm. 

The pre-formulated models (the model base ) and the rule store essentially 

constitute a knowledge base of expert knowledge. This is because the models in the 

model base are formulated by experts in response to previous problems, and the rules 

in the rule store dictate how to map similar real-world problems as described by a set 

of characteristics to these models using inference techniques and basic fuzzy 

operators. The knowledge base therefore ensures that the real-world problem 
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descriptions as provided by the user, are mapped to models with the right semantic 

meaning i.e. encapsulate some aspect of the problem s characteristics. 

The evolutionary aspect of the algorithm constitutes its core, and, as already 

mentioned, relies on the mapping aspect simply for supplying the initial generation of 

candidate formulations. It uses the genetic operators of selection, mutation and 

crossover to produce composite models, which provide closer fits to the specified set 

of problem characteristics. Semantic integrity is preserved by the fact that an 

offspring s semantic meaning is a combination of those of the parents i.e. an offspring 

represents the same characteristics as both parents combined, and nothing more.  

 

Figure 3: Formulation algorithm schematic 

In keeping with the typical structure of genetic algorithms, the algorithm is split 

functionally into three stages: the creation of an initial generation; evolution; and 

termination.  

The initial phase of the algorithm, also referred to as the mapping phase, creates 

an initial generation of models based on problem input (incl. problem data); whilst the 

evolution phase evolves fitter formulations based on the output of the mapping phase. 

The algorithm enters the termination phase when it is no longer possible or neccessary 

to evolve formulations from the current generation. Note:

 

problem data refers to data 

describing the specific instance of the problem being solved, for example, the 

candidate portfolio of securities for a mean-variance optimization problem. It is 

collected as part of model instantiation, however the means by which this is done and 

the manner in which it (the data) is represented are implementation specific. 
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The following subsections describe the phases of the algorithm in greater detail, 

however, as a precursor, it is necessary to first of all present some background 

information on the foundations of the algorithm, specifically the genetic encoding of, 

and the fitness function for, candidate formulations. 

The genotype also referred to in this paper as a mate for a given formulation 

refers to its complete set of chromosomes, where a chromosome represents a 

collection of genes. A gene in this context serves the same function as a gene in a 

living organism, i.e. it encodes a particular trait of a candidate formulation in the same 

manner as a human gene can encode eye colour.  

Formally, the genotype

 

g  for a candidate formulation consists of two 

chromosomes namely A  and m where: A  encapsulates the real-world problem 

characteristics (unique characteristics) embodied by the candidate formulation 

(expressed as a set); and m is the candidate model formulation, and its associated 

instance data. Thus, the genotype can be expressed mathematically as the 

tuple ( , )m A . The allele of the genes in A is limited to the elements of the set D which 

is a finite set that defines the scope of the application domain to which the 

formulation algorithm is being applied i.e. the set of all known problem characteristics 

that can occur in the given domain. A gene s allele is its set of permissible values; in 

this context, it is the range of values for each element ia A .  

The authors appreciate that the meaning of the set D may not be entirely clear at 

this juncture; however we believe that its meaning will become clearer with 

subsequent examples. In the meantime, it is worth mentioning that D is defined along 

the lines of applications of optimization techniques. Consequently product mix 

problems, for example, belong to a separate domain from financial optimization 

problems, which in turn also belong to a separate domain from transportation 

problems.  

The fitness function measures the closeness of the model formulation 

encapsulated by a given genotype i.e. the extent to which it represents the real-world 

problem being modelled, and it is expressed as ( )f g . Its value is given by 

fraction v o where: E is the set which holds problem characteristics provided by the 

user such that DE ;W = A E ; v W ; o E .  

The fitness function essentially captures to what extent a given model 

formulation resembles the real-world problem i.e. the number of characteristics of the 
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real-world problem that is embodied by the formulation. As is clear from its 

definition, the value of the fitness function has a range [0, 1], where 1 represents 

maximum/full fitness i.e. a full match.  

It is worth emphasizing that the contents of D  are implementation specific 

(determined at the time of implementation) and effectively define the scope of the 

algorithm i.e. limits the problems that it is able to cater for.  

The explanations in the following subsections frequently refer to Markowitz s 

seminal mean-variance optimization model (Markowitz 1952), and as such, it is 

necessary for reference purposes to present the model in its classic form. This is done 

in the following set of equations:  

min 
1 1

n n

i j ij
i j

j i

x x

 

(1)  

subject to i ii
x b

 

(2)  

     0ix

 

(3)  

         1ii
x

 

(4) 

where: ,i j Securities  i.e. the candidate set of securities (financial assets) from 

which the optimized portfolio is built; ix R  is the holding in security i expressed as 

a fraction of the total holdings i.e. 1; i is the average return on security i within a 

time interval [ ,0]T ; ij  is the co-variance of the security i and j within the interval 

[ ,0]T ; and b R  is a desired level of return or dividend. The objective given by 

equation (1) minimizes the portfolio variance i.e. risk, and the constraint (2) places a 

minimum limit on the expected return of the portfolio. The additional constraints (3) 

and (4) restrict short sales, and limit the maximum holdings to 100% respectively. 

