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Abstract

In this technical report, we present a process algebra aimed at modelling
PKI-based systems. The new language, SPIKY, extends the spi-calculus
by adding primitives for the retrieval of certified/uncertified public keys as
well as private keys belonging to users of the PKI-based system. SPIKY
also formalises the notion of process ownership by PKI users, which is
necessary in controlling the semantics of the key retrieval capabilities. We
also construct a static analysis for SPIKY that captures the property of
term substitutions resulting from message-passing and PKI/cryptographic
operations. This analysis is shown to be safe and computable. Finally,
we use the analysis to define the term secrecy and peer participation
properties for a couple of examples of authentication protocols.

1 Introduction

To specify a security protocol, it is necessary to give details of the exchanges
between the entities participating in the protocol. Typically these exchanges
will include both plaintext and ciphertext produced using various keys. Much
of the literature on security protocols uses informal notations in which each
entity is identified by a name (A,B, . . .) and the protocol is defined as a series
of numbered steps naming the sending and receiving entities. Each step also
specifies the data transferred. For example, in the following 2-step protocol
between agents A and B:

(1.) A → B : A,NA

(2.) B → A : B,NB , {NA}KAB

A sends its identity A and a nonce NA to B in step (1). B responds by sending
its identity B, a nonce NB and A’s nonce NA encrypted by a shared symmetric
key KAB to A in step (2). There are two major shortcomings with this type of
notation:
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1. The internal behaviours of entities are not specified directly and typi-
cally such specifications need accompanying natural language text to ex-
plain how entities generate and process data. In addition, how keys are
generated, protected and handled is normally explained as accompanying
natural language text.

2. These notations are informal and have no underlying theory that can be
used to prove properties of such protocols.

As an alternative to these informal notations, process algebras such as CSP [21]
and nominal calculi [17] based on the π-calculus [27, 28, 33] can be used to
give formal specifications (or models) for security protocols. With these spec-
ifications, each entity is modelled as a process that describes (at some level
of abstraction) the entity’s behaviour. Because process algebras have underly-
ing theories, it is possible to verify that security protocols exhibit appropriate
security properties [1, 32].

While process algebras are normally computationally complete, i.e., they can
be used to specify behaviour that is Turing-computable [35], they do not allow
all the behaviour required of a protocol to be captured. For example, it may
not be possible to capture requirements on how secret keys should be handled
by an entity. In addition, there may be behaviour that is too complex to be
captured succinctly in some algebra or which is not central to the behaviour
of the protocol. When dealing with public-key cryptography, the correctness of
protocols depends on public keys being correctly associated with their owners. It
is common in literature [1] to do this informally by using subscripted names for
keys. For example, the key kA might be designated as the public key belonging
to the user A. While these sorts of approaches help a reader understand a
specification, they are not amenable formal treatment.

In this technical report we explore a simple extension to the spi-calculus [1]
called SPIKY, which allows us to specify protocols that use Public Key Infras-
tructures (PKIs). More specifically, this extension allows us to formalize the
binding of public keys to their owners and to give a more complete formal ac-
count of how PKI-based protocols behave. PKIs such as X.509 [36] are designed
to allow public keys to be securely bound to their owners. In the case of X.509,
this is achieved by naming each entity and using certificates to bind names to
public keys. Our extension is intended to be independent of any particular PKI
technology, so we use an abstract view of the functionality of PKIs in general.

We also construct a non-uniform static analysis for SPIKY that captures the
property of term substitutions occurring in PKI systems [5] as a result of agents
exchanging messages and performing PKI-related and cryptographic operations
over those messages. In particular, the analysis captures PKI users sending
and obtaining the substituted terms. Based on this information, it is possible
to formalise security properties like for example, whether a user is capable of
learning a term, and whether (un)certified public keys were used to arrive at
the fact that B (respectively A) participated in the protocol.

The work presented in this report is an extension of previous works, [5, 19, 6].
In [19], we presented a previous version of the SPIKY language, its syntax and
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structural operational semantics, and gave a couple of examples for simple and
mobile authentication protocols. The version of SPIKY defined in [19] used
a typing system for names, in order to distinguish cryptographic key pairs,
channels, nonces and PKI users. In the current version, we have removed this
classification except for PKI user names, which are taken as a mutually exclusive
set. In [5], a static analysis for capturing name substitutions was presented.
This analysis was used to further define certified and uncertified peer-entity
participation properties.

Other related works in the area of the formal verification of PKI-based sys-
tems include [8, 20, 22, 23]. In [20], control flow analysis techniques [11, 30]
based on flow logics [29] are used to validate the security properties of the SAML
Single Sign-On Protocol [24, 25] within the LySa calculus [9]. In [22], model
checking techniques are used to analyse access control properties of SPKI/SDSI
name certificates [15] specified in the pushdown systems representation [12, 16].
In [8], a model for the analysis of trust-based properties in PKI systems is con-
structed based on a predicate logic similar to belief logics. Finally, [23] provides
a validation analysis of X-509 certificates based on the HOL theorem prover
[18].

The rest of the report is structured as follows. In Section 2, we discuss
issues related to scope and ciphertext equality in nominal calculi. In Section
3, we introduce the syntax and structural operational semantics of the SPIKY
language. In Section 4, we specify a couple of authentication protocols in the
new language. In Section 5, we define a domain-theoretic model of the SPIKY
language and define a denotational semantics. In Section 6, we define a non-
standard semantics which captures the term-substitution property. In Section
7, we introduce an approximation which limits the number of new names gen-
erated in the semantics thus ensuring termination. In Section 8, we define the
specification of Dolev-Yao’s most general intruder. In Section 9, we define a
couple of security properties on the results of the abstract semantics: the term
secrecy and peer-entity participation properties. In Section 10, we analyse the
two authentication protocols introduced earlier. Finally, in Section 11, we con-
clude the report and discuss future work.

2 On Scope and Ciphertext Equality

2.1 Scope

In nominal calculi, a restriction (νn)P introduces a new (fresh) name with scope
P . Of course, with a concrete representation of a nominal calculus, the same
identifier may be used in non-overlapping or nested restrictions. For example,
the identifier n represents multiple names in the following processes.
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(νn)P | (νn)Q (1)
(νn)(c〈n〉.(νn)P ) (2)

!(νn)P (3)

Since processes are equal up to the renaming of bound names and variables,
we can use α-conversion to avoid name clashes. However, the usual presence of
replication and recursive abstractions makes it necessary to perform renaming
dynamically during runtime, as a process evolves, if one is to obtain a clash-free
semantics. For example, we can statically rename multiple occurrences of n
in (1) and (2), but for (3), since there is an infinite number of occurrences of
(νn)P , renaming must occur dynamically as the process evolves. One solution
to this problem that we adopt in Section 5 onwards is to subscript occurrences
of n with the number of the copy of the replicated process to which they belong,
as n1, n2, etc.

2.2 Ciphertext Equality

Encryption schemes may either be randomised or deterministic [26]. With a
deterministic scheme the same plaintext and key will always produce the same
ciphertext, e.g., DES in ECB mode is deterministic. With a randomised scheme
the same plaintext and key will produce different ciphertexts each time the
scheme is applied, e.g., DES in CBC mode is randomised as we do not consider
the Initialisation Vector (IV) to be part of the key. On the other hand, given
two identical ciphertexts, they will have been produced by two applications
of a deterministic scheme using the same plaintext and key, or they will be
copies of the ciphertext produced by a single application of a scheme. However,
given two different ciphertexts produced by a randomised scheme, they may
represent the encryption of the same plaintext with the same key. In their
presentations of the spi-calculus [1], Abadi and Gordon specify that a match
[M is N ]P behaves as P if the terms M and N are the same. As we have
seen, for terms representing names, M and N must be the same name and for
terms representing pairs, we can use element-wise equality. However, for terms
representing ciphertexts, Abadi and Gordon do not give an explicit definition
of what constitutes a match (although later works, such as [10], seem to adopt
a randomised view of ciphertexts).

Equality of the terms {M1}k1and {M2}k2 can be defined in a number of
ways:

1. Strong Equality : {M1}k1 = {M2}k2 if M1 = M2 and k1 = k2.

2. Ciphertext Equality : {M1}k1 = {M2}k2 if {M1}k1 and {M2}k2 are the
same ciphertext.

3. No Equality : {M1}k1 = {M2}k2 is always considered false.
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For deterministic schemes, strong and ciphertext equality are identical, but for
randomised schemes they are different since strongly equal terms may yield dif-
ferent ciphertexts. When dealing with the meaning of a process, strong equality
is an appropriate definition of equality and it can be used in the definition of
bisimilarity. However, because of randomised encryption schemes, this defini-
tion of equality is non-computable and is therefore inappropriate for defining a
match. Ciphertext equality is computable but when used to define a match, it
may make the behaviour of a process depending on the particular encryption
scheme being used. This makes it difficult to reason about the behaviour of pro-
cesses and leads to a situation in which testing equivalence is more fine-gained
than bisimilarity.

Given the problems with strong and ciphertext equalities, we select option
(3) for the semantics of a match; any attempt to compare two encryption terms
becomes stuck. Of course, this does not reflect reality as we cannot capture an
intruder’s ability to compare ciphertexts. However, since in practice ciphertexts
are rarely the same1, we will ignore this problem.

3 SPIKY

In this section, we define the syntax and structural operational semantics of
SPIKY.

3.1 Syntax

The syntax of the SPIKY language is shown in Figure 1. This syntax con-
sists of terms, processes, systems and protocols. The main building blocks of
this syntax are terms, L,M,N ∈ T . Terms are essentially composed from sets
of names, a, b, c, k,m, n ∈ N , variables, v, x, y, z ∈ V and PKI users (agents),
A,B,C, U ∈ AG. Additionally, a term may be a pair, (M,L), a symmet-
ric ciphertext, {M}N , a public-key ciphertext, {[M ]}N and a digital signature,
[{M}]N . For convenience, we also refer to the private (public) component of a
key pair as M− (M+)2.

