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Abstract. A policy for a minimal reactive agent is a set of condition-action rules used to
determine its response to perceived environmental stimuli. When the policy pre-disposes the
agent to achieving a stipulated goal we call it a teleo-reactive policy. This paper presents a
framework for constructing and evaluating teleo-reactive policies for one or more minimal
agents, based upon discounted-reward evaluation of policy-restricted subgraphs of complete
situation-graphs. The main feature of the method is that it exploits explicit and definite
associations of the agent’s perceptions with states. The combinatorial burden that would
potentially ensue from such associations can be ameliorated by suitable use of abstractions.
The framework allows one to plan for a number of agents by focusing upon the behaviour
of a single representative of them. It allows for varied behaviour to be modelled, including
communication between agents. Simulation results presented here indicate that the method
affords a good degree of scalability and predictive power.

1 Introduction

This paper presents a framework for constructing and evaluating goal-oriented policies for par-
ticularly simple (i.e. minimal or near minimal) autonomous agents. It concentrates mostly upon
purely reactive ones but also examines some conservative extensions to these, for instance the
incorporation of hysteretic features. In this section we discuss why we study these agents and how
we position our work in relation to other treatments of agent design, before proceeding to give an
overview of our framework and of the paper.

1.1 Motivation

Our focus on very simple agents is motivated chiefly by emerging application contexts, such as
nanomedicine and remote exploration, where physical and economic constraints exclude sophis-
ticated on-board processing. Besides their direct application to physical domains, however, these
agents may also be used more generally as building-blocks in the design of algorithms performing
state-transitions upon data structures, for example in sorting, searching or tiling problems.

Every agent we consider contains some policy which governs its behaviour and is intended to
enable the agent to achieve some goal known to the designer of the policy. Our standard policy
structure will be a set of mutually-exclusive production rules of the form perception → action,
usually intended to control durative behaviour: given some current perception the agent performs
the corresponding action until acquiring a new perception, whereupon it reacts likewise to that. A
goal for such an agent is typically some specified state(s) of the environment together with some
associated specified perception(s) for the agent.

We use the term teleo-reactive policy to signify a policy that has been designed with some
particular goal in mind and, correspondingly, the term teleo-reactive agent (TR-agent) to signify
an agent governed by such a policy. The latter term was first introduced in [26] and further
developed by N. J. Nilsson in, for example, [1] and [27] but with a more specific meaning. Later
in this section we contrast Nilsson’s agents with our own.

The characteristics of a TR-agent are, typically, that it behaves autonomously under the control
of the policy stored within it, that the policy alone instructs it how to react to perceptions of the



world, that it possesses very limited computing resources for program storage and interpretation
and that it is predisposed by the policy to achieve some goal. Such an agent may or may not
have sufficient perceptive capability to know, at any instant, the entire state of the world. An
agent of the kind described in [27] is presumed at least capable of perceiving an intended goal
state whenever that state arises, and is accordingly designed with that capability in mind. Its
policy includes an explicit test for the goal state, whilst the nature and ordering of its rules are
inferred by reductive analysis of that test. Its goal-orientedness is thus explicit in the policy. By
contrast, we make two key assumptions about the kind of TR-agents studied in this paper, and first
introduced in [3]; namely that they have (i) little or no access to cognitive resources, such as beliefs
or reasoning systems, and (ii) only partial observational capability, in that their perceptions may
not fully capture the whole environmental state, whether a goal state or otherwise. In particular,
a policy contains no rule specifically associated with a goal. The design process now relies not
upon goal-reductive analysis but upon comparing the extents to which alternative policies dispose
the agent towards achieving a goal – as judged, for instance, by a discounted-reward principle. A
policy identified on this basis is implicitly goal-oriented.

Informally, a good policy is one which disposes an agent to perform well in pursuit of a defined
goal whatever state it is currently in. TR-agents therefore occupy a middle ground between wholly
reactive agents [8] whose actions have no overall motivation, and wholly deliberative agents [21]
whose actions – including on-the-fly planning – flow from an explicit stored goal. A significant
advantage is the relatively low resources a TR-agent needs for its internal logic, which consists of
little more than a fixed rule-set requiring minimal hardware for its execution. Unlike a deliberative
agent, it does not need on-board computational facilities capable of executing arbitrarily compli-
cated software. Nevertheless, provided that the rule-set has been constructed with appropriate
regard to the desired goal, the agent is likely to achieve it.

Apart from the framework itself, the paper makes two main contributions, both concerned
with scalability and approximations. The framework is not limited to investigations of policies of
a single agent and the first contribution concerns a method to deal with joint policies for several
agents that does not need to explicitly consider the state of every agent, but which instead focuses
on a single representative and treats the actions of other agents as exogenous behaviour from the
standpoint of the representative. We show empirically that predictions of the values of policies
obtained using such an approximation, whilst not being exact, are nevertheless broadly in line
with the values obtained by simulation. Where there are discrepancies, we have explained their
source, and make a suggestion for improving the approximation, which shows good promise in
preliminary tests.

The second contribution uses abstractions to deal with large environments. A simplistic evalu-
ation of policies gives rather random predictions, but by considering the origin of the randomness
an improvement is suggested, which again gives good results in preliminary tests. Evaluation of
policies makes use of Bellman’s equation (see Section 4), which evaluates each situation s in which
an agent can find itself in terms of the reward reaped by moving to a successor of s. When abstract
situations are employed, it may be the case that apparently possible sequences of transitions are
in fact not possible, and their contribution to a policy’s value can be considerable. By evaluating
a situation s in terms of the rewards reaped in two steps from s, better approximations of policy
value are obtained, since impossible paths can be detected and eliminated.

1.2 Positioning

In introducing our framework it will be useful to outline at the start some of the ways in which it
differs from some alternative approaches to agent design.

The first contrast is with the work of those who seek to design agents equipped with internal
reasoning resources such as knowledge bases, theorem-provers and planners [20] and – in multi-
agent contexts – communication mechanisms [12]. Such facilities enable agents to reason about
their environment, about their experiences and about the consequences and merits of their possible
courses of action and interaction. It is intuitive that, armed with such powerful capabilities, they
should be generally more successful in achieving their goals than primitive agents able only to map
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perceptions directly to actions. The price potentially paid for this, however, lies in the physical
complexity of the hardware required to accommodate and operate those facilities.

As indicated above, our own wish is to minimize that requirement in order to serve those
application contexts (e.g. in nanomedicine) where such minimality may be physically imperative.

The second contrast is with the work of those who seek to optimize relatively simple agents,
comparable to our own, by the use of Markov Decision Processes (MDPs) or – when the agents
cannot perceive the entirety of the state – Partially Observable MDPs (POMDPs) [9, 18, 25]. The
key assumption made in these design methods is that one’s beliefs about the agent’s current
state can be inferred on the basis of its previous action together with one’s beliefs about its
previous state, thence enabling a suitable next action to be chosen. This assumption, combined
with standard techniques of mathematical programming, yields algorithms capable of identifying
policies that are optimal or near-optimal relative to one’s ability to estimate probabilities given the
agent’s assumed powers of state observation. These methods are very successful when the above
key assumption holds. They become much more complicated to apply, however, in the multi-agent
context where the updating of each agent’s beliefs has to consider the combinatorial impact of
the other agents’ actions upon the state. These complications become compounded further if the
agents are having to survive in an environment potentially impacted by unpredictable exogenous
events. These are the kinds of context for which we wish to design our agents. We shall present
evidence that in those contexts our method, whilst by no means perfect in its predictive accuracy
or free from its own complexity concerns, is nonetheless comparatively simple to apply and yields
reasonably good policies for the given goals.

Typically the POMDP design process results in policies that map (perception, action) pairs to
actions, in contrast to policies which simply map perceptions to actions. Policies of the latter kind
are termed memoryless to signify that their use does not entail remembering past actions [22, 30].
Insofar as our policies confirm to this form it motivates the use of a different design method,

The third contrast is with the particular species of TR-agents envisaged by Nilsson in [26,
27]. Nilsson’s policy structure differs from ours in that its rules are assumed to be ordered, which
lays the basis for his so-called regression property. This requires that the effect of any rule p →
a shall be to cause the condition of some earlier rule to become satisfied and that p shall be
weaker (i.e. implied by) the condition of any other rule having that same effect. Additionally,
these arrangements must lead ultimately to the achievement of the goal. Nilsson’s design process
therefore relies on assuming that states – in particular the goal state – are totally observable. In
this architecture the content and ordering of the rules constituting the desired policy can then
inferred by a reductive planning process that constructs and orders rule in such a way that the
operation of each one may suitably enable the operation of others, the whole intended to ensure
that the goal state eventually becomes achievable. Like the MDP method, Nilsson’s is able to
avoid explicit consideration of all possible policies in pursuit of a suitable one whilst, unlike the
POMDP method, it does not lend itself to contexts of partial observability.

The regression property combines considerations that are unrelated to one another – the ca-
pacity of rules to enable the conditions of other rules, and the significance of rule ordering. In our
framework the disposition of rules to become enabled and of their actions to promote progress
towards the goal is not enforced a priori, but is instead only expected to emerge as a natural
outcome of the design process. Moreover, our treatment attaches no goal-related significance to
rule ordering. Indeed, the ordering of rules is immaterial if perceptions are pairwise mutually ex-
clusive. For us, the only benefit of rule ordering is that it caters for the suppression within any
rule of those perceptual conjuncts known, by default, to be satisfied by virtue of some earlier rule
having been enabled with their logical complements satisfied. It is, therefore, merely the analogue
of the default ‘negation-by-failure’ rule employed to confer programming economy in formalisms
like Prolog. Altogether, our view is that the regression property is overly restrictive as an a priori
constraint upon agent design.

A further consequence of Nilsson’s agents’ greater percipience is that it favours the use of
hierarchical policies in which actions can themselves be policies with a sub-goal. Whenever a
policy is executed as an action, in order for it to have any effect under normal circumstances the
perception that triggered it must be knowable by the agent long enough to achieve the policy’s
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sub-goal. For example, in his Blocks World there might be a rule ¬clear(A) → “make clear(A)”
where make − clear(A) is a parameterised call to another policy. Since Nilsson does not require
his agent to be observing a tower in order to know that its top block (say A) is not clear, the
agent can busy itself in removing blocks from above A for as long as it is known that A is not
clear. On the other hand, the ability only to perceive direct percepts, as generally assumed in our
framework, means that in most realistic cases an action is likely to falsify the condition of the rule
that triggered it.

The fourth contrast is with those methods [13, 14, 19, 24, 29] that rely upon learning, that is,
upon training agents to perform well in simulated environments. Here the evolving experience of the
agent is effectively translated into merit-oriented weightings of the alternative actions available to
each perception. The outcome is typically a non-deterministic policy allowing the agent to choose,
for its current perception, between alternative actions according to the weightings, which may be
interpreted as the relative probabilities of those actions being the best to perform. Among the
methods used for learning such policies is inductive logic programming, employed to determine
– by a combination of logical inference and quantititative support – advantageous associations
between actions and their consequences upon the state, as far as perceptual observability permits
[1, 2]. All such methods differ from our own in their reliance upon a training regime and, usually,
in the structure of the policies they produce. Like POMDPs they can be very successful, although
it is not yet clear how their overall complexity compares with that of POMDPs or with that of
our own framework employing just a static model of the agent’s possible behaviours.

1.3 Overview of the Framework

Given this positioning, we will now give a preliminary sketch of the framework. The principal
construct employed for any given application is a primary graph, called the unrestricted graph,
whose nodes denote situations and whose action-labelled arcs denote transitions between them.
In this model a situation combines a world state with a (usually partial) perception of that state.
Since policies are perception-action mappings, the number of possible policies clearly depends upon
the number of possible perceptions. Moreover this dependence is generally exponential because
each perception may (usually) be mapped to any of several possible actions. For instance, one of
our examples later in the paper will be a very simple application that involves just four blocks and
three actions, yet potentially offers many thousands of policies to consider. The inclusion of state
information in the nodes of the graph does not influence this number, but does increase further the
burden of assessing policies. Each possible policy is some restricted subgraph of the primary one,
the restriction being that the arc(s) emergent from a node shall be labelled by whatever action
the policy dictates for that node’s perception. Whilst the policy’s perception-action mapping will
be functional in all the applications we consider in this paper, a node will typically have several
emergent arcs to different situations for the same action, which we will call a bundle, so that whilst
an agent’s policy is deterministic its behaviour need not be. In order to evaluate a restricted graph
we need therefore to assign a probability distribution across each such bundle of arcs. In addition
it is advantageous also to assign rewards/penalties to arcs.

Without this provision the evaluation could consider only how probable it was that a goal
situation would be reached (if at all), but not how worthwhile it was to reach it in relation to the
effort expended by the agent in doing so. The restricted graph and these assignments then form
the entire basis for determining the policy’s value, which is a quantitative measure calculated using
a discounted-reward principle. An optimal policy is one having greater value, under this scheme,
than all other policies.

This paper demonstrates our framework with examples and, in particular, it considers the
various aspects which address its scalability. One way of aiming for scalability is through the use
of abstractions, which we first explored in [5]. This employs generic descriptors denoting classes of
perceptions or of states or of both to reduce substantially the burden of policy assessment without
sacrificing too much by way of predictive accuracy.

