Computational study of the GDPO dual phase-1 algorithm

[STVAN MAROS*
Department of Computing, Imperial College, London
Email: i.maros@ic.ac.uk

Departmental Technical Report 2006 /6
ISSN 1469 4174

July 2006

Abstract

Maros’s GDPO algorithm for phase-1 of the dual simplex method possesses some theoretical
features that have potentially huge computational advantages. This paper gives account of a
computational analysis of GDPO. Experience of a systematic study involving 48 problems shows
that the predicted performance advantages can materialize to a large extent making GDPO an
indispensable tool for dual phase-1.

1 Introduction

The simplex method has two main versions: the primal and the dual simplex algorithm. Since Dantzig’s
seminal work [1] in 1951, the primal version received far more attention than Lemke’s dual [6] from
1954. As a result of this “bias” primal based simplex implementations have evolved continuously and
can solve large linear programming (LP) problems reliable and efficiently. The dual simplex did not
follow suit and its use was limited to cases where a dual feasible basis was available, like a simple
Branch and Bound (B&B) type solution of mixed integer linear programming (MILP) problems using
dual phase-2. Recently, dual phase-2 has undergone a substantial progress so that it can handle all
types of variables algorithmically [7; 9; 4| and it is very effective in practice.

The newly emerging methods for MILP use local techniques at the nodes of the search tree like
logical testing, implied bounds, added cuts. In such cases it is not true anymore that the optimal
basis of a parent node is dual feasible for the child nodes. Therefore, dual must start in phase-1. This
necessitates the development of an efficient dual phase-1 algorithm. Another motivation for a new dual
phase-1 algorithm was to make dual a competitive alternative to the primal for general LP problems.
The result of the author’s ensuing work was the creation of the GDPO (Generalized Dual Phase One)
algorithm [8; 9]. This algorithm possesses some interesting theoretical features that have potentially
huge computational advantages. The extent of the advantages has not been known. Therefore, to see
how the algorithm works in practice the author has conducted a systematic computational study of
GDPO. Experience on 48 problems shows that the theoretically proven advantages of the algorithm
(discussed in detail in [8] and [9]) can materialize in practice to a really large extent. This paper gives
account of the study.

*This work was partly supported by EPSRC grant EP/C533461/1

MAROS Study of Dual Phase-1 2 of 17

The rest of the paper is organized in the following way. Section 2 gives the general form of the LP
problem followed by section 3 with the brief theoretical description of GDPO. Section 4 is devoted to
the computational analysis of GDPO, while section 5 gives a summary of our findings.

2 Problem statement

Consider the following primal linear programming (LP) problem:

minimize CTX,
subject to Ax =Db, (1)
£L<x<u,

where A € R™*" ¢, x, £ and u € R” and b € R™. Some or all of the components of £ and u can be
—00 or 400, respectively. A itself is assumed to contain a unit matrix I, that is, A = [I, A], so it is
of full row rank. Variables which multiply columns of I transform every constraint to an equation and
are often referred to as logical variables. Variables which multiply columns of A are called structural
variables.

By some elementary transformations it can be achieved that all variables (whether logical or struc-
tural) fall into four categories as shown in Table 1. Note, type-1 logical variables correspond to range

constraints. More details of problem statement can be found in [9].

Table 1: Types of variables

Feasibility range ‘ Type ‘ Reference ‘
r; = 0 0 Fixed variable
0 < z;, < < 40 1 Bounded variable
0 < z; < +o0 2 Non-negative variable
-0 < z; < +o0 3 Free variable

2.1 The dual problem

First, we restate the primal problem to contain bounded variables only.

(P1) minimize c’x,
subject to Ax =D,
0<x<u,

where all components of u are finite.
A basis to (P1) is denoted by B and is assumed (without loss of generality) to be the first m
columns. Thus, A is partitioned as A = [B,R], with R denoting the nonbasic part of A. The

components of x and ¢ are partitioned accordingly. Column j of A is denoted by a;. A basic solution
to (P1) is

xzg=B7'|b- Zujaj ,
JeEU
where U is the index set of nonbasic variables at upper bound. The ¢th basic variable is denoted by
zgi. The d; reduced cost of variable j is defined as d; = ¢; — 7rTaj =cj — ch_laj which is further
equal to ¢; — c:]gaj if the notation a; = B_laj is used. d is the vector of reduced costs.

MAROS Study of Dual Phase-1 3 of 17

The dual of (P1) is:

(D1) maximize b’y — u’'w,
subject to Aly —w <c,
w >0,

where y € R™ and w € R" are the dual variables. It is to be noted that the y variables are unrestricted
in sign (free variables).
If only type-2 variables are present in (P1) then we obtain

(P2) min c¢x
s.t. Ax =D,
x >0,

and its dual is

(D2) max bly
s.t. ATy <ec.

