Deriving Event-Based Transition Systems
from Goal-Oriented Requirements Models

Emmanuel Letier

Dpt. d’Ingénierie Informatique, Université catholique de Louvain
Louvain-la-Neuve, Belgium
eletier@info.ucl.ac.be

Abstract. Goal-oriented methods are increasingly
popular for elaborating software requirements. They
offer systematic support for incrementally building
intentional, structural, and operational models of the
software and its environment. Event-based transition
systems on the other hand are convenient formalisms for
modelling and reasoning about software behaviours at
the architectural level.

The paper combines these two worlds by presenting a
technique for translating formal specification of
software operations built according to the KAOS goal-
oriented method into event-based transition systems
analysable by the LTSA toolset. The translation involves
moving from a declarative, state-based, timed,
synchronous  formalism  typical of requirements
modelling languages to an operational, event-based,
untimed, asynchronous one typical of architecture
description languages. The derived model is used for the
formal analysis and animation of KAOS operation
models in LTSA.

The translation process provides insights into the two
complementary formalisms and raises questions about
the use of synchronous temporal logic for requirements
specification.

Keywords Goal-Oriented Requirements Engineering,
Event-based Transition Systems, Fluent Temporal
Logic, Requirements Animation, Model-Checking.

1 Introduction

Goal orientation is a recognized paradigm for
elaborating, structuring and analysing software
requirements [LamOOb, LamO1, Chu00]. Goals are
desired system properties whose satisfaction requires the
cooperation of agents (or active components) in the
software and its environment. Goals may refer to
functional or non-functional concerns and range from
high-level, strategic concerns (such as “avoid explosion"
for the safety control mechanisms of a nuclear power

plant) to low-level, technical ones (such as “safety
injection overridden when block switch is on and pressure is
less than "Permit’”).

Event-based transition models on the other hand are
convenient formalisms for modelling and reasoning
about software behaviours at the architectural level.
They describe a system as a set of interacting
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components where each component is modelled as a
state machine and interactions between components
occur through shared events. Such models provide the
basis for a wide range of automated analysis techniques,
notably deadlock detection, model animation and model
verification through model checking [Mag99].

Integrating goal-oriented requirements elaboration
methods and specification techniques founded on event-
based transition systems provides clear benefits:

e the former provides a systematic method for
modelling the real-world goals of a system,
structuring them in a refinement hierarchy [Dar96,
Chu00, Let02a], reasoning about their conflicts
[Lam98] and exceptions [Lam00a], reasoning about
the impact of alternatives on non-functional goals
[Chu00, Let04], and gradually deriving a
specification of software operations that ensures the
goals [Let02b];

e the later can be used for the automated formal
analysis of software specifications and provides the
basis for the downstream activities of software
architectural design, program  verification,
specification based testing, etc [All97, Mag99].

Our work is motivated by this complementarity. The
paper describes a technique for transforming KAOS
specification of operations, derived from goals
according to techniques described in [Let02b], into
event-based transition system analysable by the LTSA
toolset.

The derived model can then be used to carry out formal
analysis of KAOS operation models in LTSA: (i)
incompleteness with respect to goals can detected by
model-checking the derived event-based transitions
system against goals; (ii) inconsistencies and implicit
requirements can be detected as deadlocks or violation
of a time progress property; and (iii) animation can be
performed using the standard animation features of
LTSA.

Similar capabilities for animating and model-checking
KAOS operation models have been developed in another
prototype tool [Tra04, Pon04]. Animation there is
preformed by translating KAOS operations into a
special-purpose state-machine formalism, called goal



based state-machine, and model-checking by translating
KAOS models into the symbolic model-checker
NuSMYV [Cim02]. No support is available there to detect
inconsistencies and implicit requirements in KAOS
operations.

In this paper we follow a different approach by
translating KAOS models into event-based transition
systems. Event-based formalisms are a natural choice for
representing behaviours at the architecture level [Al197,
Ber91, Mag95]. At this level, one is concerned with the
interactions between components in terms of messages
sent and received by components and service
invocations initiated or accepted by components. These
messages and invocations are most naturally modelled
as events. Our main reason for choosing an event-based
formalism as target language is to facilitate the transition
from goal-oriented, state-based requirements models to
event-based architecture models.

In [Del03], we have investigated the possibilities of
tranlsating KAOS operations into tabular specificatin
analysable by the SCR* toolset [Hei96, Hei98].
However, a semantic incompatibility between the two
languages concerning the "synchrony hypothesis" made
it impossible to derive an SCR specification whose
behaviours are exactly the same as those of the source
KAOS model. The translation to event-based transition
system described in this paper preserves exactly the
semantics of the source KAOS model.