Processes, P,Q,R ∈ P, are defined as follows. An output process, M〈N〉.P ,
is ready to emit N over channel M and continue as P . An input, M(x).P , is
ready to input a message, L, over channel M and continue as P [L/x]. The par-
allel composition, P | Q, interleaves processes P and Q together. A restriction,
(νn)P , creates a new name, n, and restricts its scope to P . A replicated process,
!P , is capable of spawning infinitely many copies of P . Hence, replication is used
to model infinite behaviour in SPIKY specifications. A match, [M is N ]P , pro-
ceeds as P if M is the same as N , else it blocks. Due to the problems associated
with matching ciphertexts and digital signatures as discussed in [19], we avoid
any attempt to match these and restrict ourselves to name comparison. A null

1For example, nonces are widely used to make ciphertexts different.
2These components are defined more formally in the semantics of protocols in the next

section.
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L, M, N ::= terms
a, b, c, k, m, n ∈ N names
x, y, z, v, w ∈ V variables
A, B, C, U ∈ AG agents
{M}N symmetric encryption
{[M ]}N public-key encryption
[{M}]N digital signature
(M, N) pair
M+ public key component
M− private key component

P, Q, R ::= processes

M〈N〉.P output
M(x).P input
P | Q parallel composition
(νn)P restriction
!P replication
[M is N ]P match
0 null
let (x, y) = M in P pair splitting
case L of {x}N in P symmetric decryption
case L of {[x]}N in P public-key decryption
case L of [{x}]N in P signature with recovery validation

A(M) abstraction instantiation, where A
def
= (x)P

let x = private(M) in P private key retrieval
let x = public(M) in P public key retrieval
let x = certified(M) in P certified public key retrieval

E, F, G ::= systems
E | F parallel composition
(νn)E restriction
dP eN process ownership

Prot ::= protocols
(θ, E) (PKI state, system) pair

Figure 1: The syntax of the SPIKY language.

process, 0, cannot evolve any further. Pair splitting, let (x, y) = M in P , at-
tempts to split a pair, M , into its first and second elements. It then assigns the
first element to x and the second to y. Both x and y are bound variables. A sym-
metric decryption process, case L of {x}N in P , attempts to decrypt L using the
key, N . If this is successful, the result instantiates x, whose scope is P , other-
wise, the process blocks. Similarly, case L of {[x]}N in P , attempts to decrypt L
using the public key, N , and the result instantiates x, which is a bound variable.
The signature with recovery validation process, case L of [{x}]N in P , behaves as
P [L/x] only if L is the signature [{M}]k− and where N must be the public com-
ponent of k. The abstraction instantiation, A(M), assumes that a corresponding
non-recursive definition, A

def= (x)P , where M replaces x in P whenever the in-
stantiation is called. Finally, the PKI operations, let x = private(M) in P ,
let x = public(M) in P and let x = certified(M) in P , attempt to perform
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the PKI operations of retrieving private, uncertified public and certified public
key components, respectively, of a PKI agent, M . The result of the operation is
bound to x whose scope is P . Intuitively, the difference between certified(M)
and public(M) is that the former corresponds to the PKI user effectively ob-
taining a valid public key of M at real time by validating the certification path
all the way up to a root authority trusted by the user. This will insure that, for
example, the key has not been revoked recently. On the other hand, the latter
does not necessarily perform this validation at real time, i.e. it may return
on an old copy of the public key of M without checking any recent revocation
lists. In general, the use of public(M) is needed to account for any functional
uncertainties in the PKI. The success or failure of the PKI operations depends
on the ownership of the process.

Systems, E,F ∈ E , are defined in order to model processes that run on
behalf of PKI users, written as dP eM , where M is an agent name. Hence, M
may be regarded as the owner of P . Like processes, systems may be composed
in parallel, E | F , and may have a name restriction, (νn)E. Finally, protocols,
Prot ∈ PR, are defined as pairs whose first element is a PKI state, θ : AG → N ,
mapping a PKI user to its key pair name. Intuitively, a protocol expresses the
fact that every system, E, must be running over some PKI state, θ, in order for
E to use its PKI operations.

In the rest of the report, we assume the reader to be familiar with the
standard notions of α-conversion, term substitution and free/bound names and
free/bound variables (referred to as fn(),bn(), fv(),bv(), respectively). The
name, n, is bound in (νn)P and in (νn)E. Otherwise, n is a free name. On the
other hand, the variables, x and y, are bound in M(x).P , A

def= (x)P , let (x, y) =
M in P , case L of {x}N in P , case L of {[x]}N in P , case L of [{x}]N in P ,
let x = private(M) in P , let x = public(M) in P and finally in let x =
certified(M) in P . Otherwise, x and y are free variables. In general, we

write, n(e) = fn(e) ∪ bn(e), to denote the set of all names of some entity, e
(term, process, system or protocol). We also write term(e) to refer to the set
of all terms appearing in e. Finally, we only deal with normal protocols.

Definition 1 A protocol, Prot, is said to be normal if the following holds:

• The protocol is closed, i.e. fv(Prot) = {},

• There are no occurrences of homonymous bound names or homonymous
bound variables in Prot, i.e. ∀x, y ∈ bv(Prot), n,m ∈ bn(Prot) : x 6=
y ∧ n 6= m,

• bv(Prot) ∩ bn(Prot) ∩ fn(Prot) = {}.

3.2 Structural Operational Semantics

We define in this section a structural operational semantics for SPIKY. In gen-
eral, this semantics is based on three main relations: the reduction, structural
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congruence and reaction relations, each defined for the cases of processes, sys-
tems and protocols. First, we define the semantics of processes as in Figure 2.
These rules are standard, however, note that in (RedMatch), the rule is only
defined for names, n, as expected. Next, we define the semantics of systems

(RedRepl) !P > P | !P
(RedMatch) [n is n]P > P
(RedLet) let (x1, x2) = (M1, M2) in P > P [M1/x1][M2/x2]
(RedDecryptSymm) case {M}k of {x}k in P > P [M/x]
(RedDecryptAsym) case {[M ]}k+ of {[x]}k− in P > P [M/x]
(RedRecValidate) case [{M}]k− of [{x}]k+ in P > P [M/x]
(RedAbstraction) A(M) > P [M/x]

where, A
def
= (x)P

(StructNil) P | 0 ≡ P
(StructComm) P | Q ≡ Q | P
(StructAssoc) P | (Q | R) ≡ (P | Q) | R
(StructSwitch) (νn)(νm)P ≡ (νm)(νn)P
(StructDrop) (νn)0 ≡ 0
(StructExtrusion) n 6∈ fn(P ) ⇒ (νn)(P | Q) ≡ P | (νn)Q
(StructRed) P > Q ⇒ P ≡ Q
(StructRefl) P ≡ P
(StructSymm) P ≡ Q ⇒ Q ≡ P
(StructTrans) P ≡ Q ∧ Q ≡ R ⇒ P ≡ R
(StructPar) P ≡ P ′ ⇒ P | Q ≡ P ′ | Q
(StructRes) P ≡ Q ⇒ (νn)P ≡ (νn)Q

(ReactInter) m〈M〉.P | m(x).Q −→ P | Q[M/x]
(ReactStruct) P ≡ P ′ ∧ P ′ −→ Q′ ∧Q′ ≡ Q ⇒ P −→ Q
(ReactPar) P −→ P ′ ⇒ P | Q −→ P ′ | Q
(ReactRes) P −→ P ′ ⇒ (νn)P −→ (νn)P ′

Figure 2: Rules of the >, ≡ and −→ relations on processes

as in Figure 3. Given systems dP eA and dQeB it may be necessary for P and
Q to react with each other. To achieve this we introduce a new extrusion rule
(StructExtrusion) that allows restrictions to be moved in or out of systems, and
a new reaction rule (ReactionInter) that permits input/output to occur between
processes acting on behalf of different users. Finally, we define the semantics
of protocols as in Figure 4. The reduction relation defines rules for all the PKI
primitives. Rule (PRedPrivate) allows the private key of a user A to be re-
trieved by a process acting on behalf of A, whereas rule (PRedCertified) allows
any process acting on behalf of any user B to obtain the (certified) public key
for any other user, A. The process primitive public is somewhat more complex
and is captured by three rules. Rule (PRedPublic#1) allows a process acting
on behalf of a user, A, to obtain A’s public key (this is similar to performing
certified(A)). Rules (PRedPublic#2) and (PRedPublic#3) capture the possi-
ble reactions when a process acting on behalf of a user, B, attempts to obtain the
public key of a different user, A. In this case, the result of executing public(A)
may not yield the desired result (i.e. A’s public key). Rule (RedPublic#2) says
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(SySRedRed) P > Q ⇒ dP eA >E dQeA
(SySRedComm) dP | QeA >E dP eA | dQeA

(SySStructProc) P ≡ Q ⇒ dP eA ≡E dQeA
(SySStructNil) E | d0eA ≡E E
(SySStructComm) E | F ≡E F | E
(SySStructAssoc) E | (F | G) ≡E (E | F ) | G
(SySStructSwitch) (νn)(νm)E ≡E (νm)(νn)E
(SySStructExtr#1) (νm)dP eA ≡E d(νm)P eA
(SySStructExtr#2) n 6∈ fn(E) ⇒ (νn)(E | F ) ≡E E | (νn)F
(SySStructRed) E >E F ⇒ E ≡E F
(SySStructRefl) E ≡E E
(SySStructSymm) E ≡E F ⇒ F ≡E E
(SySStructTrans) E ≡E F ∧ F ≡E G ⇒ E ≡E G
(SySStructPar) E ≡E E′ ⇒ E | F ≡E E′ | F
(SySStructRes) E ≡E E′ ⇒ (νn)E ≡E (νn)E′

(SySReactInter) dm〈M〉.P eA | dm(x).QeB−→E dP eA | dQ[M/x]eB
(SySReactProc) P −→ Q ⇒ dP eA−→EdQeA
(SySReactStruct) E ≡E E′ ∧ E′−→E F ′ ∧ F ′ ≡E F ⇒ E−→E F
(SySReactPar) E−→E E′ ⇒ E | F−→E E′ | F
(SySReactRes) E−→E E′ ⇒ (νn)E−→E (νn)E′