Another way is to employ precise or heuristic filters capable of excluding certain classes of
policy from need of evaluation.
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The problem of designing optimal or near-optimal policies for a group of one or more similar
TR-agents, called clones, operating in the context of exogenous events is also addressed within
our framework and was first introduced in [4, 6]. From the viewpoint of any individual agent an
exogenous event is any change in the world not caused through its own actions, so includes actions
of other agents according to their policy as well as serendipitous actions caused by external agents.

The multi-agent context poses further challenges of its own, since the design process must
take some account of the multi-situations in which the agents find themselves and of the inter-
dependent effects of their actions. This extra complexity in dealing with multiple agents makes it
impractical to extend our graphs to represent comprehensively all the combinatorial possibilities
arising if their nodes were generalized to denote multi-situations. Instead, for these contexts we
employ a conservative extension of a restricted graph so that it represents the behaviour of any one
agent (termed self) together with the possible effects upon it of the behaviour of any other agent
(termed other). Having only two notional entities – self and other – represented in this extension
is another contribution towards the scalability of the design process. An additional consequence of
our approach is that it can be used to model also the effects upon self’s possibilities of events that
arise exogenously rather than from other agents. In this case other can be identified with whatever
external source is responsible for the exogeneity. Our use of such representative entities, which
we first investigated in [3], is somewhat similar in motivation to [10] in which the focus is upon
MDP-based design, and to [16] in which the focus is upon design by reinforcement learning. We
have so far applied it only to cloned agents, that is, ones all having the same policy. Whatever that
policy is, just one restricted graph is sufficient to represent it. For n agents having distinct policies
our method would require the consideration of only n restricted graphs, one for each instance
of self with its own policy, having special arcs denoting the possible impacts of any of the other
agents. This conservative treatment of differentiated agents is a further contribution to scalability.

We have also investigated the applicability of the framework to limited but potentially useful
extensions of the supposed architectures of the agents, such as possession of small amounts of
internal memory (besides that employed for storing policies) and communication. Several examples
in this paper examine cases where an agent may broadcast some of what it perceives to all other
agents, who then assimilate this information into their own perceptions. They may then cooperate
to a greater degree than otherwise and so perform more effectively. This mechanism is not as
powerful as those that could communicate in a more strategical fashion by, for instance, delegating
subgoals or notifying discoveries of unprofitable subgoals. It is equivalent in power to having agents
lacking the mechanism but having increased observability of the current state. Nevertheless, it is
a conceptually useful way in which to model agent percipience.

In order to produce empirical evidence in support of the framework we test and evaluate
policies on a simulator and then compare their observed values with those predicted from the
situation graphs. The main interest there is the extent to which the predicted ranking of policies
agrees with the observed ranking. The paper contains a number of charts derived from these
experiments, and from each one we derive a single quantity – a rank correlation statistic – that
measures the predictive quality across the set of policies evaluated. In many of these examples the
simulations are deliberately more concrete than the models employed in the situation graphs, in
order that we may assess how well the predictions stand up in the presence of such an abstraction
gap. We explain how that gap can cause the prediction method to make two distinct kinds of
mistake in calculating policy values, giving rise to fluctuations in the charts.

However, our experience indicates that the gap would need to be very substantial in order to
render the method incapable of broadly distinguishing between good and bad policies. It is, of
course, a separate question as to how well the predicted best policies would fare if installed in real-
world physical agents charged with pursuit of the same goals, which amounts to questioning the
significance of a second abstraction gap between the simulator and the real world. For instance,
some of our examples seek to model the notion of an agent wandering to various locations in
search of particular items. Currently the simulator represents locations and agent movements
only discretely rather than continuously, whilst it does not represent agent breakdowns, conflicts,
aborted actions and all the other dysfunctionalities to which real entities are susceptible.
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The material is organized as follows. The basic framework is presented in Section 2 and the
method of policy valuation and framework tools are presented in Section 3. The extensions required
for a multi-agent environment are presented in Section 4 and extended to include communication in
Section 5. In Section 6 we introduce the notion of generic situations. A comparison, with examples,
with methods that solve the problem of perceptual aliasing by using state estimation is given in
Section 7.1 and, finally, Section 7.2 discusses future work.

2 Basic Aspects of Formulation

Any world in which our agents operate is one capable of assuming various states. There is an
assumed language in which such states can be represented. A state in BlocksWorld might, for
example, be represented by table, towers(size(1), 2), towers(size(2), 3) signifying that the state
comprises a table (on which towers may stand) together with two towers each of size (height) 1
and three towers each of size 2.

The formulation does not actually require such detailed descriptors of the world – it is sufficient
for different states to be distinguished by simple atomic identifiers. We will denote by O the set
of all states for a particular application.

Any agent has three main features: a set P of perceptions1 it may have of the world, a set A
of possible actions it may take and a policy relating perceptions to actions. We here restrict the
language of states, perceptions and actions to be propositional. In any state o ∈ O, the agent’s
possible perceptions form some subset P (o) ⊆ P . A perception is an observation made by the
agent of some aspect of the world’s state and may include introspection of itself or of other agents.
For instance, an agent may be able to “perceive” its previous action, by virtue of a limited memory
or it may be able to perceive that no other agent is currently holding anything, by virtue of limited
communication between agents. In response to any perception p ∈ P (o) the agent’s possible actions
form some subset A(p) ⊆ A and a policy for the agent is any total function f :P → A satisfying
∀p ∈ P, f(p) ∈ A(p). The number of possible policies is the product of the cardinalities of the
A(p) sets for all p ∈ P . A situation for the agent is any pair (o, p) for which o ∈ O and p ∈ P (o).
We denote by S the set of all possible situations, one or more of which may be designated goal
situations.

A perception does not, in general, capture the entire state of the world. On the contrary, our
low-resource assumption entails that the agent normally perceives only a very limited amount of
information about that state. If a perception p fully described a state o then the situation (o, p)
could be contracted simply to o, and the design process would need only to compare conventional
state-transition graphs. However, the realistic position is one of partial observability. The problem
is therefore how to optimize, for a goal incorporating a state, an agent that (generally) cannot
recognize that state.

It is important to the framework that the action set A for every agent shall include a special
action which we call wander and denote by w. The wander action enables the agent to change its
perception without altering the world state. To say that an agent wanders (in our terms) does
not necessarily entail that it literally moves about spatially. It means only that it refreshes – and
perhaps changes –- its perception. A thermostat sensing a sudden change in temperature is in our
terms performing a wander action, as also is an agent that, seeing the surface, makes a spatial
move after which it continues to see (another part of) the surface. The only difference is that the
latter case is a reflexive transition of its situation whereas the former case is not.

In BlocksWorld, for instance, w corresponds to enabling the agent literally to wander around
on the table, so bringing various items into its range of vision.

Definition 1. A TR-application is a tuple 〈O,P ,A,R〉, comprising representations of the as-
sumed states (O), perceptions (P), actions (A) and agents (R).

If R denotes a set of differentiated agents then the associations subsequently made between
the other sets will need to consider which perceptions and actions apply to which agent. Since,

1 We use the word ‘perception’ to refer to a set of percepts.
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in this paper, we intend to consider only single-agent or cloned-agent cases this obligation is
eliminated and R becomes a singleton. In such circumstances a TR-application takes the simpler
form 〈O,P,A〉.

Definition 2. Let 〈O,P ,A〉 be a TR-application. A situation admitted by the application is a
pair (o, p) where o ∈ O and p ∈ P and p is a perception that the agent may have of o (i.e. p ∈ P (o)).

We can use BlocksWorld to illustrate these constructions.

Example 1. Suppose there is one agent, two blocks and the table, that blocks can be arranged
into towers of the conventional kind and that the agent can hold at most one block. Then there
are just three states and these can be represented by the lists [1], [1, 1] and [2], each one being a
configuration of towers composable from the blocks not being held. Next consider what the agent
might “see” in this world. Let us restrict the possibilities to seeing either the table or one tower of
recognizable height. Sufficient descriptors to distinguish these are s0, s1 and s2. Further suppose
that the agent knows whether or not it is holding a block. Two further descriptors h and nh suffice
for this. Finally, assume the agent can perform three kinds of action – pick (remove and hold the
top block of a tower being seen), place (put a held block onto the table being seen or onto a
tower being seen) and wander (update what is being seen). The abbreviations k, l and w suffice
to distinguish these.

In our BlocksWorld example a fully-formed perception for the agent must combine what it sees
with what it knows about its holding status. An example is (s0, h). By contrast (s2, h) is impossible
in a 2-block world. An admissible situation (o, p) is ([1], (s0, h)). Turning now to the actions, a
possible perception-action pair (p, a) is ((s0, h), w), whereas ((s0, h), k) is not. This follows from
the assumed logic of the chosen descriptors, which derives in turn from the assumed physics of
the application. The syntactical form of the descriptors is here immaterial provided one retains
awareness of what they are intended to denote, and provided that what they denote are correct
properties of the original conceptualization. Whilst the syntax ([1], (s0, h)) contains helpful visual
cues to aid that awareness, for analytical purposes it may as well be iconized to a simpler form
such as (2, b) or even 2b. In the sequel we shall often use these simpler forms in order to reduce
presentational clutter.

This example yields altogether 6 situations and 9 perception-action pairs, determined by the
assumed physics. The next step is to consider what the agent might be required to achieve and
what its behaviour might be.

2.1 Goals and Policies

Taking a slightly richer example, we outline some of the issues entailed in considering choices of
policy for a given goal.

Example 2. Here the world has a table and three blocks, and there is just one agent. A policy for
this agent might be

s1, nh → k, s1, h → l, s2, h → l, s2, nh → w,
s3 → w, s0, h → w, s0, nh → w

In general, the result of any agent’s actions may vary according to the initial state of the world
presented to it. However, in this example the result is inevitably a 3-tower (that is, a tower of size
3) whatever the initial state, provided that w is implemented in a fair manner – that is, allows all
perceptions in the world to be experienced in the long run. Once this tower has been built the
agent can only wander indefinitely unless terminated by some extraneous mechanism.

The state having a 3-tower is, in fact, the intended goal for this policy. This goal is not explicit
in the policy, nor is it made known to the agent by any other means. Instead, the policy has been
constructed by a procedure that takes account of the intended goal (or goals). Note that it does
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not enable the agent to deconstruct a tower of size > 1 even though the agent is physically capable
of doing so.

Even for a simple world and goal, a suitable policy can be very difficult to compose using
intuition alone. Consider, for instance, a modest extension to this example whereby the world
has four blocks and the goal remains a 3-tower. The above policy can still achieve the goal from
most initial states. However, if the initial state has all four blocks arranged as a 4-tower or as
two 2-towers then the goal is unreachable. It is not immediately obvious which alternative policy
would best cope with those possibilities whilst remaining effective for the other initial states.

2.2 Situation Graphs

Our framework for assessing policies potentially considers the full range of possibilities determined
by the assumed world together with the possible perceptions and actions of the agent. It employs
a structure which we refer to as the unrestricted situation graph G. This shows the situations that
a representative agent called self may be in and the possible actions it may take. Each directed arc
in G signifies, and is labelled by, some such action. When self is in a situation (o, p) its possible
actions depend only upon p and form a set denoted by A(p). Analysis of this graph enables us to
extract policies appropriate to particular goals. After self has acted in a situation its new situation
is determined by the assumed physics of the world (and of the kind of agent) being modelled.
For example, if self is seeing a 1-tower and places a held block upon it, it is a natural choice to
determine that the result is a 2-tower and that self is now seeing that 2-tower rather than seeing
anything else.

Definition 3. Let 〈O,P ,A〉 be a TR-application. The unrestricted situation graph, denoted by
G, is a directed graph whose nodes are all the situations admitted by the given application. The
arcs emanating from a situation (o, p) are precisely those corresponding to A(p) and each one is
directed to a situation that self could be in if that action were taken.

The graph G can be viewed as an elaboration of a conventional state-transition graph, dealing
with situations rather than with states alone. Rather than showing what will happen, it shows
what could happen.

For Example 2, Figure 1 shows all the possible state and perception descriptors together with
their iconic labels (1, 2, 3, . . . etc. and a, b, c, . . . etc., respectively). Here, s0 denotes that self sees
the table, sn (n > 0) denotes that it sees a tower of height n, h denotes that self sees that it is
holding a block and nh denotes that it sees that it is not holding a block. The figure also shows,
for each perception p, the set O(p) of associated states and the set A(p) of associated actions.

o ∈ O

1 [1, 1, 1]
2 [1, 2]
3 [3]
4 [1, 1]
5 [2]

p ∈ P O(p) A(p)

a s0, h {4, 5} {l, w}
b s1, h {4} {l, w}
c s2, h {5} {l, w}
d s0, nh {1, 2, 3} {w}
e s1, nh {1, 2} {k, w}
f s2, nh {2} {k, w}
g s3, nh {3} {k, w}

Fig. 1. States, perceptions and actions (Example 2)

Figure 2 shows the resulting unrestricted situation graph G. For the sake of compactness, a
situation such as (2, f) is shown there simply as 2f .

The graph discloses how any situation can (or cannot) be reached from another, in particular
whether a given goal situation can be reached from a given initial situation. It may also reveal
subgraphs from which a given goal could never be reached.
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Fig. 2. Unrestricted situation graph (Example 2)

2.3 Policy-restricted Situation Graphs

A key feature of our framework is the process of pruning selected arcs from the unrestricted graph
G according to some policy f , to leave the f -restricted graph, denoted by Gf . This graph commits
the agent to take, in any situation, just that action determined by policy f , and shows what will
actually happen.