Let us consider the (P2)—(D2) pair. Note, A contains a unit matrix and m < n. With the

introduction of vector w = [wy, ..., w,]T of dual logical variables (D2) can be rewritten as
max by (2)
st. Aly+w=c, (3)
w > 0. (4)
Let B be a basis to A. It need not be primal feasible. Rearranging (3), we get w’ = c¢? —yT A, or in

partitioned form

le; = C% - yTB7 (5)
wr = cx—y R. (6)

The nonnegativity (and, in this case, the feasibility) requirement (4) of w in partitioned form is
wi,wh]T > 0. Choosing y© = ¢cZB~! we obtain

wh = cp—csBT!B=0, (7)
wh = ¢k —cEtBT'R=4d% >0, (8)

where dr denotes the vector formed by the primal reduced costs of the nonbasic variables. Since (7)
is satisfied with any basis and y is unrestricted in sign, a basis B is dual feasible if it satisfies (8). This
is, however, nothing but the primal optimality condition. Therefore, we can conclude that the dual
feasibility condition is equivalent to the primal optimality condition. Additionally, the dual logicals
are equal to the primal reduced costs. Therefore, w; and d; can be used interchangeably.

Stating the dual when the primal has all types of variables is cumbersome. However, we can think
of the reduced costs of the primal problem as the logical variables of the dual, c.f. |9]. In this way dual
feasibility can be expressed quite simply as shown in the next section.

In practice, dual algorithms work on the primal problem using the computational tools of the sparse
primal simplex method (SSX) but perform basis changes according to the rules of the dual.

The creation of the updated pivot row p, i.e., the computation of a? for all nonbasic indices j is
an expensive operation in SSX (c.f. [10]). Traditional dual methods based on the Dantzig type pivot
selection make one iteration with the pivot row and discard it. The possible multiple use of this row

MAROS Study of Dual Phase-1 4 of 17

has motivated the author to develop a new algorithm called GDPO [8]. GDPO makes one step with
the pivot row which, however, can correspond to many iterations of the traditional method with very
little extra work. As GDPO is monotone only in the sum of infeasibilities it has an increased flexibility.
It also has some additional favorable features that enhance its effectiveness and efficiency.

3 The GDPO algorithm

This section gives a brief description of GDPO. A more detailed discussion can be found in the original
paper by Maros |[8].
3.1 Theoretical background

It is known that the primal reduced costs are the same as the dual logical variables, denoted by d; (cf.
|9, pages 261-262]|). Therefore, the feasible solutions of the dual of (1) satisfy the following conditions.

Type(x;) | Value d; Remark
0 z; =0 Immaterial
1 z; =0 >0
1 :Ej = u; <0 jeu (5)
2 z; =0 >0
3 z; =0 =0

In other words, a dual solution defined by sets (B,U) is feasible if the corresponding d; values satisfy
(9).

Since d; of a type-0 variable is always feasible such variables can be, and in fact are, ignored in
dual phase-1. Furthermore, dual logicals of type-1 (bounded) variables can easily be made feasible
by moving the corresponding primal variables to their opposite bound. It can be done without basis
change by simply updating the primal basic solution. For details, see [8] where this operation is called
feasibility correction.

It can be concluded that only type-2 and type-3 variables need to be considered in an algorithm
for dual feasibility. We define two infeasibility sets for them as follows.

P ={j:d; >0 and type(z;) = 3}, (10)

and

M ={j:d; <0 and type(z;) > 2}. (11)

If all variables are of type-1 any basis can be made dual feasible by feasibility correction.
Using infeasibility sets of (10) and (11), the sum of dual infeasibilities is defined as

F=>"di=> d; (12)

JEM JjEP

where any of the sums is zero if the corresponding index set is empty. It is always true that f < 0. In
dual phase-1 the objective is to maximize f subject to the dual feasibility constraints. When f = 0
is reached the solution becomes dual feasible (maybe after a feasibility correction). If it cannot be
achieved the dual is infeasible.

In an iteration of the dual simplex method first the outgoing basic variable is selected which defines
the pivot row. Let us assume row p is selected somehow (i.e., the pth basic variable zp, will leave the

MAROS Study of Dual Phase-1 5 of 17

basis). The elimination step of the simplex transformation subtracts some multiple of row p from dx.
If this multiplier is denoted by ¢ the transformed value of each d; can be written as a function of ¢:

dj(t) = dj —taf, jER. (13)

With this notation, d;(0) = d; and the sum of infeasibilities as a function of ¢ can be expressed
(assuming t is small enough such that M and P remain unchanged) as:

F&) = dit)=> di(t) = fO) =t | Y aF=> o], (14)
JEM JjEP JEM JEP

Clearly, f of (12) can be obtained as f = f(0).
The change in the sum of dual infeasibilities, if £ moves away from 0, is:

Af=ft)—fO) ==t Y o => ol |. (15)

JEM JEP
Introducing notation
N o
JEM JEP
(15) can be written as Af = —tv,. Therefore, requesting an improvement in the sum of dual infeasi-
bilities (Af > 0) is equivalent to requesting
—tu, >0 (17)
which can be achieved in two ways:
If v, > 0 then ¢ < 0 must hold, (18)
if v, <0 then ¢ > 0 must hold. (19)

As long as there is a v; # 0 with type(zp;) # 3 (type-3 variables are not candidates to leave the basis)
there is a chance to improve the dual objective function. The precise conditions will be worked out in
the sequel. From among the candidates we can select v, using some simple or sophisticated (steepest
edge type) rule.

