
Department of Computing, Imperial College London

Technical Report 2006/10

Preliminary Proceedings

13th International Workshop on
Expressiveness in Concurrency

EXPRESS’06

Bonn, Germany

26 August 2006

Editors:

Roberto Amadio
Iain Phillips

ii

Contents

Preface v

Hagen Völzer (Express Invited Speaker)
When a System is Fairly Correct (Extended Abstract) 1

Diletta Cacciagrano, Flavio Corradini, Catuscia Palamidessi
Fair Π . 4

Xu Wang, Marta Kwiatkowska
Compositional State Space Reduction Using Untangled Actions 16

Ahmed Bouajjani, Jan Strejc̆ek, Tayssir Touili
On Symbolic Verification of Weakly Extended PAD 29

Robin Milner (Joint Express/Infinity/SOS Invited Speaker)
Local Bigraphs and Confluence: Two Conjectures (Extended Abstract) 42

Vincent Danos, Jean Krivine, Pawel Sobociński
General Reversibility . 50

Daniele Gorla
Synchrony vs Asynchrony in Communication Primitives 61

Lucy Saunders-Evans, Glynn Winskel
Event Structure Spans for Non-deterministic Dataflow 74

Lúıs Caires, Hugo Torres Vieira
Extensionality of Spatial Observations in Distributed Systems 86

iii

iv

Preface

The EXPRESS workshops aim at bringing together researchers interested in the re-
lations between various formal systems in computer science, in particular in the field
of concurrency. More specifically, they focus on the comparison between program-
ming concepts (such as concurrent, functional, imperative, logic and object-oriented
programming) and between mathematical models of computation (such as process
algebras, Petri nets, event structures, modal logics, rewrite systems etc.) on the
basis of their relative expressive power.

The EXPRESS workshops were originally held as meetings of the HCM project
EXPRESS, which was active with the same focus from January 1994 until December
1997. The first three workshops were held in Amsterdam (1994, chaired by Frits
Vaandrager), Tarquinia (1995, chaired by Rocco De Nicola) and Dagstuhl (1996,
co-chaired by Ursula Goltz and Rocco De Nicola). The workshop in 1997, which
took place in Santa Margherita Ligure and was co-chaired by Catuscia Palamidessi
and Joachim Parrow, was organized as a conference with a call for papers and a
significant attendance from outside the project. As of 1998 (so, also this year),
the workshops are held as satellite workshops of the CONCUR conferences. In
1998, this was in Nice, co-chaired by Ilaria Castellani and Catuscia Palamidessi,
in 1999 in Eindhoven, co-chaired by Ilaria Castellani and Björn Victor, in 2000 at
Pennsylvania State University, co-chaired by Luca Aceto and Björn Victor, in 2001
at BRICS, Aalborg University, co-chaired by Luca Aceto and Prakash Panangaden,
in 2002 in Brno, co-chaired by Uwe Nestmann and Prakash Panangaden, in 2003 in
Marseille, co-chaired by Flavio Corradini and Uwe Nestmann, in 2004 in London,
co-chaired by Jos Baeten and Flavio Corradini, and finally in 2005 in San Francisco,
co-chaired by Jos Baeten and Iain Phillips.

This year, in response to the call for papers, we received 24 submissions. The
programme committee selected nine of these for presentation at the workshop.
Two of these were short papers that do not appear in the proceedings. In addition,
the workshop had two invited presentations, by Robin Milner (invited jointly with
the Infinity and SOS workshops), and by Hagen Völzer. Abstracts for these talks
appear in these preliminary proceedings. We would like to thank the authors of
the submitted short and full papers, the invited speakers, the members of the
programme committee and their subreferees for their contribution to both the
meeting and this volume. We thank the CONCUR organising committee for
hosting EXPRESS’06, in particular the workshop organiser Marcus Größer and
CONCUR programme committee co-chairs Christel Baier and Holger Hermanns.
We are grateful to Marcus Größer for arranging the printing of these preliminary
proceedings. Michael Mislove helped with style files, Erik Luit provided invaluable
advice on installing Cyberchair, and the Imperial College Department of Comput-
ing Computing Support Group (and especially Andy Davies and Duncan White)
helped with setting up the webpage http://www.doc.ic.ac.uk/express06. The
final proceedings will appear in the Electronic Notes in Theoretical Computer
Science (ENTCS) series, and will become available electronically at Elsevier Science
Publisher’s website http://www.elsevier.nl/locate/entcs. We are grateful to

v

ENTCS for their continuing support, in particular to Michael Mislove, Managing
Editor of the ENTCS series.

The editors

Roberto Amadio (Université Paris 7)
Iain Phillips (Imperial College London)

EXPRESS 2006 Programme Committee

Robert Amadio Uwe Nestmann
Michele Bugliese Joel Ouaknine
Nadia Busi Catuscia Palamidessi
Sibylle Fröschle Iain Phillips
Antonin Kucera Philippe Schnoebelen
Bas Luttik Pawel Sobocinski
Michael Mislove Mariëlle Stoelinga

EXPRESS 2006 Subreferees

Martin Berger Mikkel Nygaard
Stefan Blom Luca Padovani
Johannes Borgström Prakash Panangaden
Roberto Bruni G. Michele Pinna
Troels C. Damgaard Davide Sangiorgi
Søren Debois Ana Sokolova
Yuxin Deng Martin Steffen
Susan Eisenbach Nikola Trcka
Maurizio Gabbrielli Daniele Varacca
Bartek Klin Cristian Versari
S lawomir Lasota James Worrell
Axel Legay Peng Wu
Damiano Macedonio Gianluigi Zavattaro

vi

EXPRESS 2006 Preliminary Version

When a system is fairly correct

Hagen Völzer1,2

Institute for Theoretical Computer Science
Lübeck University

Germany

Abstract

We give an overview over recent work on fairness in reactive and concurrent systems, including an abstract
characterisation of fairness. We also derive a notion of a fairly correct system and sketch its application.