3.1.1 Creating an Initial Generation 

An optimization model can be viewed as encapsulating one or more unique 

characteristics of a real-world decision-making problem. Consider for example 

Markowitz s classic mean-variance optimization model, this can be said to 

encapsulate four core characteristics of the portfolio optimization problem, namely: 

(a) minimizing the exposure to residual asset risk; (b) a minimum return/dividend 

requirement or target; (c) a restriction on short sales; and (d) a restriction on the total 
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holdings. As such, given the set E describing a real-world portfolio optimization 

problem, where , , ,a b c dE , it is possible to use rules to match it to the classic 

Markowitz model. NOTE:

 
The contents of the set E refer to the problem 

characteristics described above i.e. the characteristics (a), (b), (c) and (d) 

encapsulated by the classic formulation of the Markowitz mean-variance optimization 

model. Similar notation is used from this point on in the paper.  

The initial phase of the algorithm (listed in pseudo-code in Figure 4) matches a 

given problem description E to one or more model formulations. It maintains a set of 

model formulations M where each im M  is associated with (i.e. logically 

encapsulates) a set of problem characteristics iA . Given a problem description E, it 

creates a set of model formulation genotypes G which match the given characteristics 

to an extent each model in the set (i.e. each formulation m contained in a 

genotype Gg ) encapsulates at least one of the real-world problem s characteristics; 

so that for each genotype in G, its fitness as given by the value of the fitness 

function ( )f g  is greater than zero i.e. ( ) 0f g . 

The objective of this stage of the algorithm is not to find a single model m

 

which encapsulates all the characteristics E of the given problem, although it is 

possible that an m

 

resulting in a genotype g with ( ) 1f g  may be found and included 

in the set G. It is not always possible to find a single pre-formulated model, which 

embodies all the characteristics of a given real-world problem. This is because 

although a real-world problem can reoccur in different scenarios or environments, the 

reoccurrence may be a modification or variation of the original problem with 

characteristics that are not fully encapsulated by a single element in the model base. 

To elaborate, consider the example portfolio optimization model presented earlier; if 

the real-world portfolio optimization problem being considered requires a positive 

holding in each security, this would essentially introduce an added characteristic (e) to 

the problem. As, such the set E describing the problem becomes { , , , , }a b c d e  where 

the classic Markowitz model only encapsulates a, b and d giving it a fitness of
3

4
. The 

added requirement (e) essentially creates a slight variation of the same problem, 

which is not captured fully by the classic version of the model. Based on the 
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principles of fuzzy logic, it is possible to say that the classic version of the model 

captures3 4 of the characteristics of the modified problem. 

To illustrate with an example: consider that the model base M is initialized with 

the models 1m , 2m  and 3m , all derived from the classic Markowitz portfolio 

optimization model. Where the example model 1m  is given by:  

max i i
i

x

 

(5)  

subject to 0ix

 

(6)  

                     1i
i

x

 

(7) 

The associated problem characteristics set for 1m  is 1 { , , }a b cA  where: (a) is a target 

to maximize the portfolio return; (b) is a restriction on short sales i.e. no negative 

holdings; (c) is the requirement that all funds are invested, and that the holdings do 

not exceed 100% of the investment funds available i.e. 1. Note: x, i , ij , i and j 

retain the same meaning in 1m , 2m  and 3m  as for the model expressed in equations 

(1) to (4). The second model base element 2m  is as follows:  

min 
1 1

n n

i j ij
i j

j i

x x

 

(8)  

subject to 0ix

 

(9)  

                     1ii
x

 

(10)  

and its associated characteristics set is 2 { , , }b c dA  where (b) and (c) retain their 

meaning, and (d) represents the target to minimize the portfolio risk. The final 

element of the model base 3m  is as follows:  

min 
1 1

n n

i j ij
i j

j i

x x

 

(11)  

1ii
x

 

(12)  

and its corresponding characteristic set is 3 { , }c dA  where (c) and (d) retain the 

same meaning as for 1m  and 2m . 
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Having defined the characteristics sets of 1m , 2m and 3m , then { , , , }D a b c d i.e. 

1 2 3A A A . Given an input set { , , , }a b c dE  the heuristics phase of the algorithm 

will perform the following sequence of operations:  

1. Evaluate the fitness of candidate genotype 1 1,{ , , }m a b cg , with 

result 1
3( ) 0.754f g . 

2. Instantiate1 
1m

 

as 1m

 

and add new genotype 1 1 1,mg A to the output set G, 

where 1 1 { , , }a b cA A E . 

