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tMaros's GDPO algorithm for phase-1 of the dual simplex method possesses some theoreti
alfeatures that have potentially huge 
omputational advantages. This paper gives a

ount of a
omputational analysis of GDPO. Experien
e of a systemati
 study involving 48 problems showsthat the predi
ted performan
e advantages 
an materialize to a large extent making GDPO anindispensable tool for dual phase-1.1 Introdu
tionThe simplex method has two main versions: the primal and the dual simplex algorithm. Sin
e Dantzig'sseminal work [1℄ in 1951, the primal version re
eived far more attention than Lemke's dual [6℄ from1954. As a result of this �bias� primal based simplex implementations have evolved 
ontinuously and
an solve large linear programming (LP) problems reliable and e�
iently. The dual simplex did notfollow suit and its use was limited to 
ases where a dual feasible basis was available, like a simpleBran
h and Bound (B&B) type solution of mixed integer linear programming (MILP) problems usingdual phase-2. Re
ently, dual phase-2 has undergone a substantial progress so that it 
an handle alltypes of variables algorithmi
ally [7; 9; 4℄ and it is very e�e
tive in pra
ti
e.The newly emerging methods for MILP use lo
al te
hniques at the nodes of the sear
h tree likelogi
al testing, implied bounds, added 
uts. In su
h 
ases it is not true anymore that the optimalbasis of a parent node is dual feasible for the 
hild nodes. Therefore, dual must start in phase-1. Thisne
essitates the development of an e�
ient dual phase-1 algorithm. Another motivation for a new dualphase-1 algorithm was to make dual a 
ompetitive alternative to the primal for general LP problems.The result of the author's ensuing work was the 
reation of the GDPO (Generalized Dual Phase One)algorithm [8; 9℄. This algorithm possesses some interesting theoreti
al features that have potentiallyhuge 
omputational advantages. The extent of the advantages has not been known. Therefore, to seehow the algorithm works in pra
ti
e the author has 
ondu
ted a systemati
 
omputational study ofGDPO. Experien
e on 48 problems shows that the theoreti
ally proven advantages of the algorithm(dis
ussed in detail in [8℄ and [9℄) 
an materialize in pra
ti
e to a really large extent. This paper givesa

ount of the study.
∗This work was partly supported by EPSRC grant EP/C533461/11



Maros Study of Dual Phase-1 2 of 17The rest of the paper is organized in the following way. Se
tion 2 gives the general form of the LPproblem followed by se
tion 3 with the brief theoreti
al des
ription of GDPO. Se
tion 4 is devoted tothe 
omputational analysis of GDPO, while se
tion 5 gives a summary of our �ndings.2 Problem statementConsider the following primal linear programming (LP) problem:minimize cTx,subje
t to Ax = b,
ℓ ≤ x ≤ u,

(1)where A ∈ R
m×n, c, x, ℓ and u ∈ R

n and b ∈ R
m. Some or all of the 
omponents of ℓ and u 
an be

−∞ or +∞, respe
tively. A itself is assumed to 
ontain a unit matrix I, that is, A = [I, Ā], so it isof full row rank. Variables whi
h multiply 
olumns of I transform every 
onstraint to an equation andare often referred to as logi
al variables. Variables whi
h multiply 
olumns of Ā are 
alled stru
turalvariables.By some elementary transformations it 
an be a
hieved that all variables (whether logi
al or stru
-tural) fall into four 
ategories as shown in Table 1. Note, type-1 logi
al variables 
orrespond to range
onstraints. More details of problem statement 
an be found in [9℄.Table 1: Types of variablesFeasibility range Type Referen
e
xj = 0 0 Fixed variable0 ≤ xj ≤ uj < +∞ 1 Bounded variable0 ≤ xj ≤ +∞ 2 Non-negative variable

−∞ ≤ xj ≤ +∞ 3 Free variable2.1 The dual problemFirst, we restate the primal problem to 
ontain bounded variables only.
(P1) minimize cTx,subje
t to Ax = b,

0 ≤ x ≤ u,where all 
omponents of u are �nite.A basis to (P1) is denoted by B and is assumed (without loss of generality) to be the �rst m
olumns. Thus, A is partitioned as A = [B,R], with R denoting the nonbasi
 part of A. The
omponents of x and c are partitioned a

ordingly. Column j of A is denoted by aj. A basi
 solutionto (P1) is
xB = B−1



b−
∑

j∈U

ujaj



 ,where U is the index set of nonbasi
 variables at upper bound. The ith basi
 variable is denoted by
xBi. The dj redu
ed 
ost of variable j is de�ned as dj = cj − πTaj = cj − cT

B
B−1aj whi
h is furtherequal to cj − cT

Bαj if the notation αj = B−1aj is used. d is the ve
tor of redu
ed 
osts.