Figure 3: Rules of the >E , ≡E and −→E relations on systems

(PRedRed) E >E F ⇒ (θ, E) >Prot (θ, F )
(PRedPrivate) A ∈ dom θ ⇒

(θ, dlet x = private(A) in P eA) >Prot (θ, dP [θ(A)−/x]eA)
(PRedCertified) A ∈ dom θ ⇒

(θ, dlet x = certified(A) in P eB) >Prot (θ, dP [θ(A)+/x]eB)
(PRedPublic#1) A ∈ dom θ ⇒

(θ, dlet x = public(A) in P eA) >Prot (θ, dP [θ(A)+/x]eA)
(PRedPublic#2) C ∈ dom θ ∧B 6= A ⇒

(θ, dlet x = public(A) in P eB) >Prot (θ, dP [θ(C)+/x]eB)
(PRedPublic#3) k /∈ fn(P ) ∧B 6= A ⇒

(θ, dlet x = public(A) in P eB) >Prot (θ, (νk)dP [k+/x]eB)

(PStructSys) E ≡E F ⇒ (θ, E) ≡Prot (θ, F )
(PStructRed) Prot1 >Prot Prot2 ⇒ Prot1 ≡Prot Prot2
(PStructRefl) Prot ≡Prot Prot
(PStructSymm) Prot ≡Prot Prot′ ⇒ Prot′ ≡Prot Prot
(PStructTrans) Prot ≡Prot Prot′ ∧ Prot′ ≡Prot Prot′′ ⇒ Prot ≡Prot Prot′′

(PReactSys) E −→E F ⇒ (θ, E) −→Prot (θ, F )
(PReactStruct) Prot1 ≡Prot Prot′1 ∧ Prot′1 −→Prot Prot′2 ∧ Prot′2 ≡Prot Prot2 ⇒

Prot1 −→Prot Prot2

Figure 4: Rules of the >Prot, ≡Prot and −→Prot relations on protocols

that executing public(A) by B may return the public key of any of the PKI
users, C, currently registered in dom θ (where C may or may not be A). Rule
(PRedPublic#3) states that the returned result of the above operation may as
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well be the public component of a fresh key pair, not belonging to any of θ’s
current registered users (this may be thought of as being a revoked key pair
that is no more held in θ, or a key pair that was corrupted by noise while being
retrieved).

4 Examples

We consider here a couple of examples of public-key authentication protocols
[19], in order to demonstrate the use of SPIKY as a specification language.
Sometimes, for the sake of simplicity, we write the pair (M, (N,L)) as (M,N,L)
and we assume that c(x, y, z).P stands for c(u).let (x, u′) = u in let (y, z) =
u′ in P .

4.1 A Simple Authentication Protocol

The first protocol establishes mutual authentication between two agents, A and
B:

(1.) A → B : A,NA

(2.) B → A : B,NB , [{NA}]K−
B

(3.) A → B : [{NB}]K−
A

In step 1, A sends B its identity and a nonce, NA. B signs this nonce and
returns the signature together with its identity and a nonce NB to A. Finally,
A signs B’s nonce and returns it to B. Of course, the entities A and B must
validate signatures, handle public and private keys properly, etc. In Figure 5
we present a system (abstraction) SY ST that specifies communication between
an initiator, A, and a responder, B, using a free channel, ch. The behaviour of

INIT , (xa, xb, xch)

(νna)xch〈xa, na〉.ch(xb′, xnb, xsig).
[xb is xb′]let xkb = certified(xb) in case xsig of [{x}]xkb

in

[x is na] let xka = private(xa) in xch〈[{xnb}]xka 〉.0

RESP , (yb, ych)
ych(ya, yna).let ykb = private(yb) in

(νnb)ych〈yb, ynb, [{yna}]ykb
〉.ych(ysig).

let yka = certified(ya) in case ysig of [{y}]yka in [y is ynb]0

SY ST , dINIT (A, B, ch)eA | dRESP (B, ch)eB

Figure 5: SPIKY definition of the simple authentication protocol

the initiator is captured by the abstraction INIT and that of the responder by
the abstraction RESP . The protocol as a whole is defined for some PKI state,
θ, as (θ, SY ST ).
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4.2 A Mobile Authentication Protocol

We have again the two agents, A and B, trying to establish mutual authentica-
tion:

(1.) A → B : A,NA

(2.) B → A : B,NB , [{NA}]KB
−

(3.) A → S : {[[{NB}]KA
− , B,KB

+]}KS
+

(4.) S → B : [{NB}]KA
−

However, in this case, entity A is assumed to execute on a small, mobile device
that has insufficient capacity to obtain a certified copy of B’s public key. Instead,
A relies on a trusted server, S, to ensure that the copy of the public key it has
just used to authenticate B is indeed B’s public key. This is achieved in step
3 when A sends its signature of the nonce NB , the name of the responder, B,
and the key K+

B to S encrypted with S’s public key. S checks this key and if it
is B’s public key, it releases A’s signature of NB . Note that:

1. The behaviour of B is the same as for the simple authentication protocol
specified in the previous section.

2. It is assumed that A can obtain a certified copy of S’s public key. This
may, for example, be achieved by having a copy of this key placed onto
the mobile device during manufacture.

In Figure 6 we present a system, SY ST , that specifies communication between
an initiator A, a responder B and a server S using channels, ch and ch′.

The extra channel ch′ is used for communications from A to S. The be-
haviour of the initiator is captured by the abstraction INIT , the responder by
the abstraction RESP and the server by the abstraction SERV . The protocol
is defined for a particular instance of PKI state, θ, as (θ, SY ST ).

5 A Domain-Theoretic Model

In this section, we define a domain-theoretic semantics for the SPIKY language
that is based on the model of processes originally defined by Stark [34] for the
π-calculus and that was further extended for the case of the spi-calculus in [7]
to deal with cryptographic processes. Our new model is based on the following
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INIT , (xa, xb, xs, xch, xch′)
(νna)xch〈xa, na〉.xch(xb′, xnb, xsig).

[xb is xb′]let xkb = public(xb) in
case xsig of [{x}]xkb

in
[x is na]let xka = private(xa) in
let xks = certified(xs) in

xch′〈{[[{xnb}]xka , xb, xkb]}xks 〉.0

RESP , (yb, ych)
ych(ya, yna).
let ykb = private(yb) in

(νnb)ych〈yb, ynb, [{yna}]ykb
〉.ych(ysig).

let yka = certified(ya) in
case ysig of [{y}]yka in [y is ynb]0

SERV , (zs, zch, zch′)
let zks = private(zs) in

zch′(zc).case zc of {[zp]}zks in
let (zsig, zb, zkey) = zp in
let zkb = certified(zb) in

[zkey is zkb]zch〈zsig〉.0

SY ST , dINIT (A, B, S, ch, ch′)eA | dRESP (B, ch)eB | dSERV (S, ch, ch′)eS

Figure 6: SPIKY definition of the mobile authentication protocol.

predomain equations, which describe what a closed process can do in SPIKY:

Spiky ∼= 1 + P(Spiky⊥ + In + Out) (4)
In ∼= N × (T → Spiky⊥) (5)

Out ∼= N × (T × Spiky⊥ + N → . . . N → (T × Spiky⊥)) (6)
T ∼= AG + N + Sec + Pub + Sig + Pair (7)

Sec ∼= T ×N (8)
Pub ∼= T ×N (9)
Sig ∼= T ×N (10)

Pair ∼= T × T (11)

Where Spiky⊥ is the domain of processes, In and Out are the predomains of
input and output actions, respectively. Input actions are modelled as pairs; a
name, N (the channel), and a function, T → Spiky⊥, that can be instantiated
with a term, T , yielding a process in Spiky⊥. Output actions are divided into
free and bound output actions. These are pairs consisting of the channel, N ,
and either another pair, T × Spiky⊥, denoting the message, T , and the residue
Spiky⊥ (free outputs), or composed functions, N → . . . N → (T × Spiky⊥),
that introduce new names to the message, T , and the residue, Spiky⊥ (bound
outputs). P(−) is Plotkin’s powerdomain [31] applied to the disjoint union of
input, output and silent actions (the latter represented by Spiky⊥) to construct
Spiky . The one-element predomain, 1, representing terminated (deadlocked)
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processes is adjoined as in [2]. The flat predomain of closed terms, T , is defined
as the disjoint union of the predomains of PKI users, AG, names, N , secret-
key ciphers, Sec, public-key ciphers, Pub, digital signatures, Sig , and pairs,
Pair . The predomains Sec, Pub and Sig are represented as pairs, T ×N , where
the term, T , is encrypted/signed using the key, N . There is no predomain of
variables since we only deal with closed terms.

In order to be able to define a denotational semantics for the SPIKY lan-
guage, we need to define concrete elements of each of the (pre)domains of (4)-
(11). These elements are defined in Figure 7, where K is the set underlying any
(pre)domain. Clearly from the definition of Figure 7, the domain Spiky⊥ is a

− Elements of AG : U ∈ AG ⇒ U ∈ K(AG)
− Elements of N : a ∈ N ⇒ a ∈ K(N)
− Elements of Sec : k ∈ K(N), t ∈ K(T ) ⇒ sec(t, k) ∈ K(Sec)
− Elements of Pub : k ∈ K(N), t ∈ K(T ) ⇒ pub(t, k) ∈ K(Pub)
− Elements of Sig : k ∈ K(N), t ∈ K(T ) ⇒ sig(t, k) ∈ K(Sig)
− Elements of Pair : t ∈ K(T ), t′ ∈ K(T ) ⇒ (t, t′) ∈ K(Pair)
− Elements of T : K(T ) = K(AG) +K(N) +K(Sec) ∪ K(Pub) ∪ K(Sig) ∪ K(Pair)
− Elements of In :

a ∈ K(N), p ∈ K(Spiky⊥) ⇒ (a, λx.p) ∈ K(In)
− Elements of Out :

a ∈ K(N), t ∈ K(T ), p ∈ K(Spiky⊥) ⇒ (a, t, p) ∈ K(Out)
a ∈ K(N), t ∈ K(T ), p ∈ K(Spiky⊥) ⇒ (a, λn1, . . . , λnm.(t, p)) ∈ K(Out)

− Elements of Spiky⊥ :
{|⊥|} ∈ K(Spiky⊥)
∅ ∈ K(Spiky⊥)
p, q ∈ K(Spiky⊥) ⇒ p ] q ∈ K(Spiky⊥)
p ∈ K(Spiky⊥) ⇒ {|tau(p)|} ∈ K(Spiky⊥)
e ∈ K(In) ⇒ {|in(e)|} ∈ K(Spiky⊥)
e ∈ K(Out) ⇒ {|out(e)|} ∈ K(Spiky⊥)
x ∈ K(N), p ∈ K(Spiky⊥) ⇒ new(λx, p) ∈ K(Spiky⊥)

Figure 7: Elements of AG, N , Sec, Pub, Sig, T , In, Out and Spiky⊥.

multiset of semantic processes (ref. to similar treatments in [3, 7]). The defi-
nition of this multiset utilises the usual multiset operations such as the empty
multiset, ∅, the singleton multiset, {||}, and the union of multisets, ]. The ∅
operation denotes inactive processes and the {||} operation creates elements of
Spiky⊥ from single elements of input, output and silent actions. On the other
hand, ] is needed to capture non-determinism in the semantics of processes.