Let k denote the original index of the pth basic variable xp,, i.e., z) = xp, (which is selected to
leave the basis). At this point we stipulate that after the basis change dy of the outgoing variable take
a feasible value. This is not necessary but it gives a better control of dual infeasibilities.

If ¢ moves away from zero (increasing or decreasing as needed) some of the djs move toward zero
(the boundary of their feasibility domain) either from the feasible or infeasible side and at a specific
value of ¢ they reach it. Such values of ¢ are determined by:

d.
tj = —;, for some nonbasic j indices
ot
J
and they enable a basis change since d;(t) becomes zero at this value of ¢, see (13). It also means that
the j-th dual constraint becomes tight at this point. Let us assume the incoming variable z, has been
selected. Currently, dj of the outgoing basic variable is zero. After the basis change its new value is
determined by the transformation formula of the simplex method giving

MAROS Study of Dual Phase-1 6 of 17

which we want to be dual feasible. The proper sign of dj is determined by the way the outgoing
variable leaves the basis. This immediately gives rules how an incoming variable can be determined
once an outgoing variable (pivot row) has been chosen. Below is a verbal description of these rules.

1. If v, > 0 then ¢, < 0 is needed for (18) which implies that the pth basic variable must leave the
basis at lower bound (because dj must be nonnegative for feasibility). In the absence of dual
degeneracy this means that d, and of must be of opposite sign. In other words, the potential
pivot positions in the selected row are those that satisfy this requirement.

2. If v, < 0 then ¢, > 0 is needed which is only possible if the outgoing variable x g, (alias z) is of
type-1 leaving at upper bound. In the absence of degeneracy this means that d, and of must be
of the same sign.

3. If v, # 0 and the outgoing variable is of type-0 then the sign of d, is immaterial. Therefore, to
satisfy (17), if v, > 0 we look for ¢, < 0 and if v, < 0 choose from the positive ¢ values.

It remains to see how vector v = [vq,...,vp]7

(16) can be written as

can be computed for row selection. In vector form,

v:Zaj—Zaj:B_l Zaj—Zaj :B_lfi (20)

JEM JEP JEM JEP

with obvious interpretation of auxiliary vector a. The latter is an inexpensive operation in terms of
the revised simplex method.

3.2 Analysis of the dual infeasibility function f(t)

A detailed analysis is given in |8]. Here we give the conclusions of it.

It can be investigated how the sum of dual infeasibilities, f(¢), changes as ¢t moves away from 0
(t >0ort<0). It can be shown that, in either case, f(t) is a piecewise linear concave function with
break points corresponding to different choices of the entering variable. The global maximum of this
function is achieved when its slope changes sign. It gives the maximum improvement in the sum of
dual infeasibilities that can be achieved with the selected outgoing variable by making multiple use of
the updated pivot row.

The following cases are distinguished.

1. If t > 0 is required then the dual feasibility status of d; (and set M or P, thus the composition
of f(t)) changes for values of ¢ defined by positions where
dj <0and of <0 or
d; > 0 and oz% >0
2. If t <0 is required then the critical values are defined by
dj <0and of >0 or
deOanda%<O.

The second case can directly be obtained from the first one by using —a? in place of . In both cases
there is a further possibility. Namely, if type(z;) = 3 (free variable) and d; # 0 then at the critical
point the feasibility status of d; changes twice (thus two ratios are defined). First when it becomes
zero (feasible), and second, when it becomes nonzero again. Both cases define identical values of d; /af
for ¢.

MAROS Study of Dual Phase-1 7 of 17

Let the critical values defined above for t > 0 be arranged in an ascending order: 0 <ty <--- <tp,
where) denotes the total number of them. For ¢ < 0 we make a reverse ordering: tg < --- <t; <0,
or equivalently, 0 < —t; < --- < —tg. Now we are ready to investigate how f(t) characterizes the
change of dual infeasibility.

Clearly, @ cannot be zero, i.e., if row p has been selected as a candidate it defines at least one
critical value, see (16). Assuming v, < 0 the initial slope of f(t), according to (15), is

sgz—vp:Za;)— Za‘;’. (21)

JjEP JEM

Now ¢ > 0 is required, so we try to move away from ¢ = 0 in the positive direction. f(t) keeps improving
at the rate of sg until ¢1. At this point d;, (t1) = 0, j1 denoting the position that defined the smallest
djl (0)

ratio t; = ——5—. At 1 the feasibility status of d;; changes. Either it becomes feasible at this point

or it becomes infeasible after ¢;.
If t; > 0 then either (a) dj, > 0 and a‘;’l >0 or (b) dj; <0 and a‘;’l < 0. In these cases:

(a) dj,(t) is decreasing.