The rest of the paper is organized as follows. Section 2
introduces background material on KAOS and LTSA.
Section 3 presents a technique for deriving event-based
transitions systems from assertions written in fluent
temporal logic, the formalism used in LTSA to specify
state-based temporal properties over event-based
systems. This technique is then used in Section 4 to
translate goal-oriented operation models into event-
based transitions system. Section 5 describes how to use
the derived model for the formal analysis and animation
of the KAOS model. Section 6 discusses limitations of
an alternative approach in which LTS would be derived
from KAOS goals instead of operations.

2 Background

Our presentation will rely on the safety injection system
for a nuclear power plant [Cou93, Heit96]. The purpose
of this system is to prevent or mitigate damages to the
core and coolant system on the occurrence of a fault
such as a loss of coolant. The ESFAS (Engineered
Safety Feature Actuation System) is a software
component that monitors steam pressure in the coolant
system; if the pressure falls below some Low' value, a
safety injection signal is sent to safety feature
components, the function of which is to cope with the
incidents. A manual block button allows operators to

override safety injection during a normal start-up or cool
down of the power plant reactor. The manual block must
be automatically reset by the system when the pressure
rises above a value 'Permit'.

2.1  Goal-Oriented Modelling with KAOS

A KAOS model is specified as a composition of four
submodels: a goal model in which the goals to be
achieved are  described together with their
refinement/conflict links; an object model in which the
application objects involved are described together with
their relationships and attributes; an operation model in
which the services that operationalize the goals are
described; and an agent model in which the agents are
described  together with their interfaces and
responsibilities with respect to goals and operations. The
reader may refer to [LamO1, Let0O1] for a full description
of the KAOS method.

2.1.1  Specifying Goals in LTL

A goal is a declarative property to be satisfied by the
system under consideration. The word "system" refers to
the software and its environment. An obvious goal for
the nuclear power plant is:
Goal Avoid[Explosion]

Def. The nuclear reactor should not explode.

FormalDef [] — Explosion
This specification fragment introduces a goal named
Avoid[Explosion] (Avoid is a keyword that refers to the
temporal pattern of the goal). Every goal is defined by
a natural language assertion for communication with
stakeholders and a linear temporal logic assertion for
formal reasoning.

Linear temporal logic assertions are formed from state
variables, standard Boolean operators, and qualitative
linear temporal logic operators X (next), [] (always), <
(eventually), U (until) and W (Awaits). Real-time and
past operators are allowed as well but will not be used in
this paper. State variables (such as Explosion) correspond
to object attributes and relationships in the application
domain object model.

The semantics of the temporal logic operators is defined
following [Man92]. Let V' be a set of state variables. A
system state is a mapping that assigns a value to each
state variable. An history is a mapping h: Nat — State
that maps each position i to the global system state at
that position. The notation (h,i) |= P is used to express
that the LTL formula P is true at position i of history h.
The temporal operators we will use in the paper are
defined as follows:

e (hi)|=XP iff
o (hi)I=[IP i
e (hi)l=<>P iff

(h, i+1) |=P
(h, ) |=P forallj>i
(h, j) |=P for some j>i



The notation @P is also used as a shorthand for (= P A
XP). A LTL formula P is said to be satisfied by a trace h,
noted h |= P, if it is satisfied at the initial position, i.e.
(h,0) |= P.

Goals are organized in AND/OR-refinement structures.
AND-refinement links relate a goal to a set of subgoals
(called refinement); this means that satisfying all
subgoals in the refinement is a sufficient condition for
satisfying the goal. OR-refinement links relate a goal to
an alternative set of refinements; this means that
satisfying one of the refinements is a sufficient condition
for satisfying the goal. High-level goals are recursively
refined into subgoals until each terminal goal is
realizable by some individual agent, in the sense that it
is defined in terms of variables that are monitored and
controlled by the agent [Let02a]. A requirement is a
terminal goal assigned to an agent in the software-to-be.
For example, the gradual refinement of the goal
Avoid[Explosion] generates, among others, the following
requirement assigned to to the ESFAS component:

Req Maintain[SafetylnjectionOverridden Iff Block and
Pressure LessThan Permit]

Def: Safety injection should become overridden if and only if
block is pushed while the steam pressure is less than permit.
FormalDef: [] (@Overridden < block A Pressure<'Permit')
Responsibility ESFAS

The reader may refer to [Let02c, Lam04] for a full
KAOS elaboration of the requirements for the safety
injection control system.