In addition to the above standard multiset operations, we also introduce a
special operator, new , which is needed to interpret the effects of restricting a
name to a process. These effects are formalised in the definition of new in Figure
8 over fully evaluated elements of Spiky⊥. In general, new blocks any attempts
to communicate over fresh non-extruded channels. It also turns a free output
into a bounded output whenever the message of communication is restricted. In
all other cases, new has no effect and it is simply distributed over ] or passed
on to the residual process.

The denotational semantics for the SPIKY language is given as a semantic
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new(λn.∅) = ∅
new(λn.{|⊥|}) = {|⊥|}

new(λn.{|in(a, λx.p)|}) =

�
∅, if a = n
{|in(a, λx.new(λn.p))|}, otherwise

new(λn.{|out(a, t, p)|}) =

8>><
>>:

∅, if a = n
{|out(a, λn.(t, p))|}, if n ∈ n(t)

and n 6= a
{|out(a, t,new(λn.p))|}, otherwise

new(λn.{|out(a, λm1 . . . λmk.(t, p))|}) =8<
:

∅, if a = n
{|out(a, λn.λm1 . . . λmk.(t, p))|}, if n ∈ n(t) and n 6= a
{|out(a, λm1 . . . λmk.(t,new(λn.p)))|}, otherwise

new(λn.{|tau(p)|}) = {|tau(new(λn.p))|}
new(λn.(p1 ] p2)) = new(λn.p1) ] new(λn.p2)

Figure 8: The concrete definition of new over elements p ∈ Spiky⊥.

function, S([E]) ρ φS θ ∈ Spiky⊥, defined by the set of rules of Figure 9. The
θ environment is defined as the PKI state of some protocol, such that θ(U)+

is the public key of U and θ(U)− is its private key. The multiset, ρ, is used
to hold systems composed in parallel with the analysed system. Furthermore,
rule (R0) is used to interpret the contents of ρ. The environment, φS : V → T ,
where V is the flat predomain of variables, captures any term substitutions that
occur in the semantics. Note that initially, ∀u ∈ V + N + AG : φS0(u) = u..
The special function, ϕS , returns the semantic value of a term:

∀φS ,M : ϕS(φS ,M) =


φS(M), if M ∈ (AG + N + V )
sec(ϕS(φS ,M ′), ϕS(φS , N)), if M = {M ′}N

pub(ϕS(φS ,M ′), ϕS(φS , N)), if M = {[M ′]}N

sig(ϕS(φS ,M ′), ϕS(φS , N)), if M = [{M ′}]N
(ϕS(φS , N), ϕS(φS , L)), if M = (N,L)

Rules (S0A) and (S0B) interpret parallelism and restriction between two sys-
tems by joining the parallel systems to ρ and using the new operator, respec-
tively. Rules (S1)–(S15) deal with process ownership by cases. Rule (S1),
deals with output actions taking into consideration any communications that
may occur between the output channel and appropriate input channels guarding
processes in ρ. The φS is updated appropriately with the substituted seman-
tic elements. Rule (S2) deals with input functions leaving out communications
since these are considered in (S1). Rule (S3) interprets directly parallel com-
position by the addition of the parallel subprocesses to ρ. In the semantics
of [34], a different operator called par is defined to interpret the meaning of
parallel process, which also takes care of communications between output and
input guarded processes. However the use of this operator would complicate
the definition of our abstract semantics later in Section 7. Rule (S4) uses new
to interpret the meaning of a restriction. Rule (S5) interprets a replication,
d!P eU , as the least upper bound of the infinite poset F . This least upper bound
represents the least fixed point meaning of !P . Due to the fact that the seman-
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(S0A) S([E | F ]) ρ φS θ = R([{|E|} ] {|F |} ] ρ]) φS θ
(S0B) S([(νn)E]) ρ φS θ = new(λn.R([{|E|} ] ρ]) φS θ)

(S1) S([dM〈L〉.P eU ]) ρ φS θ =

(
U

dM′(z).P ′eU′∈ρ:ϕS(φS ,M)=ϕS(φS ,M′)∈N

{|tau(R([{|dP eU |} ] ρ[dP ′eU′/dM ′(z).P ′eU′ ]]) φ′S θ|})

] {|out(ϕS(φS , M), ϕS(φS , L),R([{|dP eU |} ] ρ]) φS)|}
where, φ′S = φS [z 7→ ϕS(φS , L)]

(S2) S([dM(y).P eU ]) ρ φS θ = {|in(ϕS(φS , M), λy.R([{|dP eU |} ] ρ]) φS θ)|}
where ϕS(φS , M) ∈ N

(S3) S([dP | QeU ]) ρ φS θ = R([{|dP eU |} ] {|dQeU |} ] ρ]) φS θ
(S4) S([d(νn)P eU ]) ρ φS θ = new(λn.R([{|dP eU |} ] ρ]) φS θ)
(S5) S([d!P eU ]) ρ φS θ =

F
F

where, F = {{|⊥|},S([d
Q
i

P [bnvi(P )/bnv(P )]eU ]) ρ φS θ | i = 0 . . .∞}

and, bnvi(P ) = {xi | x ∈ bnv(P )}
(S6) S([d[M is L]P eU ]) ρ φS θ =�

R([{|dP eU |} ] ρ]) φS θ, if ϕS(φS , M) = ϕS(φS , L) ∈ N
∅, otherwise

(S7) S([d0eU ]) ρ φS θ = ∅
(S8) S([dlet (x, y) = M in P eU ]) ρ φS θ =�

R([{|dP eU |} ] ρ]) φS [x 7→ t, y 7→ t′] θ, if ϕS(φS , M) = (t, t′)
∅, otherwise

(S9) S([dcase L of {x}N in P eU ]) ρ φS θ =�
R([{|dP eU |} ] ρ]) φS [x 7→ t] θ, if ϕS(φS , L) = sec(t, k) and ϕS(φS , N) = k
∅, otherwise

(S10) S([dcase L of {[x]}N in P eU ]) ρ φS θ =�
R([{|dP eU |} ] ρ]) φS [x 7→ t] θ, if ϕS(φS , L) = pub(t, k+) and ϕS(φS , N) = k−

∅, otherwise
(S11) S([dcase L of [{x}]N in P eU ]) ρ φS θ =8<

:
R([{|dP eU |} ] ρ]) φ′S θ, if ϕS(φS , L) = sig(t, k−) and ϕS(φS , N) = k+

where, φ′S = φS [x 7→ t]
∅, otherwise

(S12) S([dA(M)eU ]) ρ φS θ =�
R([{|dP eU |} ] ρ]) φ′S θ, where A(x) , P and φ′S = φS [x 7→ ϕS(φS , M)]
∅, otherwise

(S13) S([dlet x = private(M) in P eU ]) ρ φS θ =�
R([{|dP eU |} ] ρ]) φS [x 7→ θ(U)−] θ, if ϕS(φS , M) = ϕS(φS , U) ∈ AG
∅, otherwise

(S14) S([dlet x = public(M) in P eU ]) ρ φS θ =8><
>:

R([{|dP eU |} ] ρ]) φS [x 7→ θ(U)+] θ, if ϕS(φS , M) = ϕS(φS , U) ∈ AGU
U′∈dom(θ)

R([{|dP eU |} ] ρ]) φS [x 7→ θ(U ′)+] θ, if ϕS(φS , M) 6= ϕS(φS , U) ∧

ϕS(φS , M) ∈ AG
(S15) S([dlet x = certified(M) in P eU ]) ρ φS θ = R([{|dP eU |} ] ρ]) φS [x 7→ θ(M)+] θ

where, ϕS(φS , M) ∈ AG
(R0) R([ρ]) φS θ =

U
E∈ρ

S([E]) (ρ\{|E|}) φS θ

Figure 9: The standard denotational semantics of the SPIKY language.

tic domain, Spiky⊥, is infinite, the calculation of this least fixed point may not
terminate within finite limits. The rule also uses a labelling mechanism to re-
name all the bound variables and names, bnv(P ), of the spawned processes by
subscripting those variables and names with a number signifying process copy.

15



This maintains the normality requirement of Definition 1.
Rule (S6) compares the meaning of two terms as given by ϕS . As we men-

tioned earlier in Section 3, we restrict this comparison to names. Rule (S7)
interprets the meaning of a null system as the empty set mapping, ∅. Rule
(S8) splits the elements of a pair term. Rules (S9)–(S11) deal with crypto-
graphic systems for the decryption of symmetric and public-key ciphertexts and
signatures with recovery and appendix validations. A residual system, dP eU ,
signifying the success of the operation is added to ρ, else, if the operation fails,
∅ is returned instead. Rule (S12) interprets the meaning of abstraction in-
stantiations directly by adding the definition to ρ and updating φS with the
substituted term. Rules (S13)–(S15) deal with PKI operations for retrieving
private, uncertified and certified public keys. This is done using the PKI state,
θ, and the user owning the system, U . The uncertified public key operation
offers less guarantees (if the owner of the process requires other users’ keys),
therefore, it may return the public key of any PKI user, U ′, in dom(θ). On the
other hand, the certified version is always guaranteed to return a valid public
key, regardless of the owner’s identity.