(i) If d;, was feasible it becomes infeasible and j; joins M. At his point sg decreases by a?
see (21).
(ii) If d;, was infeasible (j; € P) it becomes feasible and j; leaves P. Consequently, 32 decreases
by of .
J1

17

If dj, = 0 then we only have (i).

(b) dj, (t) is increasing.

(i) If dj, was feasible it becomes infeasible and j; joins P. At his point 32 decreases by —a¥

J1’
see (21).

(ii) If d;, was infeasible (j; € M) it becomes feasible and j; leaves M. Consequently, s

decreases by —a;’l.

0
P

If dj, = 0 then we only have (i).

Cases (a) and (b) can be summarized by saying that at ¢; the slope of f(t) decreases by |a§1| giving

311, = sg — |oz§-)1 CIf 811) is still positive we carry on with the next point (¢3), and so on. The above
analysis is valid at each point. Clearly, f(¢) is linear between two neighboring threshold values. For
obvious reasons, these values are called breakpoints. The distance between two points can be zero if a
breakpoint has a multiplicity > 1. Since the slope decreases at breakpoints f(t) is a piecewise linear
concave function as illustrated in Figure 1. It achieves its maximum when the slope changes sign. This

is a global maximum. After this point the dual objective starts deteriorating.

MAROS Study of Dual Phase-1 8 of 17

t1 to t3 t4 t

Figure 1: The sum of dual infeasibilities as a function of ¢.

If v, > 0 then ¢ < 0 is required. In this case the above analysis remains valid if a? is substituted
by —oz?. It is easy to see that both cases are covered if we take 88 = |vp| and

k_ k-1 p _
sp = 5, —\ajk, fork=1,...,Q.

3.3 A GDPO iteration step by step

Let tg = 0 and fr = f(tx). Obviously, the sum of dual infeasibilities in the breakpoints can be
computed recursively as fr = fr_1 + s';_l(tk —tp_q), fork=1,...,Q.

Below, we give the description of one iteration of the algorithm called GDPO (for Generalized Dual
Phase One).

An iteration of the Generalized Dual Phase-1 (GDPO) algorithm:

1. Identify sets P and M as defined in (10) and (11). If both are empty, perform feasibility
correction. After that the solution is dual feasible, algorithm terminates.

2. Form auxiliary vector a = Z aj — Z a;.
JEM JEP

3. Compute the vector of dual phase-1 reduced costs: v = B~!a, as in (20).

4. Select an improving candidate row according to some rule (e.g., Dantzig [2| or a normalized
pricing [3; 5]), denote its basic position by p. This will be the pivot row.

If none exists, terminate: The dual problem is infeasible.

MAROS Study of Dual Phase-1 9 of 17

5. Compute the p-th row of B~1: g7 = egB_1 and determine nonbasic components of the updated
pivot row by oz;’ = BTaj for j e R.

6. Compute dual ratios for eligible positions following rules discussed in section 3.2, according to
vp < 0, or v, > 0. Store their absolute values in a sorted order: 0 < [t1] < --- < |tg].

7. Set k=0, tg =0, fo= f(0), sg = |vp|.
While k£ < @ and s’; >0do
k=k+1
Jk: the column index of the variable that defined the k-th smallest ratio, |¢g].
Compute f, = fr—1 + s’;_l(tk —tr_1), 8]; = 8];_1 - |oz§-’k .
end while
Let g denote the index of the last breakpoint for which the slope s]; was still nonnegative, ¢ = ji.
The maximum of f(t) is achieved at this break point. The incoming variable is z.

8. Compute oy = B_laq.

Update basis inverse: B™! = EB™!, E denoting the elementary transformation matrix created
from a using pivot position p.

Update the basic/nonbasic index sets.

Update solution: Interestingly, in dual phase-1 there is no need to carry the values of the primal
basic variables. They will only be needed in dual phase-2. Therefore the updating step below
can be omitted which slightly speeds up the iterations. However, for completeness, the updating
operations are presented below for cases when GDPO is used in conjunction with some other
methods that require the updated primal basic variables.

Update xp by xg = Exp, and set Tp, = z, + 0p, where 0p = zp,/af if v, > 0 or Op =
(zBp — upp)/of if v, < 0.

4 Computational study of GDPO algorithm

During the theoretical analysis of the favorable features of GDPO in [8] it was often quoted that they
show up more strikingly if several breakpoints are defined per iteration and the maximum of f(¢) is not
achieved at the first one, because in this case the large flexibility of the algorithm can well be utilized.
Whether it occurs in reality, one only can say if it is checked through a computational study.