Keywords: Fairness, liveness, temporal properties, verification, model checking

Extended Abstract

Fairness is a convenient and popular tool when modelling and specifying concur-
rent systems. A large variety of fairness notions exists in the literature. Among
them, we find well-known notions such as weak fairness (justice) [12], strong fair-
ness (compassion) [12], and extreme fairness [15] and less-known notions such as
∞-fairness [4], α-fairness [13], and hyperfairness [3,11,17]. A fairness notion is often
meant to represent a particular phenomenon. Phenomena expressed by fairness as-
sumptions include progress of individual processes, general environment behaviour,
behaviour of probabilistic choice, impartiality of arbiters and schedulers, and partial
synchrony. Many fairness notions are geared to a particular application or speci-
fication language. Overviews over fairness can be found in [9,6,12]. More recent
studies on fairness include [7,8,11,18].

In contrast to safety and liveness, which were characterised by Lamport [10] and
Alpern and Schneider [1], there was no fully satisfactory abstract characterisation
of fairness. However, Apt, Francez, and Katz [2] gave some criteria that must
be met by any fairness assumption. Following Lamport [11], we think that their
most important criterion is that a fairness assumption must be machine closed with
respect to the safety property defined by the transition system under consideration.

1 This extended abstract is based on joint work with Daniele Varacca, Imperial College London, UK and
Ekkart Kindler, Paderborn University, Germany
2 Email: voelzer@tcs.uni-luebeck.de

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Völzer

This, basically, means that fairness is imposed in such a way to the transition system
that the system ‘cannot paint itself into a corner’ [2]; i. e. , whatever the system does,
it is possible to continue in such a way that the fairness assumption is met. While
machine closedness is necessary for a property to be a fairness property, it does not
exclude some properties that are intuitively not fairness properties.

We propose (together with Varacca and Kindler [18]) a definition of fairness
that refines machine-closure and excludes properties that are intuitively not fairness
properties. One characterisation says: A fairness property with respect to a system
is a property that contains a property of the form ‘If each prefix of a run can
be extended to satisfy Q, then that run has always eventually a prefix satisfying
Q′, where Q is a property of finite runs. We show that fairness is then closed
under arbitrary union and countable intersection and that most popular fairness
notions satisfy our definition. We give independent characterisations in terms of
game theory, language theory, and general topology [18]. It turns out that fairness
as we define it coincides with the co-meager sets of the natural topology of runs, a
subclass of the dense sets. This shows that our characterisation of fairness is in line
with the definitions of safety and liveness given by Lamport [10] and Alpern and
Schneider [1] since safety properties are the closed sets and liveness properties are
the dense sets of that topology.

A co-meager set is a ‘large’ set in a topological sense. This gives rise to a notion
of a ‘fairly correct’ system [16]: a system is fairly correct if its specification is a large
set relative to the set of all runs of the system, i.e., most runs of the system satisfy
the specification. Equivalently, a system is fairly correct if there exists a fairness
assumption under which it is correct. Many distributed, especially fault-tolerant,
systems are only fairly correct with respect to their actual specification since often,
fully correct solutions are too expensive or do not exist [5].

Another natural way to formalise ‘large set’ is to mean probabilistically large,
i.e., a set of measure 1 for a given probability measure. Note that this notion needs
a concrete probability measure, which may be hard to justify for a given system. The
notions of probabilistic and topological largeness share many properties. A classic
mathematical text book [14] is devoted to study their similarities and differences.
Although similar, these notions do not coincide in general—in fact, even for the
most straightforward probability measure on the set of runs, there are topologically
large sets that have probability 0. However, it turns out [16] that the two notions
coincide for bounded Borel measures on finite state systems.

It follows that fair correctness of a finite system is decidable and can be checked
with the same complexity as usual correctness for LTL and Büchi automata spec-
ifications. However, in contrast to usual correctness, for fair correctness, it is not
necessary to specify any fairness assumption explicitly.

References

[1] Alpern, B. and F. B. Schneider, Defining liveness, Information Processing Letters 21 (1985), pp. 181–
185.

[2] Apt, K. R., N. Francez and S. Katz, Appraising fairness in languages for distributed programming,
Distributed Computing 2 (1988), pp. 226–241.

2

Völzer

[3] Attie, P. C., N. Francez and O. Grumberg, Fairness and hyperfairness in multi-party interactions,
Distributed Computing 6 (1993), pp. 245–254.

[4] Best, E., Fairness and conspiracies, Information Processing Letters 18 (1984), pp. 215–220, erratum
ibidem 19:162.

[5] Fich, F. E. and E. Ruppert, Hundreds of impossibility results for distributed computing., Distributed
Computing 16 (2003), pp. 121–163.

[6] Francez, N., “Fairness,” Springer, 1986.

[7] Joung, Y.-J., On fairness notions in distributed systems, part I: A characterization of implementability,
Information and Computation 166 (2001), pp. 1–34.

[8] Joung, Y.-J., On fairness notions in distributed systems, part II: Equivalence-completions and their
hierarchies, Information and Computation 166 (2001), pp. 35–60.

[9] Kwiatkowska, M. Z., Survey of fairness notions, Information and Software Technology 31 (1989),
pp. 371–386.

[10] Lamport, L., Formal foundation for specification and verification, in: M. Alford, J. Ansart, G. Hommel,
L. Lamport, B. Liskov, G. Mullery and F. Schneider, editors, Distributed Systems: Methods and Tools
for Specification, LNCS 190, Springer-Verlag, 1985 .

[11] Lamport, L., Fairness and hyperfairness, Distributed Computing 13 (2000), pp. 239–245.

[12] Lehmann, D. J., A. Pnueli and J. Stavi, Impartiality, justice and fairness: The ethics of concurrent
termination., in: S. Even and O. Kariv, editors, ICALP, LNCS 115 (1981), pp. 264–277.

[13] Lichtenstein, O., A. Pnueli and L. D. Zuck, The glory of the past, in: R. Parikh, editor, Logic of
Programs, LNCS 193 (1985), pp. 196–218.