Maros Study of Dual Phase-1 3 of 17The dual of (P1) is:
(D1) maximize bTy − uTw,subje
t to ATy − w ≤ c,

w ≥ 0,where y ∈ R
m and w ∈ R

n are the dual variables. It is to be noted that the y variables are unrestri
tedin sign (free variables).If only type-2 variables are present in (P1) then we obtain(P2) min cTxs.t. Ax = b,

x ≥ 0,and its dual is (D2) max bTys.t. ATy ≤ c.Let us 
onsider the (P2)−(D2) pair. Note, A 
ontains a unit matrix and m < n. With theintrodu
tion of ve
tor w = [w1, . . . , wn]T of dual logi
al variables (D2) 
an be rewritten as
max bTy (2)s.t. ATy + w = c, (3)

w ≥ 0. (4)Let B be a basis to A. It need not be primal feasible. Rearranging (3), we get wT = cT − yT A, or inpartitioned form
wT

B = cT
B − yT B, (5)

wT
R = cT

R − yTR. (6)The nonnegativity (and, in this 
ase, the feasibility) requirement (4) of w in partitioned form is
[wT

B
,wT

R
]T ≥ 0. Choosing yT = cT

B
B−1 we obtain

wT
B = cT

B − cT
BB−1B = 0, (7)

wT
R = cT

R − cT
BB−1R = dT

R ≥ 0, (8)where dR denotes the ve
tor formed by the primal redu
ed 
osts of the nonbasi
 variables. Sin
e (7)is satis�ed with any basis and y is unrestri
ted in sign, a basis B is dual feasible if it satis�es (8). Thisis, however, nothing but the primal optimality 
ondition. Therefore, we 
an 
on
lude that the dualfeasibility 
ondition is equivalent to the primal optimality 
ondition. Additionally, the dual logi
alsare equal to the primal redu
ed 
osts. Therefore, wj and dj 
an be used inter
hangeably.Stating the dual when the primal has all types of variables is 
umbersome. However, we 
an thinkof the redu
ed 
osts of the primal problem as the logi
al variables of the dual, 
.f. [9℄. In this way dualfeasibility 
an be expressed quite simply as shown in the next se
tion.In pra
ti
e, dual algorithms work on the primal problem using the 
omputational tools of the sparseprimal simplex method (SSX) but perform basis 
hanges a

ording to the rules of the dual.The 
reation of the updated pivot row p, i.e., the 
omputation of αp
j for all nonbasi
 indi
es j isan expensive operation in SSX (
.f. [10℄). Traditional dual methods based on the Dantzig type pivotsele
tion make one iteration with the pivot row and dis
ard it. The possible multiple use of this row



Maros Study of Dual Phase-1 4 of 17has motivated the author to develop a new algorithm 
alled GDPO [8℄. GDPO makes one step withthe pivot row whi
h, however, 
an 
orrespond to many iterations of the traditional method with verylittle extra work. As GDPO is monotone only in the sum of infeasibilities it has an in
reased �exibility.It also has some additional favorable features that enhan
e its e�e
tiveness and e�
ien
y.3 The GDPO algorithmThis se
tion gives a brief des
ription of GDPO. A more detailed dis
ussion 
an be found in the originalpaper by Maros [8℄.3.1 Theoreti
al ba
kgroundIt is known that the primal redu
ed 
osts are the same as the dual logi
al variables, denoted by dj (
.f.[9, pages 261�262℄). Therefore, the feasible solutions of the dual of (1) satisfy the following 
onditions.Type(xj) Value dj Remark
0 xj = 0 Immaterial
1 xj = 0 ≥ 0

1 xj = uj ≤ 0 j ∈ U

2 xj = 0 ≥ 0

3 xj = 0 = 0

(9)
In other words, a dual solution de�ned by sets (B,U) is feasible if the 
orresponding dj values satisfy(9).Sin
e dj of a type-0 variable is always feasible su
h variables 
an be, and in fa
t are, ignored indual phase-1. Furthermore, dual logi
als of type-1 (bounded) variables 
an easily be made feasibleby moving the 
orresponding primal variables to their opposite bound. It 
an be done without basis
hange by simply updating the primal basi
 solution. For details, see [8℄ where this operation is 
alledfeasibility 
orre
tion.It 
an be 
on
luded that only type-2 and type-3 variables need to be 
onsidered in an algorithmfor dual feasibility. We de�ne two infeasibility sets for them as follows.

P = {j : dj > 0 and type(xj) = 3}, (10)and
M = {j : dj < 0 and type(xj) ≥ 2}. (11)If all variables are of type-1 any basis 
an be made dual feasible by feasibility 
orre
tion.Using infeasibility sets of (10) and (11), the sum of dual infeasibilities is de�ned as

f =
∑

j∈M

dj −
∑

j∈P

dj, (12)where any of the sums is zero if the 
orresponding index set is empty. It is always true that f ≤ 0. Indual phase-1 the obje
tive is to maximize f subje
t to the dual feasibility 
onstraints. When f = 0is rea
hed the solution be
omes dual feasible (maybe after a feasibility 
orre
tion). If it 
annot bea
hieved the dual is infeasible.In an iteration of the dual simplex method �rst the outgoing basi
 variable is sele
ted whi
h de�nesthe pivot row. Let us assume row p is sele
ted somehow (i.e., the pth basi
 variable xBp will leave the



Maros Study of Dual Phase-1 5 of 17basis). The elimination step of the simplex transformation subtra
ts some multiple of row p from dR.If this multiplier is denoted by t the transformed value of ea
h dj 
an be written as a fun
tion of t:
dj(t) = dj − tαp

j , j ∈ R. (13)With this notation, dj(0) = dj and the sum of infeasibilities as a fun
tion of t 
an be expressed(assuming t is small enough su
h that M and P remain un
hanged) as:
f(t) =