6 Non-Standard Semantics

We extend here the standard semantics of the previous section to a non-standard
semantics that captures the property of term substitutions. For example, in:

(θ, dc〈k〉.P eU | dc(x).QeU
′
)

We are interested in capturing the information that key, k, substitutes variable,
x, and that this substitution happened due a communication from user U to
user U ′. In another example:

(θ, dlet x = private(U) in P eU )

Here, we are interested in capturing the fact that variable x will inevitably be
instantiated with the private key of U , i.e. θ(U)−, and that this happens within
a process owned by U . To be able to capture this kind of information, we need
to define a new meaning for our systems in terms of a new special environment,
φE : V → ℘(T × AG × AG), which maps each variable of a closed system to a
set of triples representing semantic terms that may substitute the variable, and
names of PKI users that instantiate and own that variable.

A non-standard semantic domain, D⊥ = V → ℘(T × AG × AG), can be
constructed, ordered by subset inclusion as follows:

∀φE1, φE2 ∈ D⊥ : φE1 vD⊥ φE2 ⇔ ∀x ∈ V : φE1(x) ⊆ φE2(x)

with the bottom element, ⊥D⊥ , being the null environment, φE0, that maps
each variable to the empty set. The union of environments operation, ∪φ, is
defined as:

∀φE1, φE2 ∈ D⊥, x ∈ V : (φE1 ∪φ φE2)(x) = φE1(x) ∪ φE2(x)
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The non-standard semantics of the SPIKY language is defined using the seman-
tic function, E([E]) ρ φE θ ∈ D⊥, as illustrated in Figure 10. The definitions of

(E0A) E([E | F ]) ρ φE θ = R([{|E|} ] {|F |} ] ρ]) φE θ
(E0B) E([(νn)E]) ρ φE θ = R([{|E|} ] ρ]) φE θ

(E1) E([dM〈L〉.P eU ]) ρ φE θ =
S

φ

dM′(z).P ′eU′∈ρ:ϕE (φE ,M)=ϕE (φE ,M′)∈N

φ′E ∪φ φE

where, φ′E = R([{|dP eU |} ] ρ[dP ′eU′/dM ′(z).P ′eU′ ]]) φE [z 7→ {(ϕE (φE , L), U, U ′)}] θ
(E2) E([dM(y).P eU ]) ρ φE θ = φE
(E3) E([dP | QeU ]) ρ φE θ = R([{|dP eU |} ] {|dQeU |} ] ρ]) φE θ
(E4) E([d(νn)P eU ]) ρ φE θ = R([{|dP eU |} ] ρ]) φE θ
(E5) E([d!P eU ]) ρ φE θ =

F
F

where, F = {⊥D⊥ , E([ d
Q
i

P [bnvi(P )/bnv(P )]eU ]) ρ φE θ | i = 0 . . .∞}

and, bnvi(P ) = {xi | x ∈ bnv(P )}

(E6) E([d[M is L]P eU ]) ρ φE θ =

�
R([{|dP eU |} ] ρ]) φE θ, if ϕE(φE , M) = ϕE (φE , L) ∈ N
φE , otherwise

(E7) E([d0eU ]) ρ φE θ = φE
(E8) E([dlet (x, y) = M in P eU ]) ρ φE θ =�

R([{|dP eU |} ] ρ]) φE [x 7→ {(t, U, U)}, y 7→ {(t′, U, U)}] θ, if ϕE(φE , M) = (t, t′)
φE , otherwise

(E9) E([dcase L of {x}N in P eU ]) ρ φE θ =8<
:

R([{|dP eU |} ] ρ]) φE [x 7→ {(t, U, U)}] θ, if ϕE(φE , L) = sec(t, k)
and ϕE (φE , N) = k

φE , otherwise
(E10) E([dcase L of {[x]}N in P eU ]) ρ φE θ =8<

:
R([{|dP eU |} ] ρ]) φE [x 7→ {(t, U, U)}] θ, if ϕE(φE , L) = pub(t, k+)

and ϕE (φE , N) = k−

φE , otherwise
(E11) E([dcase L of [{x}]N in P eU ]) ρ φE θ =8<

:
R([{|dP eU |} ] ρ]) φE [x 7→ {(t, U, U)}] θ, if ϕE(φE , L) = sig(t, k−)

and ϕE (φE , N) = k+

φE , otherwise
(E12) E([dA(M)eU ]) ρ φE θ =�

R([{|dP eU |} ] ρ]) φE [x 7→ {(ϕE (φE , M), U, U)}] θ, where A(x) , P
φE , otherwise

(E13) E([dlet x = private(M) in P eU ]) ρ φE θ =�
R([{|dP eU |} ] ρ]) φE [x 7→ {(θ(U)−, U, U)}] θ, if ϕE(φE , M) = ϕE (φE , U) ∈ AG
φE , otherwise

(E14) E([dlet x = public(M) in P eU ]) ρ φE θ =8>><
>>:

R([{|dP eU |} ] ρ]) φE [x 7→ {(θ(U)+, U, U)}] θ, if ϕE (φE , M) = ϕE(φE , U) ∈ AGS
φ

U′∈dom(θ)

R([{|dP eU |} ] ρ]) φE [x 7→ {(θ(U ′)+, U, U)}] θ, if ϕE(φE , M) 6= ϕE (φE , U) ∧

ϕE(φE , M) ∈ AG
(E15) E([dlet x = certified(M) in P eU ]) ρ φE θ =

R([{|dP eU |} ] ρ]) φE [x 7→ {(θ(M)+, U, U)}] θ, where, ϕE (φE , M) ∈ AG
(R0) R([ρ]) φE θ =

S
φ

E∈ρ

E([E]) (ρ\{|E|}) φE θ

Figure 10: The non-standard semantics of the SPIKY language.

ρ and θ are as in Section 5. The definition of the special function, ϕE allows for
the meaning of a closed term to be computed under some φE :
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ϕE(φE ,M) =



t, if M ∈ V ∧ φE(M) = {(t, U, U ′)}
M, if M ∈ (N + AG)
sec(ϕE(φE ,M ′), ϕE(φE , N)), if M = {M ′}N

pub(ϕE(φE ,M ′), ϕE(φE , N)), if M = {[M ′]}N

sig(ϕE(φE ,M ′), ϕE(φE , N)), if M = [{M ′}]N
(ϕE(φE ,M ′), ϕE(φE ,M ′′)), if M = (M ′,M ′′)

Note that ϕE is only defined for the case of variables where the variable has
only been instantiated with a singleton in φE . This is due to the fact that the
non-standard semantics is a precise semantics, i.e. each variable is instantiated
at most once per choice of control flow. This is clear from rule (R0), where the
φE environment is passed unchanged from LHS to RHS of the rule. It is only at
the top level (i.e. when computing ∪φ in (R0)) are the different instantiations
of the same variable (due to non-determinism) combined together in a set.

The main difference in this semantics as compared to the standard seman-
tics of the previous section is the fact that the meaning of a process is a φE
environment rather than an element of Spiky⊥. Note again the difference in
performing uncertified versus certified public key retrieval in rules (E14) and
(E15), respectively. In the former case, the owner of a process may obtain any
public key stored in θ when asking for some other user’s public key without any
guarantees as to the validity of the key-user binding (unless the owner asks for
its own public key). In the latter case, this requirement is always guaranteed to
return a public key that is validly bound to its user.

The following theorem establishes a correctness relation with respect to the
standard denotational semantics of the previous section.

Theorem 1 (Correctness of the Non-Standard Semantics)
∀(θ, E), φS , φE , x,S([E]) ρ φS θ = p(R([ρ′]) φ′S θ), E([E]) ρ φE θ = R([ρ′]) φ′E θ:
∃U,U ′ : (φS(x), U, U ′) ∈ φE(x) ⇒ ∃U,U ′ : (φ′S(x), U, U ′) ∈ φ′E(x)

Proof. The proof of the theorem is by structural induction on the structure
of P . We only provide a proof sketch here of the most interesting cases. The
base case is the case of the null protocol, (θ, d0eU ) and this is satisfied from the
antecedent of the theorem since neither rule (S7) nor (E7) change the initial φS
and φE environments on LHS of the rule. The other interesting case is that of
rules (E1) and (S1) where φS and φE are changed. In rule (S1), φS is changed
on RHS to φ′S = φS [x 7→ ϕS(φS , L)]. It is trivial to show from the antecedent
that ϕS(φS , L) = ϕE(φE , L), which leads to the changing of φE on RHS of rule
(E1) to φ′E = φE [x 7→ {(φ′S(x), U, U ′)}]. This further leads to the conclusion
above. Similar line of reasoning can be followed in the cases of rules (E8)–(E15)
with respect to rules (S8)–(S15). The case for replication in rules (E5) and (S5)
requires the use of mathematical induction on the number of copies of P , with
the basis being the case of zero copies and the inductive step proving that if the
property holds for n copies of P , then it holds for n + 1 copies as well. Finally,
in all other cases, neither φS nor φE change, so the conclusion is reached in a
straightforward manner with the use of the antecedent. �
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7 Abstract Semantics

One problem with the non-standard semantics of the previous section is that
the calculation of the meaning of a protocol is not guaranteed to terminate due
to the presence of replication in the definition of processes. Therefore, it is
necessary to introduce a safe abstraction that limits the size of the semantic
domain. This abstraction is a variation of the abstraction used in [3, 7].

In order to arrive a simple abstraction for terms later on, we begin first
by assuming a predomain of tags, Tag , ranged over by t, ṫ, ẗ, where t is the
tag of a generic term, ṫ is the tag of a name or a variable, and ẗ is the tag
of a complex term (ciphertext, signature, pair). Next, we tag each M , M ′ in
the processes N〈M〉.P , let (x, y) = (M,M ′) in P , case {M}N of {x}N ′ in P ,
case {[M ]}N of {[x]}N ′ in P , case [{M}]N of [{x}]N ′ in P , A(M), and tag each
of private(M), public(M) and certified(M) in the syntax.