2.1.2  Modelling Operations

A goal assigned to some agent in the software-to-be is
operationalized into functional services, called
operations, to be performed by the agent. Operations are
specified in a state-based style by pre, post- and trigger
conditions. An important distinction is made between
domain  pre-/postconditions, which capture the
elementary state transitions defined by operation
applications in the domain, and required pre/post/trigger
conditions, which capture additional requirements on
operation application to ensure that the goals are met. A
required precondition for some goal captures a
permission to perform the operation when the condition
is true. A required trigger condition for some goal
captures an obligation to perform the operation when the
condition is true provided the domain precondition is
true. A required postcondition defines some additional
condition that any application of the operation must
establish in order to achieve the corresponding goal.

Consider the following operation that operationalize the
requirement Maintain[SafetylnjectionOverridden 1ff BlockAnd
PressureLessThanPermit].

Operation overrideSI

DomPre — Overridden

DomPost Overridden

ReqPre/TriggerFor {SafetylnjectionOverridden Iff

BlockAndPressureLessThanPermit}:
block A = Pressure<'Permit'

In this specification, the domain pre and postconditions
capture the domain property that every application of
overrideSI corresponds to a transition from a state where
safety injection is not overridden to a state where it is
overridden. The ReqPre/Trigger condition means that
the condition is both a required pre- and a required
trigger condition. It captures that the operation must be
applied if block occurs and the steam pressure is above
permit, and can only be applied in this circumstance.

The formal semantics for KAOS operation models is
given by translating KAOS operations into temporal
logic assertions [Let02b]. Let [lop|]] be a predicate
denoting the application of the operation op in the
current state. This predicate holds over the pair of states
satisfying the operation domain pre/post conditions:
[1([lop]] <> DomPre (op) A X DomPost (op) )

The semantics of required pre-, trigger- and post-
conditions is defined as follows:

I ([lopl] — RegPre)
[1 (ReqTrig A DomPre — [|op[])
[l (llopl] » X ReqPost (op))

KAOS operation models are interpreted over sequences
of system states where consecutive states are separated
by a single time unit. Zero, one or more operations may
occur between two consecutive states. This non-
interleaving semantics is required by the semantics of
trigger conditions as immediate obligations. With an
interleaving semantics, an operation model would be
inconsistent when the trigger conditions of two (or
more) operations are true at the same time.

A set of required pre-, trigger-, and postconditions on
operations is said to be a complete operationalization of
a goal if satisfying all required conditions in the set
guarantees the satisfaction of the goal.

A KAOS operation model is said to be consistent if
every reachable state has a successor that satisfies all
domain pre/post conditions and required pre/post/trigger
conditions. There are different ways in which a KAOS
operation model may contain inconsistencies. For
example, if the required trigger condition of an operation
does not imply its required preconditions, the system
might be in a state in which the required trigger
condition is true and the required precondition is not, so
that the operation must be applied and may not be
applied at the same time.

KAOS operation models may also contain implicit
requirements that are due to interactions between



requirements on different operations. For example, a
trigger condition on one operation may prevent another
operation from being applied even if all required
preconditions on this operation are true. Implicit
required conditions do not necessarily entail
inconsistencies. An operation has an implicit required
precondition when the actual condition for which the
operation is allowed to occur is weaker than its stated
domain and required preconditions. An operation has an
implicit required trigger condition when the actual
condition for which the operation must occur is stronger
than its stated required trigger conditions.

2.2 Behaviour Analysis with LTSA

Our target event-based formalism is that of Labelled
Transitions Systems (LTS) [Mag99].

2.2.1 Labelled Transition Systems

Let Act be the universal set of observable events and let
T denote a local action that is unobservable by a
component's environment. An LTS M is a quadruple <Q,
A, O qp> where Q is a finite set of states, 4 < Act is the
communicating alphabet of M, s CQxA U {1} XxQis a
labelled transition relation, and qo€ Q is the initial state.

The semantics of an LTS M is a set of sequences of
events (observable or t) that the LTS can perform
starting in its initial state. The parallel composition
operator "||" is a commutative and associative operator
that combines the behaviour of two LTSs by
synchronizing the events common to their alphabets and
interleaving the remaining events.

Discrete-time systems can be modelled by including an
explicit tick event signalling the regular ticks of a global
clock to which each timed process synchronizes. When
modelling a timed system, one has to ensure the LTS
model does not indefinitely prevent time from
progressing. This can be verified automatically in LTSA
by checking that the LTS model does not deadlock and
that tick events may occur infinitely often in every
infinite execution of the LTS ie. it satisfies the
following "progress property"

progress TimeProgess = {tick}.