Example 3. The agent is the same as before but now operates in a world having four blocks, and
the goal now is to build a 4-tower. The states and the associated perceptions and actions are
shown in Figure 3 and the unrestricted situation graph is shown in Figure 4.

o ∈ O

1 [2, 2]
2 [1, 1, 1, 1]
3 [1, 1, 2]
4 [1, 3]
5 [4]
6 [1, 1, 1]
7 [1, 2]
8 [3]

p ∈ P O(p) A(p)

a s1, h {6, 7} {l, w}
b s2, h {7} {l, w}
c s3, h {8} {l, w}
d s1, nh {2, 3, 4} {k, w}
e s2, nh {1, 3} {k, w}
f s3, nh {4} {k, w}
g s4, nh {5} {k, w}
h s0, nh {6, 7, 8} {l, w}
i s0, nh {1, 2, 3, 4, 5} {w}

Fig. 3. States, perceptions and actions (Example 3)

For the policy

s1, nh → k, s1, h → l, s2, h → l, s3, h → l, s2, nh → w,
s3, nh → w, s4, nh → w, s0, h → w, s0, nh → w

the f -reduced graph is shown in Figure 5.
Let S be the set of all situations in the problem formulation (and hence in G and in all its

policy-restricted subgraphs). Then the choice of f partitions S into two disjoint subsets Nf and
Tf called the non-trough and the trough, respectively. Nf contains the goal and all situations from
which the goal is reachable under policy f . Tf contains all the other situations.

In Figure 5 the trough, circled for emphasis, is the node set {(1, e), (1, i), (7, a)}. From all
situations outside the trough, the agent will achieve the goal unless it subsequently enters the
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trough. For instance, from (7, h) it may wander into the trough, but if it instead wanders to (7, b)
then the goal will be achieved.

The essential problem in this example is in deciding upon the best actions for perceptions a
and e. Since each one has two possible actions there are four possibilities to consider. It turns out
that none of them can avoid a trough somewhere. For instance, if we modify the original policy by
choosing k for perception e and w for perception a, we obtain a different f -restricted graph and
this policy

s1, nh → k, s2, nh → k, s2, h → l, s3, h → l, s1, h → w, s3, nh → w,
s4, nh → w, s0, h → w, s0, nh → w

In this case the trough is {(2, d), (2, i), (3, e), (6, a), (6, h)}. Each of perceptions a and e has the
property of being associated with several states having different best actions. The limited percep-
tions of the agent render it unable to know which state the world is in and hence which of the
possible best actions to take.

Fundamentally, given the particular block-world and goal stipulated, the agent in this example
is not perceptive enough to cope well with all situations. It suffers from perceptual aliasing, meaning
that several (different) situations are perceived similarly by the agent. In [3] one way of elegantly
improving the agent is to equip it with a single-register memory capable of recording whether it
has ever seen a tower of size at least 2, and to treat the reading of the register’s state as another
perception. For this modified agent one can find a much better (though still imperfect) policy.

Using registers in this way to deal with perceptual aliasing presumes that their stored contents,
at the moment they are looked up and exploited, are useful to the agent in dealing with the current
situation. For instance, if an agent recalls from its register that it once saw a tower of size 2 then
it may not follow that such a tower persists in the current state. Previous actions by other agents
or exogenous sources may by now have reduced all towers to size 1.

Only if these possibilities can be excluded can the agent rely upon its stored memory as
being a persisting truth about the world, provided also that it has not itself altered that 2-tower
since it last saw and memorized it. In most of our studies we have not assumed any memorizing
capability for our agents, focusing instead upon what can be achieved without the facility and
thereby maintaining our minimal-hardware assumption. However, in cases where modest amounts
of memory might be justified we can easily model the feature in our framework as it stands and
Example 9 in Section 7.1 illustrates this.

3 Policy Evaluation for Single Agents

The value of an agent’s policy is a global measure of how well the agent, proceeding from any
situation, performs in the long run under that policy. Evaluating a policy cannot, in general, be
reduced to local considerations of how the agent acts at particular situations, since an action taken
for a perception p in one situation might produce very different outcomes when taken for the same
perception in a different situation. Instead, we must estimate the worth of a policy f as the sum
of the expected values of all the situations in Gf , where the expected value of a situation s is the
benefit to the agent of proceeding from s.

This section describes how this estimation is achieved in a single-agent context using the
discounted reward principle [6], defined as follows.

Definition 4. Let f be a policy for a TR-application 〈O,P,A〉 and let s = (o, p) be a situation
in Gf and let SS be the successor set of s. The discounted reward V (s, f), effectively measuring
the benefit of the agent proceeding from s, is given by the formula

V (s, f) = Σu∈SS(Psu × (Υsu + γ(f(p)) × V (u, f)))

In the above, Υsu is the immediate reward for the action that takes s to u, Psu is the probability
that from s the agent proceeds next to u and the factor γ(f(p)) discounts the benefit of taking
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that action at s. Note that for a situation with no successors, this formula gives the expected
value as 0. Normally, we choose 0 < γ(f(p)) < 1 to reflect the cost to the agent – in time or
other resources – of performing successive actions. The formula for V (s, f) given in Definition 4 is
called the infinite horizon discounted reward formula and is suitable when we are interested in the
long-term behaviour of an agent. When the interest is in agent behaviour over shorter, fixed-length
paths, a different formula is appropriate; this is the discounted reward formula as defined next.

Definition 5. Let f be a policy for a TR-application 〈O,P,A〉 and let s = (o, p) be a situation in
Gf and SS be the successor set of s. The finite discounted reward V (s, f, k), effectively measuring
the benefit of the agent proceeding from s and having at most k steps available, is given by the
formula

V (s, f, 0) = 0
V (s, f, k) = Σu∈SS(Psu × (Υsu + γ(f(p)) × V (u, f, k − 1))), k ≥ 1

A node with no successors is covered by the case when when k = 0 and consequently, for any
node s at maximum distance from a goal node of ms steps, V (s, f, k) = V (s, f, ms), for all k ≥ ms.
Unless one has good reason to distinguish the rewards for actions from different situations, the
fine tuning provided for in the above definitions can be dispensed with. It then suffices to use a
fixed discount factor 0 < γ < 1 and some fixed values r, R and T such that

rwd(s, f) = R if the action f(p) taken at s leads immediately to a goal
rwd(s, f) = T if the action f(p) taken at s leads immediately to a node in the trough (for f)
rwd(s, f) = r otherwise

For the infinite horizon case the situations’ values are related by a set of linear equations which,
since γ < 1, have unique finite solutions even when Gf contains cycles signifying non-terminating
behaviour.

Since we are interested in policies that perform well, on average, from whatever state an agent
may find itself in, these solutions are used to compute the overall value of f , denoted by Vpre(f),
given by the (weighted) average of V (s, f) taken over all nodes s in the f -reduced graph.

In this paper we assume all nodes are equi-probable as initial nodes or as nodes resulting from
unpredictable, but rare, exogenous behaviour, so the average is the usual mean.

The relative values assigned to R, r and T govern the extent to which the method accords merit
to the agent for reaching a goal rather than not doing so, and penalty to the agent for entering
a trough rather than not doing so. In general, choosing R ≫ r ranks more highly those policies
well-disposed to the reaching of the goal and choosing r ≫ T will rank steps leading to the trough
very lowly. The value of γ controls the separation (but not, in general, the ranks) of the policies’
values. Both the finite horizon formula and the infinite horizon formula give the value of a policy
as a sum of the form αr + βR + δT . For the experiments reported in this paper we have used the
infinite horizon method with values of r = T = −1, R = 100 and γ = 0.9.

The finite horizon formula given in Definition 5 can be computed iteratively using the appro-
priate transition and reward matrices.The entries Psu in the probability matrix P are given by the
probability of traversing the arc between situations s and u, and the entries Υsu in the reward
matrix are given by the reward for traversing that arc. For a given policy f , its value is given by

V (s, f, k) = Σu∈SS(γ × Psu × V (u, f, k − 1)) + Σu∈SS(Psu × Υsu)

where SS is the successor set of s and the inner product term Σu∈SS(Psu × Υsu) = 〈Ps · Υs〉
T

is also called the reward from s. The value matrix V (f, k) can be computed iteratively from the
n-ary vector V (f, 0) = [0, . . . , 0]T , where n is the number of situations in the f -restricted graph,
and the formula

V (f, k) = γP × V (f, k − 1) + 〈P · Υ 〉T

in which 〈P · Υ 〉T is the n-dimensional vector of inner products 〈Ps · Υs〉. Because the value of
〈P · Υ 〉T is a constant, here denoted by C, iterative expansion yields

V (f, i) = (γi−1P i−1 + . . . + γP + I)C
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which converges for 0 < γ < 1. In the limit, as k tends to ∞, V (f, k) tends to V (f) = (I−γP )−1C,
or V (f) = γP × V (f) + C. Therefore

V (f)s = V (s, f) = Σu∈SS(γPsu × V (f)u) + Σu∈SS(Psu × Υsu)

which is the same as the formula for (V s, f) given in Definition 4.

The rate of convergence of V (f, k) to V (f) depends upon the value of γ and to a lesser extent
upon the topology of the graph Gf .

3.1 Policy Predictor

As the examples in this paper demonstrate, even quite simple problems can determine large and
complex situation graphs whose manual characterization would be highly tedious and error-prone.
To reduce the scope for erroneous formulation we employ, for Blocks World (and, potentially,
other scenarios) a situation graph generator program which, for any designated set of blocks,
agents, actions and goal, autonomously constructs the unrestricted situation graph and further
checks it against robust integrity constraints. We further employ a policy predictor program to
compute policy values according to Definition 5, and also to compute the upper bounds (λ) on
their success-rates. In fact, in most of our experiments we found that, over the infinite horizon,
the values of policies which tend to cause the agent to enter a trough turn out to be much lower
than those that do not, even when T = r. Moreover, the ranking of policies is largely insensitive
to the choice of values for r, R and γ, provided that R strongly dominates r in magnitude. The
smaller γ is, the less important is the dominance of R over r. Thus the method does not require
domain-oriented intuitions about these parameters beyond giving prominence to goal situations.

With potentially thousands of policies to consider, the policy predictor needs to be as efficient
as possible. A key optimization here is to reuse reward values for individual nodes. As each policy
(after the first) is evaluated, the program compares this policy with the preceding one to identify
those nodes whose rewards remain invariant under this policy change. Under any policy f each
node has an associated subgraph (in the corresponding Gf ) containing the nodes reachable from
it. If this subgraph is topologically invariant upon switching to a new policy then the latter
inherits the earlier rewards for that node and for all others in the subgraph. The policy predictor
performs appropriate graph traversals to test this property efficiently. In practice this tactic reduces
enormously the time spent on computing node rewards.

We note here that if the only arc for some situation s is a reflexive arc, then s is necessarily
in the trough and the value of s is r/(1− γ). However, it turns out that if a node is in the trough
and has at least one exit arc, its value is also r/(1 − γ). This is proved in [7].

All these programs are currently written in LPA-Prolog2, enabling the reshaping of examples
to be undertaken through transparent and easily-adapted representations. Despite the relative
tardiness of an interpretive formalism such as Prolog, it takes only a minute or so to evaluate
10,000 policies on an Apple G4 platform.

Returning to Example 3, the A(p) sets determine that there are 256 possible policies. There
are 19 situations, and varying the policy merely varies the arcs connecting them. Identifying the
best policy requires solving 256 sets of linear equations in 19 unknowns. A test run was made for
the case r=-1, R=100, γ=0.9 which identified two optimal policies

a → w, b → l, c → l, d → k, e → k, f → w, g → k, h → w, i → w

a → w, b → l, c → l, d → k, e → k, f → w, g → w, h → w, i → w

each having an overall value of 241.22. The policy corresponding to the f -reduced graph Gf in
Figure 5 for this example, namely

a → l, b → l, c → l, d → k, e → w, f → w, g → w, h → w, i → w

2 Logic Programming Associates Ltd. London, UK, (http://www.lpa.co.uk)
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is predicted to be the third-best one, having overall value 215.19. The graph Gf has a trough,
containing 3 situations, which can be entered from 8 exterior ones. By contrast, for each of the
two optimal policies Gf has a trough, containing 5 situations, which can be entered from just 1
exterior one. The policy values therefore correctly reflect the propensity, on average, of the agent
failing to reach the goal by entering a trough.

3.2 Experimental Validation

We tested the quality of the policy predictor by using a Simulator to simulate agents operating un-
der the various policies. In the introduction it was stated that the simulator is the sole comparator
against which the model using situation graphs is evaluated. When the simulator uses exactly those
descriptors that appear in the model it precisely simulates traversing the f -restricted situation
graph.

We call this exact modelling, since the model (situation graph) and the simulated world describe
in exactly the same way the world transitions that can occur. This mode of modelling is useful
for validating the software, in that the policy values obtained by prediction are expected to agree
exactly with those obtained by simulation.

More generally, a simulated world will contain and exploit more detail than that expressed in
the model. This is because the desired level of detail in the simulated world, intended to represent
some real world, is too demanding in scale to be expressed practicably in the model. In this mode,
which we call abstract modelling, the model’s situation descriptors are less detailed than those
employed by the simulator.