In the sequel we give account of a comparative study of GDPO with the first breakpoint method
which will be referred as the “traditional” dual phase-1 algorithm (TD).

4.1 Characteristics of the test problems

The purpose of the study was to investigate the effectiveness of GDPO. The test environment was
the simplex based experimental code HIPLEX developed by the author. Though HIPLEX is “primal
oriented” it contains most of the computational tools required by an implementation of the dual.

HIPLEX has been designed to serve as a test environment of new algorithms and algorithmic
elements for the efficient solution of large scale linear programming problems. As such, it is an ex-
perimental code full of statements that gather information on the performance of the implemented
algorithms. In this way it is very suitable to study the effectiveness of new elements.

In the evaluation of GDPO, effectiveness is defined in terms of the number of dual phase-1 iterations.
As handling type-0 and type-1 variables in dual phase-1 is trivial (see dual feasibility correction [8;9]),
we have chosen problems which are dominated by type-2 (nonnegative) and type-3 (free) variables.

MAROS Study of Dual Phase-1 10 of 17

To make the findings reproducible only widely accepted (and accessible) problems were used. Among
them there were smaller, medium and large scale ones.

Table 2 gives the main characteristics of the test problems used, namely, the number of constraints
(m), number of structural variables (), number of nonzeros in A, and the break-down of the number
of structural variables by type. The problems are listed in alphabetical order of their names.

MAROS

Study of Dual Phase-1

11 of 17

Table
of variables by type
Problem | Rows | Columns | Nonzeros | Type-0 | Type-1 [Type-2 [Type-3
25fv4T 822 1571 11127 0 0 1571 0
80bau3b 2262 9799 29063 498 2986 6315 0
agg 488 163 2541 0 0 163 0
agg? 516 302 4515 0 0 302 0
agg3 516 302 4531 0 0 302 0
baxter 27441 15128 109823 0 1122 14006 0
bnll 643 1175 6129 0 0 1175 0
bnl2 2325 3489 16124 0 0 3489 0
boeingl 351 384 3865 0 228 156 0
cre_a 3516 4067 19054 0 0 4067 0
cre_b 9648 72447 328542 0 0 72447 0
cre_c 3068 3678 16922 0 0 3678 0
cre_d 8926 69980 312626 0 0 69980 0
czprob 929 3523 14173 229 0 3294 0
d6cube 415 6184 43888 0 0 6184 0
dbir2 18906 27355 1148847 0 0 27355 0
degen2 444 534 4449 0 0 534 0
degen3 1504 1818 26230 0 0 1818 0
degen4 4420 6711 107375 0 0 6711 0
grow(7 140 301 2633 0 280 21 0
growld 300 645 5665 0 600 45 0
grow22 440 946 8318 0 880 66 0
israel 174 142 2358 0 0 142 0
maros 847 1443 10006 35 0 1408 0
mod011 4481 10958 37425 1 1596 9361 0
nsct2 23003 14981 686396 0 0 14981 0
osa-07 1118 23949 167643 0 0 23949 0
osa-14 2337 52460 367220 0 0 52460 0
osa-30 4350 100024 700160 0 0 | 100024 0
perold 625 1376 6026 64 266 958 88
pilot _we 723 2789 9218 78 294 2337 80
rentacar 6804 9557 42019 650 179 8728 0
scagr 2 | 32847 34580 141757 0 0 34580 0
scrs_ 3 16545 17420 71401 0 0 17420 0
scsd6 147 1350 5666 0 0 1350 0
scsd8 397 2750 11334 0 0 2750 0
sctap2 1090 1880 8124 0 0 1880 0
sctap3 1480 2480 19734 0 0 2480 0
ship08l 778 4283 17085 0 0 4283 0
ship12l 1151 5427 21597 0 0 5427 0
stair 357 467 3857 82 6 373 6
sto27 14441 34114 114973 0 0 34114 0
stocfor2 2157 2031 9492 0 0 2031 0
stocfor3 16676 15695 74004 0 0 15695 0
SWS 14310 12465 105480 0 0 12465 0
unicolns 5421 45569 168220 2 1449 44118 0
woodlp 244 2594 70216 0 0 2594 0
woodw 1098 8405 37478 0 0 8405 0

MAROS Study of Dual Phase-1 12 of 17

4.2 FEvaluation of the test runs

First, the results are shown in a “raw” tabular form in Table 3 followed by further tables that reflect
the conclusions obtained from the raw version.

Table 3 shows the number of dual phase-1 iterations required by GDPO and TD, respectively. The
solution strategy for each comparative run is also included to identify scaling, the selection of starting
basis (logical or crash [11]), and whether Devex pricing was used.

Particularly interesting are the columns giving the ratio of the iteration counts. T/G means how
many times more iterations were made with the traditional method than with GDPO. Column G/T
is the reciprocal of it.