∑

j∈M

dj(t) −
∑

j∈P

dj(t) = f(0) − t





∑

j∈M

αp
j −

∑

j∈P

αp
j



 . (14)Clearly, f of (12) 
an be obtained as f = f(0).The 
hange in the sum of dual infeasibilities, if t moves away from 0, is:
∆f = f(t) − f(0) = −t





∑

j∈M

αp
j −

∑

j∈P

αp
j



 . (15)Introdu
ing notation
vp =

∑

j∈M

αp
j −

∑

j∈P

αp
j (16)(15) 
an be written as ∆f = −tvp. Therefore, requesting an improvement in the sum of dual infeasi-bilities (∆f > 0) is equivalent to requesting

−tvp > 0 (17)whi
h 
an be a
hieved in two ways:If vp > 0 then t < 0 must hold, (18)if vp < 0 then t > 0 must hold. (19)As long as there is a vi 6= 0 with type(xBi) 6= 3 (type-3 variables are not 
andidates to leave the basis)there is a 
han
e to improve the dual obje
tive fun
tion. The pre
ise 
onditions will be worked out inthe sequel. From among the 
andidates we 
an sele
t vp using some simple or sophisti
ated (steepestedge type) rule.Let k denote the original index of the pth basi
 variable xBp, i.e., xk = xBp (whi
h is sele
ted toleave the basis). At this point we stipulate that after the basis 
hange dk of the outgoing variable takea feasible value. This is not ne
essary but it gives a better 
ontrol of dual infeasibilities.If t moves away from zero (in
reasing or de
reasing as needed) some of the djs move toward zero(the boundary of their feasibility domain) either from the feasible or infeasible side and at a spe
i�
value of t they rea
h it. Su
h values of t are determined by:
tj =

dj

αp
j

, for some nonbasi
 j indi
esand they enable a basis 
hange sin
e dj(t) be
omes zero at this value of t, see (13). It also means thatthe j-th dual 
onstraint be
omes tight at this point. Let us assume the in
oming variable xq has beensele
ted. Currently, dk of the outgoing basi
 variable is zero. After the basis 
hange its new value isdetermined by the transformation formula of the simplex method giving
d̄k = −

dq

αpq

= −tq,
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h we want to be dual feasible. The proper sign of d̄k is determined by the way the outgoingvariable leaves the basis. This immediately gives rules how an in
oming variable 
an be determinedon
e an outgoing variable (pivot row) has been 
hosen. Below is a verbal des
ription of these rules.1. If vp > 0 then tq < 0 is needed for (18) whi
h implies that the pth basi
 variable must leave thebasis at lower bound (be
ause d̄k must be nonnegative for feasibility). In the absen
e of dualdegenera
y this means that dq and αp
q must be of opposite sign. In other words, the potentialpivot positions in the sele
ted row are those that satisfy this requirement.2. If vp < 0 then tq > 0 is needed whi
h is only possible if the outgoing variable xBp (alias xk) is oftype-1 leaving at upper bound. In the absen
e of degenera
y this means that dq and αp

q must beof the same sign.3. If vp 6= 0 and the outgoing variable is of type-0 then the sign of dq is immaterial. Therefore, tosatisfy (17), if vp > 0 we look for tq < 0 and if vp < 0 
hoose from the positive t values.It remains to see how ve
tor v = [v1, . . . , vm]T 
an be 
omputed for row sele
tion. In ve
tor form,(16) 
an be written as
v =

∑

j∈M

αj −
∑

j∈P

αj = B−1





∑

j∈M

aj −
∑

j∈P

aj



 = B−1ã (20)with obvious interpretation of auxiliary ve
tor ã. The latter is an inexpensive operation in terms ofthe revised simplex method.3.2 Analysis of the dual infeasibility fun
tion f(t)A detailed analysis is given in [8℄. Here we give the 
on
lusions of it.It 
an be investigated how the sum of dual infeasibilities, f(t), 
hanges as t moves away from 0(t ≥ 0 or t ≤ 0). It 
an be shown that, in either 
ase, f(t) is a pie
ewise linear 
on
ave fun
tion withbreak points 
orresponding to di�erent 
hoi
es of the entering variable. The global maximum of thisfun
tion is a
hieved when its slope 
hanges sign. It gives the maximum improvement in the sum ofdual infeasibilities that 
an be a
hieved with the sele
ted outgoing variable by making multiple use ofthe updated pivot row.The following 
ases are distinguished.1. If t ≥ 0 is required then the dual feasibility status of dj (and set M or P, thus the 
ompositionof f(t)) 
hanges for values of t de�ned by positions where
dj < 0 and αp

j < 0 or
dj ≥ 0 and αp

j > 02. If t ≤ 0 is required then the 
riti
al values are de�ned by
dj < 0 and αp

j > 0 or
dj ≥ 0 and αp

j < 0.The se
ond 
ase 
an dire
tly be obtained from the �rst one by using −αp
j in pla
e of αp