3. Evaluate the fitness of candidate genotype 2 2 ,{ , , }m b c dg , which will 

produce the result 2
3( ) 0.754f g . 

4. Instantiate 2m

 

as 2m and add new genotype 2 2 2,mg A

 

to the output set G, 

where 2 2 { , , }b c dA A E . 

5. Evaluate the fitness of candidate genotype 3 3,{ , }m c dg , with 

result 3
2( ) 0.54f g . 

6. Instantiate 3m  as 3m  and create a new genotype 3 3 3,mg A  and add it to the 

output set G, where 3 3 { , }c dA A E .  

As such, for the given example, the end result or output G for this phase of the 

algorithm will contain the genotypes 1g , 2g  and 3g . The loop within the main body of 

the algorithm performs three iterations demonstrating that its order can be expressed 

in terms of the size of the model base. If the model base contains n models, then this 

phase of the algorithm will perform n steps, thus its speed can be given as ( )n  i.e. 

order n. 

                                                

 

1 Instantiation in this context refers to the assignment of values to the input data structures of the model, thus turning the model 

into a model instance i.e. tying it to a specific problem instance. Post instantiation, the generic model formulation im is 

transformed into the instance im . 
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The output set G serves as input for the evolution phase of the algorithm, 

which is described in the following section. Note that if the cardinality of G is equal 

to zero, the algorithm moves to the termination phase.  

NOTE: Instantiation involves collecting the problem instance data relevant to the 

model, for example the average return of the securities in the example mean-variance 

optimization problem. The manner in which this is done and also the way in which the 

data is represented are implementation specific. In order to simplify the explanation of 

the algorithm, the chromosome m g

 

by definition encapsulates both the model and 

the data needed to describe it.   

Figure 4: Pseudo-code for phase 1 of the formulation algorithm 

3.1.2 Evolution 

The evolution phase constitutes the core of the algorithm. It accepts as input 

the set of genotypes G output by the initial phase, and by applying the genetic 

operators of selection, mutation and crossover evolves new generations of model 

Start With: 
M  /*A set of pre-formulated models*/ 
D  /*The problem domain to which the algorithm is being applied, where D is formed  

       by the union of all iA , and iA are the problem characteristics  

      encapsulated by im M */  

G  /*An initially empty output set*/ 
Input: 

E  /*The problem characteristics vector such that DE */ 
Begin:  

loop for all im M

  

{   

Create a candidate genotype ( , )
i i Emg    

if ( ( ) 0
i

f g )   

{ 

Instantiate im as im ; /*this is done by populating the data structures of     

the model which in a software environment would require  
prompting the user for input or querying an external system*/    

Create 
i i

A A E

 

Create a new genotype ( , )i i ig m A

     

Add the genotype ig

 

to the output set G;   

}  
} 

End:  
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formulations that bear a closer resemblance to the real-world decision-making 

problem being solved note that the terms crossover and combination refer to the 

same concept and are used interchangeably, the same applies to cross and 

combine . The resemblance to the real-world problem is obviously measured by the 

fitness (as given by the fitness function) of the resulting formulations. This phase of 

the algorithm is essentially the second stage of a genetic algorithm, which given an 

initial generation G of candidate genomes representing candidate model formulations, 

selects, mutates and combines the genotypes to provide semantically richer offspring. 

Crucial to this phase of the algorithm are the selection, mutation, and 

crossover operators, and the concepts of dominance and distance. These are explained 

in the following subsections; however in order to ensure clarity, it is necessary to 

make an initial and cursory pass through them.  

The selection operator is used to select two genotypes for the purpose of 

crossover i.e. mating to produce a new offspring (composite model formulation), and 

it relies on the feasibility of the parent s constituent model formulations, and their 

distance. The feasibility restriction is placed on the selected genotypes for two main 

reasons: the first of which is to enable mutation; and secondly to enable crossover. 

The distance between two genotypes is measured as a Levenshtein distance  and 

indicates how semantically different two genotypes (specifically the model 

formulations which they encapsulate) are. It is crucial for the simple reason that it is 

better to cross dissimilar genotypes than it is to cross similar ones. The Levenshtein 

distance is calculated as .( )i jLv g , g  and can result in either a zero, positive or 

negative value. A value of zero indicates equivalence, whilst the sign for a non-zero 

value indicates the dominant genotype, which in turn is the genotype that provides the 

closer1 match to the real-world problem being solved. Mutation is used to transform 

the dominant genotype into a form that is more suitable for multi-objective 

optimization. The subsequent subsections delve into the operators and the concepts 

mentioned above in greater detail and will enable the reader to gain a fuller 

appreciation of them. 