The following functions are defined over tags and systems:
– value of ({t1, . . . , tn}) = {M1, . . . ,Mn}, which when applied to a set of tags,
{t1, . . . , tn}, returns the corresponding set of syntactic terms, {M1, . . . ,Mn}.
– tags of (E) = {t1, . . . , tn}, which when applied to a system, E, returns its set
of tags, {t1, . . . , tn}.

We now introduce the αk,k′ abstraction function, which keeps to a finite
level, the number of copies of bound variables, bound names and tags, which
will be indexed when interpreting replication.

Definition 2 Define αk,k′ : N× N× (V + N + Tag) → (V ] + N ] + Tag]):

∀M ∈ (V +N+Tag), i, k, k′ ∈ N : αk,k′(M) =


ṫk, if M = ṫi ∈ Tag and i > k
ẗk′ , if M = ẗi ∈ Tag and i > k′

xk, if M = xi ∈ V and i > k
ak, if M = ai ∈ N and i > k
M, otherwise

The resulting abstract predomains, V ], N ] and Tag], can be defined as V ] =
V \{xj | j > k}, N ] = N\{aj | j > k} and Tag] = Tag\({ṫj | j > k} ∪ {ẗi | i >
k′}). Informally, k constrains the number of bound variables and names, and
tags of primitive terms, whereas k′ constrains the number of tags of complex
terms. In effect, constraining the tags of primitive terms implies limiting the
copies of bound names and variables carrying the tags, whereas constraining the
number of tags of complex terms means limiting the depth of data structures.

For example, in the process !(νn)a〈nṫ〉 | !a(x), it is possible to spawn infi-
nite copies of each replication, (νn1)a〈nṫ1

1 〉 | a(x1) | (νn2)a〈nṫ2
2 〉 | a(x2) |

. . .. It is clear that the number labelling on ṫ is an indicator to the num-
ber of the copy of message n after each process has been spawned. On the
other hand, the process !a(x).a〈{x}ẗ

k〉 | a〈b〉, which also spawns the copies
a(x1).a〈{x1}ẗ1

k 〉 | a(x2).a〈{x2}ẗ2
k 〉 | a〈b〉 | . . ., demonstrates the role of ẗ as

an indicator to the number of times the ciphertext, {x}k, is applied to b.
It is essential to note at this stage that the usage of αk,k′ will inevitably

reduce the precision of the semantics as a result of introducing approximate
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behaviour. For example, the abstract meaning of the protocol based on the
abstraction function, α1,1:

(θ, dc1〈k〉.P eU | dc2(x).QeU
′
)

will include the false information that k substitutes x, since the calculation of
the meaning will be based on abstracting both c1 and c2 to c1. Therefore, a
communication between either sides of the parallel composition will occur in
the abs tart semantics, even though such a communication is not possible in the
concrete (i.e. standard and non-standard) semantics.

Using αk,k′ , we construct φA : V ] → ℘(Tag] × AG × AG), with a meaning
similar to φE in the previous section. Furthermore, a domain, D]

⊥ = V ] →
℘(Tag] ×AG×AG) is formed as follows:

∀φA1, φA2 ∈ D]
⊥, x ∈ V ] : φA1 vD]

⊥
φA2 ⇔ φA1(x) ⊆ φA2(x)

with a bottom element, ⊥D]
⊥
, representing the null environment, φA0. Taking

D]
⊥ as the abstract semantic domain, we can define the abstract semantics of

the SPIKY language using the function, A([E]) ρ φA θ ∈ D]
⊥, as shown in Figure

11. The definitions of ρ and θ are as in the previous sections. The special func-
tion, ϕA, returns a set of terms corresponding to a term, M , given substitutions
captured by φA, as follows, where fst(a, b, c) = a:

ϕA(φA,M) = ϕ′A(φA,M [αk,k′(t)/t][αk,k′(x)/x][αk,k′(n)/n]){},
where, ϕ′A(φA,M)s = if M ∈ s then {} else

⋃
L∈value of(fst(φA(M)))

ϕ′A(φA, L)s∪{M} if M ∈ V

{M}, if M ∈ (N ∪AG)
{{N ′}t

L′ | N ′ ∈ ϕ′A(φA, N)s∪{M}, L
′ ∈ ϕ′A(φA, L)s∪{M}}, if M = {N}t

L

{{[N ′]}t
L′ | N ′ ∈ ϕ′A(φA, N)s∪{M}, L

′ ∈ ϕ′A(φA, L)s∪{M}}, if M = {[N ]}t
L

{[{N ′}]tL′ | N ′ ∈ ϕ′A(φA, N)s∪{M}, L
′ ∈ ϕ′A(φA, L)s∪{M}}, if M = [{N}]tL

{(L′1, L′2)t | L′1 ∈ ϕ′A(φA, L1)s∪{M}, L
′
2 ∈ ϕ′A(φA, L2)s∪{M}}, if M = (L1, L2)t

We describe a few rules here. Rule (A1) deals with the case of output actions,
dealing with possible communications with appropriate input actions in ρ. The
tag of the output message is registered in φA as a value for the input variable.
The semantics is imprecise, since φA only captures an abstract tag as a value
for an abstract variable. Rule (A5) introduces the functions:

ren(x, i) = fold subi (fold subi x bnv(x)) tags of (x)
fold f e {x1, . . . , xn} = f(xn, . . . , f(x1, e) . . .)
subi x y = y[xi/x]

that are used in the definition of the least fixed point meaning of a replicated
process. This meaning is defined as the least upper bound of the set F , which
can only be finite in this semantic. As a result, the termination of the least
fixed point is formalised as follows.
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(A0A) A([E | F ]) ρ φA θ = R([{|E|} ] {|F |} ] ρ]) φA θ
(A0B) A([(νn)E]) ρ φA θ = R([{|E|} ] ρ]) φA θ

(A1) A([dM〈Lt〉.P eU ]) ρ φA θ =
S

φ

dM′(z).P ′eU′∈ρ:ϕA(φA,M)∩ϕA(φA,M′)∩N 6={}

φ′A ∪φ φA

where, φ′A = R([{|dP eU |} ] ρ[dP ′eU′/dM ′(z).P ′eU′ ]]) φ′′A θ
and φ′′A = φA[αk,k′ (z) 7→ φA(αk,k′ (z)) ∪ {(αk,k′ (t), U, U ′)}]

(A2) A([dM(y).P eU ]) ρ φA θ = φA
(A3) A([dP | QeU ]) ρ φA θ = R([{|dP eU |} ] {|dQeU |} ] ρ]) φA θ
(A4) A([d(νn)P eU ]) ρ φA θ = R([{|dP eU |} ] ρ]) φA θ
(A5) A([d!P eU ]) ρ φA θ =

F
F

where, F = {⊥
D

]
⊥

,A([
Q
i
ren(P, i) ]) ρ φA θ | i = 0 . . .∞}

(A6) A([d[M is N ]P eU ]) ρ φA θ =

8<
:

R([{|dP eU |} ] ρ]) φA θ,
if ϕA(φA, M) ∩ ϕA(φA, N) ∩ N 6= {}

φA, otherwise
(A7) A([d0eU ]) ρ φA θ = φA
(A8) A([dlet (x, y) = M in P eU ]) ρ φA θ =8>>>><

>>>>:

S
φ

(Lt,Nt′ )∈ϕA(φA,M)

R([{|P |} ] ρ]) φ′A θ, if ∃(Lt, Nt′ ) ∈ ϕA(φA, M)

where, φ′A = φA[αk,k′ (x) 7→ φA(αk,k′ (x)) ∪ {αk,k′ (t), U, U},
αk,k′ (y) 7→ φA(αk,k′ (y)) ∪ {αk,k′ (t

′), U, U}]
φA, otherwise

(A9) A([dcase L of {x}N in P eU ]) ρ φA θ =8>><
>>:

S
φ

{Mt}n∈ϕA(φA,L)

R([{|P |} ] ρ]) φ′A θ, if, n ∈ ϕA(φA, N)

where, φ′A = φA[αk,k′ (x) 7→ φA(αk,k′ (x)) ∪ {(αk,k′ (t), U, U)}]
φA, otherwise

(A10) A([dcase L of {[x]}N in P eU ]) ρ φA θ =8>><
>>:

S
φ

{[Mt]}
n+∈ϕA(φA,L)

R([{|P |} ] ρ]) φ′A θ, if, n− ∈ ϕA(φA, N)

where, φ′A = φA[αk,k′ (x) 7→ φA(αk,k′ (x)) ∪ {(αk,k′ (t), U, U)}]
φA, otherwise

(A11) A([dcase L of [{x}]N in P eU ]) ρ φA θ =8>><
>>:

S
φ

[{Mt}]
n−∈ϕA(φA,L)

R([{|P |} ] ρ]) φ′A θ, if, n+ ∈ ϕA(φA, N)

where, φ′A = φA[αk,k′ (x) 7→ φA(αk,k′ (x)) ∪ {(αk,k′ (t), U, U)}]
φA, otherwise

(A12) A([dA(Mt)eU ]) ρ φA θ = R([{|dP eU |} ] ρ]) φ′A θ where, A(x) , P
and φ′A = φA[αk,k′ (x) 7→ φA(αk,k′ (x)) ∪ {(αk,k′ (t), U, U)}]

(A13) A([dlet x = private(M)t in P eU ]) ρ φA θ =8<
:

R([{|dP eU |} ] ρ]) φA[αk,k′ (x) 7→ φA(αk,k′ (x)) ∪ {(αk,k′ (t), U, U)}] θ,
if U ∈ ϕA(φA, M), where, private(U) = θ(U)−

φA, otherwise
(A14) A([dlet x = public(M)t in P eU ]) ρ φA θ = R([{|dP eU |} ] ρ]) φ′A θ

where, φ′A = φA[αk,k′ (x) 7→ φA(αk,k′ (x)) ∪ {(αk,k′ (t), U, U)}]

and, value of ({t}) =

�
{θ(U)+}, if U ∈ ϕA(φA, M)
{θ(U ′)+ | U ′ ∈ dom(θ)}, otherwise

(A15) A([dlet x = certified(M)t in P eU ]) ρ φA θ =
R([{|dP eU |} ] ρ]) φA[αk,k′ (x) 7→ φA(αk,k′ (x)) ∪ {(αk,k′ (t), U, U)}] θ,
where, certified(M) = θ(M)+

(R0) R([ρ]) φA θ =
S

φ

dPeU∈ρ

A([dP eU ]) (ρ\{|dP eU |}) φA θ

Figure 11: The abstract semantics of the SPIKY language.
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Theorem 2 (Termination of the least fixed point calculation)
The calculation of rule (A5) terminates.