j . In both 
asesthere is a further possibility. Namely, if type(xj) = 3 (free variable) and dj 6= 0 then at the 
riti
alpoint the feasibility status of dj 
hanges twi
e (thus two ratios are de�ned). First when it be
omeszero (feasible), and se
ond, when it be
omes nonzero again. Both 
ases de�ne identi
al values of dj/α
p
jfor t.
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riti
al values de�ned above for t ≥ 0 be arranged in an as
ending order: 0 ≤ t1 ≤ · · · ≤ tQ,where Q denotes the total number of them. For t ≤ 0 we make a reverse ordering: tQ ≤ · · · ≤ t1 ≤ 0,or equivalently, 0 ≤ −t1 ≤ · · · ≤ −tQ. Now we are ready to investigate how f(t) 
hara
terizes the
hange of dual infeasibility.Clearly, Q 
annot be zero, i.e., if row p has been sele
ted as a 
andidate it de�nes at least one
riti
al value, see (16). Assuming vp < 0 the initial slope of f(t), a

ording to (15), is
s0

p = −vp =
∑

j∈P

αp
j −

∑

j∈M

αp
j . (21)Now t ≥ 0 is required, so we try to move away from t = 0 in the positive dire
tion. f(t) keeps improvingat the rate of s0

p until t1. At this point dj1(t1) = 0, j1 denoting the position that de�ned the smallestratio t1 =
dj1(0)

αp
j 1

. At t1 the feasibility status of dj1 
hanges. Either it be
omes feasible at this pointor it be
omes infeasible after t1.If t1 ≥ 0 then either (a) dj1 ≥ 0 and αp
j 1

> 0 or (b) dj1 ≤ 0 and αp
j 1

< 0. In these 
ases:(a) dj1(t) is de
reasing.(i) If dj1 was feasible it be
omes infeasible and j1 joins M. At his point s0
p de
reases by αp

j 1
,see (21).(ii) If dj1 was infeasible (j1 ∈ P) it be
omes feasible and j1 leaves P. Consequently, s0

p de
reasesby αp
j 1
.If dj1 = 0 then we only have (i).(b) dj1(t) is in
reasing.(i) If dj1 was feasible it be
omes infeasible and j1 joins P. At his point s0

p de
reases by −αp
j 1
,see (21).(ii) If dj1 was infeasible (j1 ∈ M) it be
omes feasible and j1 leaves M. Consequently, s0
pde
reases by −αp

j1
.If dj1 = 0 then we only have (i).Cases (a) and (b) 
an be summarized by saying that at t1 the slope of f(t) de
reases by |αp

j 1
| giving

s1
p = s0

p − |αp
j 1
|. If s1

p is still positive we 
arry on with the next point (t2), and so on. The aboveanalysis is valid at ea
h point. Clearly, f(t) is linear between two neighboring threshold values. Forobvious reasons, these values are 
alled breakpoints. The distan
e between two points 
an be zero if abreakpoint has a multipli
ity > 1. Sin
e the slope de
reases at breakpoints f(t) is a pie
ewise linear
on
ave fun
tion as illustrated in Figure 1. It a
hieves its maximum when the slope 
hanges sign. Thisis a global maximum. After this point the dual obje
tive starts deteriorating.
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f(t)

tt1 t2 t3 t4

Figure 1: The sum of dual infeasibilities as a fun
tion of t.If vp > 0 then t ≤ 0 is required. In this 
ase the above analysis remains valid if αp
j is substitutedby −αp

j . It is easy to see that both 
ases are 
overed if we take s0
p = |vp| and

sk
p = sk−1

p − |αp
j k
|, for k = 1, . . . , Q.3.3 A GDPO iteration step by stepLet t0 = 0 and fk = f(tk). Obviously, the sum of dual infeasibilities in the breakpoints 
an be
omputed re
ursively as fk = fk−1 + sk−1

p (tk − tk−1), for k = 1, . . . , Q.Below, we give the des
ription of one iteration of the algorithm 
alled GDPO (for Generalized DualPhase One).An iteration of the Generalized Dual Phase-1 (GDPO) algorithm:1. Identify sets P and M as de�ned in (10) and (11). If both are empty, perform feasibility
orre
tion. After that the solution is dual feasible, algorithm terminates.2. Form auxiliary ve
tor ã =
∑

j∈M

aj −
∑

j∈P

aj.3. Compute the ve
tor of dual phase-1 redu
ed 
osts: v = B−1ã, as in (20).4. Sele
t an improving 
andidate row a

ording to some rule (e.g., Dantzig [2℄ or a normalizedpri
ing [3; 5℄), denote its basi
 position by p. This will be the pivot row.If none exists, terminate: The dual problem is infeasible.



Maros Study of Dual Phase-1 9 of 175. Compute the p-th row of B−1: βT = eT
p B−1 and determine nonbasi
 
omponents of the updatedpivot row by αp

j = βTaj for j ∈ R.6. Compute dual ratios for eligible positions following rules dis
ussed in se
tion 3.2, a

ording to
vp < 0, or vp > 0. Store their absolute values in a sorted order: 0 ≤ |t1| ≤ · · · ≤ |tQ|.7. Set k = 0, t0 = 0, f0 = f(0), s0

p = |vp|.While k < Q and sk
p ≥ 0 do

k := k + 1
jk: the 
olumn index of the variable that de�ned the k-th smallest ratio, |tk|.Compute fk = fk−1 + sk−1

p (tk − tk−1), sk
p = sk−1

p − |αp
j k
|.end whileLet q denote the index of the last breakpoint for whi
h the slope sk