[14] Oxtoby, J. C., “Measure and Category. A Survey of the Analogies between Topological and Measure
Spaces,” Springer-Verlag, 1971.

[15] Pnueli, A., On the extremely fair treatment of probabilistic algorithms, in: Proc. 15th Annual Symposium
on Theory of Computing (STOC) (1983), pp. 278–290.

[16] Varacca, D. and H. Völzer, Temporal logics and model checking for fairly correct systems, in: LICS,
2006.

[17] Völzer, H., Refinement-robust fairness, in: Proc. CONCUR2002 – 13th International Conference on
Concurrency Theory, Brno, Czech Republic, LNCS 2421 (2002), pp. 547–561.

[18] Völzer, H., D. Varacca and E. Kindler, Defining fairness, in: M. Abadi and L. de Alfaro, editors,
CONCUR, LNCS 3653 (2005), pp. 458–472.

3

EXPRESS 2006 Preliminary Version

Fair Π ?

Diletta Cacciagrano1, Flavio Corradini2

Dipartimento di Matematica e Informatica
Università degli Studi di Camerino, Italy

Catuscia Palamidessi3

INRIA Futurs and LIX École Polytechnique, France

Abstract

In this paper, we define fair computations in the π-calculus [MPW92]. We follow Costa and Stirling’s
approach for CCS-like languages [CS84,CS87] but exploit a more natural labeling method of process actions
to filter out unfair process executions. The new labeling allows us to prove all the significant properties
of the original one, such as unicity, persistence and disappearance of labels. It also turns out that the
labeled π-calculus is a conservative extension of the standard one. We contrast the existing fair testing
[BRV95,NC95] with those that naturally arise by imposing weak and strong fairness as defined by Costa
and Stirling. This comparison provides the expressiveness of the various fair testing-based semantics and
emphasizes the discriminating power of the one already proposed in the literature.

Key words: Pi-Calculus, Testing Semantics, Strong Fairness, Weak Fairness.

1 Introduction

In the theory and practice of parallel systems, fairness plays an important role
when describing the system dynamics. Several notions have been proposed in the
literature, as in [CS84,CS87], where Costa and Stirling distinguish between fairness
of actions in [CS84] (for a CCS-like language without restriction), and fairness of
components in [CS87]. In both cases they distinguish between weak fairness and
strong fairness. Weak fairness requires that if an action (a component, resp.) can
almost always proceed, then it must eventually do so, while strong fairness requires
that if an action (a component, resp.) can proceed infinitely often, then it must
proceed infinitely often. The main ingredients of the theory of fairness in [CS84]
and [CS87] are:

? This work was supported by the Investment Funds for Basic Research (MIUR-FIRB) project Laboratory
of Interdisciplinary Technologies in Bioinformatics (LITBIO) and by Halley Informatica.
1 Email: diletta.cacciagrano@unicam.it
2 Email: flavio.corradini@unicam.it
3 Email: catuscia@lix.polytechnique.fr

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Cacciagrano, Corradini, Palamidessi

- A labeling method for process terms. This allows to detect the action performed
during a transition and the component responsible for it. Labels are strings
in {0, 1}∗, associated systematically with operators and basic actions inside a
process. Along a computation, labels are unique and, once a label disappears, it
does not reappear in the system anymore (unicity, persistence and disappearance
properties).

- Live actions (components, resp.). An action (a component, resp.) of a process
term is live if it can currently be performed (perform an action, resp.). In a
term like (νz)(x(y).z̄w.0 | z(u).0), only action x can be performed while z cannot,
momentarily.

In this paper, we adapt to the π-calculus [MPW92] the approach to fairness
which has been proposed in [CS84,CS87] for CCS-like languages [Mil89]. A dif-
ference with [CS87,CS87] is that our labels are pairs 〈w, n〉 ∈ ({0, 1}∗ × N). The
first element, w, represents the position of the component (in the term structure)
and depends only on the static operators (parallel and restriction). This element
ensures the unicity of a label. The second element, n, provides information about
the dynamics of the component, more precisely, it indicates how many actions that
component has already executed since the beginning of the computation, and it de-
pends only on the dynamic operator (prefix). This second element serves to ensure
the disappearence property of a label. So, we have the unicity and disappearence
properties of labels like in [CS84,CS87] but, differently from the latter, we keep
separated the information about the static and dynamic operators. We believe that
this new labeling method represents more faithfully the structure of a process and
makes more intuitive the role of the label in the notion of fairness.

The proposed labeling technique allows to define weak and strong fair compu-
tations. On the top of them we introduce must testing semantics [BD95], to obtain
the so-called weak fair must semantics and strong fair must semantics. These two
fair testing semantics are compared with an existing one in the literature - the fair
testing [BRV95,NC95] - that does not need any labeling of actions. We present a
comparison between fair testing and weak and strong fair must semantics as well as
with standard must testing. This comparison emphasizes the expressiveness of the
different fair testing semantics especially for what it concerns fair testing. We show
interesting side-effects when the must testing is imposed over weak and strong fair
computations. In particular, any strong fair computation is also a weak fair one
while it turns out that weak fair must semantics is strictly finer than the strong fair
must one.

2 The π-calculus

We now briefly recall the basic notions about the (choiceless) π-calculus. Let N
(ranged over by x, y, z, . . .) be a set of names. The set P (ranged over by P,Q,R, . . .)
of processes is generated by the following grammar:

P ::= 0 x(y).P τ.P x̄y.P P | P (νx)P ! x(y).P

The input prefix y(x).P , and the restriction (νx)P , act as name binders for the
name x in P . The free names fn(P) and the bound names bn(P) of P are defined

5

Cacciagrano, Corradini, Palamidessi

as usual. The set of names of P is defined as n(P) = fn(P) ∪ bn(P). Only input
guarded terms can be in the scope of the bang operator, but this is not a real
shortcoming, since this kind of replicator is as expressive as the full bang operator
[HY94].