It can be seen that run strategies were not identical for all problems. There are several reasons
for that. First, we had to choose dual infeasible starting bases. When the all-logical did not satisfy
this a crash basis was used. Second, in case of larger problems dual Devex was used to obtain more
reasonable run times. Third, to avoid numerical difficulties, several problems were scaled prior to
solution. Presolve was not applied to any of the problems. It is important to note that for any given
problem both GDPO and TD was run with identical settings which is included in the table.

The basis of the expected effective operation of GDPO is the multiple use of the updated pivot row
which is measured by the number of breakpoints used for the maximization of f(¢). In some sense we
can view this measure as an algorithmic steplength. Table 4 demonstrates this feature of GDPO. As
there is a huge variation in the figures some aggregation was necessary to be able display the findings.
Any row in the table shows how many times was the first, second, ..., 5th breakpoint the maximizer
of the f(t) of an iteration, how many times was the maximizing breakpoint in the intervals 6 — 10,
11 —20, 21 — 50 and how many times were used more than 50 breakpoints (50-+). The total number of
phase-1 iterations is shown in the last column. The aggregate part of the table hides many interesting
cases, in particular the 50+ column. To somewhat relieve this problem we introduced a column headed
by “Max” which shows the maximum number of breakpoints used in one iteration. For instance, in the
row of mod011 we can see that from the 602 iterations in phase-1 (last column) it happened 31 times
that the maximum of f(t) was achieved at the 5th breakpoint. Furthermore, there was an iteration
(Max) when 917 breakpoints were needed to obtain the maximum of f(¢).

The starting point for the assessment of the effectiveness of GDPO is Table 3. It can be seen that
GDPO is more effective than TD in all but three cases. Column T/G shows how many times more
iterations were needed by TD in dual phase-1. Entries greater than 1 show cases when GDPO was
better. At the same time, this number can also be viewed as the measure of effectiveness. In three cases
the number was slightly smaller than 1 indicating that in these cases TD was slightly more effective.
For a better overview a summary table 5 is provided to show in how many cases and how many times
was GDPO more effective than TD.

MAROS Study of Dual Phase-1 13 of 17

Table 3:
Initial # Solution strategy
Problem of dual # of dual ph-1 itns Ratios Scaling | Start bas. | Devex
infeasibilities || GDPO | TD (k =1) T/G | G/T Y/N CB/LB Y/N
25fv47 41 238 1033 4.34 | 0.23 Y LB N
80bau3b 208 736 997 1.35 | 0.74 Y LB Y
agg 95 11 107 9.73 | 0.10 Y LB N
agg?2 171 13 109 | 838 | 0.12 Y LB N
agg3 171 13 109 | 838 0.12 Y LB N
baxter 3259 2687 4482 1.67 | 0.60 Y CB Y
bnll 57 4 27 6.75 | 0.15 Y LB Y
bnl2 156 49 134 2.73 | 0.36 Y LB Y
boeingl 164 9 102 11.33 | 0.09 Y LB N
cre_a 1156 476 1655 3.48 | 0.29 N CB Y
cre_b 14503 4604 12281 2.67 | 0.37 N CB Y
cre_c 1056 532 1559 2.93 | 0.34 N CB Y
cre_d 10409 3479 14798 4.25 | 0.23 N CB Y
czprob 1521 191 1959 10.26 | 0.10 Y LB N
d6cube 2637 1209 6500 5.38 | 0.19 Y CB Y
dbir2 9210 9631 9848 1.02 | 0.98 Y LB Y
degen2 425 143 574 4.01 | 0.25 Y LB Y
degen3 1249 571 1945 3.41 | 0.29 Y LB Y
degend 2697 1177 6792 5.77 | 0.17 Y LB Y
grow(7 21 1 14 14.00 | 0.07 Y CB N
growld 45 1 14 14.00 | 0.07 Y CB N
grow22 66 1 14 14.00 | 0.07 Y CB N
israel 24 1 24 24.00 | 0.04 Y LB N
maros 162 666 799 1.20 | 0.83 Y LB N
mod011 4343 602 3753 6.23 | 0.16 Y CB Y
nsct2 11240 11507 11636 1.01 | 0.99 Y LB Y
osa-07 9201 114 3456 | 30.32 | 0.03 Y CB Y
osa-14 19695 141 3616 25.65 | 0.04 Y CB Y
osa-30 37495 68 7785 | 114.49 | 0.01 Y CB Y
perold 7 725 587 0.81 | 1.24 Y LB N
pilot _we 91 580 1065 1.84 | 0.54 Y LB N
rentacar 2 1778 1629 0.92 | 1.09 Y LB N
scagr_ 2 8645 16676 27473 1.65 | 0.61 Y LB Y
scrs_ 3 4355 11635 12765 1.10 | 0.91 Y LB Y
scsd6 218 46 147 3.20 | 0.31 Y CB N
scsd8 353 6 30 5.00 | 0.20 Y CB N
sctap2 238 442 578 1.31 | 0.76 Y CB Y
sctap3 315 532 714 1.34 | 0.75 Y CB Y
ship08l 581 39 587 | 15.05 | 0.07 Y CB N
ship12l 708 51 958 | 18.78 | 0.05 Y CB N
stair 1 180 152 0.84 | 1.18 Y LB N
sto27 11541 4879 6844 1.40 | 0.71 Y CB Y
stocfor2 639 1366 1552 1.14 | 0.88 Y LB N
stocfor3 5077 10620 11848 1.12 | 0.90 Y LB N
SWS 2190 988 1694 1.71 | 0.58 Y CB Y
unicolns 43914 4975 50841 10.22 | 0.10 Y CB Y
woodlp 1057 30 1288 42.93 | 0.02 Y CB N
woodw 1738 60 2520 | 42.00 | 0.02 Y CB N