p was still nonnegative, q = jk.The maximum of f(t) is a
hieved at this break point. The in
oming variable is xq.8. Compute αq = B−1aq.Update basis inverse: B̄−1 = EB−1, E denoting the elementary transformation matrix 
reatedfrom αq using pivot position p.Update the basi
/nonbasi
 index sets.Update solution: Interestingly, in dual phase-1 there is no need to 
arry the values of the primalbasi
 variables. They will only be needed in dual phase-2. Therefore the updating step below
an be omitted whi
h slightly speeds up the iterations. However, for 
ompleteness, the updatingoperations are presented below for 
ases when GDPO is used in 
onjun
tion with some othermethods that require the updated primal basi
 variables.Update xB by x̄B = ExB, and set x̄Bp = xq + θP , where θP = xBp/α
p
q if vp > 0 or θP =

(xBp − uBp)/α
p
q if vp < 0.4 Computational study of GDPO algorithmDuring the theoreti
al analysis of the favorable features of GDPO in [8℄ it was often quoted that theyshow up more strikingly if several breakpoints are de�ned per iteration and the maximum of f(t) is nota
hieved at the �rst one, be
ause in this 
ase the large �exibility of the algorithm 
an well be utilized.Whether it o

urs in reality, one only 
an say if it is 
he
ked through a 
omputational study.In the sequel we give a

ount of a 
omparative study of GDPO with the �rst breakpoint methodwhi
h will be referred as the �traditional� dual phase-1 algorithm (TD).4.1 Chara
teristi
s of the test problemsThe purpose of the study was to investigate the e�e
tiveness of GDPO. The test environment wasthe simplex based experimental 
ode HIPLEX developed by the author. Though HIPLEX is �primaloriented� it 
ontains most of the 
omputational tools required by an implementation of the dual.HIPLEX has been designed to serve as a test environment of new algorithms and algorithmi
elements for the e�
ient solution of large s
ale linear programming problems. As su
h, it is an ex-perimental 
ode full of statements that gather information on the performan
e of the implementedalgorithms. In this way it is very suitable to study the e�e
tiveness of new elements.In the evaluation of GDPO, e�e
tiveness is de�ned in terms of the number of dual phase-1 iterations.As handling type-0 and type-1 variables in dual phase-1 is trivial (see dual feasibility 
orre
tion [8; 9℄),we have 
hosen problems whi
h are dominated by type-2 (nonnegative) and type-3 (free) variables.
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ible only widely a

epted (and a

essible) problems were used. Amongthem there were smaller, medium and large s
ale ones.Table 2 gives the main 
hara
teristi
s of the test problems used, namely, the number of 
onstraints(m), number of stru
tural variables (n̄), number of nonzeros in A, and the break-down of the numberof stru
tural variables by type. The problems are listed in alphabeti
al order of their names.



Maros Study of Dual Phase-1 11 of 17Table 2: # of variables by typeProblem Rows Columns Nonzeros Type-0 Type-1 Type-2 Type-325fv47 822 1571 11127 0 0 1571 080bau3b 2262 9799 29063 498 2986 6315 0agg 488 163 2541 0 0 163 0agg2 516 302 4515 0 0 302 0agg3 516 302 4531 0 0 302 0baxter 27441 15128 109823 0 1122 14006 0bnl1 643 1175 6129 0 0 1175 0bnl2 2325 3489 16124 0 0 3489 0boeing1 351 384 3865 0 228 156 0
re_a 3516 4067 19054 0 0 4067 0
re_b 9648 72447 328542 0 0 72447 0
re_
 3068 3678 16922 0 0 3678 0
re_d 8926 69980 312626 0 0 69980 0
zprob 929 3523 14173 229 0 3294 0d6
ube 415 6184 43888 0 0 6184 0dbir2 18906 27355 1148847 0 0 27355 0degen2 444 534 4449 0 0 534 0degen3 1504 1818 26230 0 0 1818 0degen4 4420 6711 107375 0 0 6711 0grow07 140 301 2633 0 280 21 0grow15 300 645 5665 0 600 45 0grow22 440 946 8318 0 880 66 0israel 174 142 2358 0 0 142 0maros 847 1443 10006 35 0 1408 0mod011 4481 10958 37425 1 1596 9361 0ns
t2 23003 14981 686396 0 0 14981 0osa-07 1118 23949 167643 0 0 23949 0osa-14 2337 52460 367220 0 0 52460 0osa-30 4350 100024 700160 0 0 100024 0perold 625 1376 6026 64 266 958 88pilot_we 723 2789 9218 78 294 2337 80renta
ar 6804 9557 42019 650 179 8728 0s
agr_2 32847 34580 141757 0 0 34580 0s
rs_3 16545 17420 71401 0 0 17420 0s
sd6 147 1350 5666 0 0 1350 0s
sd8 397 2750 11334 0 0 2750 0s
tap2 1090 1880 8124 0 0 1880 0s
tap3 1480 2480 19734 0 0 2480 0ship08l 778 4283 17085 0 0 4283 0ship12l 1151 5427 21597 0 0 5427 0stair 357 467 3857 82 6 373 6sto27 14441 34114 114973 0 0 34114 0sto
for2 2157 2031 9492 0 0 2031 0sto
for3 16676 15695 74004 0 0 15695 0sws 14310 12465 105480 0 0 12465 0uni
olns 5421 45569 168220 2 1449 44118 0wood1p 244 2594 70216 0 0 2594 0woodw 1098 8405 37478 0 0 8405 0