For example, a simulated Blocks World might assign towers to cells in a grid. A particular state
might have two 1-towers and one 2-tower, each with its own cell position. The descriptor of such
a state in the simulator might be a data structure such as [(1, (3, 5)), (1, (2, 2)), (2, (1, 6))]. The
descriptor of the agent’s perception of this state might be (s(2, 2), nh), denoting that the agent is
seeing whatever is in cell (2, 2) and is not holding. This level of detailing makes it possible for the
simulator to “know” that the agent is seeing the particular 1-tower in cell (2, 2). By contrast, the
model might use a simpler descriptor such as [1, 1, 2] for the state and a simpler one such as (s1, nh)
for the perception, thus forming a more abstract description of the situation. In this description
it is not possible to express which particular 1-tower is being seen by the agent. The abstraction
gap between the two levels of detailing is such that events capable of being distinguished in the
simulator cannot be distinguished in the model. For instance, if the agent now wanders in the
simulation to acquire the perception (s(3, 5), nh) then it is again seeing a 1-tower but a different
one from that previously seen. This model, however, does not represent this detail in the situation
graph.

A simulation implicitly traverses part of a situation graph GW which, if made explicit, would
employ these more detailed descriptors to represent the situations of the simulated world W . The
part traversed, denoted GW

f , is the f -restriction of GW as determined by the policy f . Reference
to this implicit graph enables us to state some useful principles governing the correctness of our
modelling with the (generally) simpler graph Gf .

Principles of Formulation Let TR be the TR-application 〈O,P ,A〉 and Gf be an f -restricted
situation graph for TR. Then the following principles hold:

(Soundness of actions in Gf) Every action a ∈ A models a simulated action.
(Completeness of actions in Gf ) Every simulated action is modelled by some action a ∈ A.
(Soundness of situations in Gf) Every admissible situation (o, p) ∈ O×P models a situation

in GW .
(Completeness of situations in Gf ) Every situation in GW is modelled by some admissible

situation (o, p) ∈ O × P .
(Soundness of arcs in Gf) Every arc in Gf corresponds to an arc in GW

f .

(Completeness of arcs in Gf ) Every arc in GW
f is modelled by some arc in Gf .
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(Exact model Gf) Every transition in GW
f is between situations in GW

f modelled by an arc
between distinct situations in Gf .

(Abstract model Gf ) For any arc between situation s and itself in Gf (also called a reflexive
arc) there is at least one transition in GW

f between different situations in GW
f .

More informally, in exact mode the correspondence between situations in Gf and GW is one-
one, whereas in abstract mode this is not so, since the Gf is a further abstraction of the simulated
environment.

Two consequences of these principles follow immediately.

1. A situation graph of an exact model cannot possess a reflexive arc, which means that the w

action will always be modelled by an arc in Gf that changes the perception.
2. A situation graph of an exact model may possess a reflexive arc. For instance, an agent may

wander between two different 2-towers in BlocksWorld which would be modelled by a reflexive
wander about the appropriate situation s.

For exact modelling and a Gf with no loops it can be shown by induction on the maximum
number of steps in Gf that the Principles of Formulation imply that Vobs(f) is equal to Vpre(f).
This property uses the fact that, in exact mode, each arc for a non-deterministic action taken
from a situation s has equal probability. When Gf has loops a similar result holds, namely that
the expected value of Vobs(f) approaches Vpre(f), as the maximum number of steps allowed in a
simulation run (i.e. the bound B) tends to infinity.

For abstract modelling these properties cannot hold in general since the situation graph is less
detailed than the behaviour of the simulator. In particular, the probabilities on the arcs for a
non-deterministic action can only be estimated in the model.

The simulator operates for a single agent in the following way. A single run begins with the
agent assigned to some chosen situation s in Gf . In the case that s corresponds to several situations
in GW

f , one of those situations is chosen randomly. The simulator then drives the agent’s subsequent
activity in a stepwise fashion, in each step making it perform the action dictated for its current
perception by the policy f , thus updating its simulated situation. In the case of a non-deterministic
action the next simulated situation is chosen randomly from those that are possible. The agent
implicitly traverses a path in Gf from s. The run terminates when the agent either reaches the
goal or exceeds a prescribed bound B on the number of transitions performed. As the path is
traversed, the value of the run is computed incrementally on the same basis as used in the policy
predictor. The value of a run of n steps is given by the formula

V = r1 + r2γ + . . . + rn−1γ
n−2 + rnγn−1

where ri is the reward for the ith step. If the agent reaches a trough situation, then the final value
of the run will always be r/(1 − γ) and so the run can be terminated prematurely without any
loss of information. Equal numbers of runs are executed for each initial situation s. The mean of
observed values V over all runs for all s then gives the observed policy value Vobs(f).

The simulator also reports the observed success rate SRobs(f) for the policy, measured as the
percentage of runs that reach the goal. The success rate can be predicted independently of the
simulator by considering the reachability of the goal in Gf . By definition, there cannot exist any
arc in Gf directed from Tf to Nf . However, there may exist one or more in the opposite direction,
in which case we describe Gf as NT-bridged. The policy predictor has the secondary function of
determining Nf , Tf and the NT -bridged status for any policy f .

If Gf is not NT -bridged then the agent can reach the goal if and only if its initial situation is
in Nf , so that its predicted success rate SRpre(f) (as a percentage) is exactly λ = 100× |Nf |/|S|.
If Gf is NT -bridged then we have only the weaker relationship SRpre(f) < λ. In either case λ
provides an upper bound on SRpre(f), which we may then compare with SRobs(f). Simulated runs
curtailed by the bound B thereby fail to reach a goal that may have been reachable in principle.
So in general SRpre(f) will overestimate SRobs(f) by an extent that depends on B.

For a set F of n policies we can measure the correlation between their observed and predicted
values as follows. A pair (f, g) ∈ F × F (distinct f , g) for which Vpre(f) ≤ Vpre(g) is concordant
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if Vobs(f) ≤ Vobs(g), but is otherwise discordant. If C is the number of concordant pairs and
D the number of discordant pairs, then the Kendall rank-correlation coefficient [32] τF for F is
2× (C −D)/(n× (n− 1)). We can re-express this measure as a percentage QF = 50× (1+ τF). In
the best case QF = 100%, when the predicted and observed ranks of all policies agree perfectly. In
the worst case QF = 0%, when they disagree maximally. The QF values cited in the case studies
we report here all imply, with > 99.8% confidence, that the observed and predicted policy values
are correlated.

To visualize the correlation of predictions with test outcomes for a set F of n policies, those
policies’ observed values are charted against the ranks of their predicted values (observed policy
values are measured along the vertical axis, and predicted ranks along the horizontal one). Overall
predictive quality is reflected by the extent to which the chart exhibits a monotonically decreasing
profile. For Example 3, if the observed policy values, Vobs(f), are charted against the ranks of their
predicted ones, Vpre(f), the chart obtained, shown in Figure 6, decreases monotonically, showing
the predicted ranks to be in accordance with the ranks obtained by simulation. The Kendall
measure QF is 99.56% in this case and from 1007 simulated runs per policy (thus, 53 for each
initial situation) with bound B=100, the same two policies are identically observed as optimal.

-1 0 .0 0

0 .0 0

1 0 .0 0

2 0 .0 0

3 0 .0 0

4 0 .0 0

Fig. 6. Observed policy values in Example 3 (exact mode)

When computing the predicted policy values using the predictor program we suppress any arcs
emergent from the goal in order to mirror the simulator’s behaviour in terminating a run when
the agent reaches the goal.

Although the prediction parameter values used throughout are R=100, r=-1 and γ=0.9, we
determined by prior experiments that, provided that R ≫ r and 0 < γ < 1, other choices would
not have altered the results or conclusions reported here. Similarly, allowing the value of r to vary
from one transition to another, particularly for transitions that enter the trough, might better
distinguish between various “bad” policies. However, the nature of the discounted reward formula
is that policies that reach the goal at all have much higher values than those that do not, and we
were primarily interested in the former policies. The contribution to the policy value of trough
nodes depends on the closeness of such situations to the start node.

3.3 Predictive Quality

As explained above, in the single agent case the policy rankings obtained from the predicted
policy values for exact modelling were very close to those obtained from the observed policy
values obtained from a simulation. The small variations occur in graphs with loops, since the
predictor uses the infinite horizon formula whereas the exact simulator uses a finite horizon given
by the bound B on the maximum number of steps.

In the case of abstract modelling the predicted policy values show more volatility with respect
to the values obtained by the simulator. This is due to the fact that the f -reduced situation graph
Gf used by the policy predictor is only a model of the situations and transitions used by the
simulator. There are several ramifications of this abstraction, which are illustrated by considering
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how the w action is treated in a grid-based simulation of BlocksWorld. The key decision for the w-
action is what the agent shall see afterwards. We decided this as follows. A w-action moves the agent
randomly to any vacant cell in its (immediate) neighbourhood (comprising 8 cells, unless the agent
is next to a grid boundary). The agent then sees the surface if its new neighbourhood is entirely
vacant, but otherwise randomly sees any one tower in that new neighbourhood. This (or any
alternative) decision fixes the probability distribution over the possible w-transitions between the
prior situation and its successors. The policy predictor may attempt to estimate these probabilities
or may default them to be equi-probable.

The above consideration shows that we must expect some shortfall in the predictive power of
the policy predictor when applied to a position-sensitive world, and the question is how serious (or
not) that shortfall is. We simulated Example 3 on a 6 x 6 grid with a bound B on the number of
steps increased to 200 to allow for more wandering. The predicted optimal policies are the same as
before, but with a slightly reduced predicted value 30.47 (reduced precisely because of the negative
rewards of reflexive wanders). However, they are not quite optimal among the observed values.
The observed optimal policy is a little different:

a → w, b → l, c → l, d → k, e → w, f → w, g → k, h → w, i → w

On seeing a 2-tower when not holding (perception e), it marginally favours w over k. Figure 7
shows the ranking chart, for which QF = 66.91%. Minor sampling variations among many policies
of similar value are the root cause of this reduced value. If we contract F to just the 20 best
policies then QF = 76.32%, so the predictive quality is rather better in the region that matters.

-8 .0 0

-4 .0 0

0 .0 0

4 .0 0

8 .0 0

1 2 .0 0

Fig. 7. Observed policy values in Example 3 (abstract mode)

The observed values in the chart are much lower than the predicted ones, since the simulated
agent is wandering (in the sparse regions of the grid) much more than the prediction considers
probable. However, it is the relative rather than the absolute values that are our main interest.
The observed and predicted success rates remain in close agreement, since excess wandering does
not alter the reachability of the goal, but merely delays its discovery.

In predicting the policy values for the above grid-based example we used only default prob-
ability distributions. The volatility in Figure 7 would have been reduced had we applied better
estimated probabilities. Rather than writing specific software to make such estimates for a grid-
based Blocks World, we can more easily demonstrate here the scope for improvement by exploiting
results from the simulator. We made the simulator count the number of times each arc in the f -
reduced situation graph was traversed (by a corresponding transition in GW ) in order to estimate
the relative frequency of non-deterministic arcs. These frequencies were used to better estimate
probabilities in the policy predictor. The results for the best 18 policies are shown in Figure 8,
whose chart is significantly smoother than the corresponding region of the chart in Figure 7.

4 Multiple Agents

In any TR-application there can be one or more agent types with one or more agents of each type.
Agents of the same type are called clones. Whether or not it is useful to employ multiple agents
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Fig. 8. Improved observed policy values in Example 3 (abstract mode)

in the pursuit of a goal depends upon the nature of the world and of the agents’ interactions with
the world and with each other. With limited perceptions, incognizance of the goal and lack of
communication, simple TR-agents of the kind we have considered may cooperate advantageously
only by serendipity. Predicting accurately the behaviour of multiple agents presents not only
analytical difficulties, in attempting to assess the overall impact of their interactions, but also
problems of scale – for just a modest case of a 4-block world with 2 agents there are potentially
more than 13,000 policies to consider.

This section considers how our framework can be adapted to plan for a community of agents,
each operating according to its own policy. The framework is flexible enough to deal with applica-
tions in which every agent has the same capabilities and follows the same policy, through agents
with the same capabilities but following a different policy (for example by virtue of having differing
goals), to agents with different capabilities. Of course, whatever the capabilities, all agents operate
in the same environment. There is no a priori assumption that the agents are controlled from the
outside, although there is no reason why one of the agents may not have a policy that causes it
to act as a controller. We first restrict the agents to behave in an independent way and in a later
section we illustrate the technique for clones that may communicate with each other.

The description of unrestricted situation graphs G has so far assumed just one agent. The
changes required to G to accommodate several agents are of two kinds, but in any event in our
framework any G is always constructed from the point of view of one agent. It is this feature
that allows us to achieve a measure of scalability in the multi-agent case. It requires the use of a
second special kind of action, called wait and denoted by x. This is in contrast to representing
each agent’s perception explicitly in a situation.

4.1 Exogenous Actions

The wait action enables the agent to wait until its perception is updated by some other agent
acting. The agent that is waiting then reacts to its new perception according to its policy. The
existence of a wait action only makes sense, therefore, if the world may be acted upon by agents
other than the agent self under consideration. Such actions, called exogenous, are not necessarily
benign and are not necessarily predictable. In Blocks World, for instance, we may imagine that
while self is following its own agenda, some other agent is randomly knocking the top blocks off
towers and leaving them scattered around singly upon the table. This may or not be helpful to
self, depending upon the circumstances.