MAROS Study of Dual Phase-1 14 of 17
Table 4:

Number of breakpoints used # of itns
Problem 1 2 3 4 5| 6-10 11-20 21-50 504 | Max in ph-1
25fv4T 80 76 38 16 7 17 4 18 238
80bau3b 389 165 66 41 29 41 5 14 736
agg 1 2 6 2 18 11
agg?2 1 1 - 3 1 4 - 3 - 48 13
agg3 1 1 3 1 4 3 48 13
baxter 1381 331 157 142 74| 201 188 178 35| 194 2687
bnll - - - - - - 4 - - 17 4
bnl2 17 18 4 - - - 10 - - 19 49
boeingl 1 2 3 2 1 136 9
cre a 79 62 39 27 30 67 79 57 36 | 474 476
cre_b 103 179 169 203 171 | 702 287 875 1915 | 3538 4604
cre_c 102 93 62 49 20 89 49 47 21 | 397 532
cre d 108 105 151 109 133 | 548 656 733 936 | 3948 3479
czprob 46 71 32 12 8 5 2 4 11 172 191
d6cube 103 90 83 81 92| 300 231 139 90 | 821 1209
dbir2 8851 587 130 34 22 6 1 - - 13 9631
degen2 19 34 64 7 5 11 1 2 58 143
degen3 128 131 247 23 11 14 11 3 3 91 a71
degen4 312 165 189 109 111 | 185 90 10 6| 162 1177
grow(7 1 21 1
growld - - - - - - - 1 - 45 1
grow22 - - - - - - - - 1 66 1
israel - - - - - - - 1 - 24 1
maros 258 200 97 4 24 34 8 1 32 666
mod011 260 107 64 46 31 52 17 10 15| 917 602
nsct2 10974 298 8 35 19 59 31 6 - 26 11507
0sa-07 37 24 3 6 1 2 4 5 32 | 4503 114
osa-14 70 18 4 2 1 2 3 6 39 | 9454 145
osa-30 18 3 4 4 2 2 1 6 39 | 3654 79
perold 414 156 47 18 21 38 15 14 2 154 725
pilot we 341 84 39 16 11 42 36 9 2| 103 580
rentacar 1737 33 6 1 1 11 1778
scagr 2 | 10625 5186 - 865 - - - - - 4 16676
scrs_ 3 8311 2995 298 23 8 - - - - 5 11635
scsd6 2 2 4 2 2 6 14 10 4 100 46
scsd8 1 1 1 3| 260 6
sctap2 65 98 58 64 26 83 28 17 3 55 442
sctap3 103 124 46 59 39 87 39 32 3 90 532
ship08 16 2 1 12 8 73 39
ship12 13 6 9 9 1 1 12 62 51
stair 147 30 1 - 1 - 1 - - 14 180
st027 612 725 916 520 484 | 1006 424 191 1 56 4879
stocfor2 583 450 179 99 30 25 10 1366
stocfor3 3730 3491 1604 761 443 | 546 44 1 - 21 10620
SWS 367 332 12 8 31 71 70 17 988
unicolns 441 627 225 359 96 | 348 2659 220 34 4975
woodlp 5 8 17| 588 30
woodw - 2 - 2 4 7 7 15 23 | 801 60

MAROS Study of Dual Phase-1 15 of 17

In general, a 25% improvement of an optimization algorithm is viewed remarkable. If we raise it to
50% than it can be seen that GDPO achieves this improvement in 35 cases out of the total of 48, see
Table 5. In particular, in 13 cases the effectiveness improved more than 10 times. The performance of
GDPO on the osa family of problems proved to be quite outstanding where, in the best case (osa-30),
the improvement was 114x.

Algorithms that use the first breakpoint (like TD) can reduce the number of dual infeasibilities only
one by one (except when degeneracy helps achieve more). Though GDPO is monotone only in the sum
of infeasibilities it is able to reduce the number of infeasibilities in one iteration quite dramatically.
The best examples of this situation are shown in Table 6 (altogether 20 problems).