The operational semantics of processes is given via a labeled transition system,
whose states are the process themselves. The labels (ranged over by µ, γ, . . .) “cor-
respond” to prefixes, input xy, output x̄y and tau τ , and to the bound output
x̄(y) (which models scope extrusion). If µ = xy or µ = x̄y or µ = x̄(y) we define
sub(µ) = x and obj(µ) = y. The functions fn, bn and n are extended to cope with
labels as follows:

bn(xy) = ∅ bn(x̄(y)) = {y} bn(x̄y) = ∅ bn(τ) = ∅

fn(xy) = {x, y} fn(x̄(y)) = {x} fn(x̄y) = {x, y} fn(τ) = ∅

The transition relation is given in Table 1. We omit symmetric rules of Par, Com
and Close for lake of space. We also assume alpha-conversion to avoid collision of
free and bound names.

Input x(y).P xz−→ P{z/y}

Output/Tau α.P
α−→ P where α = x̄y or α = τ

Open
P

x̄y−→ P ′

(νy)P
x̄(y)−→ P ′

x 6= y Res
P

µ−→ P ′

(νy)P
µ−→ (νy)P ′

y 6∈ n(µ)

Par
P

µ−→ P ′

P |Q µ−→ P ′ |Q
bn(µ) ∩ fn(Q) = ∅

Com
P

xy−→ P ′, Q
x̄y−→ Q′

P |Q τ−→ P ′ |Q′
Close

P
xy−→ P ′, Q

x̄(y)−→ Q′

P |Q τ−→ (νy)(P ′ |Q′)

Bang !x(y).P xz−→P{z/y} | !x(y).P

Table 1
Early operational semantics for P terms.

Definition 2.1 (Weak transitions) Let P and Q be P processes. Then:

- P ε=⇒ Q iff ∃P0, ..., Pn ∈ P, n ≥ 0, s.t. P = P0
τ−→ ...

τ−→ Pn = Q ;

- P
µ

=⇒ Q iff ∃P1, P2 ∈ P s.t. P ε=⇒ P1
µ−→ P2

ε=⇒ Q .

Notation 2.1 For convenience, we write x(y) and x̄y instead of x(y).0 and x̄y.0,
respectively. Furthermore, we write P

µ−→ (respectively P
µ

=⇒) to mean that there
exists P ′ such that P

µ−→ P ′ (respectively P
µ

=⇒ P ′) and we write P ε=⇒ µ−→ to
mean that there are P ′ and Q such that P ε=⇒ P ′ and P ′ µ−→ Q.

6

Cacciagrano, Corradini, Palamidessi

3 Testing semantics

In this section we briefly summarize the basic definitions behind the testing ma-
chinery for the π-calculus.

Definition 3.1 (Observers)

- Let N ′ = N ∪ {ω} be the set of names, assuming ω 6∈ N . By convention
fn(ω) = {ω}, bn(ω) = ∅ and sub(ω) = ω. ω is used to report success.

- The set O (ranged over by o, o′, o′′, . . .) of observers is defined like P, where the
grammar is extended with the production P ::= ω.P .

- The operational semantics of P is extended to O by adding ω.P ω−→ P .

Definition 3.2 (Experiments) The set of experiments E is the set { (P | o) | P ∈
P and o ∈ O}.

Definition 3.3 (Maximal computations) Given P ∈ P and o ∈ O, a maximal
computation from P | o is either an infinite sequence of the form

P | o = T0
τ−→ T1

τ−→ T2
τ−→ . . .

or a finite sequence of the form

P | o = T0
τ−→ T1

τ−→ . . .
τ−→ Tn 6

τ−→ .

We are now ready to define must and fair testing semantics.

Definition 3.4 (Must and Fair Testing Semantics) Given a process P ∈ P and an
observer o ∈ O, define:

- P must o if and only if for every maximal computation from P | o
P | o = T0

τ−→ T1
τ−→ . . . Ti [τ−→ . . .]

there exists i ≥ 0 such that Ti
ω−→;

- P fair o if and only if for every maximal computation from P | o
P | o = T0

τ−→ T1
τ−→ . . . Ti [τ−→ . . .]

Ti
ω=⇒, for every i ≥ 0.

4 A labeled version of the π-calculus

Fairness imposes that concurrent subprocesses always eventually proceed unless
they are deadlocked or have terminated. Such a constraint will affect the behavior
of processes. Consider, for instance, the process P |P , where P = (νa)(!a.ā | ā) and
the computation P | P τ−→ P | P τ−→ P | P τ−→ .. We can not know whether the
computation is fair or not, since we do not know which component (either on the
right hand or on the left one of |), at each reduction step performs a synchronization:
we need to distinguish unambiguously actions of a concurrent system and to monitor
them along its computations.

For this purpose, we extend to the π-calculus the label-based approach proposed
in [CS87]. As explained in the introduction, however, we depart from [CS87] in the
way we define the labels. In our case, labels are pairs whose first and second elements

7

Cacciagrano, Corradini, Palamidessi

represent, respectively, the position of the component in the term and the number
of actions already executed.

Definition 4.1 Let P ∈ P. Define L〈s,n〉(P), where s ∈ {0, 1}∗ and n ∈ N, induc-
tively as follows:

L〈s,n〉(0) = 0;

L〈s,n〉(µ.P) = µ〈s,n〉.L〈s,n+1〉(P) (µ ∈ {x(y), x̄y, τ});
L〈s,n〉(P |Q) = L〈s0,n〉(P) | L〈s1,n〉(Q);

L〈s,n〉((νx)P) = (νx)L〈s,n〉(P);

L〈s,n〉(!x(y).P) =!L〈s,n〉(x(y).P).

We proceed by defining L(B), as the language generated by the grammar

B ::= 0 L〈s,n〉(µ.P) (νx)B B |B !L〈s,n〉(x(y).P)

where s ∈ {0, 1}∗, n ∈ N, P ∈ P and µ ∈ {x(y), x̄y, τ}.
We now define a binary relation < over sets of labels and two functions, top and

lab, allowing to obtain all labels appearing on the top of a labeled process and the
whole labels set, respectively.