The evolution phase of the algorithm can be summarised as the following 

sequence of iterative steps (Figure 5 presents an alternative graphical illustration): 

                                                

 

1 The crossover operator relies on at least one genotype being designated as the dominant one, as such, even in the case where 
both genotypes have the same fitness i.e. provide equally good representations of the problem being modelled, one of them is still 
designated as dominant. This will become clearer in the subsection describing the Levenshtein distance. 
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1. Create an initially empty output setG'. 

2. Sort G s.t. ( ) ( )i jf f Gg g g  iff. i j

 
3. Outer Loop1 (for i=1 n):

 
Select a genotype i Gg where i im g is feasible, 

and i n  where n is the cardinality of G. If i n  then go to step 5. 

4. Inner Loop (for j=i+1 .n):

 

Select genotype j Gg where .( ) 0i jLv g , g  and 

j jm g is feasible.  

a. Mutate ig

 

b. Crossover ig and jg to create a new offspring ( , )t t tmg A , where tm is 

formed by combining im  and jm into a multi-objective optimization 

model, and t i jA A A . 

c. Add all tg toG'. 

If there is no such genotype j Gg and ig  has the highest fitness value for all 

genotypes selected so far in this generation, and ig has not mated at all, then 

move to the termination phase, else increment i and return to the outer loop. 

5. If G' , then output G and move to the termination phase. Else replace G 

with G'and return to step 1.   

Note:

 

The authors recommend that the algorithm implementation maintain the 

generation history i.e. that all the generations G should be stored in some sort of 

collection. This is so as to provide an audit trail which can be used to trace the origins 

of the output model formulations.  

The steps (1-5) above iterate through the set G in a left to right fashion, in an 

attempt to mate each genotype in G with a semantically distant genotype. Clearly 

each element i selected from the set G (in the outer loop) potentially can mate up to n-

i times with the exception of the genotype ng which does not have any element to its 

right i.e. it is the last element in the genotype list. The reason for traversing the set in 

a left to right fashion is to prevent duplicate mating i.e. a case where ig  mates with 

jg , and on a separate iteration jg  mates with ig . This essentially results in two 

                                                

 

1 Please note that in this paper, set indices are 1 based i.e. the first index is always 1 and not 0. 
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different copies of the same offspring tg inG', with the obvious consequence of 

degrading algorithm performance and introducing unnecessary duplication in the gene 

pool. In the case where the models i im g  and j jm g  model contradictory problem 

characteristics e.g. in the form of contradictory constraints, the offspring model 

t tm g  will become infeasible and as such tg  will not be selected in the next 

evolutionary cycle i.e. its genes will not be propagated any further. For example if im

 

contains the constraint 0x  for some decision variable x R , and jm  imposes the 

constraint 0x  on the same variable, then the resulting model is bound to be 

infeasible as both constraints cannot be satisfied. However in the interest of 

performance, it is recommended that some form of conflict detection is built into the 

algorithm implementation.  

Note that step 2 sorts the set G in order of fitness, so that the genotype with the 

highest fitness is at the beginning of the set. This ensures that in each 

iteration: ( ) ( )i jf fg g , which simplifies the termination conditions in step 4;  and 

that .( ) 0i jLv g , g , which implies that ig can be treated as the dominant genotype and, 

as such, can be mutated in step 4a. It is possible to forgo the sort in step 2 but, as 

explained, it greatly simplifies step 4. To provide a degree of flexibility to the 

implementer, the operators selection, distance, mutation and crossover described 

in this paper, are so done in a generic manner so that they are not reliant on the 

genotypes in a given generation being sorted. 

This phase of the algorithm can also be expressed in pseudo-code as in Figure 6. It 

ends if the set G'

 

is empty or if it is unable to find any mates for a selected individual 

ig G  which has the highest fitness value for all selected genotypes in the current 

generation G. In essence, it terminates when it is not possible to evolve any further 

offspring from G (the current generation). It is difficult to measure its performance as 

the speed is dictated by how quickly the algorithm runs out of distant genetic material 

i.e. how many runs before it is unable to create further generations from the current 

generation G. In a software environment, the speed is obviously also dictated by the 

computing architecture, for example the use of parallel computing techniques can be 

used to speed up the reproduction process so that for a generation of size n, n-1 

processes can be used for the selection, mutation, and crossover operators. 
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3.1.2.1  Selection 

The purpose of the selection operator is the identification of two genotypes 

ig and jg for mutation (dominant genotype only) and reproduction i.e. crossover

where one genotype is the dominant genotype (mate), and the other a subservient 

mate. The terms dominant and subservient are used for lack of better terminology 

to indicate that the model formulation encapsulated in the m chromosome of the 

dominant genotype will carry a heavier (or equal) weight in the offspring model, than 

the subservient genotype s. This is because the dominant genotype s model 

chromosome m is considered to be more important than, or equally as important as, 

the subservient genotype s in the offspring. The importance of the distinction between 

the two genotypes will be made evident in the explanation of the mutation and 

crossover operators. The decision as to which of the genotypes ig  and jg  is 

designated as dominant or subservient is based on the sign (+/-) of the Levenshtein 

distance which is explained in subsection 3.1.2.1.1. 