222 Fluent Temporal Logic

Fluent Linear Temporal Logic (FLTL) provides a
uniform framework for specifying and model-checking
state-based temporal properties to be satisfied by event-
based transition systems [Gia03]. The motivation for this
formalism is that properties to be satisfied by an event-
based transition system are often much easier to specify
if they can refer to system states in addition to referring
to events.

A fluent Fl is a state predicate defined by a set of
initiating events [Inity, a set of terminating events

Termp, and an initial value Initiallyr; that can be either
true or false. The sets of initiating and terminating
events must be disjoint. By default, the initial value of a
fluent is false. The concrete syntax for fluents in LTSA
is the following:

fluent Fl = < Inits, Termg > initially Initiallys

Given a set @ of fluents and an event trace tr: Nat — A,
one can construct an associated state-based trace
StateTrace(tr): Nat — A that gives the fluent values
after the occurrence of each event in #r. Such state-based
trace is defined as follows: for every position i € Nat
and every fluent F1 € &, FI is true at position i of
StateTrace(tr) iff either of the following conditions
holds

(a) FL holds initially and no terminating event has
occurred before position i:

Initiallyp; and there is no k € Nat, 0<k <i s.t.
tr(k) € Termpg

(b) some initiating event has occurred before position i
and no terminating event has occurred since then:

there is some j € Nat, j <i, s.t. tr(j) € Inity
and thereisno k € Nat, j < k <i, s.t. tr(k) € Termg,

A well-formed FLTL formula is an LTL formula whose
atomic propositions are fluents. An FLTL formula P is
said to be satisfied by an event trace t, noted tr |= P, iff
StateTrace(tr) |= P.

FLTL assertions can refer to event occurrences. For
every event e in an LTS model there is an implicit
fluent, also noted e, whose set of initiating events is the
singleton event {e} and whose set of terminating events
contains all other events in the alphabet A:

fluent e = <e, A-{e}> Initially false

According to this definition, the fluent associated with
an event e becomes true the instant e occurs and become
false with the first occurrence of a different event.

The concrete syntax for FLTL assertions used in LTSA
uses the ASCII symbols !, &&, and | for logical
negation, conjunction and disjunction, respectively.

2.2.3  From Synchronous to Asynchronous TL

FLTL assertions are interpreted over sequences of
system states observed after each occurrence of an
event, whereas KAOS models are interpreted over
sequences of system states observed at a fixed time rate
so that zero, one or more events may occur between
consecutive states.  We have called synchronous
temporal logics those that are interpreted over sequences
of states observed at a fixed time rate, and asynchronous
those that are interpreted over sequences of states
observed after each occurrence of an event [Let05].



Temporal logic operators have very different meanings
in synchronous and asynchronous temporal logics. For
example, 'X P' in an asynchronous temporal logic means
'P holds after the next event', whereas in a synchronous
temporal logic it means 'P holds at the next time unit'.
Similarly, '[] P' in an asynchronous temporal logic
means 'P holds after each event' whereas in a
synchronous temporal logic it means 'P holds at each
time point'.

In [Let05], we have defined an encoding of synchronous
temporal logic into asynchronous temporal logic. As an
example, this encoding translates the KAOS goal
definition

[] (@Overridden «sblock A PressureLessThanPermit)

into the following asynchronous FLTL assertion
analysable in LTSA:

[1 (tick —->

((!'Overridden && X(!tick W (tick && Overridden))

<-> block && PressureLessThanPermit)))

This mapping allows LTSA modellers to use a goal-
oriented requirements elaboration process a la KAOS for
the incremental identification, elaboration and
specification of the formal properties to be model-
checked with the LTSA toolset. However, LTSA
modellers are still required to specify LTS behaviour
models in FSP (the process algebra used in LTSA to
concisely specify LTSs) and to provide the fluent
definitions that relate the predicates involved in the goal
definitions to the events appearing in the FSP model.
The purpose of this paper is to present a technique for
automatically deriving the fluent definitions and LTS
models from KAOS operations.

3 From FLTL Assertions to LTS Models

Our translation from KAOS operation model to LTS will
use a technique for translating FLTL assertions into LTS
that we describe in this section. The existing technique
for model checking a FLTL assertion ¢ in LTSA
involves constructing a Buchi automata B that
recognizes all infinite event-based traces that violate ¢
and checking that the synchronous product of B with the
LTS to be verified is empty. When the assertion is a
safety property, the Buchi automata can be viewed as a
"property LTS", i.e. an LTS with an ERROR state so
that executions leading to the error state correspond to
undesired system behaviours. All executions of this LTS
that do not reach the error state satisfy the assertion.
Removing the error states and the transitions leading to
it yields a LTS that captures all traces on the alphabet of
¢ that satisfy ¢. We have extended LTSA so that this
LTS can be generated using the keyword constraint in
front of a safety FLTL assertion. If the FLTL assertion is
not a safety property, an error message is generated.