Maros Study of Dual Phase-1 12 of 174.2 Evaluation of the test runsFirst, the results are shown in a �raw� tabular form in Table 3 followed by further tables that re�e
tthe 
on
lusions obtained from the raw version.Table 3 shows the number of dual phase-1 iterations required by GDPO and TD, respe
tively. Thesolution strategy for ea
h 
omparative run is also in
luded to identify s
aling, the sele
tion of startingbasis (logi
al or 
rash [11℄), and whether Devex pri
ing was used.Parti
ularly interesting are the 
olumns giving the ratio of the iteration 
ounts. T/G means howmany times more iterations were made with the traditional method than with GDPO. Column G/Tis the re
ipro
al of it.It 
an be seen that run strategies were not identi
al for all problems. There are several reasonsfor that. First, we had to 
hoose dual infeasible starting bases. When the all-logi
al did not satisfythis a 
rash basis was used. Se
ond, in 
ase of larger problems dual Devex was used to obtain morereasonable run times. Third, to avoid numeri
al di�
ulties, several problems were s
aled prior tosolution. Presolve was not applied to any of the problems. It is important to note that for any givenproblem both GDPO and TD was run with identi
al settings whi
h is in
luded in the table.The basis of the expe
ted e�e
tive operation of GDPO is the multiple use of the updated pivot rowwhi
h is measured by the number of breakpoints used for the maximization of f(t). In some sense we
an view this measure as an algorithmi
 steplength. Table 4 demonstrates this feature of GDPO. Asthere is a huge variation in the �gures some aggregation was ne
essary to be able display the �ndings.Any row in the table shows how many times was the �rst, se
ond, . . . , 5th breakpoint the maximizerof the f(t) of an iteration, how many times was the maximizing breakpoint in the intervals 6 − 10,
11− 20, 21− 50 and how many times were used more than 50 breakpoints (50+). The total number ofphase-1 iterations is shown in the last 
olumn. The aggregate part of the table hides many interesting
ases, in parti
ular the 50+ 
olumn. To somewhat relieve this problem we introdu
ed a 
olumn headedby �Max� whi
h shows the maximum number of breakpoints used in one iteration. For instan
e, in therow of mod011 we 
an see that from the 602 iterations in phase-1 (last 
olumn) it happened 31 timesthat the maximum of f(t) was a
hieved at the 5th breakpoint. Furthermore, there was an iteration(Max) when 917 breakpoints were needed to obtain the maximum of f(t).The starting point for the assessment of the e�e
tiveness of GDPO is Table 3. It 
an be seen thatGDPO is more e�e
tive than TD in all but three 
ases. Column T/G shows how many times moreiterations were needed by TD in dual phase-1. Entries greater than 1 show 
ases when GDPO wasbetter. At the same time, this number 
an also be viewed as the measure of e�e
tiveness. In three 
asesthe number was slightly smaller than 1 indi
ating that in these 
ases TD was slightly more e�e
tive.For a better overview a summary table 5 is provided to show in how many 
ases and how many timeswas GDPO more e�e
tive than TD.



Maros Study of Dual Phase-1 13 of 17Table 3:Initial # Solution strategyProblem of dual # of dual ph-1 itns Ratios S
aling Start bas. Devexinfeasibilities GDPO TD (k = 1) T/G G/T Y/N CB/LB Y/N25fv47 41 238 1033 4.34 0.23 Y LB N80bau3b 208 736 997 1.35 0.74 Y LB Yagg 95 11 107 9.73 0.10 Y LB Nagg2 171 13 109 8.38 0.12 Y LB Nagg3 171 13 109 8.38 0.12 Y LB Nbaxter 3259 2687 4482 1.67 0.60 Y CB Ybnl1 57 4 27 6.75 0.15 Y LB Ybnl2 156 49 134 2.73 0.36 Y LB Yboeing1 164 9 102 11.33 0.09 Y LB N
re_a 1156 476 1655 3.48 0.29 N CB Y
re_b 14503 4604 12281 2.67 0.37 N CB Y
re_
 1056 532 1559 2.93 0.34 N CB Y
re_d 10409 3479 14798 4.25 0.23 N CB Y
zprob 1521 191 1959 10.26 0.10 Y LB Nd6
ube 2637 1209 6500 5.38 0.19 Y CB Ydbir2 9210 9631 9848 1.02 0.98 Y LB Ydegen2 425 143 574 4.01 0.25 Y LB Ydegen3 1249 571 1945 3.41 0.29 Y LB Ydegen4 2697 1177 6792 5.77 0.17 Y LB Ygrow07 21 1 14 14.00 0.07 Y CB Ngrow15 45 1 14 14.00 0.07 Y CB Ngrow22 66 1 14 14.00 0.07 Y CB Nisrael 24 1 24 24.00 0.04 Y LB Nmaros 162 666 799 1.20 0.83 Y LB Nmod011 4343 602 3753 6.23 0.16 Y CB Yns
t2 11240 11507 11636 1.01 0.99 Y LB Yosa-07 9201 114 3456 30.32 0.03 Y CB Yosa-14 19695 141 3616 25.65 0.04 Y CB Yosa-30 37495 68 7785 114.49 0.01 Y CB Yperold 7 725 587 0.81 1.24 Y LB Npilot_we 91 580 1065 1.84 0.54 Y LB Nrenta
ar 2 1778 1629 0.92 1.09 Y LB Ns
agr_2 8645 16676 27473 1.65 0.61 Y LB Ys
rs_3 4355 11635 12765 1.10 0.91 Y LB Ys
sd6 218 46 147 3.20 0.31 Y CB Ns
sd8 353 6 30 5.00 0.20 Y CB Ns
tap2 238 442 578 1.31 0.76 Y CB Ys
tap3 315 532 714 1.34 0.75 Y CB Yship08l 581 39 587 15.05 0.07 Y CB Nship12l 708 51 958 18.78 0.05 Y CB Nstair 1 180 152 0.84 1.18 Y LB Nsto27 11541 4879 6844 1.40 0.71 Y CB Ysto
for2 639 1366 1552 1.14 0.88 Y LB Nsto
for3 5077 10620 11848 1.12 0.90 Y LB Nsws 2190 988 1694 1.71 0.58 Y CB Yuni
olns 43914 4975 50841 10.22 0.10 Y CB Ywood1p 1057 30 1288 42.93 0.02 Y CB Nwoodw 1738 60 2520 42.00 0.02 Y CB N