It is also possible that the dominant and subservient genotypes make equal 

contributions to the fitness of their offspring, however due to the fact that the 

mutation operator is performed on the dominant genotype alone, it is still necessary to 

designate one of them as dominant and the other as subservient. Even in such a case, 

the Levenshtein distance between the two genotypes would still be positive as will 

become evident later on in this paper. 

In a given iteration of the evolution phase, the selection operator is used 

initially for selecting the genotype ig . In this operation the only restriction imposed 

by the operator is that i im g  is feasible. Once ig  is selected, a sub- loop is initiated, 

and in each of its iterations, a distant and feasible jg  is selected. Thus, in addition to 

feasibility, jg  has to satisfy the added restriction of distance.  

3.1.2.1.1 Levenshtein Distance 

The Levenshtein  distance  between two genomes ig and jg is defined as 

follows:  

.( )
j i i j

i j

j i i j

if
Lv

if

A A A A
g , g

A A A A
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In words, the Levenshtein distance is the number of elements in j jA g  not in 

i iA g  when iA is larger (i.e. has more elements in it) than, or of the same size as jA ; 

or the negation of the number of elements in jA not in iA when jA is larger than iA . In 

essence, it measures the size of the difference between the A chromosomes of the two 

genotypes. The Levenshtein distance can either be zero, or a negative or positive (i.e. 

-/+) integer:  it is zero if and only if the A chromosomes of ig  and jg  are equivalent 

i.e. if the model formulations encapsulated by both genotypes model the same 

characteristics of the real-world problem being solved; it is negative if and only if the 

A chromosome of jg  is longer than the A chromosome of ig  (i.e. has more elements 

in it); else it is positive. 

 

Figure 5: Schematic for the evolution phase of the formulation algorithm    
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Thus it is possible that .( )i jLv g , g  may result in a different signed value 

from .( )j iLv g , g . The reason behind the use of signed values is that in the case 

of .( )i jLv g , g , a positive value dictates that ig  is the dominant genotype, whereas a 

negative value means that jg is the dominant genotype. The sign essentially denotes 

which of the genotypes is more important or should carry more weight in the creation 

of an offspring tg . This will be explained further in the section covering the crossover 

operator.  

Working from the example model-base and problem presented in section 3.1.1, 

the Levenshtein distance between the genomes 1g  and 2g  expressed as 1 2.( )Lv g , g is 

1. This is because the relative complement of 2 { , , }b c dA in 1 { , , }a b cA is {d} 

which is of length 1, and both sets are the same size, thus the result has a positive 

sign. 

The Levenshtein distance between 3g  and 1g  (expressed as 3 1.( )Lv g , g ) on the 

other hand is -2. This is because the relative complement of 1 { , , }a b cA  in 3 { , }c dA 

is{ , }a b

 

which is of length 2; and because 1A  is the longer set, the result is negative. 

This example provides a more intuitive reason why one genotype should be 

considered dominant in the crossover process: 1g  obviously provides a closer fit to 

the real world problem, and, as such, the objective of its model instance chromosome 

(i.e. 1 1m g ) carries a heavier weight in the multi-objective model tm

 

formed by 

combining 1m and 2m . Note that the result of 1 3.( )Lv g , g  in this case would be 1, and 

1g  would still be the dominant genotype. 

A Levenshtein distance of zero between two genotypes ig and jg indicates that 

both genotypes are semantically equal, and consequently, that there would be no 

benefit in combining them via crossover. In essence, because both genotypes model 

the same characteristics of the real-world problem being formulated, there is no point 

in combining them as no new characteristics will be modelled by the offspring, rather 

it will introduce redundancy into the gene pool. To paraphrase, both genotypes 

combined will not result in an evolutionary step. 
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3.1.2.2  Mutation 

The mutation operator is applied to the dominant genotype only. It re-arranges 

its m chromosome so that the objective function of the model it encapsulates is 

transformed into a soft constraint as described in the following paragraphs. The 

reason for mutation is to ensure that the objective function coefficients   are weighted 

correctly in the model formulation created by combining the m chromosomes of the 

dominant and subservient genotypes during crossover.  

The function of the weights will become clearer in the description of the 

crossover operator. For the sake of clarity, we state that the objective function 

coefficients refers to the coefficients of the variables that occur in the objective 

function; for example, assume that the objective function is 1 1 2 2 ... n nz c x c x c x , 

where x represents the decision variables, the coefficients are denoted by c. The 

mutation process is described as follows. [NOTE: The procedure/operation described 

remains the same regardless of whether or not the original formulation models a 

minimization or maximization problem.] 