Proof. We provide here a sketch of the termination property. To prove this, it
is necessary to show that the following two requirements hold. First, that the
semantic domain is finite. This is satisfied by the definition of D]

⊥, where Tag]

and AG are both finite, and so is ℘(Tag]×AG×AG). The second requirement
is that A([d

∏
i

P eU ]) ρ φA θ is monotonic over P , i.e. A([d
∏
i

P eU ]) ρ φA θ vD]
⊥

A([d
∏
i+1

P eU ]) ρ φA θ. To prove the second requirement, we simply the ordering

relation into A([E]) ρ φA θ vD]
⊥
A([E | dP eU ]) ρ φA θ, where E = d

∏
i

P eU .

This is further simplified to become A([E]) ρ φA θ vD]
⊥
A([E]) ρ′ φA θ, where

ρ′ = ρ]dP eU . This can be proven by considering every case of E in particular,
the case of rule (A1), which deals with output action is an interesting case, since
it is possible to compare the communications with systems in ρ and in ρ′. When
comparing these two multisets, we find that φA for the former is a subset of the
latter, i.e. the larger the ρ is, the more communications we have. �

We can state the safety of the abstract semantics by the following theorem.

Theorem 3 (Safety of the abstract semantics)
∀P, θ, ρ, φE , φA, k, k′, U, φ′E = E([dP eU ]) ρ φE θ, φ′A = A([dP eU ]) ρ φA θ :
(∃M,x, U, U ′ : (ϕE(φE ,M), U, U ′) ∈ φE(x) ⇒
∃(t, U, U ′) ∈ φA(αk,k′(x)) : M ] ∈ value of ({t}) ∧ M ] = fold subk,k′ M nv(M))
⇒
(∃M,x, U, U ′ : (ϕE(φ′E ,M), U, U ′) ∈ φ′E(x) ⇒
∃(t, U, U ′) ∈ φ′A(αk,k′(x)) : M ] ∈ value of ({t}) ∧ M ] = fold subk,k′ M nv(M))
where, subk,k′ x y = y[αk,k′(x)/x]
and, nv(M) is the set of names and variables of M

Proof. The proof is by the induction on the structure of systems. We provide a
sketch of the proof as follows. The base case is that for E = d0e, where the values
of φA and φE are left intact in rules (A7) and (E7) moving from LHS to RHS
of each rule. The antecedent is needed in this case to reach to the conclusion.
The inductive step considers every other case of a system. The most interesting
cases are those where the values of φA and φE are changed. These include the
cases of rules, (A1), (A8)–(A15) and their concrete parts, (E1), (E8)–(E15),
respectively. In each of these cases, it is possible to show that if φA satisfies
the antecedent requirement initially with respect to some φE , then the new φ′A
will satisfy the conclusion with respect to the new φ′E , where φ′A and φ′E contain
the changes dictated by the rule. In the case of every other rule where neither
φA nor φE change, then the antecedent guarantees that the conclusion of the
safety requirement is reachable. The most difficult case is that of replication,
where additional mathematical induction reasoning is applied over the number
of copies of the replicated system. �

The theorem states that for any term, M , captured in the non-standard
semantics by including its ϕE(φ′E ,M) value in the value of a variable, φ′E(x),
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then that corresponds to capturing a tag, t, in the abstract semantics, by
φ′A(αk,k′(x)). The appropriateness of t is expressed by the ability to obtain
(by folding) an abstract form, M ] = fold subk,k′ M nv(M), of the concrete
term, M , by evaluating t using value of . More concisely, every concrete term,
M , captured in the non-standard semantics is also captured in the form of the
corresponding abstract tag, t, in the abstract semantics. From now on, we shall
use the following predicate, to denote the property of term capturing.

Definition 3 (Term capturing) A term, M , is captured by an agent, B, sent
by another agent, A, if given the results of an abstract interpretation, φA, and
the integer constraints, k and k′, then the following holds true:

captured](M,A,B, φA, k, k′)
def
=

∃t ∈ Tag], x ∈ dom(φA) : (t, A,B) ∈ φA(x) ∧ M ] ∈ value of(t)

We also provide a more precise version of captured], which we term only captured]

and that signifies the fact that a variable is instantiated with exactly one term.

Definition 4 (Precise term capturing) A term, M , is “only” captured by
an agent, B, sent by another agent, A, if given the results of an abstract in-
terpretation, φA, and the integer constraints, k and k′, then the following holds
true:

onlycaptured](M,A,B, φA, k, k′)
def
=

∃t ∈ Tag], x ∈ dom(φA) : (t, A,B) ∈ φA(x) ∧ |φA(x)| = 1 ∧ M ] ∈ value of(t)

Where the extra condition that |φA(x)| = 1 implies that x can only ever be
replaced by a single term (M in this case).

8 The Intruder

There are often two approaches to the modelling of intruders in any security
analysis: the first approach aims at encoding the behaviour of the intruder
into the semantic rules describing the analysis itself, and the second models
the intruder as any other process. Each approach has its advantages. The
first approach results in an analysis that is specialised to deal with the intruder
without the need to explicitly model the intruder. However, this approach is
rigid. The second approach offers more flexibility in considering any intruder
from the simplest passive intruders to Dolev-Yao’s most powerful intruder [14].

In this report, we adopt the second approach in modelling the intruder within
our analysis. The model describes the general guidelines along which the most
general attacker in cryptographic protocols can be specified. This model was
shown by [13] to be sufficient to subsume any other adversary. Informally, a
specification of the Dolev-Yao attacker should adhere to the following criteria:

• The attacker can read, learn, modify and block any messages passed over
the network’s public channels, as well as create fresh messages. It can also
send the messages it has in its knowledge to other processes.
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• The attacker can compose tuples from learnt messages and can decompose
learnt tuples to their basic elements.

• The attacker can apply cryptographic operations to any of the messages
it has in its knowledge using any of the keys it knows about.

• The intruder will always attempt to retrieve the public/private keys of
any of the agent names it knows about from the underlying PKI.

The above features can be stated more formally in the SPIKY language by the
specification of the intruder’s system, ISY S, as illustrated in Figure 12, where∏

denotes the parallel composition of several processes.

ISY S
def= d(ν i) ( i〈κinit〉 | !i(κ).( (ν net)i〈κ,net〉 |∏

∀M,N∈set(κ)

M〈N〉.i〈κ〉 |
∏

∀M∈set(κ)

M(x).i〈κ, x〉 |∏
∀M,N,L∈set(κ)

M〈{N}L〉.i〈κ, {N}L〉 |
∏

∀M,N,L∈set(κ)

M〈{[N ]}L〉.i〈κ, {[N ]}L〉 |∏
∀M,N,L∈set(κ)

M〈[{N}]L〉.i〈κ, [{N}]L〉 |
∏

∀M,N,L∈set(κ)

M〈(N,L)〉.i〈κ, (N,L)〉 |∏
∀M,N∈set(κ)

case M of {x}N in i〈κ, x〉 |
∏

∀M,N∈set(κ)

case M of {[x]}N in i〈κ, x〉 |∏
∀M,N∈set(κ)

case M of [{x}]N in i〈κ, x〉 |
∏

∀M∈set(κ)

let (x, y) = M in i〈κ, (x, y)〉 |∏
∀M∈set(κ)

let x = private(M) in i〈κ, x〉 |
∏

∀M∈set(κ)

let x = public(M) in i〈κ, x〉 |∏
∀M∈set(κ)

let x = certified(M) in i〈κ, x〉))eI

Figure 12: Specification of the system of the Dolev-Yao attacker in SPIKY.

In this specification, I is the name of the intruder agent and κinit is the
initial knowledge of the intruder represented as a pair, ((M1,M2), . . .),Mn). If
n = 0, then we write κinit = (, ). Usually, κinit is initialised with elements from
the set of free names of the system, E, running in parallel with the intruder, i.e.
κinit = ((M1,M2), . . .),Mn), where fn(E) = {M1,M2, . . . ,Mn}3. The specifi-
cation also contains the subprocess, i〈κinit〉, which initialises the knowledge of
the intruder by communicating with the input process, i(κ), and hence, yielding
the substitution, κ = κinit.

Moreover, we refer to the set of terms underlying κ (resp. κinit) as set(κ)
(resp. set(κinit)). The knowledge of the intruder, κ, is increased due to the
value-passing behaviour whenever input actions occur or fresh data are created
as part of bound output actions. κ also increases due to the value-processing
behaviour whenever decryption, signature verification, pair-splitting or any of
the PKI-based operations succeed. In any case, standard pair concatenation,
( , ) : Term × Term → Term, is used to model the knowledge increase.

3Note that the order of the pair elements in κinit is not important since κinit is used to
merely simulate a set.
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Apart from the initialisation process i〈κinit〉, the rest of the specification
consists of a replication of processes each of which is guarded by an input action,
i(κ), over the special channel i. The input parameter κ is updated with a pair
of terms, which is a necessary behaviour in order to be able to express the fact
that I can learn from its own behaviour. For example, in order for κ to obtain
the new name, net , without necessarily outputting net to external processes, I
sends net over channel i. Similarly, in order for κ to learn all the terms it has
encrypted, signed etc., it needs to send them again over channel i. On the other
hand, the main body of the process consists of the parallel composition of all
the possible input/output actions and cryptographic/PKI operations quantified
over all the terms in κ.

An important point to note at this stage is that the specification of Figure 12
is not unique. It is possible to adopt other specifications of the intruder. Among
these, ISY S

def= d0eI is the weakest intruder, which is incapable of performing
any action and,

ISY S
def= d(i〈κinit〉 | !i(κ).(

∏
∀M,N∈set(κ)

M〈N〉.i〈κ〉 |
∏

∀M∈set(κ)

M(x).i〈κ, x〉)eI

defines the passive intruder, which can only input and output messages without
performing any actions on them.