Exogenous activity is represented in the unrestricted situation graph G by appropriate arcs
labelled x. Such an arc may be drawn from any situation s1 to any other s2 when we wish to
entertain the possibility that another agent effects the transition from s1 to s2. Self’s action set
now contains x. If self’s policy prescribes action x when in situation s1 the effect is to make self
wait for some other agent to change self’s perception. When self’s policy prescribes some action
other than x when in situation s1 self may alternatively undergo an exogenous transition caused
by the action of another agent. We call this passive updating of self.
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If an exogenous agent behaves unpredictably then, in general, it is hard to obtain a significant
predictive benefit. By contrast, if this other agent is predictable – in particular, is itself an agent
with a known policy – then it can be exploited to advantage in circumstances where self acting alone
would be inefficient in achieving the goal or be unable to reach the goal at all. Our consideration of
exogenous actions from now on will therefore concentrate upon multiple-agent scenarios in which
the policies of exogenous agents are either known or are to be determined. Actions that arise from
serendipitous actions of the environment are not considered when finding or evaluating policies.
Such actions are, by their nature, presumed rare and so their consequences will not have a large
impact on the policy values. However, if such actions were more probable then they would perhaps
be better modelled by an explicit agent.

4.2 Policies for Multiple Agents

The key question we address in this section is whether a graph focusing upon one agent enables
prediction of good policies for a group of agents without requiring explicit analysis of all the
combinations of the situations they occupy. First we explain how such a graph is constructed and
the role played by the x-action. The notion of a TR-application is already general enough to deal
with multiple agents. In this paper, if 〈O,P ,A,R〉 is a TR-application, then all the agents in R
will be clones and have identical policies unless otherwise stated. The set R can be represented
by a positive integer indicating the number of such cloned agents. The set A of action repertoires
will include both the wander and the wait actions.

The changes to unrestricted graphs to include the effects of several agents are:

– the additional agents may affect the set of states O, and possibly the perceptions P of self;
however, since these are dependent only upon the capabilities of a single agent, it is less likely
they will be affected, unless, for example, the agents are themselves upgraded to be able to
perceive other agents. The change in O could be larger; however, unless self needs to identify
the other agents by name, states can be described using implicit anonymous references to those
agents;

– from each situation there may be additional arcs for exogenous actions by other agents that
will affect the situation of self. These additional arcs are labelled by x and are interpreted from
self’s point of view as a wait action.

In Blocks World, for example, instead of requiring states that describe self and three other agents
holding a block, it may be sufficient to record that self is holding a block and that some other agent
is also doing so. Which one, or how many, may not be important. Already, this feature allows us
to represent situations involving several agents compactly. For instance, instead of the situation
([1, 2, 3], (s0, nh), (s3, h), (s3, nh)), indicating 7 blocks and 3 agents, two of which are seeing the
3-tower whilst the third is seeing the table, it might be sufficient to represent the situation as
([1, 2, 3], (s3, nh)), assuming self is seeing the 3-tower. The perceptions of the other two agents are
not relevant to the design of self’s policy except insofar as they may offer opportunities for self to
be passively updated – for example the agent holding a block may place it on the 3-tower resulting
in self being passively updated to seeing a 4-tower.

The unrestricted graph formed for self will be called a self graph and denoted by Gs [7]. The
corresponding policy-restricted graph will be denoted by Gs

f . The graph Gs can be viewed as a
projection onto self of an implicit, much larger graph, called the group graph. The group graph
represents situations as described above, namely by a tuple including the state and one perception
for each agent. In this graph, there is a transition between situations (o, p) and (o′, p′) if, by the
action of one of the agents in (o, p), the outcome (o′, p′) is possible. Given a group graph Gg, the
graph Gs in which we are interested is obtained by projecting situations in Gg to situations in Gs

and transitions in Gg to transitions in Gs as given in Definition 6.

Definition 6. Let Gg be a group graph for n agents, based on the set Sg of situations of the form
(o, p1, . . . , pn) and having the set of transitions Tg. The self graph Gs is the graph for self = k
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obtained from Gg as follows. The situations of Gs are projections of those in Gg and have the form
(o, pk). The set of transitions Ts in Gs is given by

Ts = {((o, pk), (o′, p′k))} for each transition (o, p1, . . . , pk, . . . , pn) to (o′, p′1, . . . , p
′
k, . . . , p′n) in Gg

where the action labelling a transition is x if the transition is not due to the action of agent k,
otherwise it is the action taken by agent k.

The situations from which the self graph is constructed are exactly those in which self could
possibly find itself – in other words those situations (o, p) which are consistent with all those
situations (o, p′) in which other agents could be, given that the state is o and that self has per-
ception p. Notice that the group graph would include many “equivalent” situations. For exam-
ple, the situation ([1, 2, 3], (s0, nh), (s3, h), (s3, nh)) could occur in 6 different ways by permut-
ing the perceptions of each agent. Two of those permutations would map to ([1, 2, 3], (s3, h))
and two more would map to ([1, 2, 3], (s0, nh)). Moreover, the self graph should include ex-
actly those transitions which self could make from any situation. Transitions which are due
to self taking an action a 6= x appear also in Gs labelled by the same action a, whilst those
due to some other agent acting will appear in Gs as action x. In the above example, if the
policy were to pick when not holding and seeing a 3-tower, there would be an x-arc from
([1, 2, 3], (s3, h)) to ([1, 2, 2], (s2, h)), corresponding to the possibility of an agent other than self
being in situation ([1, 2, 3], (s3, nh)) and performing the k action. This transition corresponds to
several transitions in the group graph: for example, assuming self is the second agent, such tran-
sitions would include ([1, 2, 3], (s3, nh), (s3, h), (s0, nh)) to ([1, 2, 2], (s2, h), (s2, h), (s0, nh)) and
([1, 2, 3], (s1, nh), (s3, h), (s3, nh)) to ([1, 2, 2], (s1, nh), (s2, h), (s2, h)). If the perception of self re-
mains unchanged by such an action there is a reflexive x-arc in the self graph.

An x-arc in the graph can thus represent two different notions. On the one hand it indicates
how self can be impacted by the actions of others. On the other hand it may represent the action
of deliberate waiting in accordance with self’s own policy. In this case the transitions still represent
the impact on self of the actions of others.

The group graph is never actually constructed. The presence of x-arcs can be detected directly
from the policy. To see what this means, consider the situation ([1, 2, 3], (s3, nh)) and the x-arc
transition to ([1, 2, 2], (s2, nh)) taken from the above example. This transition can occur only if it
is enabled by the policy. That is, when self is in situation ([1, 2, 3], (s3, nh)) there could be another
agent in a situation which, according to the policy, will cause self to move to ([1, 2, 2], (s2, nh)).
In this case, assuming the policy is to pick when seeing a 3-tower, the transition is enabled since
another agent could be in the situation ([1, 2, 3], (s3, nh)). Notice that there are also some group
situations when this transition could not occur, for instance if neither of the other agents was seeing
the 3-tower. If the policy prescribes a different action for perception (s3, nh) then the transition
to ([1, 2, 2], (s2, nh)) could not occur, for in order to remove the top block of the 3-tower an agent
would have to be seeing (s3, nh)) and the policy should choose the k action. But that is not so in
this case.

If the policy chooses x for some perception, then it might happen that in some situation
s = (o, p) there are no x-arcs enabled by the policy other than a reflexive arc. We call such a
node isolated. In this case an agent in situation s would be forever waiting. All other agents would
necessarily be in state o also, but possibly with perceptions different from p. Because self has no
enabled x-arcs, no actions made by other agents can change the state, so all agents are locked
into state o. If they had the same perception as self then deadlock would ensue. Avoidance of the
possibility of deadlock might be a desirable feature. If so, then the policy predictor can filter the
polices it considers by means of the clone consistency principle, which ignores policies that give
rise to isolated situations. However, the clone consistency principle does not completely eliminate
deadlock, since it could still be the case that all agents happened to be observing a perception (o, p)
that required them to wait, even though there was an enabling x-arc from (o, p). For instance, in
the 7 block example above, if the action on seeing a 1-tower and not holding is x, then self must
wait in the situation ([1, 1, 1, 2, 2], (s1, nh)). If all other agents also happen to be seeing 1-towers,
then all would have to perform wait and there would be deadlock. However, this situation is not
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isolated since some agents could, on the other hand, be seeing a 2-tower and perhaps the action in
that case is k, giving rise to an enabled x-arc to the situation ([1, 1, 1, 1, 2], (s1, nh)). Although self
would still perform x, the action prescribed for the agent other (now having perception (s1, h))
may be to wander and place the held block on the 1-tower being observed by self, in which case
self’s perception would change to (s2, nh) and it would perform k.

Definition 7. Let f be a policy containing the rule p → x. Then the Clone Consistency Principle
requires that for each situation (o, p) there is a non-reflexive x-arc to a state o′, Gs

f must have an
arc from (o, q) to (o′, q′), f must contain q → a, a 6= x and the situations (o, p) and (o, q) must
belong to a valid group.

The number of policies that need to be considered is somewhat larger for agent communities than
for a single agent, due to the extra possibility of the x action. For instance, for Example 3 there
were 256 possible policies, whereas if there are two agents there are more than 13,000 policies. The
clone consistency principle is a useful filter since it not only reduces the possibility for deadlock,
but also reduces very significantly the number of policies requiring to be examined.

The clone consistency principle is just one of several possible heuristic filters that could be
used to reduce the number of policies considered. It is likely that more than one policy filter
would be useful in practice; for example policies that admit deadlock may not necessarily be worse
than some policies with no possibility of deadlock, but which, for example, only reach the goal
occasionally.

Example 6. For the examples in the remainder of this section and in the next section we use a
different world scenario, consisting of planks and agents. A plank may be held at either end by
one agent or at both ends by two different agents. In the latter case it can be disposed of using the
dispose action, denoted by di, which reduces the number of planks by 1. Agents may otherwise
wander, or lift or drop one end of a plank. If only one end of a plank is being held and the agent
holding it attempts a dispose action, then that action will leave the agent in the same situation
as before the attempt.

The states, perceptions and actions we use to model such an environment containing two planks
and two agents are shown in Figure 9. Each state is represented by a tuple of the form [r, t, f ],
where r is the number of (raised) planks held at both ends, t is the number of (tilted) planks held
only at one end, and f is the number of (flat) planks held at neither end. Each agent may perceive
whether it is seeing an unheld end (su), a held end (sh) or no end (s0), and whether it is holding
an end or not.3 This model is an abstraction of Planks World as represented in the simulator,
in that it contains no detail concerning which ends of which planks are perceived by the agents.
The presumed goal is the situation (0, a) in which there are no planks and all agents are therefore
neither seeing nor holding any plank.

o ∈ O
[r, t, f]

0 [0, 0, 0]
1 [0, 0, 1]
2 [0, 1, 0]
3 [1, 0, 0]
4 [0, 0, 2]
5 [0, 1, 1]
6 [0, 2, 0]
7 [1, 0, 1]

p ∈ P O(p) A(p)

a s0, nh {0, 1, 2, 4, 5} {w, x}
c su, nh {1, 2, 4, 5} {li, w, x}
e sh, nh {2, 5} {w, x}
f sh, h {3, 5, 6, 7} {dr, di, x}

Fig. 9. States, perceptions and actions (Example 6)

3 It is assumed that if an agent is holding an end then it can see a held end.
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Each A(p) set now contains the exogenous action x. The graph G has 16 situations and there
are 36 possible policies, of which just 20 are clone-consistent. It is shown in Figure 10. Notice
particularly the x-arc from situation (7, f), which corresponds to the passive update of self when
another clone initiates a di action.
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Fig. 10. The unrestricted situation graph (Example 6)

Consider a clone r1 governed by the policy

a → w, c → li, e → x, f → dr

In the situation (5, e) there is one flat plank and one tilted plank and r1 is not holding but is
seeing the held end. For this perception the policy requires that r1 wait for another clone, say
r2, to be holding the held end and effect the transition from (5, e) to (4, c), that is, to drop that
end. From r2’s point of view, this is a transition from (2, f) to (4, c), requiring a drop action. So
r2’s policy requires f → dr. Since clones share the same policy, it follows that r1’s policy must
also contain f → dr – which it does. This precisely illustrates what we mean by the policy being
consistent for the clones. The best policy for the stated goal is

a → w, c → li, e → w, f → di

This policy happens not to require any agent to wait. On the other hand, a sub-optimal policy
that does require waiting such as

a → x, c → li, e → w, f → di

can be both clone-consistent and yet admit deadlock. It admits deadlock because both agents may
be in (1, a). It is clone consistent because, in every situation an agent may occupy, some other
agent could act so as to change the former’s situation. For instance, if one agent is in (1, a) then
the other agent may be in (1, c) and would perform a li action causing the former agent to change
its situation to (2, a).

4.3 Changes to the Policy Predictor

The policy predictor estimates the probability distribution of non-deterministic transitions in the
single agent case. In the multiple agent case it must also estimate the probability distribution
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for x-arcs, which will depend in part on the number of additional agents there are to effect those
transitions.

When there are n > 1 agents, the predictor assigns probabilities to the arcs of the graph Gf

as follows. Each node s = (o, p) has emergent arcs for the action a that self performs according to
the rule p → a in its policy f .

In the case that a 6= x the emergent arcs from s comprise both a-arcs and x-arcs (denoting
passive updating). The normalized relative probabilities of the a-arcs from s are either estimated or
defaulted as equi-probable. The normalized relative probabilities of the x-arcs from s are likewise
determined.

The absolute probability distribution at s is then computed by multiplying the relative prob-
ability of each a-arc by 1/n and multiplying the relative probability of each x-arc by (n − 1)/n.