If a given m chromosome of a dominant genotype g encapsulates the following 

optimization model formulation,  

max f x

 

(13)  

subject to Sx (14) 

                                                    

where: f is the objective function; x is the n-dimensional vector of decision 

variables; nS R is the set of feasible solutions determined by equality 0e x , 

and/or inequality 0h x constraints.  

The mutation operator first of all solves the model (using the decision-making 

problem instance data which is also encapsulated in m) to obtain the best possible 

solution. Secondly, if the post-solution values of the decision variable vector x are 

denoted by the vector y, it reformulates the model so that it becomes:   

min p

 

(15)  

subject to ( ) ( )f p q fx y

 

(16)  

Sx (17) 
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where: p R  is a non-negative undershoot variable, and q R  is a non-negative 

overshoot variable.   

Figure 6: Pseudo-code for the evolution phase of the formulation algorithm 

The objective of the pre-mutated model is essentially turned into a soft constraint (i.e. 

a goal) with a penalty p for under-achievement. It is easy to deduce that the re-

formulation does not bias the model in any way, as the minimum value of p is zero, 

and as such, its value after the solution of the mutated instance is forced to be as close 

to zero as possible. As a consequence of the soft-constraint (16), the value of q should 

Input: 
      G  /*The non-empty output from the heuristics phase*/ 
Begin: 
      loop /*a control loop for initializing G', but not part of the core logic!*/ 
      { 

t=1; /*output indexing variable*/ 
   Create an empty set G' to hold the new generation; 

Sort G  
loop for all i Gg  where i n

  

{   
if ( i im g is feasible)   

{       
loop for all j Gg where j i

    

{     
if ( .(g ,g ) 0i jLv

 

and j jm g is feasible)     

{ 
Mutate ig ;      

tg =Crossover ig and jg ;   

      

Add tg  to G'; 

t=t+1;     
}       

} /*end j loop*/    
if (no distant j Gg is found and ig is fittest selection in G) 

then terminate;   
}   

}/*end i loop*/ 
if (G' ) then terminate; 
else replace  G  with G'; 

      }/*end control loop*/ 
End: 
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also be zero this facilitates the desired end-result, which is that ( ) ( )f fx y . To 

present a concrete example, consider the example model 2m  presented in equations 

(8) to (10) which together with the problem instance data constitutes the m 

chromosome of the genotype 2g  (i.e. 2 2m g ): if the post-solution value of each ix

 

is denoted by iy

 

the mutated genotype s model chromosome 2m  would be as follows:  

min p

 

(18)  

subject to 
1 1 1 1

( )
n n n n

i j ij i j ij
i j i j

j i j i

x x p q y y

 

(19)  

0ix

 

(20)  

1ii
x

 

(21)  

where: p and q retain the same meaning as for (15) to (17).  

It can be deduced from the above paragraphs that the mutation operator 

consists of two steps, the first of which is to solve the model with the given problem 

data, and the second is to reformulate it using goal programming techniques i.e. by 

turning the objective into a soft constraint. After the mutation of the model 

formulation, the new objective function consists of a single variable p with a 

coefficient of 1. 

3.1.2.3  Crossover 

The purpose of the crossover operation is to create a new genotype tg  by 

combining the genetic material of two parents ig and jg , where one is the dominant 

mate, and the other is the subservient mate. As already explained, the dominant mate 

is chosen based on the value of the Levenshtein distance. In order to simplify the 

crossover explanation, we will assume that for a crossover operation between 

ig and jg : ig  is the dominant mate and jg is the subservient mate i.e. .( )i jLv g , g  is 

positive; and the mutation operator has been applied to ig . 

The crossover operator consists of two core steps, the first of which is to create 

the A chromosome of tg

 

i.e. tA . The chromosome is formed by taking a union of the 

A chromosomes of ig  and jg  i.e. t i jA A A . The new characteristics set tA

 

reflects the fact that the new genotype encapsulates the problem characteristics 
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modelled by the two parent genotypes i.e. offers the same expressive power as both 

parents combined. 

After initialising the set tA , the operator merges the model, m, chromosomes 

(i.e. im  and jm ) of the parent genotypes so that the model chromosome tm  of tg

 

reflects the new characteristics set tA . This is achieved by combining im  and jm  into 

a multi-objective optimization model i.e. ( tm ) using goal programming techniques.  

If the mutated dominant model im  is:  

min ip

 

(22)  

subject to ( ) ( )i i i i i if p q fx y

 

(23)  

i iSx (24)  

where: ip and iq  are the non-negative undershoot and overshoot variables 

respectively, which were introduced during mutation; ( )i if x is its objective function; 

ix is the n-dimensional vector of decision variables; n
iS R is the set of feasible 

solutions determined by a set of equality  0i ie x , and/or inequality 0i ih x 

constraints; and iy  represents the pre-mutation solution values of the variables ix  for 

the given problem data.  