Table 4 demonstrates that GDPO actively uses the breakpoints of f(¢). Even more can be seen.
The theoretically best case is to eliminate all dual infeasibilities in a single iteration. This table
shows that this best performance is actually achieved on real life problems. They are the grow family
(grow07, growlb, grow22), and israel. In the grow problems there are relatively few type-2 variables
(21, 45 and 66, resp.). However, if we start with a crash basis all dual logicals corresponding to these
positions are dual infeasible. The f(t) function defined in the first iteration of these problems achieves
its maximum by using up all breakpoints (21, 45 and 66 [the same as the number of type-2 variables])
and it makes all dual logicals feasible in one iteration. In israel all variables are type-2 but GDPO
was able to achieve the theoretically best possible effectiveness even in this case.

Table 5: Efficiency of GDPO measured in the number of iterations

‘ Improvement ‘ Number of times ‘
1.0 — 1.5x 10
1.6 — 3.0x 7
3.1 —5.0% 7
5.1 —10.0x 8
More than 10x 13
Deterioration
0.8 —1.0x 3

Total 48

MAROS Study of Dual Phase-1 16 of 17

Table 6: Particularly fast reduction of the number of dual infeasibilities to achieving dual feasibility

Initial # of GDPO
Problem dual inf. iterations
agg 95 11
agg? 171 13
agg3 171 13
bnll 57 4
boeingl 164 9
grow07 21 1
growld 45 1
grow22 66 1
israel 24 1
mod011 4343 602
0sa-07 9201 114
osa-14 19695 141
osa-30 37495 68
scsd6 218 46
scsd8 353 6
ship08l 581 39
ship12l 708 51
unicolns 43914 4975
woodlp 1057 30
woodw 1738 60

5 Conclusions

The purpose of this paper was to study the computational performance of the GDPO dual phase-1
algorithm [8; 9.

Experience obtained through the theoretical and computational investigations of GDPO can be
interpreted and summarized as follows.

1.

GDPO contains the “first breakpoint” algorithms as special cases thus it is a generalization of
them.

. GDPO is capable of multiply utilizing the updated pivot row and thus making a progress that

corresponds to several traditional iterations.

GDPO is monotone only in the sum of infeasibilities which opens up a huge flexibility enabling
the choice of a properly sized pivot which results in substantially better numerical characteristics.

In case of dual degeneracy GDPO has a much better chance to make a non-degenerate iteration.

GDPO can be implemented easily and the iteration speed hardly deteriorates compared to TD
if some advanced techniques of computer science are used.

The theoretically favorable features of GDPO do materialize in practice to a large extent.

MAROS Study of Dual Phase-1 17 of 17

7. Regarding effectiveness, GDPO supersedes the traditional “first breakpoint” method nearly al-

ways. In several real problems it can work with maximum effectiveness, i.e., can make the solution
dual feasible in one non-trivial iteration.

8. The main reason for the favorable performance of GDPO is that it makes the maximum progress

towards dual feasibility that can be achieved with a given outgoing variable which otherwise
would be possible only by many traditional dual iterations. If many breakpoints are used the
difference can be very substantial.

Based on the above we can conclude that GDPO is both theoretically and computationally an

important algorithm that is well positioned to be included in the toolbox of modern simplex imple-
mentations.

References

1]

2]

13l

4]
[5]

(6]

17l

8]

19]

[10]

[11]

G.B. Dantzig. Maximization of a linear function of variables subject to linear inequalities. In
T.C. Koopmans, editor, Activity analysis of production and allocation, pages 339-347. Wiley, New
York, 1951.

G.B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton, 1963.

J.J.H. Forrest and D. Goldfarb. Steepest edge simplex algorithms for linear programming. Math-
ematical Programming, 57(3):341 374, 1992.

R. Fourer. Notes on the dual simplex method. Unpublished, March 1994.

P.M.J. Harris. Pivot Selection Method of the Devex LP Code. Mathematical Programming, 5:1 28,
1973.

C.E. Lemke. The Dual Method of Solving the Linear Programming Problem. Nawval Research
Logistics Quarterly, 1:36—47, 1954.

I. Maros. A Piecewise Linear Dual Procedure in Mixed Integer Programming. In F. Giannesi,
S. Komlési, and T. Rapcsdk, editors, New Trends in Mathematical Programming, pages 159-170.
Kluwer Academic Publishers, 1998.

I. Maros. A Piecewise Linear Dual Phase-1 Algorithm for the Simplex Method. Computational
Optimization and Applications, 26:63-81, 2003.

I. Maros. Computational Techniques of the Simplex Method, volume 61 of International Series
in Operations Research and Management. Kluwer Academic Publishers, Boston, 2003. 325+4xx
pages, Research monograph.

I. Maros and G. Mitra. Simplex Algorithms. In J. Beasley, editor, Advances in Linear and Integer
Programming, pages 1-46. Oxford University Press, 1996.

I. Maros and G. Mitra. Strategies for Creating Advanced Bases for Large-Scale Linear Program-
ming Problems. INFORMS Journal on Computing, 10(2):248-260, Spring 1998.