Maros Study of Dual Phase-1 14 of 17Table 4:Number of breakpoints used # of itnsProblem 1 2 3 4 5 6�10 11�20 21�50 50+ Max in ph-125fv47 80 76 38 16 7 17 4 � � 18 23880bau3b 389 165 66 41 29 41 5 � � 14 736agg � 1 � 2 � 6 2 � � 18 11agg2 1 1 � 3 1 4 � 3 � 48 13agg3 1 1 � 3 1 4 � 3 � 48 13baxter 1381 331 157 142 74 201 188 178 35 194 2687bnl1 � � � � � � 4 � � 17 4bnl2 17 18 4 � � � 10 � � 19 49boeing1 1 � � � 2 3 2 � 1 136 9
re_a 79 62 39 27 30 67 79 57 36 474 476
re_b 103 179 169 203 171 702 287 875 1915 3538 4604
re_
 102 93 62 49 20 89 49 47 21 397 532
re_d 108 105 151 109 133 548 656 733 936 3948 3479
zprob 46 71 32 12 8 5 2 4 11 172 191d6
ube 103 90 83 81 92 300 231 139 90 821 1209dbir2 8851 587 130 34 22 6 1 � � 13 9631degen2 19 34 64 7 5 11 � 1 2 58 143degen3 128 131 247 23 11 14 11 3 3 91 571degen4 312 165 189 109 111 185 90 10 6 162 1177grow07 � � � � � � � 1 � 21 1grow15 � � � � � � � 1 � 45 1grow22 � � � � � � � � 1 66 1israel � � � � � � � 1 � 24 1maros 258 200 97 44 24 34 8 1 � 32 666mod011 260 107 64 46 31 52 17 10 15 917 602ns
t2 10974 298 85 35 19 59 31 6 � 26 11507osa-07 37 24 3 6 1 2 4 5 32 4503 114osa-14 70 18 4 2 1 2 3 6 39 9454 145osa-30 18 3 4 4 2 2 1 6 39 3654 79perold 414 156 47 18 21 38 15 14 2 154 725pilot_we 341 84 39 16 11 42 36 9 2 103 580renta
ar 1737 33 6 � � 1 1 � � 11 1778s
agr_2 10625 5186 � 865 � � � � � 4 16676s
rs_3 8311 2995 298 23 8 � � � � 5 11635s
sd6 2 2 4 2 2 6 14 10 4 100 46s
sd8 � � � 1 � 1 � 1 3 260 6s
tap2 65 98 58 64 26 83 28 17 3 55 442s
tap3 103 124 46 59 39 87 39 32 3 90 532ship08 16 2 � 1 12 � � � 8 73 39ship12 13 6 9 9 1 1 � � 12 62 51stair 147 30 1 � 1 � 1 � � 14 180sto27 612 725 916 520 484 1006 424 191 1 56 4879sto
for2 583 450 179 99 30 25 � � � 10 1366sto
for3 3730 3491 1604 761 443 546 44 1 � 21 10620sws 367 332 12 85 31 71 70 � � 17 988uni
olns 441 627 225 359 96 348 2659 220 � 34 4975wood1p � � � � � � 5 8 17 588 30woodw � 2 � 2 4 7 7 15 23 801 60