And the subservient genotype s model formulation jm  is,  

max1 ( )j jf x

 

(25)  

subject to j jSx (26) 

where: ( )j jf x is the subservient model s objective function; jx is its vector of 

decision variables; n
jS R is the set of feasible solutions for the given problem data, 

as determined by a mixture of equality 0j je x , and inequality 0j jh x 

constraints.  

Then, the offspring model produced as a result of the crossover operation will 

be as follows:  

min i j jp p q

 

(27)  

subject to ( ) ( )i t i i i if p q fx y

 

(28) 

                                                

 

1 The same approach applies for minimization and maximization problems.  
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                    ( ) ( )j t j j j jf p q fx y

 
(29)  

t tSx (30) 

where: tx  is formed by taking the union of ix  and jx ; t i jS S S ; , 0j jp R p

 
and , 0j jq R q  are the undershoot and overshoot variables respectively for soft 

constraint (29) obtained by reformulating the objective of the subservient model jm ; 

( )j jf y  is the pre-crossover solution1 of the model jm  for the given problem data; 

 

is a positive weight reflecting the importance of achieving the solution ( )j jf y  of the 

subservient model jm , relative to that of achieving the solution ( )i if y  of the model 

im .   

In order to create a union of ix and jx , a means is required to prevent the 

duplication of variables i.e. the double inclusion of variables that occur in both 

vectors into the new vector tx . Variables by definition are assumed to have a meaning 

i.e. they model some real-world quantity, as such, equivalence tests can be performed 

based on the meaning (probably indicated by the name), type and range of variables. 

Equality testing or comparison however is within the realms of implementation, and 

the means by which it is achieved should have no effect on the logic of the algorithm. 

To present an example means of comparing variables, the AML grammar 

(Ezechukwu and Maros 2003) uses generic structure to group model elements into 

logical units, where each unit represents some aspect of the real-world problem being 

solved. As such, if the m chromosome is implemented using such a grammar, it can be 

assumed that two variable genera which share the same identifier (i.e. name), range, 

type and calling sequence, model the same real-world phenomenon.  

The feasible values of the variables tx , are dictated by the set of feasible 

solutions tS  for the new model, where tS  is the union of the solution space of im  and 

jm .  

The objective of the new model tm  is created by augmenting the objective of 

im  with the undershoot jp  and overshoot jq  variables, where the positive coefficient 

 indicates the importance of meeting the objective of

 

jm  i.e. satisfying the 

                                                

 

1 Assumed to be the best possible solution i.e. may be a local or global optimum depending on the problem and the instance data. 
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constraint (29). From a genetic programming perspective, it can be viewed as the ratio 

of the contributions made by the subservient genotype to the new offspring, compared 

to that made by the dominant genotype.  is calculated as: 

j i

i

A A

A 

In essence,  is the ratio of real-world problem characteristics in the set jA , 

which are not in iA , to the size of iA . So that if there are two characteristics in jA  not 

in iA , where iA has a size of four, then 2 4 , meaning that iA contributes four parts 

to the fitness of the new offspring, whilst jA contributes just two parts. Consequently 

achieving the best possible solution for jm  is only half as important as for im . In 

effect, meeting the requirements embodied by the subservient model is only half as 

important as meeting those represented in the dominant model, because the dominant 

model is making twice as many contributions to the fitness of the new offspring.  

The reason for mutation is to ensure that the value of  is effective by fixing 

the objective coefficient of ip  to 1. In other words, prevent unknown coefficients 

from appearing in the new objective function. This is because very large coefficients 

for the objective function variables can render  insignificant and consequently jp

 

and jq . Small or insignificant coefficients can also have the opposite effect i.e. over-

emphasize jp  and jq . In essence, the size of the other coefficients can skew the 

solution if an effective value of  is not used. In conventional goal programming, the 

objective coefficients of the undershoot and overshoot variable are sometimes set by 

trial and error. A common approach is to use a second load factor  which is the 

average of the other coefficients, so that if an objective function is given as 

1 1 2 2 ... n nz c x c x c x  where c is a vector of coefficients, and x is a vector of 

variables: 1 2 .... nc c c

n
. The objective z can then be reformulated as 

1 1 2 2 ... n nz c x c x c x p q  where p and q are the under and overshoot 

variables respectively for the sub-objective or goal i.e. soft constraint.   