LTSs derived from FLTL assertions can be composed as
any other process. In the FLTL framework, a formula is
said to be closed under stuttering if the satisfaction of
the formula by a trace is unaffected by the insertion or
removal of silent events T from the trace. It can be
shown that if two safety properties P and Q are closed
under stuttering then the parallel composition of their
derived LTSs is equivalent to the LTS derived from their
logical conjunction, i.e.
(constraint P || constraint Q) = constraint (P A Q).

The proof of this property is omitted here due to space
limitation.

4  From KAOS Operations To LTS

The derivation of LTS models from KAOS operations is
composed of the following three steps. These steps can
be fully automated with user interaction required only to
bound the infinite scope of the KAOS model if
necessary. However, we have not built an
implementation of this translation.

4.1  Identifying Fluents

The first step consists in identifying fluents from KAOS
state variables. Boolean state variables, such as
Overridden, are trivially mapped to a fluent with the same
label. Integer and enumerated state variables are mapped
to parameterized fluents where the fluent parameter
records the state variable value. For example, the state
variable Pressure whose values are in the integer range
PressureRange yields the following fluent declaration:
fluent Pressure [i: PressureRange]

If a KAOS state variable has an infinite range, this range
needs to be bounded by some maximal value in order to
be analysable in LTSA. First-order KAOS models in
which state variables correspond to attributes and
relationships of an object model can be handled by
bounding the number of instances of each object in a
way similar to the technique used in Alloy [Jac00].
KAOS object models however are much simpler, and
less expressive than the one allowed in Alloy (in
particular they do not allow transitive closure), so that
the mapping from KAOS object models to fluents is
straightforward and allows fluents to be easily
interpreted back as KAOS state variables.

4.2 Deriving Fluents Definitions

Fluents' initiating and terminating events are then
derived from the domain postconditions. We assume that
domain postconditions are given as conjunctions of
positive or negative occurrences of fluents, i.e.
disjunctions are not allowed. Since domain
pre/postconditions corresponds to elementary state
transitions, this assumption is generally satisfied. If it is
not satisfied our derivation process cannot be applied.



Rule for deriving fluent definitions: An operation is part
of the initiating (resp. terminating) events of a fluent if
and only if there is a positive (resp. negative)
occurrence of the fluent in the operation domain
postconditon.

This rule also assumes that a single fluent does not have
both positive and negative occurrences in the domain
postcondition of an operation. This assumption can
always be satisfied by simply replacing a domain
postcondition in which a fluent appears both positively
and negatively by 'false’.

For example, the domain postconditions for the
operation overrideSl in Section 2.1.2 and its dual
operation enableS| yield to the following definition:

fluent Overridden = < overrideSI, enableSI >.

4.3  Deriving Labelled Transition Systems

Labelled transition systems are then derived from the
domain preconditions and the required pre-, trigger-, and
post-conditions.

Domain preconditions are translated according to the
following template:
constraint DomPre_<Operation> =
[J((tick && !'<DomPre>)->X(!<Operation> W tick))

The assertion (in asynchronous FLTL) states that if the
domain precondition of an operation is not true at an
occurrence of a tick then that operation cannot occur at
least until the next occurrence of a tick. This constraint is
a safety property that is closed under stuttering (despite
the use of X). LTSs derived from domain preconditions
can therefore be combined through parallel composition
according to the proposition in Section 3.

Furthermore, since a transition between two states in a
KAOS trace is a set of operations, a single operation
cannot occur more than once between two observable
states (i.e. between two occurrences of tick). This is
modelled by an additional process that is combined with
the LTSs derived from the domain preconditions.

As an example, the translation of the domain pre- and
post-conditions for the operations overrideSI and enableS|
yield the LTS shown in Figure 1.

tick enableSI tick

overrideSI
Figure 1. LTS derived from domain pre/post conditions
Required pre/trigger/post conditions are then translated
according to the following constraint template:
constraint ReqPre_<Operation>_For_<Goal>
= []((tick && !<ReqgPre>) -> X (I<Operation> W tick))

constraint ReqTrig_<Operation>_For_<Goal>
= [1((tick && <ReqTrig> && <DomPre>)
-> X (Itick W <Operations))
constraint ReqPost__<Operation>_For_<Goal>
= [](action -> (! tick W (tick && ReqPost)))

These assertions encode in FLTL the temporal logic
semantics of KAOS operation models given in Section
2.1.2. All these assertions are safety properties that are
closed under stuttering.