Consequently, if Σx and Σa denote the sums of the absolute probabilities of the x-arcs and of
the a-arcs, respectively, their relationship is that Σx+Σa = 1 (to renormalize) and Σx = (n−1)Σa.
The latter reflects the supposition that it is (n − 1) times more probable that any agent will be
passively updated (by some other agent acting) than that it will itself act. This matches the
behaviour of our serialized simulator which, in each step, randomly chooses one agent to act and
then passively updates the other (n − 1) agents accordingly.

In the case that a = x the emergent arcs from s are all x-arcs and their probabilities can be
either estimated or defaulted as equi-probable.

In the multi-agent context every node has at least one x-arc, namely a reflexive one signifying
the possibility that an action (such as wander) by another agent might leave self’s perception
unchanged. Thus our notion of a passive “update” does not insist upon a definite change of self’s
situation. For simplicity of presentation in this paper we omit reflexive x-arcs from our pictures
showing multi-agent situation graphs.

Accurate estimation of x-arc probabilities would be achievable in principle by exhaustive anal-
ysis of the complete group graph. However, the very purpose of the self graph is to obviate explicit
construction of the group graph. In our own studies we have estimated x-arc probabilities in only
a limited fashion by forming the groups explicitly and using them to make approximate counts of
the potential transitions between them.

As an illustration, suppose in Example 6 that the chosen policy is

a → x, c → li, e → w, f → di

There are then three x-arcs emanating from situation (5, f), one to (7, f), one to (6, f), due,
respectively, to a second agent being in (5, c) and either lifting the same plank as self or the other
plank, and one reflexive x-arc due to the second agent wandering (from (5, e)), or proactively
waiting (from (5, a)). The probability on the di arc from (5, f) would be computed to have a value
of 0.5, whilst the probabilities on each of the non-reflexive x-arcs would be 1/8, whilst that on the
reflexive x-arc is 1/4, all obtained by counting.

4.4 Changes to the Simulator

In this section the operation of the simulator in a multi-agent environment is described. In this con-
text the simulator effects transitions between multi-situations, which generalise situations and are
exactly those situations used in the group graph. A multi-situation is a physically possible assign-
ment of the agents to situations that share a common state and differ (if at all) only in perceptions.
Examples of a multi-situation for the two-agent version of Example 6 are ((r1, (4, c)), (r2, (4, f)))
and ((r1, (5, c)), (r2, (5, c))). (This extended format is used to make more explicit the associa-
tion between agents, states and perceptions.) On the other hand, ((r1, (5, e)), (r2, (5, e))) is not a
multi-situation as it is physically impossible.

As in the single agent case the simulator executes runs. A single run begins with the agents
assigned to some chosen multi-situation s in Gg. As with the single agent case, if s corresponds to
several simulated multi-situations then one of those is chosen randomly. Following this initialization
the simulator executes steps until either the goal is reached (by some agent), or the simulation
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depth bound B is reached, when the run terminates. The value of the run is calculated in the
same way as for the single agent case. Execution of a step involves several operations

(i) an agent is randomly selected as the one to act;
(ii) this agent performs the action prescribed by the policy and its own situation is accordingly

updated;
(iii) the situations of all other agents are appropriately passively updated.

If the action performed in (ii) is a pro-active wait (x-action ), the step merely leaves all agents
unaltered.

For example, a step from the multi-situation ((r1, (4, c)), (r2, (4, c))) in Example 6 might be:
r1 is selected, its policy (say) dictates action li, and the new multi-situation would be either
((r1, (5, f)), (r2, (5, c))) or ((r1, (5, f)), (r2, (5, e))), depending on whether the agent r2 is seeing
the same end that r1 has just lifted or not. The situation change for r2 in this transition is an
example of a passive update corresponding to an x-arc from either (4, c) to (5, c) or from (4, c) to
(5, e).

The simulator’s successive random choosing of which agent acts next provides an adequate
approximation to the more realistic scenario in which they would all be acting concurrently. Owing
to the physical constraint that there can be only one state of the world at any instant, any set of
concurrent actions that produced that state can be serialized in one way or another to achieve the
same outcome. The simulator’s randomness effectively covers all such possible serializations.

As in the single agent case, the simulator can take advantage of recognising when a particular
multi-situation is in the group trough, provided the group graph is feasible to explore.

5 Communicating Agents

The extension of the framework to allow several agents operating at once has so far excluded any
communication between them. If non-communicating agents appear to co-operate in achieving a
task then this is merely a fortituitous manifestation of emergent behaviour, which we call “as-if”
co-operation. In this section we show how deliberate (planned) co-operation can be obtained by
enabling agents to communicate. We avoid the need to devise special languages and protocols for
this by restricting the communicable elements to be perceptions of the kind already employed. If
there is an atomic perception p then we can allow another agent ri to have the atomic perception
kp (representing “knows” p), whose meaning is that one or more other agents are perceiving, and
communicating to ri, that p is true. We assume that the content of p is instantly transmissible from
those other agents to ri by some suitable broadcasting mechanism. With this provision in place,
policy formation for ri can then take account of what it receives from other agents in addition to
its own direct perceptions of the world.

Consider again the 2-plank 2-agent problem of Example 6. Neither agent can perceive what the
other is seeing, and so cannot distinguish between states 6 and 7, when holding one end of a plank.
This means that the dispose action is liable to be unsuccessful. Adding additional agents, but
maintaining their limited perception, increases the chance of success when attempting a dispose

action. Some of the unsuccessful dispose attempts can be avoided if some communication between
agents is allowed.

We can allow for agents to communicate to each other, in a limited way, by giving them certain
useful percepts of the same form as those self could have. In this example, we choose to let an
agent perceive whether no other agent is holding a plank end (knh), or whether at least one other
agent is doing so (kh).

Example 7. This example extends Example 6 in two ways: (i) by allowing communicated percep-
tions, and (ii) by allowing either two or three agents. The particular states and perceptions for
this formulation for two agents are given in Figure 11. The self-restricted graph Gc for two agents
and the policy

a → x, b → w, c → li, d → li, e → w, f → x, g → di
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o ∈ O
[r, t, f]

0 [0, 0, 0]
1 [0, 0, 1]
2 [0, 1, 0]
3 [1, 0, 0]
4 [0, 0, 2]
5 [0, 1, 1]
6 [0, 2, 0]
7 [1, 0, 1]

p ∈ P O(p) A(p)

a s0, nh, knh {0, 1, 4} {w, x}
b s0, nh, kh {2, 5} {w, x}
c su, nh, knh {1, 4} {li, w, x}
d su, nh, kh { 2, 5} {li, w, x}
e sh, nh, kh {2, 5} {w, x}
f sh, h, knh {2, 5} {dr, x}
g sh, h, kh {3, 6, 7} {di, dr, x}

Fig. 11. States, perceptions and actions (Example 7)
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Fig. 12. The policy graph Gc for 2 agents (Example 7)
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is shown in Figure 12. Note that reflexive x-arcs are omitted to avoid clutter.
In case there are three agents the unrestricted graph has an additional state, namely 8 =

[1, 1, 0], i.e. the case in which one plank is raised and the second tilted, and 9 extra situations,
namely (3, b), (3, e), (6, b), (6, d), (6, e), (7, b), (7, d), (7, e) and (8, g) and numerous additional
x-arcs. The simulator was run for the problems of disposing of two planks with either two or three
agents. The particular policy illustrated in Figure 12 was ranked by the predictor as second for
both the 2-agent case and the 3-agent case. The simulator ranked the policy, respectively, as fourth
and third. More significantly, the observed (simulated) values of the policy were, respectively, 18.33
and 30.55. Informally, the policy is to wait, rather than wander, except when there is a chance
some agent may be holding the other end of a plank, in which case the policy is to wander. If the
agent finds itself holding an end, it waits for another agent to lift the remaining end, ready for
a dispose action. When there are more agents this policy has a better chance of success, hence
the higher observed value for 3 agents. The charts for the 2-agent and 3-agent case are shown in
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Fig. 13. Policy chart for 2 agents (Example 7)

Figs. 13 and 14, respectively.
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Fig. 14. Policy chart for 3 agents (Example 7)

For non-communicating agents, the closest policy to that shown in Figure 12 is

a → x, c → li, e → w, f → di

which is shown in Figure 15. We assume there are just two agents. The policy shown in Figure 15
offers few nodes the opportunity to reach the goal and has a poor observed policy value 8.70. By
contrast, the use of communication as reflected in Figure 12 confers upon many more nodes the
possibility of reaching the goal and has a correspondingly higher observed policy value, as noted
earlier, of 18.33. The communication has allowed self to distinguish between situations 1a and 2b
and consequently to form a different action for the two situations, leading to an improved policy.

Using communication in this manner is semantically equivalent to the alternative of simply
increasing the ability of an agent to perceive by its own means more of the state. Viewed in this
way, we could have cast the new perceptions a : (s0, nh, knh) and b : (s0, nh, kh) as

a : (s0, nh, nh1) and b : (s0, nh, h1)
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where h1 and nh1 stand, respectively, for the other agent is, or is not, holding, on the assumption
that an agent was physically equipped to know what the other agent was holding. In engineering
terms, however, it is more practical to broadcast perceptions through one uniform technology than
to equip agents with a diverse range of sensors. For more than one agent this approach introduces
more complex perceptions, including disjunctions, so although the two views are equivalent, we
prefer the one we interpret as communication.

6 Abstraction and Generic Situations

A key concern for a framework of this kind is that it shall adequately scale up to the treatment of
realistic scenarios. For a scenario having perceptions p1, . . . , pn the number of distinct policies is
the product |A(p1)|× . . .×|A(pn)|. We have already emphasized that the framework is intended for
simple agents in which each action set A(pi) is small. Given this, the number of policies depends
chiefly upon the number n of distinct perceptions and, correspondingly, upon the diversity of the
world as modeled for any particular problem.

The key to scalability therefore lies, in our view, in the use of appropriate representation. For
instance, in the case of BlocksWorld, the tower-building examples fall into a general class in which
the basic percepts (other than holding and not holding) need only be seeing a tower of the desired
height, or one of lesser height or one of greater height. It is therefore not necessary to represent the
seeing and acting-upon of all specific heights (1, 2, 3, etc.), unless the agent’s physical capabilities
happen to be predicated upon specific heights.

We now introduce a method of abstractions utilising generic situations, which can be described
informally as situations which generalise more than one concrete situation. Since the purpose of
introducing abstraction is to reduce the number of policies, it is the perceptions that should be the
primary candidate for generalisation. However, sometimes this imposes a necessary generalisation
upon the states as well. We have, in fact, already introduced several different kinds of abstraction,
including abstract and world model, the self graph and communicated perceptions. For example, in
an abstract model of some world model, the concrete situations are those used in the world model
involving the various descriptors used by the simulator and the generic situations are situations of
the abstract model – i.e. in the unrestricted situation graph. Each generic situation is the set of
all concrete situations included in it. An example of an abstract percept is given by communicated
percepts introduced in Section 5. These correspond to communications to self from other agents
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and a percept such as “some agent is holding” abstracts more concrete percepts such as “Agenti is
holding”, which would be used in the world model. (By way of comparison, note that in an exact
model the generic situations are the concrete situations.) The concrete situations abstracted in a
self graph are the multi-situations of the appropriate group graph, whereas the generic situations
are the situations in the self graph and represent the set of possible multi-situations given self ’s
situation. Another use of abstract perceptions is to model “don’t care” percepts. For example, in
Blocks World it may be irrelevant whether an agent is holding a block or not if it is not perceiving
any tower. In that case the generic perception “not seeing a tower” would include two concrete
perceptions, namely “not seeing a tower and holding” and “not seeing a tower and not holding”.
Such “don’t care” perceptions are used implicitly, for example, in [15, 27].

The term “abstraction” is often used to indicate that certain aspects of the “Physics” of a
“real-world” environment are ignored by the modelling process. However, this kind of abstraction
(e.g. to ignore the shapes and colours of the blocks in Blocks World) is not relevant to the task of
policy evaluation.

6.1 Generic Situations

Quite generally, generic situations can be given in terms of generic states and generic perceptions.
Let 〈O,P ,A,R〉 be a (possibly multi-agent) TR-application. The sets O and P are, respectively,
called concrete states and perceptions and may be partitioned into classes, each class being called
either a generic state or a generic perception as appropriate. The sets of generic states, perceptions
and situations are, respectively, denoted Oa, Pa and Sa. Each situation (O, P ) in Sa, where O ∈ Oa

and P ∈ Pa, is given by the set of concrete situations:

(O, P ) = {(o, p)|o ∈ O, p ∈ P and (o, p) is a valid concrete situation}

It may be useful to restrict the set of actions made available to the policy for generic perception
P to be a subset of the intersection of the sets of actions available to each concrete perception
p ∈ P . This makes it possible to associate a single action with P that is possible whatever con-
crete perception actually pertains. Otherwise, actions could routinely fail, requiring more complex
estimation of the transition probabilities. In practice, we have found this is not a very restrictive
criterion.

The transitions in an unrestricted graph Ga formed from generic situations are derived from
transitions in the (virtual) unrestricted graph G for the concrete situations. If there is an arc in
G between situations s = (o, p) and s′ = (o′, p′), then there must be an arc in Ga between generic
situations S = (O, P ) and S′ = (O′, P ′), where s ∈ S and s′ ∈ S′.