To illustrate with an example, consider the genotypes 1g  and 3g  presented in 

section 3.1.1, where 1g  is the dominant genotype (from section 3.1.2.1.1we know that 
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1 3.( , ) 1Lv g g ). The resulting genotype s ( tg ) A chromosome is { , , , }t a b c dA 

which is a union of 1 { , , }a b cA  and 3 { , }c dA , consequently giving it ( tg ) a fitness 

of 1. Its m chromosome ( tm ) encapsulates the model formulation:  

min 1 3 3

1 1

3 3
p p q

 
(31)  

subject to 1 1i i i ii
i

x p q l

 

(32)  

                              3 3
1 1 1 1

n n n n

i j ij i j ij
i j i j

j i j i

x x p q y y

 

(33)  

0ix

 

(34)  

1ii
x

 

(35) 

where: 1p  and 1q  are the undershoot and overshoot variables introduced during the 

mutation of 1g ; l  denotes the post-solution value of ix  obtained during the mutation 

of 1g , by solving the model 1m  for the given problem data; 3p  and 3q

 

are the 

undershoot and overshoot variables for the soft constraint (33) which corresponds to 

the objective function of the model 3m  i.e. the m chromosome of 3g ; and y  is 

introduced during the crossover process and denotes the value of ix  obtained after 

solving the model 3m  for the given problem instance. In this example:  indicates 

that 1m

 

contributes thrice as much as 3m  to the fitness of the new formulation; and the 

set of feasible solutions tS  for the offspring formulation ( tm ) is defined by 

constraints (34) and (35).  

In summary, the model encapsulated by an offspring s m chromosome ( tm ) is 

formed by combining a mutation of the model im  with jm , representing the objective 

function of the latter as a soft constraint with penalty costs for under and over 

achievement. Although not stated explicitly, the crossover operator should ensure that 

the model data (data describing the instance of the decision-making problem) 

encapsulated in both im  and jm  is carried forward (or is available) to the offspring 

tm , however the manner in which the data is represented and collected is very much 

implementation specific, as such, this paper does not delve into the data structures 
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associated with the model formulations for a given instance of the decision-making 

problem being solved. 

3.1.3 Termination 

The algorithm enters the termination phase when it is no longer able to evolve 

genetically fitter individuals from the current generation G. In the evolution phase, 

this manifests itself in one of two ways: an empty output set 'G  from an evolution 

iteration; or an inability to select/find a mate for a given genotype ig  where ig  has 

the highest fitness value for all genotypes selected in the current generation i.e. its A 

chromosome contains the highest number of problem characteristics as recorded in 

the current generation (note that this covers the scenario where its fitness is 1). It is 

also possible that the initial phase of the algorithm failed to create at least one 

genotype in response to the problem description; in which case the evolution phase is 

skipped entirely.  

If the output set 'G  of an evolution iteration is empty, it implies that either: 

selecting a starting genotype ig  failed i.e. there is no i Gg  such that ig  is feasible; 

or for every given starting genotype ig  it is not possible to find a mate jg where 

.( ) 0i jLv g , g  i.e. jg  is distant from ig , jg  is feasible, and j i . 

In the case where it is not possible to find a mate for the genotype that has the 

highest fitness value, then the m chromosomes of all the feasible genotypes must 

model the same problem characteristics i.e. ,i j

 

.( ) 0i jLv g , g , or all genotypes jg

 

which are far from ig  are not feasible. Clearly if the m chromosomes of all the 

feasible genotypes model the same problem characteristics, the genotypes must all 

have the same fitness value. 

In either case, the generation cannot evolve any further and it would be pointless 

for the algorithm to continue. The objective then becomes to find the subset of fittest 

individuals from the current generation. The termination phase of the algorithm can 

be summarised in the following steps: 

1. Create an output set G . 

2. Establish the highest fitness value a by iterating through G. 

3. Add all Gg  to G  where the fitness value of g is equal to a i.e. ( )f ag . 

4. Terminate and output G . 
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The algorithm run is considered successful if G  is not empty. If it is successful 

its output is the set of genotypes G . The m chromosomes (specifically the model 

formulations they encapsulate) of the genotypes Gg  capture the most 

characteristics of the real-world decision problem being considered, when compared 

to the other genotypes in G which were not included in G . This is manifested by the 

fact that they have the longest A chromosomes.  

4 Conclusion 

This paper is focused on the problem of automating the formulation of models for 

optimization problems from specification; a problem whose solution forms a crucial 

step in the quest to provide automated assistance to modellers for the mathematical 

programming process. This paper has provided a brief background, thus illuminating 

the reason for the drive to create an Intelligent Mathematical Programming System 

(IMPS). It has also explored the specific motivation behind the quest to automate the 

formulation stage of the mathematical programming process, and presented an 

evolutionary algorithm that can be used to achieve this.  

The authors have thus laid the theoretical foundation for a software solution to the 

automated formulation problem; a foundation, which is based on basic artificial 

intelligence techniques and discrete mathematics and which is capable of generating 

an optimization model given a description of the problem to be solved. The examples 

provided in this paper show that, in theory, this solution can be applied to real world 

problem domains.  
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