In our running example, the complete KAOS model for
the ESFAS component has 4 operations and 8 required
pre- and trigger-conditions. A total of 12 FLTL
constraints are therefore translated into LTSs to derive
the event-based model for this component. Our KAOS
model also includes operations specifying the behaviour
of the nuclear reactor and cooling system in the software
environment. Generating the global model requires
translating and composing 50 FLTL constraints. We
have also applied the technique to the mine pump
control system [Kra83] whose KAOS model [Let01] has
a size similar to that of the safety injection system.
Although both models are translated "by hand", the
translation follows strictly the procedure described in the
paper.

The resource-consuming steps in our derivation are the
translation of FLTL assertions to Buchi automaton and
the parallel composition of all derived automaton. The
complexity of each translation is exponential in the size
of the FLTL formula, but since each formula
corresponds to a single required condition on an
operation, each formula remains small. In our
experience, this translation runs into a state explosion
problem if a required condition is composed of more
than 6 fluents, which is rarely the case. The most
delicate part is the composition of all LTSs derived from
the required conditions. Even if the state space of the
final system is manageable, the intermediate state space
generated during parallel composition might run into a
state explosion. However, as will be seen in the
following section, we can take advantage of the goal-
oriented structure of the KAOS operation model to slice
the LTS model based on the portion of the goal model to
be analysed. The formal analysis of the model therefore
does not require composing the LTSs derived from all
the required conditions.

5  LTSA Analysis of KAOS Operation Models
Formal analysis and animation of KAOS operation
models can be performed on the derived LTS models.
5.1  Checking Goal Operationalization

An important check on the KAOS operation model
consists in verifying whether a set of required pre-,
trigger- and post-conditions {R1, ..., Rn} form a complete



operationalization of a goal G. This can be performed
with LTSA by model-checking whether the translation
of G in asynchronous FLTL is satisfied by the model
obtained from the composition of the LTS derived from
the required condition R1, ..., Rn and the LTSs derived
from the domain preconditions of the operations
involved. Only the portion of the LTS model necessary
for the verification is generated. If the KAOS model has
been bounded in order to generate the finite-state LTS,
the completeness of the goal operationalization in the
bounded scope does not ensure that the
operationalization is complete for an unbounded scope.

In our running example, we can verify that the required
pre and trigger condition on the operation overrideS! in
Section 2.1.2 is a complete operationalization of the goal
Maintain [Safetylnjection Overridden Iff Block And Pressure
LessThan Permitl. If we remove the term
"IPressureAbovePermit" from the required pre/trigger
condition on the operation, the goal operationalisation is
no longer correct. This is automatically detected by the
tool that generates the following error trace:

tick Overridden

block

raiseAbovePermit

tick block && PressureAbovePermit

overrideSI

tick Overridden && PressureAbovePermit
An error trace is a sequence of events annotated with the
fluents that holds at every occurrences of tick (since
KAOS goals are synchronous assertions, the satisfaction
of a goal depends only on fluents values when tick
occurs). The error trace here shows that if block occurs
when pressure is above permit (at the next to last
occurrence of tick), the operation overrideSI is applied,
leading to a state where Overridden is true which violates
the goal. This error trace helps identifying the missing
term in the required preconditions of the last operation.

Note that, thanks to our simple mapping from KAOS
state variables and opertions to LTSA fluents and
events, error traces generated by LTSA are easily
interpretated as KAOS traces, without the need to
explicitly map back LTSA traces to KAOS traces.

5.2 Checking Higher-level Goals

In addition to checking a single goal operationalisation,
the model-checking feature of LTSA may be used to
check the satisfaction of higher-level goals by operation
models describing the behaviours of several agents in
the software-to-be and its environment.