Definition 4.2 Let L1, L2 ⊆ ({0, 1}∗ × N). We define L1 < L2 if and only if
∀〈s1, n1〉 ∈ L1, ∀〈s2, n2〉 ∈ L2, s1 6≤ s2 and s2 6≤ s1, where ≤ is the usual prefix
relation between strings.

Definition 4.3 Let E ∈ L(B). top(E) and lab(E) are defined by structural induc-
tion as follows:
E = 0 : top(E) = ∅ lab(E) = ∅

E = L〈s,n〉(µ.P) : top(E) = {〈s, n〉} lab(E) = {〈s, n〉} ∪ lab(L〈s,n+1〉(P))

E = (νx)E′ : top(E) = top(E′) lab(E) = lab(E′)

E = E1|E2 : top(E) = top(E1) ∪ top(E2) lab(E) = lab(E1) ∪ lab(E2)

E =!L〈s,n〉(x(y).P) : top(E) = {〈s, n〉} lab(E) = lab(L〈s,n〉(x(y).P))

Now, we are ready to define Pe, the set of labeled π-calculus terms.

Definition 4.4 Pe is the set {E ∈ L(B) |wf(E)}, where wf(E) is defined in Table
2.

It is possible to verify that ∀E ∈ Pe, top(E) ⊆ lab(E). The intuition behind the
definitions of top and lab in the case of a bang term follows by viewing !L〈s,n〉(x(y).P)
as L〈s,n〉(x(y).(P | !x(y).P)).

The operational semantics of Pe is similar to the one in Table 1; we simply
ignore labels in order to derive a transition. As expected, the only rule that needs
attention regards bang processes, because the unfolding generates new components
and we must ensure unicity of labels. Since the unfolding puts two components in
parallel, we exploit a proper dynamic labeling of the parallel components (Table 3).

To give some more intuition, consider S = x(y).(z(k)| z̄h)|f and its label version

8

Cacciagrano, Corradini, Palamidessi

Nil/Prefix/Bang
E = 0 ∨ E = L〈s,n〉(µ.P) ∨ E =!L〈s,n〉(x(y).P))

wf(E)

Res
wf(E)

wf((νx)E)

Par
wf(E1), wf(E2), top(E1) < top(E2)

wf(E1 | E2)

Table 2
Well Formed Terms.

Bang !x(y).P xz−→ P{z/y} | !x(y).P

Bang(Pe) !L〈s,n〉(x(y).P) xz−→ L〈s0,n+1〉(P{z/y}) | !L〈s1,n+1〉(x(y).P)

Table 3
Bang Rules.

S′ =x(y)〈0,0〉.(z(k)〈00,1〉 | z̄h〈01,1〉)|f〈1,0〉.
4 Prefixes x(y) and f in S are both top level

prefixes. For this reason, they get labels of length 1; though the one on the left hand
side of the parallel composition has been labeled 0, while the one on the right hand
side has been labeled 1, just to distinguish the two prefixes. On the other hand,
z(k) and z̄h within the scope of x(y) are both second level prefixes composed in
parallel, so that they get 00 and 01 as different parallel subcomponents, respectively.
However, as second action of the source component, they have the same index (i.e.
1). The significance of the second element of the labels is, of course, more evident
when we consider more sequential processes.
Pe enjoys closure properties under any renamings σ, since σ does not change

labels. Hence, it is closed under the execution of basic actions. Furthermore, no
label occurs more than once in a labeled term (unicity of labels) and once a la-
bel disappears (it happens when the action related to such a label is performed)
along a computation, it does not appear in the system anymore (persistence and
disappearance of labels). As expected, it is also a conservative extension of the
unlabeled language: denoting by Unl(E) the P process obtained by removing all
labels in E ∈ Pe, we can prove that E

µ−→ E′ implies Unl(E)
µ−→ Unl(E′) and

Unl(E)
µ−→ P ′ implies ∃E′ ∈ Pe such that E

µ−→ E′ and Unl(E′) = P ′.

5 Strong and weak fairness

The labeling method proposed in the previous section can be naturally extended over
observers and experiments. In the following, labels will be denoted by v, v1, v2, .. ∈
({0, 1}∗ × N) for convenience. Oe (ranged over by ρ, ρ′, ..) denotes the set of
observers, defined like Pe, where the grammar is enriched with the production
B ::= ωv.B and the operational semantics is obtained extending Pe semantics with

4 According to Costa and Stirling, we have: S′=x(y)0.(z(k)010.00101|01z̄h011.00111)|ε f1.011.

9

Cacciagrano, Corradini, Palamidessi

the rule ωv.B
ω−→ B. Ee denotes the set of labeled experiments in Pe, as expected.

The definition of live label is crucial in every fairness notion. Given a labeled
experiment S ∈ Ee, a live label is a label associated to a top-level action which
can immediately be performed, i.e. either a τ prefix or a input/output prefix able
to synchronize. Given an experiment S, its set of live labels associated to initial
τ actions is denoted by Lp(S); notice that, by definition of liveness, if S can not
perform any τ step then Lp(S) = ∅. Since top(S) is defined as the set of any labels
appearing on the top of S, Lp(S) ⊆ top(S) follows immediately by the definition of
live actions. Now, we can formally define two well-known notions of fairness.

Definition 5.1 (Weak Fair Computations) Given S ∈ Ee, a weak fair computation
from S is a maximal computation,

S ≡ S0
τ−→ S1

τ−→ S2
τ−→ . . .

τ−→ Si [τ−→ . . .]

where ∀v ∈ ({0, 1}∗ × N), ∀i ≥ 0, ∃j ≥ i such that v 6∈ Lp(Sj).

Definition 5.2 (Strong Fair Computations) Given S ∈ Ee, a strong fair computa-
tion from S is a maximal computation,

S ≡ S0
τ−→ S1

τ−→ S2
τ−→ . . .