Maros Study of Dual Phase-1 15 of 17In general, a 25% improvement of an optimization algorithm is viewed remarkable. If we raise it to50% than it 
an be seen that GDPO a
hieves this improvement in 35 
ases out of the total of 48, seeTable 5. In parti
ular, in 13 
ases the e�e
tiveness improved more than 10 times. The performan
e ofGDPO on the osa family of problems proved to be quite outstanding where, in the best 
ase (osa-30),the improvement was 114×.Algorithms that use the �rst breakpoint (like TD) 
an redu
e the number of dual infeasibilities onlyone by one (ex
ept when degenera
y helps a
hieve more). Though GDPO is monotone only in the sumof infeasibilities it is able to redu
e the number of infeasibilities in one iteration quite dramati
ally.The best examples of this situation are shown in Table 6 (altogether 20 problems).Table 4 demonstrates that GDPO a
tively uses the breakpoints of f(t). Even more 
an be seen.The theoreti
ally best 
ase is to eliminate all dual infeasibilities in a single iteration. This tableshows that this best performan
e is a
tually a
hieved on real life problems. They are the grow family(grow07, grow15, grow22), and israel. In the grow problems there are relatively few type-2 variables(21, 45 and 66, resp.). However, if we start with a 
rash basis all dual logi
als 
orresponding to thesepositions are dual infeasible. The f(t) fun
tion de�ned in the �rst iteration of these problems a
hievesits maximum by using up all breakpoints (21, 45 and 66 [the same as the number of type-2 variables℄)and it makes all dual logi
als feasible in one iteration. In israel all variables are type-2 but GDPOwas able to a
hieve the theoreti
ally best possible e�e
tiveness even in this 
ase.Table 5: E�
ien
y of GDPO measured in the number of iterationsImprovement Number of times
1.0 − 1.5× 10
1.6 − 3.0× 7
3.1 − 5.0× 7
5.1 − 10.0× 8More than 10× 13Deterioration
0.8 − 1.0× 3Total 48



Maros Study of Dual Phase-1 16 of 17Table 6: Parti
ularly fast redu
tion of the number of dual infeasibilities to a
hieving dual feasibilityInitial # of GDPOProblem dual inf. iterationsagg 95 11agg2 171 13agg3 171 13bnl1 57 4boeing1 164 9grow07 21 1grow15 45 1grow22 66 1israel 24 1mod011 4343 602osa-07 9201 114osa-14 19695 141osa-30 37495 68s
sd6 218 46s
sd8 353 6ship08l 581 39ship12l 708 51uni
olns 43914 4975wood1p 1057 30woodw 1738 605 Con
lusionsThe purpose of this paper was to study the 
omputational performan
e of the GDPO dual phase-1algorithm [8; 9℄.Experien
e obtained through the theoreti
al and 
omputational investigations of GDPO 
an beinterpreted and summarized as follows.1. GDPO 
ontains the ��rst breakpoint� algorithms as spe
ial 
ases thus it is a generalization ofthem.2. GDPO is 
apable of multiply utilizing the updated pivot row and thus making a progress that
orresponds to several traditional iterations.3. GDPO is monotone only in the sum of infeasibilities whi
h opens up a huge �exibility enablingthe 
hoi
e of a properly sized pivot whi
h results in substantially better numeri
al 
hara
teristi
s.4. In 
ase of dual degenera
y GDPO has a mu
h better 
han
e to make a non-degenerate iteration.5. GDPO 
an be implemented easily and the iteration speed hardly deteriorates 
ompared to TDif some advan
ed te
hniques of 
omputer s
ien
e are used.6. The theoreti
ally favorable features of GDPO do materialize in pra
ti
e to a large extent.



Maros Study of Dual Phase-1 17 of 177. Regarding e�e
tiveness, GDPO supersedes the traditional ��rst breakpoint� method nearly al-ways. In several real problems it 
an work with maximum e�e
tiveness, i.e., 
an make the solutiondual feasible in one non-trivial iteration.8. The main reason for the favorable performan
e of GDPO is that it makes the maximum progresstowards dual feasibility that 
an be a
hieved with a given outgoing variable whi
h otherwisewould be possible only by many traditional dual iterations. If many breakpoints are used thedi�eren
e 
an be very substantial.Based on the above we 
an 
on
lude that GDPO is both theoreti
ally and 
omputationally animportant algorithm that is well positioned to be in
luded in the toolbox of modern simplex imple-mentations.Referen
es[1℄ G.B. Dantzig. Maximization of a linear fun
tion of variables subje
t to linear inequalities. InT.C. Koopmans, editor, A
tivity analysis of produ
tion and allo
ation, pages 339�347. Wiley, NewYork, 1951.[2℄ G.B. Dantzig. Linear Programming and Extensions. Prin
eton University Press, Prin
eton, 1963.[3℄ J.J.H. Forrest and D. Goldfarb. Steepest edge simplex algorithms for linear programming. Math-emati
al Programming, 57(3):341�374, 1992.[4℄ R. Fourer. Notes on the dual simplex method. Unpublished, Mar
h 1994.[5℄ P.M.J. Harris. Pivot Sele
tion Method of the Devex LP Code. Mathemati
al Programming, 5:1�28,1973.[6℄ C.E. Lemke. The Dual Method of Solving the Linear Programming Problem. Naval Resear
hLogisti
s Quarterly, 1:36�47, 1954.[7℄ I. Maros. A Pie
ewise Linear Dual Pro
edure in Mixed Integer Programming. In F. Giannesi,S. Komlósi, and T. Rap
sák, editors, New Trends in Mathemati
al Programming, pages 159�170.Kluwer A
ademi
 Publishers, 1998.[8℄ I. Maros. A Pie
ewise Linear Dual Phase-1 Algorithm for the Simplex Method. ComputationalOptimization and Appli
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