Since KAOS operation model typically represent only
the operations performed by software agents, KAOS
modellers first have to extend the operation model with
operations in the environment. The goal refinement
graph and obstacle model provides guidance for
identifying and specifying these operations.

tick tick

start lowerPressure.6
tick stabilizeReactor
startUpReactor tick

tick lowerPressure.5
raisePressure.0 tick

tick lowerPressure.4
raisePressure.l tick

tick lowerPressure.3
raisePressure.?2 block

tick tick
raisePressure.3 overrideSI

tick lowerPressure.2
raisePressure.4 tick

enableSI lowerPressure.1l
tick tick
raisePressure.5 explode
leakAppears tick Explosion

Fig. 2. Error Trace to Explosion

Consider for example, the high-level goal
Avoid[Explosion]. Our operation model for the safety
injection system is extended with environment
operations such as explode identified from the high-level
goal and leakAppears identified from an obstacle in our
goal model. The explode operation specifies that an
explosion occurs when the reactor is on and the steam
pressure in the cooling system is null. Other
environment  operations  include  startUpReactor,
stopReactor, stabilizeReactor, and coolDownReactor
describing how the nuclear reactor changes states, and
raisePressure, lowerPressure describing how the steam
pressures varies according to the state of the reactor and
the presence or not of a leak in the cooling system.

The satisfaction of a high-level goal is checked against
the LTS derived from all required conditions
operationalizing subgoals of the high-level goal and all
domain operations concerning the fluents involved in
this goal graph. The goal graph defines the scope of the
operation model from which to derive the LTS model.

Checking the high-level goal Avoid[Explosion] generates
an error trace displayed in 2 columns in Fig. 2. The trace
shows that an explosion is possible if a leak occurs when
the pressure is above 'Permit' (level 4) and the operator
pushes the block button when the pressure is between
'Permit’ and 'Low' (level 2).

5.3  Deadlock Analysis

As mentioned in Section 2.2.1, timed LTSs must not
prevent time from progressing. This can be verified
automatically by checking whether the model contains
deadlock or violation of the time progress property. Our
translation rules ensure that every deadlock and
violations of time progress correspond to either an
inconsistency or an implicit required precondition in the
source KAOS operation model.

As a simple example, if the specification of a KAOS
operation is inconsistent because one of its required



trigger condition does not imply all of its required
preconditions, the tool will identify a deadlock and
generate a sequence of events leading to a state where
the required trigger condition is true and one of the
required preconditions is false. Checking for deadlocks
also allows one to detect more subtle inconsistencies in
KAOS operations. For example, our initial operation for
the reactor's operations contained two inconsistencies. In
both cases, the inconsistency were due to interference
between two operations that had trigger conditions that
could be true at the same time but inconsistent domain
postconditions. The deadlock trace generated by the tool
was much helpful in locating the cause of the problem in
the KAOS model.

Some deadlocks and violations of time progress are
caused by implicit required precondition. For example,
consider the operation lowerPressure and the required
trigger condition 'Leaked' saying that lowerPressure must
occur if there is a leak in the cooling system.

Checking the derived LTS model generates a deadlock
trace in which 'Leaked' holds at the last occurrence of tick,
followed by an occurrence of raisePressure leading to a
state where no further occurrence of tick is possible
because the required trigger condition on lowerPressure
prevents tick from occurring until lowerPressure has
occurred. Since lowerPressure and raisePressure cannot be
applied simultaneously, the system is in a deadlock. The
deadlock is due to an implicit required precondition
'ILeaked' on raisePressure induced by the required trigger
condition on lowerPressure.

In KAOS operation models, making implicit
requirements explicit is not mandatory as it does not
change the semantics of the model. It is however
necessary to make them explicit to remove the deadlocks
form the derived LTS model. When the implicit required
preconditions are in software operations, making them
explicit is also useful when moving towards an
implementation of the operations, as it exposes hidden
requirements that developers will have to take into
account. The automated derivation of the implicit
requirements could be performed for some restricted
simple cases. The general case however is much more
difficult to handle.

5.4 Goal-Based Animation

Our translation also allows one to animate KAOS
operation models using the animation features of LTSA
[Mag00]. The animator can be used to explore the
behaviours of the model interactively with stakeholders
or to replay error traces generated during formal
analysis. The animation can be visualized as textual
sequence of events (as shown in the paper) or as a
graphical animation of a domain scene.

The animation of goal-derived LTS enjoys the key
benefits of goal-based animations [HunO4]: (i) it is
possible to animate partial operation models associated
to specific goals; goals provide the scope of the
animation, and (ii) the animator may automatically
detect goal violations during its execution. In order to
achieve this, the animated model is composed with goal
monitors that are "property LTS" derived from goal
definitions. Space limitation prevents us from
illustrating this in the paper.

6  Why not derive LTS from KAOS goals?

An alternative approach to combining goal-oriented
requirements models and event-based transition systems
would consists in deriving LTS directly from goals using
the technique described in Section 3. KAOS modellers
would still be required to provide operations domain
pre- and post-conditions in order to be able to establish
the necessary link between fluents and events, but they
would be relieved from specifying the required pre-,
trigger-, and post-conditions operationalising the goals.