τ−→ Si [τ−→ . . .]

where ∀v ∈ ({0, 1}∗ × N), ∃i ≥ 0 such that ∀j ≥ i, v 6∈ Lp(Sj).

A weak fair computation is a maximal computation such that no label becomes
live and then keeps on being live forever. A strong fair computation is a maximal
computation such that no label is live infinitely often, i.e. no label can become live,
lose its liveness, become live again, etc. forever. Formally, strong fairness imposes
that for every label there is some point beyond which it never becomes live. Any
finite computation is strong fair because all the actions, corresponding to live labels,
are performed, and the computation stops when there is no reduction at all. Some
useful results follow:

i) every strong fair computation is weak fair, but not the vice versa;

ii) for any labeled experiment S there is a strong fair computation out of S.

Consider item (i). To prove the positive result it suffices to notice that a strong
fair computation is a special case of weak fair computation. To prove the negative
result, consider S :=!av1 | (νb)(!bv2 .(āv3 | b̄v4) | b̄v5) | av6 .ωv7 . It is not difficult to
check that there exists a maximal computation from S, along which av6 is never
performed. It is weak fair but not strong fair.

Now consider item (ii). It suffices to prove that ∀S ∈ Ee (a) Lp(S) is a finite set
and S 6 τ−→ implies Lp(S) = ∅; (b)v ∈ Lp(S) implies ∃S′ ∈ Ee such that S

µ−→ S′

and for any S′′ such that S′ ε=⇒ S′′, v 6∈ Lp(S′′); (c) ∃S′ ∈ Ee such that S ε=⇒ S′,
Lp(S) ∩ Lp(S′) = ∅ and for any S′′ such that S′ ε=⇒ S′′, Lp(S) ∩ Lp(S′′) = ∅.

6 Comparing fair semantics

In this section we provide a comparison among two different notions of fairness
and the must semantics. First of all, it is easy to prove that ∀P ∈ P,∀o ∈ O,
P must o implies P fair o, but not the vice versa: it suffices to consider the process

10

Cacciagrano, Corradini, Palamidessi

P ::= (νa)(!a.ā | ā) | b̄ and the observer o ::= b.ω.
Then, we try to add fairness in the must testing semantics and investigate the

resulting semantic relations.

Definition 6.1 (Strong and Weak Fair Must Semantics) Let E ∈ Pe and ρ ∈ Oe.
Define Esfmustρ (Ewfmustρ) if and only if for every strong (weak) fair computation
from (E | ρ)

E | ρ = S0
τ−→ S1

τ−→ . . .
τ−→ Si [τ−→ . . .]

there exists i ≥ 0 such that Si
ω−→.

6.1 Weak fairness and strong fairness in a must testing scenario

The following proposition states a very interesting result regarding weak and strong
fair must semantics. Notice that the positive implication follows by the fact that
an unsuccessful strong fair computation from an experiment E | ρ is weak fair too.
This result seems to go against a well-established notion stating strong fairness a
special case of weak fairness. More in details, it is well-known that strong fairness
implies weak fairness, in the sense that a strong fair computation is obviously weak
fair too. However, this implication is reversed when the must testing semantics is
embedded in this fairness scenario: in the case that every weak fair computation
from an experiment is successful, then every strong fair computation from the same
experiment is successful.

Proposition 6.2 For every E ∈ Pe and ρ ∈ Oe, then Ewfmustρ implies E sfmustρ,
but not the vice versa.

Must semantics imposes the success over any computation from a given experi-
ment; that being so, any action leading to success in a weak fair computation, can
be alternatively live and not only a finite number of steps, since its execution is
surely forcing to reach the success. It follows that a successful weak fair computa-
tion collapses in a successful strong fair computation. To prove the negative result,
consider E :=!av1 | (νb)(!bv2 .(āv3 | b̄v4) | b̄v5) and ρ := av6 .ωv7 .

From E | ρ there exists a maximal computation along which every live label
different from v6 is performed, while v6 becomes live, loses its liveness, becomes
live again, etc., without being performed: this computation is weak fair by defini-
tion and unsuccessful. Notice that v6 should be always performed in a strong fair
computation, determining the success of it.

Theorem 6.3 shows some interesting results by comparing weak/strong fair must
and must semantics.

Theorem 6.3 For every E ∈ Pe and ρ ∈ Oe, then

(i) Unl(E) must Unl(ρ) implies E wfmust ρ, but not the vice versa.

(ii) Unl(E) must Unl(ρ) implies E sfmust ρ, but not the viceversa.

Proof. (Sketch of:) Consider item (i): the positive result is trivial, since a successful
weak fair computation is obviously a successful maximal computation. To prove
the negative result, consider E := (νa)(!av1 .āv2 | āv3) | b̄v4 and ρ := bv5 .ωv6 . It is not
difficult to check that Unl(E) 6must Unl(ρ). E wfmust ρ follows by the fact that,

11

Cacciagrano, Corradini, Palamidessi

given a weak fair computation from E | ρ, there has to exist a term performing ω,
being v5 already live since the beginning of the computation and having to lose its
liveness at least once, by definition of weak fairness. In this case, losing liveness
implies that bv5 is performed. Item (ii) is a corollary of item (i) and Proposition
6.2. 2

6.2 Weak and strong fairness vs fair testing semantics

Since weak fair must is strictly finer than strong one, the latter would look suitable
to express fair testing semantics. However, Theorem 6.4 shows that not only the
former but also the latter does not suffice to characterize fair testing semantics.

Theorem 6.4 For every E ∈ Pe and ρ ∈ Oe, then

(i) E wfmust ρ implies Unl(E) fair Unl(ρ), but not the vice versa.

(ii) E sfmust ρ implies Unl(E) fair Unl(ρ), but not the vice versa.

Proof. (Sketch of:) Consider item (ii). Regarding the positive result, it is crucial
to show that, given S, S′ ∈ Ee such that S′ ε=⇒ S, and a strong fair computation
C from S, then the computation obtained by prefixing C with S′ ε=⇒ S keeps on
being strong fair.