9 Abstract Security Properties

In this section, we define the security properties of abstract term secrecy and
abstract peer-entity participation in light of the results of our abstract semantics.

9.1 Abstract Term Secrecy

Term secrecy refers to the property that a particular term is never leaked to
some agent during the execution of a protocol. Using the captured] predicate
defined in Definition (3), we formalise abstract term secrecy of a term, M , with
respect to an agent, U , written as secret](M,U), as follows.

Definition 5 (Abstract term secrecy)
We say that a term, M , remains abstractly secret with respect to an agent, U ,
written as secret](M,U), if the following holds true:

@U ′ ∈ AG : captured](M,U ′, U, φA, k, k′)

9.2 Abstract Peer-Entity Participation

Peer-entity participation means that an agent, A, knows to a certain degree of
certainty that another agent, B, has participated in a session of some protocol
in which A is also a participant. In reality, there are many scenarios that this
property could be established, both in its one-way and two-way forms. In this
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section, we discuss one such scenario, where A creates a nonce, n, and n is
signed by B, then, provided that only B has the knowledge of its own private
key, A knows that B has just participated in the protocol if it receives back a
signed term, M , containing n and is able to verify it with B’s public key. We
define here three cases of the abstract peer-entity participation property.

Definition 6 (Abstract peer-entity participation)
Given the abstract interpretation, φA = A([C(d(νn)P eA)]) ρ0 φA0 θ, for some
context, C, and process, P , then we say that the agent, A, is said to be sure
to a certain degree that another agent, B, has participated in the protocol,
(θ, C((νn)dP eA)), written as participated](A,B), if the following holds true:

∃U,U ′, L, k, k′ : captured](n, U, B, φA, k, k′) ∧ captured](θ(B)−, B, B, φA, k, k′) ∧
captured]([{L}]θ(B)− , U ′, A, φA, k, k′) ∧ captured](L,A,A, φA, k, k′) ∧ (∀U ′′ :
U ′′ 6= B ⇒ secret](θ(B)−, U ′′)) ∧ n ∈ n(L)

And either one of the following three requirements:

1- captured](θ(B)+, A, A, φA, k, k′) (Non-certified case)

2- onlycaptured](θ(B)+, A, A, φA, k, k′) (Certified case)

3- ∃S : onlycaptured](θ(B)+, S, S, φA, k, k′) (Delegated case)
where S is a server trusted by A

The definition of participated] essentially states that B must obtain n as well as
its own private key, signs a term, L, containing n with the private key and finally,
A must obtain this term and correctly verifies it with the public key of B. This
is of course based on the condition that B keeps its own private key secret. The
degree at which A is certain of the participation of B depends on whether the
public key of B was captured (i.e., using public(B) since public(B) may return
an invalid key) or only captured (i.e. using certified(B) since certified(B)
always returns a valid key) and whether A trusts in some third party, S. Three
scenarios then arise: the certified case, the uncertified case and the delegated
case.

10 Examples

We consider here again the two examples introduced earlier in Section 4, where
we apply the abstract interpretation developed in Section 7 to these protocols
and analyse their abstract term secrecy and peer-entity participation properties.

10.1 The Simple Authentication Protocol

We apply the abstract interpretation, A([SY ST (A,B)]) {|ISY S|} φA0 θ, to the
specification of the simple authentication protocol, (θ, SY ST (A,B)), for some
two agents, A and B, and for the uniform case where k = k′ = 1. The final
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fixed point value for φA is given as follows, after we have applied the value of
function to retrieve the values of terms from their tags:

φA =



yb 7→ {(B,B,B)} xb 7→ (B,A, A) xa 7→ {(A,A, A)}
ych 7→ {(ch,B,B)} xch 7→ {(ch,A, A)}
ya 7→ {(A,A, B)} xb′ 7→ {(B,B,A)}
yna 7→ {(na, A, B)} xnb 7→ {(nb, B, A)}
ykb 7→ {(θ(B)−, B, B)} xsig 7→ {([{na}]θ(B)− , B, A)}
ysig 7→ {([{nb}]θ(A)− , A, B)} xkb 7→ {(θ(B)+, A, A)}
yka 7→ {(θ(A)+, B,B)} x 7→ {(na, A, A)}
y 7→ {(nb, B,B)} xka 7→ {(θ(A)−, A, A)}
κ 7→ {(I, I, I), (A,A, I), (NA, A, I), (B,B, I), (NB , B, I),

(θ(A)+, I, I), (θ(B)+, I, I), (θ(I)+, I, I), (θ(I)−, I, I)}
According to Definition (5), the results confirm that secret](U, θ(A)−) and
secret](U ′, θ(B)−) for any U ∈ {B, I} and U ′ ∈ {A, I}. This implies that
neither agent was able to obtain the other agent’s private key nor that the in-
truder was able to obtain the secret keys. Furthermore, one can also see that
participated](A,B) and participated](B,A) are true, since both fulfil case 2 of
Definition (6).

10.2 The Mobile Authentication Protocol

For the case of the mobile authentication protocol, we apply the abstract inter-
pretation, A([SY ST (A,B, S)]) {|ISY S|} φA0 θ, for the uniform case, i.e. where
k = k′ = 1. The fixed point results for φA after the application of the value of
function are:
φA =

xa 7→ {(A,A, A)} xs 7→ {(S, A,A)}
yb 7→ {(B,B,B)} xb 7→ {(B,A, A)}
ych 7→ {(ch,B,B)} xch 7→ {(ch,A, A)} xch′ 7→ {(ch′, A, A)}
zs 7→ {(S, S, S)} zch 7→ {(ch, S, S)} zch′ 7→ {(ch′, S, S)}
ya 7→ {(A,A, B)} xb′ 7→ {(B,B,A)}
yna 7→ {(na, A, B)} xnb 7→ {(nb, B,A)}
ykb 7→ {(θ(B)−, B, B)} xsig 7→ {([{na}]θ(B)− , B, A)}
ysig 7→ {([{nb}]θ(A)− , A, B)} xkb 7→

∑
U∈dom(θ)

{(θ(U)+, A, A)}

yka 7→ {(θ(A)+, B, B)} x 7→ {(na, A, A)} y 7→ {(nb, B,B)}
xka 7→ {(θ(A)−, A, A)} xks 7→ {(θ(S)+, A, A)}
zks 7→ {(θ(S)−, S, S)}
zc 7→

∑
U∈dom(θ)

{({[([{nb}]θ(A)− , B, θ(U)+)]}θ(S)+ , A, S)}

zp 7→ {(([{nb}]θ(A)− , B, θ(U)+), S, S)} zsig 7→ {([{nb}]θ(A)− , S, S)}
zb 7→ {(B,S, S)} zkey 7→

∑
U∈dom(θ)

{(θ(U)+, S, S)}

zkb 7→ {(θ(B)+, S, S)}
κ 7→ {(I, I, I), (A,A, I), (NA, A, I), (B,B, I), (NB , B, I), (S, I, I)

(θ(A)+, I, I), (θ(B)+, I, I), (θ(S)+, I, I), (θ(I)+, I, I), (θ(I)−, I, I)}
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From these results, it is possible to verify that the secrecy requirement on all
the private keys of the protocol i.e., secret](U, θ(A)−), secret](U ′, θ(B)−) and
secret](U ′′, θ(S)−), where U ∈ {B,S, I}, U ′ ∈ {A,S, I} and U ′′ ∈ {A,B, I}. In
the case of B, we find that participated](B,A) can be shown to hold according
to case (2) of Definition (6), however, in the case of the verification of B’s
participation by A, i.e. participated](A,B), it is only possible to show that
case (1) holds true in Definition (6) participated](A,B), but that case (2) is
impossible to prove. However, we find that case (3) can be proven for the case
of A, since A relies on S.

11 Conclusion

In this technical report, we reviewed the process algebraic language, SPIKY,
which is used for the modelling of systems that use Public-Key Infrastructures
(PKIs). SPIKY formalises the notion of process ownership by PKI agents as
well as the operations of (un)certified public and private key retrievals, which
constitute an essential element of any PKI-based protocol. We then developed a
domain-theoretic model for protocols in SPIKY and used the model to construct
a non-uniform static analysis for capturing the property of term-substitutions.
These substitutions appear as a result of message-passing and the application
of cryptographic/PKI operations within protocols. The results of the static
analysis were used to formalise two security properties: term secrecy and peer-
entity participation. Finally we used these formalisations to reason about the
security properties of a couple of simple authentication protocols assumed to be
running in parallel with Dolev-Yao’s attacker.

For future work, we would like to apply the analysis to more complicated
protocols, such as the Internet Key Exchange protocol (IETF RFC 2409) and
the Transport Layer Security protocol (IETF RFC 2246). We would also like
to investigate the quantitative aspects of PKI-based operations by introducing
a theory of constraint semirings in a manner similar to [4], which deals with the
cost of mobility and message-passing. Such analyses are of particular interest
when comparing the cost of security against the quantitative capabilities of the
different models of intruders, e.g. the weakest, passive and the most powerful
intruder.
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ing firewalls using flow logics. Theoretical Computer Science, 283(1):381–
418, June 2002.

[31] Gordon Plotkin. A powerdomain construction. SIAM Journal on Comput-
ing, 5(3):452–487, September 1976.

[32] P.Y.A. Ryan and S.A. Schnieder. Modelling and Analysis of Security Pro-
tocols. Addison-Weslley, 2001.

[33] Davide Sangiorgi and David Walker. The Pi-Calculus - A Theory of Mobile
Processes. Cambridge University Press, Cambridge, UK, 2001.

[34] Ian Stark. A fully abstract domain model for the π-calculus. In Proceedings
of the 11th Annual IEEE Symposium on Logic in Computer Science, pages
36–42, New Brunswick, New Jersey, USA, July 1996. IEEE Computer So-
ciety.

[35] Alan M. Turing. On computable numbers, with an application to the
entscheidungsproblem. Proceedings of the London Mathematical Society,
42:230–265, 1937.

[36] CCITT Rec. X.509. ISO/IEC 9594–8:1994 information technology - open
systems interconnection - the directory: Authentication framework, 1994.

31