Unfortunately, because KAOS goals are synchronous
temporal logic assertions, goal-derived LTSs are not
adequate models of behaviours: they constrain the
occurrences of tick only, instead of constraining which
operations components are allowed to perform at every
stage of their executions [Let05].

Consider the following goal requiring a pump to be on
when the steam pressure rises above 'Permit'":
[] (PressureAbovePermit -> X PumpOn)

Fig. 3 shows the LTS derived from this goal. In the
initial state (state 0), PressureAbovePermit and PumpOn
are both false. Occurrences of tick are not allowed in
states 4 and 6 because PressureAbovePermit was true at
the last occurrence of tick and PumpOn is currently false,
therefore an occurrence of tick from one of these states
would violate the goal. However, this LTS is not an
adequate model of system behaviour because all other
events are allowed in every state even if their application
results in a goal violation in the KAOS model. For
example, in state 5, PressureAbovePermit was true at the
last occurrence of tick and PumpOn is currently true, but
the LTS still allows stopPump to occur (leading to state
4) although the goal requires the pump to remain on.

If we combine the LTS derived from the goals with
those derived from domain preconditions, the resulting
LTS model contains deadlocks that are due to the fact
that the goal-derived LTSs do not prevent the occurrence
of operations (such as the occurrence of stopPump from
state 5) that leads to states where tick is not allowed; and
the LTS derived from the domain precondition prevent
the application of other operations (in our example,
startPump) that would bring the system back into a state



where tick is allowed.

In order to avoid such deadlocks, the goal-derived LTSs
should be modified so as to prevent an operation if its
occurrence leads the system in a state from which no
further occurrences of tick are possible. This means that
the LTS should prevent transitions labelled with
operations whose occurrences between the current
observable state (i.e. at the last occurrence of tick) and
the next observable state (the next occurrence of tick)
would violate the goal. In KAOS terms, these operations
occurrences are those for which the required
preconditions for satisfying the goal are not satisfied.
Deriving LTS from the required pre-, trigger- and post-
conditions as described in Section 4 resolves the
problem because the FLTL constraints encoding the
semantics of domain pre- and required pre-conditions
constrain the occurrences of the forbidden operations
between the occurrences of tick.

7 Conclusion

Thanks to our derivation of event-based transition
system from goal-oriented operation models, KAOS
modellers may use LTSA to formally analyse and
animate their operation models. The structure of the goal
model provides the scope of the operation model to be
analysed, thereby allowing for the analysis of partial
models related to specific goals. Conversely, for LTSA
modellers, our translation allows them to follow a goal-
oriented process to elaborate the behaviour models to be
analysed and animated.

The translation can be fully automated with user
interactions required only to bound the size of the
KAOS model (Section 4.1). In the current state, only the
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translation from FLTL constraints to LTS is
implemented (Section 3). The derivation of fluents and
FLTL constraint from KAOS operation (Sections 4.2
and 4.3) has not been implemented.

An important contribution of this work is to provide
insights into differences between modelling approaches
used in requirements engineering and software
architecture analysis, particularly concerning the use of
synchronous and asynchronous temporal logics. In
Section 6, we have shown that the synchronous nature of
KAOS goals is an obstacle to deriving adequate event-
based models directly from goals. On the other hand, in
[Let0O5] we have shown that important classes of
requirements such as "immediate response" properties
and some state invariants that are easily specified in
synchronous temporal logic may be extremely difficult
to specify correctly in asynchronous temporal logics.

The work reported in this paper has also helped
clarifying semantic subtleties of the KAOS operation
model, such as the assumption that an operation can
occur at most once between two observable states (due
to the fact that two consecutive states in a KAOS trace
are separated by a ser of operations) and the possibility
of implicit required pre- and trigger conditions due to
interferences between concurrent operations.

Based on the insights gained during this work, we
believe that a promising approach for future work would
be to consider specifying goals in an asynchronous
temporal logic instead of the synchronous one. This
would provide the benefit of being able to derive
adequate LTS models directly from goals. This approach
requires adapting the goal-oriented requirements
elaboration techniques (such as goal refinement, conflict
detection, etc.) currently
defined in the
synchronous framework
to an  asynchronous
framework. The
proposition of Section 3
allowing one to compose

: LTS  derived from
e’ bclochn belowpermit @synchronous safety
assertions that are closed
under stuttering will be
much useful in that
respect. This will also
require finding adequate

belowPermit

startPump

stopPump

abovePermit

ways of  specifying
'immediate response’
properties in
asynchronous temporal

logic ~ without  using
assertions that are not
closed under stuttering.
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