To prove the negative result of item (ii), it is enough to consider

E := c̄v1 | !cv2 .(νa)(āv3 | av4 .c̄v5 | av6 .b̄v7)

and ρ := bv8 .ωv9 . It easy to check that Unl(E) fair Unl(ρ), but there exists a
strong fair computation in which v8 never becomes live. Since v8 prefixing ωv9 is
never performed and ωv9 is the only ω occurrence along the given computation, the
success will never be reached. Item (i) is just a corollary of item (ii). 2

7 Strong fairness and fair testing semantics

To pick up the intuition behind the negative results in Theorem 6.4, we need a
deeper explanation on what live means in the notion of strong (and weak) fairness.
An action corresponding to a live label is not required to be performed to lose its
liveness. Of course, when such an action is performed, then its label disappears
forever. However, the label of an action may be present but no longer be live if, for
example, a complementary action, which determines its liveness, is consumed in a
synchronization with another partner.

We start explaining the implication from strong fair must to fair testing seman-
tics: P fair o means that every maximal computation from P | o potentially can
always be successful i.e., from every state, action ω can be performed after finitely
many interactions of live actions. The existence of a computation from P | o, where
at least a state cannot lead to success at all (it means that P 6fair o), implies that
from that state it will be impossible to reach ω for any fair scheduling of its actions.

However, there are experiments such that P fair o and the set of their maximal
computations includes maximal unsuccessful computations. Consider, for instance,
P := c̄ | !c.(νa)(ā | a.c̄ | a.b̄) and o := b.ω. Denote Q2 := (νa)(ā | a.c̄ | a.b̄). In the
following (infinite) unsuccessful computation

12

Cacciagrano, Corradini, Palamidessi

P | o = c̄ | !c.Q2 | b.ω
τ−→ !c.Q2 |Q2 | b.ω

τ−→ c̄ | !c.Q2 | (νa)(a.b̄) | b.ω τ−→ ...

...
τ−→ c̄ | !c.Q2 | (νa)(a.b̄)|..| (νa)(a.b̄)| b.ω τ−→ ...

ω is always prefixed and its prefix will never be performed, since any occurrence of b̄
is prefixed in a deadlock term (νa)(a.b̄). Notice that this computation is strong fair
and unsuccessful. The prefix b in b.ω is not performed because it is always disabled,
and this is allowed in the strong fairness definition, even if it could become live
and be performed, in fair testing. Along a computation, strong fairness gives to
live actions only a finite number of chances to be performed or be disabled; after
finitely many steps, any action is either performed or disabled. The following result
emphasizes the reason behind the impossibility of characterizing fair testing by
strong (and weak) fairness.

Theorem 7.1 It is not possible to characterize sfmust and wfmust in terms of a
fair testing-like semantics on the basis of the transition tree only.

Proof. Without loss of generality, we consider processes of the form !P , for a
generic P ∈ P. Consider the following processes: P := (τ.ā) | (νc)(!c.c̄ | c̄) and
Q := (!(νb)(b̄|b|b.ā))|(νc)(!c.c̄|c̄). Fairness assumptions distinguish P and Q: in fact,
every strong (and weak) fair computation from P forces the execution of ā, sooner
or later. This is not the case of some strong (and weak) fair computations from Q:
occurrences of b and b.ā compete to be performed infinitely often and, whenever one
occurrence of b in (νb)(b̄|b|b.ā) is performed, b.ā is disabled forever, i.e. the fairness
constraint has not effect anymore. It follows that P and Q are neither sfmust nor
wfmust equivalent, i.e. there exists some observer o that distinguishes P and Q

w.r.t. both sfmust and wfmust . However, if we only consider transitions out of
the terms P and Q, they are even strong bisimilar. Hence, it follows that (P | o) e
(Q | o) are strong bisimilar too, for every observer o. We can conclude that a fair
testing definition would not distinguish P and Q. 2

8 Related work

Fairness is a key concept in systems modeling and verification. Different kinds of
fairness have been proposed in process algebras (see, for instance, [Hen87]). In this
paper we adopt the definitions of weak and strong fairness proposed for CCS-like
languages by Costa and Stirling in [CS84,CS87], to the π-calculus. An important
result stated in [CS84,CS87] characterizes fair computations as the concatenation
of certain finite sequences, called LP-steps that permits to think of fairness in terms
of a ‘localizable property’ and not as a property of complete maximal executions.
Almost simultaneously, two groups of authors [NC95], [BRV95] have come up with
the so-called fair testing. They proposed two equivalent testing semantics with the
property of abstracting from ‘certain’ divergences in contrast to the classical must
testing. The idea is to modify the classical definition of must testing in such a
way that the success can always be reached after finitely many steps. Both groups
of authors present alternative characterizations of the new fair testing semantics.
In [BRV96], the framework described in [BRV95] is extended to consider a set of
sound axioms for fair testing and with more examples showing the usefulness of the
new semantics. Another interesting paper is [FG98], where the authors generate

13

Cacciagrano, Corradini, Palamidessi

a natural hierarchy of equivalences for asynchronous name-passing process calculi
based on variations of Milner and Sangiorgi’s weak barbed bisimulation. The con-
sidered calculi (based on π-calculus and join calculus) are asynchronous in the sense
of [HT91]. After defining a particular class of contexts, called evaluation contexts
- contexts with only one hole and unguarded - they prove that barbed congruence
coincides with Honda and Yoshida’s reduction equivalence and, when the calculus
includes name matching, with asynchronous labeled bisimulation. They also show
that barbed congruence is coarser than reduction equivalence when only one barb
is tested. By combining simulation coupling and barbed properties, they prove that
every coupled barbed equivalence strictly implies fair testing equivalence. They
show that both relations coincide in the join calculus and on a restricted version of
the π-calculus where reception occurs only on names bound by a restriction (not
on free names and not on received names). In [Koo85], Koomen explains fairness
with probabilistic arguments: Fair Abstraction Rule says that no matter how small
the probability of success, if you try often enough you will eventually succeed. The
probabilistic intuitions motivating this rule are formalized in [NR99], where the
authors define a probabilistic testing semantics which can be used to alternatively
characterize fair testing. The key idea is to define this new semantics in such a way
that two non-probabilistic processes are fair-equivalent if and only if any probabilis-
tic version of both processes are equivalent in the probabilistic testing semantics.
In order to get this result, the authors define a simple probabilistic must semantics,
by saying that a probabilistic process must satisfy a test if and only if the proba-
bility with which the process satisfies the test equals 1. The subject of fairness in
probabilistic systems has been widely discussed in the literature; Pnueli [Pnu83] in-
troduces the notion of extreme fairness and α-fairness, to abstract from the precise
values of probabilities.