We can illustrate the notion of generic situation for the three species of abstraction mentioned
above, namely the self graph, abstract and world model and communicated perceptions. First, for
a self graph and two agents r1 and r2 (see Section 4), their concrete states O and perceptions P are
the usual states and perceptions for the application (for instance states 1-7 of Example 7). Each
generic state is a single concrete state. Each concrete perception is given by a pair of perceptions
that form possible combinations of perceptions that the two agents could have, which for Example
7 are the tuples

(a, a), (a, c), (c, a), (c, c), (b, f), (f, b), (d, f), (f, d), (e, f), (f, e), (g, g)

Choosing self as r1, the generic perceptions are formed by partitioning such a set into classes such
that two tuples belong to the same class if, and only if, they both have the same perception for self
and are both valid for some state. For example, the above tuples give rise to 7 classes, including
{(a, a), (a, c)}, {(c, a), (c, c)}, {(e, f)}, which we labelled respectively by a, c and e. The generic
situations are the situations of the self graph.

Second, the use of more informative descriptors in the world model used by the simulator than
are represented in the abstract model by the unrestricted situation graph generally made use of
generic states, but concrete and generic perceptions were identical. For example, in Blocks World
with one agent, 5 blocks and a 4 x 4 grid, concrete states might be represented by a tuple giving

28



the grid coordinates of the agent and the various towers, as well as the direction the agent is facing
(one of the eight compass points). Thus [(3, 1, NW ), (1, 2, 2), (3, 1, 4)] could represent the concrete
state of the agent at grid point (3, 1) and facing North West while holding a block, and there being
a 1-tower and a 3-tower at respective grid points (2, 2) and (1, 4). The generic states partition the
concrete states according to the distribution of tower heights, whereas the generic and concrete
perceptions are identical. A generic situation such as ([1, 3], (s1, h)), meaning the agent is seeing
the 1-tower and holding a block, would include the concrete situation given above, among many
others.

Third, Example 7 introduced communicated percepts, for example for a 3 agent society and
self again as r1, kh means that at least one of the agents other than self is communicating to
self it is holding a plank end. This represents the set of six vectors {[ , h, nh], [ , nh, h], [ , h, h]}
(where indicates self may be holding or not). In a similar way the perception knh represents the
two vectors {[ , nh, nh]}. Since this is necessarily a multi-agent society, the abstraction described
above using the self graph can then be imposed to form generic situations.

Example 8. This illustrates more fully the World Model abstraction, since this is the conventional
notion of abstraction and is taken from Blocks World. The goal is to build a 2-tower and a 4-tower
from a sufficiently large number of blocks and to perceive the surface. There is one agent only. If
there were just 10 blocks, then a comprehensive formulation of this problem dealing with its 72
possible states would not be manageable. Nor might it be realistic to suppose the agent possessed
11 distinct perceptors s0, . . . , s10; even if it did, the unrestricted situation graph G would contain a
huge number of situations and would offer 220 policies to consider. Our approach to identifying the
best policy is to assume that we need not distinguish many slightly different situations from one
another, but instead collect them into generic situations. The generic states are labelled [e2, e4],
[e2, ne4], [ne2, e4] and [ne2, ne4], where e2 denotes “a 2-tower exists” and ne2 denotes “no
2-tower exists” (and analogously for e4 and ne4). (In diagrams these are shortened to [e2, e4],
[e2], [e4] and [], respectively.) For example, the state [e2, e4] consists of all concrete states that
have at least one 2-tower and one 4-tower. The generic perceptions are pairs consisting of h or nh
paired with s0, s2, s4 or sx, the latter denoting “seeing an x-tower”, where x denotes “neither
0, 2 nor 4”. In order that the action pick be uniformly available to concrete percepts in the sx
percept, the percept s0 is not grouped into the sx percept. This formulation gives just 24 generic
situations and 128 policies.

([e2,e4],nh,s4)

([e2,e4],nh,s0)

([e2,e4],nh,s2)

([e2],h,s2)

([e2],h,s0)

([e2],h,sx)

([e2],nh,sx)

([e2],nh,s2)

([e2],nh,s0)

([e2,e4],h,sx)

([e2,e4],h,s0)

([e2,e4],h,s4)

([e2,e4],nh,sx)

L

L

L

L

([e2,e4],h,s2)

L

L

L

Fig. 16. Part of the graph Gf for Example 8 (10 blocks)
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Figure 16 shows part of the restricted graph (for 10 blocks) for the policy whereby the agent,
if seeing a tower of height neither 0, 2 nor 4 (sx), or a tower of height 0 (s0) can place if
holding (h), but in all other cases wanders. The intended goal is the situation ([e2, e4], nh, s0).
It is to be expected that an unrestricted graph Ga formed using generic states will exhibit more
non-determinism than the corresponding graph G. For instance, in the restricted graph shown in
Figure 16, after the action place from the state ([e2], (h, sx)) the agent may either be looking at
a 2-tower (x = 1), or a 4-tower (x = 3) or some other tower (x 6= 1, x 6= 3), whereas place is
deterministic at the concrete level.

For this example the simulations were made using 10 blocks and a 6x6 cellular grid making
1008 runs for each policy with bound B = 200. Each run began with a randomly-chosen initial
configuration of towers each assigned randomly to some cell and with the agent also assigned
randomly to some cell. The wander action was implemented as a move to any vacant cell in the
immediate neighbourhood of the agent’s cell. After the move, if the new neighbourhood contained
any towers then the agent would next see one of those towers, chosen randomly, but would otherwise
next see the surface. The predictor took account of this in its determination of the transition
probabilities on the policy-restricted graphs. Figure 17 shows the ranking chart which, though
having many fluctuations, is reasonably monotonic overall and has a surprisingly high overall
quality measure QF = 89.69%.

-1 5 .0 0

-1 0 .0 0

-5 .0 0

0 .0 0

5 .0 0

1 0 .0 0

1 5 .0 0

Fig. 17. Observed policy values in Example 8

The observed optimal policy is that which places a block only upon the surface or upon an
x-tower and never picks a block and is the one illustrated in Figure 16 and is also the one predicted
as best. It may seem counter-intuitive that this policy should never need to pick a block, but this
is just a consequence of the relatively high probability that any configuration in which the agent
finds itself will either already satisfy the goal condition or else require only wander and/or place
actions to bring it about.

The fluctuations in the chart partly arise from the prediction method being insufficiently sensi-
tive to the underlying transitions at the concrete level leading to the phenomenon we call piecewise
incoherence, which we illustrate and discuss in Section 6.2. Informally, it means that a restricted
situation graph Ga for generic situations can include paths that are not actually possible. This
can cause both under- and over-estimation of policy values, since there may be additional paths
leading to the goal, or additional paths leading away from the goal.

The volatility is also partly due to the choice of the generic states and perceptions in the
abstraction. For example, a different choice than the one used in Example 8 might split the generic
perception sx into two, one where x < 4 and the other when x > 4. We have always chosen an
abstraction that distinguishes the goal. That is, the generic goal situation contains only concrete
goal situations.
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6.2 Predictive Quality for Abstractions

The predictive quality of the framework is affected by various factors, which are almost all to
do with the fact that the situation graphs we use in the predictor are only abstractions of the
world model. In multi-agent communities, for instance, the self graph Gs does not reflect all
deadlock or trough situations and may include paths that are not possible in Gg, which can lead
to overestimation of a policy’s value if the extra paths lead to the goal, or to underestimation if
the extra paths lead away from the goal. These latter effects are also present if generic situations
are used, though for slightly different reasons. We say that a graph that includes impossible paths
lacks piecewise coherence (see [7] for an analysis of these effects). For graphs with non-determinism
a further effect is due to the difficulty of making good estimates of the probability distribution on
such arcs, especially of x-arcs. Despite these problems, we believe that our framework still allows
good predictive quality in general. We now consider these effects in more detail.

Piecewise incoherence We illustrate piecewise incoherence using Examples 7 and 8. If there is a
path through situations s0, s1, . . . , sm, the normal assumption is that an agent starting at s0 and
taking the action labelling the transition to s1 would then be in a position to take the action
labelling the transition to s2 and so on, through to sm. However, this may not be the case for
generic situations: although the transitions at each step are due to a particular transition between
concrete situations the destination of the transition starting at si (say) may not be the source of
the next transition in the path.

([e2,e4],nh,s4)

([e2],h,s2)

([e2],h,sx)

([e2],nh,sx)

([e2],nh,s2)

([e2,e4],h,s4)

L

K

L

K

L

K

Fig. 18. Part of Gf for Policy f (Example 8 )

In Example 8, for instance, consider the policy f which makes the agent pick from an x-tower
(x /∈ {0, 2, 4}), if not holding, or, if it is holding, makes it place on an x-tower (x /∈ {0, 2, 4}) and
in all other situations makes it wander. A fragment of the graph Gf for this policy is shown in
Figure 18 and shows a path through nodes ([e2], h, sx), ([e2], nh, sx) and ([e2, e4], h, s4), using the
actions place and then pick. However, if an agent starts with perception sx and places a block
on an x-tower, in order that its perception shall remain sx, it must have started looking at a tower
of height ≥ 5 and afterwards be looking at a tower of height ≥ 6. In that case, the subsequent
pick action cannot result in perception s4. Each of the two transitions involved is valid, but the
destination of the first place action is not the source required for the second pick action, which is
seeing a 5-tower. This is what we mean by a piecewise incoherent path. For this particular policy,
there are quite a number of apparent paths going towards the goal that are, in fact, not possible,
so making the predicted value for this policy too high.

Since piecewise incoherence arises from two steps that do not “connect” with each other,
we hypothesise that using a two-step lookahead in evaluating situation values will lead to an
improvement in the predicted policy values. A transition between the generic situations S1 and S2
guarantees only that for some concrete situation in S1 there is some concrete successor situation
in S2. However, there may be some concrete situations in S1 for which there are no concrete
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successor situations in S2. In case the transition to S1 was to one of these situations, then the
value of S1, which normally depends on the value(s) of its successors. should not be dependent
on the value of S2. We claim that the value of a situation j, (for some policy f) given that j has
been reached from i, denoted V (j|i) be given by the formula

V (j|i) = Σk∈SS(j)pijk(rjk + γV (k|j))

where pijk is the probability of the transition from j to k given that j was reached from i. The
value of a situation i is then given by the formula

V (i) = Σj∈SS(i)pij(rij + γV (j|i))

where pij is the probability of the transition from i to j. In a piecewise incoherent case some of
the values pijk would be 0. For the same case of a 10-block world as in Example 8, the policy chart
using the new formulas is shown in Figure 19. It is a slightly more monotonic chart. Its quality
measure is 91.41%, compared to the earlier one-step-prediction figure of 89.69%. The observed best
policy continues to be predicted as best. In this example the amount of piecewise incoherence is
somewhat low. In other studies we have examined, where this property features more prominently,
greater improvements in the predictive quality have been observed. For example, for the goal of
building a 10-tower we used an abstraction that classified the seeing perceptions into “seeing 0”,
“seeing < 5”, “seeing 5” or “seeing > 5”. The overall Kendall value was similar for both the one-
step and the two-step predictions, but whereas the two-step predictor ranked correctly the best
six policies, the one-step predictor accorded them no discernible significance among the others.

-1 5 .0 0

-1 0 .0 0

-5 .0 0

0 .0 0

5 .0 0

1 0 .0 0

1 5 .0 0

Fig. 19. Result of using conditional values in Example 8

The particular abstraction used to form the generic situations may also be a factor in obtaining
reliable prediction and this still needs to be further investigated. So far, in constructing the ab-
stractions (by hand), we used two guiding principles: (i) make the goal a specific generic situation,
and (ii) perceptions that appear similar to an agent in small environments may be combined into
a generic perception.

In the case of the self graph the incoherence effect is due to the presence of x-arcs [7]. A path
may exist using certain x-arcs, each of its corresponding transitions being possible, but the group
structure of agents required for the first transition does not lead to the group structure necessary
for the next transition. For instance, in Example 7 and for 2 agents, consider the policy

a → x, b → w, c → li, d → li, e → x, f → dr, g → di

and the apparent path through Gf from (2, e) to (0, a) via (1, c), (2, f) and (3, g) taking actions
by self of x, li, x, di. Assume self is the agent r1 and the other agent is r2. In situation (2, e) r1
is looking at a held end that it is not itself holding. It would enter (1, c) if r2 could drop the end
whilst being in (2, f). r2 would then enter situation (1, c) as well, both agents seeing the same end
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of the plank. r1 would then lift the end and move to situation (2, f), while r2 would be passively
updated to (2, e). It is clear there is no way for r1 to get to (3, g), for this would require r2 to lift
the other end of the plank to the one r1 is holding. This would require r2 to be in situation (2, d)
rather than (2, e). We call this phenomenon group incoherence.

There does not seem to be any easy way to avoid the effects on policy values due to either
kind of incoherence when present, although the use of communication means that agents can
be more aware of others and be able to distinguish between apparently identical states, as was
illustrated for Examples 6 and 7 in Section 5. An analysis of the relation between a group graph
and a corresponding self graph is given in [7]. Piecewise incoherence can be avoided by restricting
generic situations to satisfy a uniformity property: if there is a transition between s1 ∈ S1 and
s2 ∈ S2, then there is a transition from each s ∈ S1 to some s′ ∈ S2. This property was used
in [28]. However, the approach using conditional situation values appears to be very promising,
though it has yet to be tested for the problem of group incoherence.

7 Discussion

In this section we apply our framework to an example from [9], which uses belief states, and
compare our result with the one obtained there. We also consider some extensions.

7.1 The “Star-finding” Problem

A different approach to finding policies for agents with partial observability is given in [9, 18] and
uses the method of belief states, in which the beliefs of an agent are represented by real-valued
n-dimensional vectors, n ≥ 1. For instance, for a problem which can be modelled using four states
a 4-dimensional vector would be used. The belief state [0.25, 0, 0.5, 0.25] indicates that the agent
believes it is more likely to be in state 3 than in states 1 or 4 and definitely is not in state 2.
Each node is now a belief state and the arcs are labelled by actions. In order to obtain an optimal
policy for traversing this infinite graph, an iterative algorithm is used to find an approximation
by computing V (b) = maxa∈A(r + γ × e), where r is the expected reward for action a from state
b and e is the estimated expected value of successor states, using the current estimates. In [31]
it was shown that the optimal value function can be represented using some finite set of vectors
V , such that the value of a node is computed as V (b) = maxv∈Vb.v. In [9, 18] it is shown how a
policy can be found using this result.

The above approach and others similar to it are useful in problems where the environment
changes only under the actions of the agent. Otherwise, there is no reason why the agent should
assume its previous belief state is any guide to the recent past and hence to the current state.
When several agents are acting, an agent’s environment undergoes exogenous changes due to other
agents’ actions so this assumption is not valid. In effect, the use of belief states is an encoding of
the recent past, or the history of the agent’s earlier actions and observations. The next example,
taken from [9], illustrates how our framework encodes history using additional percepts.

Example 9 The problem concerns an agent that can move left or right through a linear sequence of
four cells to look for a star which is always in the same place, in this case at cell 3. The set of states
={1, 2, 3, 4} and each perception is modelled as a triple [o, a1, a2], where o is either “e(mpty)” or
“s(tar)” and a1 and a2 are the two most recent actions, either “move left” (L) or “move right”(R).
We assume the agent stops when it sees the star and stays put if attempting to move left(right)
from cell 1(4). The predicted optimal policy is

[e, L, L] → R, [e, L, R] → R, [e, R, L] → L, [e, R, R] → L, [s,−,−] → stop

which corresponds to the policy in [9] and is shown in Figure 20. (Note that since every situation
uses e, except those for state 3, which use s, in Figure 20 the perceptions are simplified by
omitting the e or s.) Notice that, since the previous actions are not relevant when seeing a star,
the perception [s,−,−] is, in fact, an abstract perception. Some situations shown in Figure 20 are
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Fig. 20. Gf for Optimal Policy of Example 9

not reachable from any other (e.g. (2, [e, L, R])), but they are included since they might exogenously
become the current situation through corruption of memory. The optimal policy (for the star in
cell 3) can be given an algorithmic interpretation, which is “Move right until reach the star or
the right-hand cell, then move left until reach the star”. If the star is closer to the left-hand cell
the dual policy that first moves left is better. If the position of the star is not static, then either
policy is the best. This example illustrates that, for small-scale single-agent contexts, at least, our
method gives the same results as the POMDP method but uses much simpler machinery to obtain
them. For multi-agent contexts our use of the self-oriented x-arc framework appears simpler and
more scaleable than the corresponding “decentralized” POMDP approach of [25], which has to
analyse conjointly how all the agents are acting upon the environment.

Policies which do not exploit the agent’s recent past are called memoryless policies in [22, 30].
An examination of the limitations of such policies is made in [30] and in [23] where the perceptions
of an agent are treated as the states of an MDP. This corresponds in our framework to abstracting
all states into a single state. It then follows that, since each perception occurs in exactly one
state, once the key task of attributing transition probabilities is solved the “optimal policy” for
the resulting graph can be obtained using standard discounted reward methods. In Section 7.3 we
describe a suitable program for doing this.

The task of assigning well-estimated probabilities to transitions is important in order that
predictions made using this abstraction shall not exhibit an excessive degree of piecewise incoher-
ence. For many cases, for example when the perception of the goal situation is not unique to the
goal, it is inevitable that a restricted graph will show many non-existent paths, resulting in poor
prediction of policy values. In the examples in [23] this is not a problem, since the probabilities
are fixed a priori. For instance, the example of Parr and Russell’s 4 × 3 maze, when put into our
framework has just 72 policies, which we can then easily evaluate to give the same “ optimal”
policy as shown in [23].

7.2 Extensions to the Framework and Further Investigations

Different Types of Agents In this paper we restrict policies to be functions. That is, each percep-
tion is associated with exactly one action. This is in contrast to relational (or stochastic) policies,
in which a perception may be associated with more than one action and the agent chooses between
them according to some probability distribution. We have also assumed that all agents in a group
follow the same policy. However, our framework does not rule out either the possibility of relational
policies or the modelling of a group of non-homogeneous agents. Some preliminary experiments
show that a relational policy which linearly combines two or more functional policies can be better
than any of the functional policies and that two agents following different policies may comple-
ment each other. In particular, we will make the following two explorations: Firstly, deploy the
framework for groups of non-homogeneous agents operating with differing capabilities, including
those with different perceptions. We would like to establish principles for evaluating the efficacy
of co-implemented non-cloned agents possessing distinct, individually-designed policies. Although
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this appears a hard task it would offer major benefits, since it appears from our own studies that
inter-agent cooperation is most useful when the agents have distinct but complementary capabil-
ities. Secondly, compare the behaviour of a single agent operating under a relational policy with
that of a group of several agents, such that each adopts a functional policy from those contributing
to the relational policy. For example, a single agent with two stochastic actions might be consid-
ered to be a combination of four different functional agents, in some proportions corresponding
to the distribution of actions of the relational agent; Finally, mechanisms by which an agent may
learn to improve its policy are more suited to finding relational policies since the linear coefficients
may be estimated in standard ways (for example using a neural net and back-propagation). An
investigation of such adaptive agents is an exciting area for future work.

Memory and other internal perceptions Various examples in this paper have illustrated the po-
tential for modelling memory and communication in our framework. We have already mentioned
that due to exogenous actions an agent’s memory may not reflect facts true of the current world.
One way to recover from such a case is to allow an agent to forget, which could be modelled by
arranging for an agent’s memory to revert to some neutral value after a certain number of steps.
For example, in Blocks World an agent might remember the height of the tallest tower it had seen,
but such a memory may be incorrect if that tower were built upon or dismantled by another agent
or force. If the memory reflected a true perception of the world it is likely it would be reinforced
by the agent either coming across the tallest tower again or an even taller one. Otherwise, the
memory could be forgotten after a number of steps, freeing the agent from believing incorrect facts
of the world. In fact, this is implicitly how noisy perceptions are dealt with. If a wrong perception
is made, an agent will soon obtain another perception that will be correct, assuming that the level
of noise is not very great.

If a global memory were maintained amongst a group of agents this would give quite a powerful
facility. Such a global memory could be exploited and accessed through perceptions of the form
m = v where m names a memory store and v names its value. Such global memory is different
from the communicated perceptions we have so far modelled, in that it would be convenient to
be able to model that an agent “did not know something” about another agent (as opposed to
knowing some negative fact). We envisage employing the concept of negation-as-failure from Logic
Programming [11] in order to deal with such cases in future work using our framework.

The use of memory will introduce into our framework the possibility of implementing hierar-
chical policies. However, a second way to do this is by enhancing the language to definite-clause
logic, enabling also the formulation of recursive policies. This extension would make our agents
rather more like those of Nilsson, allowing a clearer comparison to be made.

Our focus on simple agents containing only a memoryless functional policy is motivated partly
by anticipation of application domains demanding minimal agent hardware and partly by the
desire to explore agent capability incrementally, starting with the simplest architectures. A policy
of the kind we have considered can be viewed as a compiled consequence of some theory Th
about the behaviour of the agent. If made explicit, Th would either be embedded within the agent
or else be deployed only externally in the design process. In the former case the agent would
possess sufficient on-board processing capability to accommodate Th and to elicit, using some
internal reasoning system, the consequences of Th needed to determine the run-time behaviour.
This is the general nature of an autonomous cognitive agent. Our future work will examine how
our design framework can deal with progressive enhancements to the assumed agent architecture,
such as bounded memory, subgoal-reduction, relational mapping of percepts to actions and other
cognition-related extensions.

7.3 Branch and Bound Policy Evaluation

Although we have sought to achieve scalability through the use of abstraction, it is not always
necessary to evaluate every policy in order to find the good ones. In this section we describe
a branch and bound method, which in many cases avoids searching through every policy. The
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method is adapted to our framework from an algorithm of Littman in [22]. In order to describe it
we define some new terms.

Definition 8. Let 〈O,P ,A〉 be a TR-application. A full-policy is one which has a rule for every
perception. A part-policy is one which has rules for a subset of the perceptions (including no rules).

The set of policies can be structured using a tree, called a policy tree, denoted by T , in which
each node is labelled by a perception p and each arc by an action in A(p). If the size of P is n,
then each branch of a tree developed to depth n represents a full-policy and each branch of a tree
developed to a depth of < n represents a part-policy. The value of a full-policy f is the sum of
the values V (f, s) for each situation s as computed by the formula given in Definition 4.) The
sum Σs∈SV (f, s), where S is the set of situations, is approximated by iteration using the recursive
Equation 1

Vi+1(f, s) = Σu∈SS(s)psu(rsu + Vi(f, u)) (1)

where, as usual, SS(s) is the successor state of s, psu is the probability of the transition of, and
rsu is the reward for taking, the arc from s to u, all as prescribed by the policy f .

The value of a part-policy f is given an upper bound, computed using a similar formula to
that in Equation 1 except that an optimistic value is used for those situations where actions have
not been specified. That is, Equation 2 is used.

Vi+1(f, s) = Σu∈SS1(s)psu(rsu + Vi(f, u)) + maxaΣu∈SS2(a,s)(psu(rsu + Vi(f, u)) (2)

where SS1(s) gives successor states for situations for which policy f gives an action and SS2(a, s)
gives the successor situations of s assuming action a is taken. The value given by Equation 2
will be an upper bound for the value of any full-policy that extends part-policy f . Similarly, a
lower bound for the value can be found by replacing the max operator in Equation 2 by the min
operator. In the policy tree T each leaf node can be annotated by the policy value as computed by
Equation 1 and each non-leaf node can be annotated by an upper and lower bound for the policy
value, as computed by Equation 2. In what follows we will assume that the best predicted policy
value only is required. It is easy to keep a beam of size m if the best m predicted policy values
are required. A policy tree is searched left-right and depth-first. A global optimum policy value B
is maintained. B is initialised to a value of some known good policy. Thereafter, the branch and
bound algorithm outlined in Figure 21 is used. Note that in the algorithm a node is associated
with a part-policy or a full-policy.

procedure BB(c:node, B:int):(G:int, g:node)

//returns G the best policy value and g the best policy

{if c is a leaf-node //c represents a full-policy

then {if value(c)>B then return (value(c),c)} //c could be the optimum policy

elseif upperbound(c)>B then

{for each cc:=next-child-of-c

{if lowerbound(c)>B then return BB(cc,lowerbound(c)) else return BB(cc,B)}

}

else return (B,b)} // do not search below cc if cc cannot be better than B

}

Fig. 21. Branch and Bound Algorithm for searching a policy tree

Algorithm BB can be made more efficient by some simple steps:

1. The upper and lower bounds are computed as needed.
2. The initial part-policy associated with c need not be empty. If a perception p has exactly one

action a then the part-policy c includes the rule p → a. If, through some means or other,
actions for any other perceptions can be fixed, the appropriate rules are added to the initial c.
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3. The remaining perceptions are divided into two kinds: constrained and free. A free perception
p is one which is associated uniquely with a state, and therefore uniquely with a situation.
All other perceptions are constrained. The perceptions labelling nodes in a policy tree T are
ordered such that constrained perceptions come before free perceptions and the constrained
perceptions are ordered according to the number of possible actions. The value of a part-
policy c which has rules for all constrained perceptions is equal to the upperbound(c), since
there is no constraint on which action to select for the free perceptions, allowing the action
which maximises the node value to be selected and assuming the optimum actions are taken
thereafter for all free perceptions.

4. When computing the upperbound for a part-policy c if the interim value is bigger than the
current optimum B the iterations can be terminated – since the iterated values increase mono-
tonically the upperbound cannot be less than B.

If the returned policy is not a full-policy, the remaining perceptions are free perceptions and the
optimal policy can be obtained by running the algorithm again and treating the free perceptions
as constrained perceptions. As an illustration the annotated tree for Example 2, including the
efficiency improvements, is shown in Figure 22.

d   (1)

w

a

l  (2) w  (5)

e

k  (3) w  (4)

e

k  (6) w  (7)

bcf bcf bcf bcf

1) An initial “optimum value” is 10;
    w is only action for perception d 
    so search starts with a or e; 
    choose perception a;

2) Best value=120, worst=10;
     continue with perception e;

3) Best value =720, worst=10;
    New optimum is 720;
    Leafnode labelled “bcf” since 
    these perceptions are free;

4) Best value =120 - abandon;

5) Best value = 219 - abandon 6)  
     and 7).

Fig. 22. Policy Tree in Algorithm BB for Example 2

8 Summary

We conclude by re-stating the main contributions of our framework to the design of TR-agents:
First, our method of accommodating exogenous behaviour, including multi-agent interaction, solely
through the special x-action and its associated clone-consistency principle. Second, our method of
supporting inter-agent communication solely through suitable enrichment of perceptions. Both of
these provisions extend substantially the power of the framework without requiring any extension
of the agents’ basic structure or any additional mechanisms for their implementation. Third, an
analysis of the factors involved in design through abstraction and the demonstration that the effects
of these factors can be satisfactorily accommodated in the two-step evaluation of the discounted
reward procedure. In all of these we have sought to maintain maximum simplicity in both concept
and formulation.
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