9 Conclusion and future work

In this paper, we define a labeled version of the π-calculus [MPW92], importing
techniques in [CS84,CS87] for CCS-like languages. We compare weak and strong
fairness and prove that both notions of fairness are not enough to characterize fair
testing semantics and we state the main reason of this failure. The results scale to
the asynchronous π-calculus [Bou92] and do not depend on the proposed labeling
method. As a future work, we plan to investigate on the existence of alternative
characterizations of the investigated fairness notions, allowing simple and finite
representations of fair computations such as the use of regular expressions as in
[CDV03,CDV04]. It is also interesting to investigate on the impact that these
different notions of fairness have on the encodings from the π-calculus into the
asynchronous π-calculus [CCP05].

References

[BD95] M. Boreale, R. De Nicola, Testing Equivalence for Mobile Processes, Information and Computation,
120, pp. 279-303, 1995.

[Bou92] G. Boudol, Asynchrony and the π-calculus, Technical Report 1702, INRIA, Sophia-Antipolis, 1992.

14

Cacciagrano, Corradini, Palamidessi

[BRV95] E. Brinksma, A. Rensink, W. Vogler, Fair Testing, Proc. of CONCUR’95, LNCS, 962, pp. 313-327,
1995.

[BRV96] E. Brinksma, A. Rensink, W. Vogler, Applications of Fair Testing, In “Protocols Specification,
Testing and Verification” (XVI), Chapman & Hall, pp. 145-160, 1996.

[CCP05] D.R. Cacciagrano, F. Corradini, C. Palamidessi, Separation of synchronous and Asynchronous
Communication via Testing. In 12th International Workshop on Expressiveness in Concurrency,
EXPRESS’05, 2005.

[CDV03] F.Corradini, M.R.Di Berardini, W.Vogler, Relating Fairness and Timing in Process Algebra, Proc.
of Concur’03, LNCS, 2761, pp. 446-460, 2003.

[CDV04] F.Corradini, M.R.Di Berardini, W.Vogler, Fairness of Components in System Computations. In
11th International Workshop on Expressiveness in Concurrency, EXPRESS’04, 2004.

[FG98] C. Fournet, G. Gonthier, A Hierarchy of Equivalences for Asynchronous Calculi, Proc. of ICALP’98,
pp. 844-855, 1998.

[CS84] G. Costa, C. Stirling, A Fair Calculus of Communicating Systems, Acta Informatica, 21, pp. 417-
441, 1984.

[CS87] G. Costa, C. Stirling: Weak and Strong Fairness in CCS. Information and Computation 73, pp.
207-244, 1987.

[DH84] R. De Nicola, M. Hennessy, Testing Equivalence for Processes, Theoretical Computers Science, 34,
pp. 83-133, 1984.

[Fra86] N. Francez, Fairness, Springer-Verlag, 1986.

[Hen87] M. Hennessy, An Algebraic Theory of Fair Asynchronous Communicating Processes, Theoretical
Computer Science, 49, pp. 121-143, 1987.

[HT91] K. Honda, M. Tokoro. An Object calculus for Asynchronous Communication, Proc. of ECOOP ’91,
LNCS, 512, pp. 133-147, 1991.

[HY94] K.Honda, N.Yoshida, Replication in Concurrent Combinators, Proc. of TACS ’94, LNCS, 789,
1994.

[Koo85] C. Koomen, Albegraic Specification and Verification of Communications protocols, Science of
Computer Programming, 5 pp. 1-36, 1985.

[LPS81] D. Lehmann, A. Pnueli, J. Stavi, Impartiality, justice and Fairness:the Ethics of Concurrent
Termination, Proc. of 8th Int. Colloq. Aut. Lang. Prog., LNCS, 115, pp. 264-277, 1981.

[Mil89] R. Milner, Communication and Concurrency, Prentice-Hall International, 1989.

[MPW92] R. Milner, J. Parrow, D. Walker, A Calculus of Mobile Processes, Part I and II, Information
and Computation, 100, pp. 1-78, 1992.

[NC95] V. Natarajan, R. Cleaveland, Divergence and Fair Testing, Proc. of ICALP’95, LNCS, 944, pp.
648-659, 1995.

[NR99] M. Núñez, D. Rupérez, Fair testing through probabilistic testing, Acta Informatica, 19, pp. 195-210,
1983. Protocol Specification, Testing, and Verication, 19, Kluwer Academic Publishers, pp. 135-150, 1999.

[Pnu83] A. Pnueli, On the Extremely Fair Treatment of Probabilistic Algorithms, Proc. of ACM Symph.
Theory of Comp., pp. 278-290, 1983.

[QS83] J.P.Queille, J.Sifakis, Fairness and Related Properties in Transition Systems-A Temporal Logic to
Deal with Fairness, Acta Informatica, 19, pp. 195-210, 1983.

15

EXPRESS 2006 Preliminary Version

Compositional state space reduction using
untangled actions

Xu Wang Marta Kwiatkowska1

School of Computer Science, University of Birmingham
Edgbaston, Birmingham B15 2TT, UK

Abstract

We propose a compositional technique for efficient verification of networks of parallel processes. It is based
on an automatic analysis of LTSs of individual processes (using a failure-based equivalence which preserves
divergences) that determines their sets of “conflict-free” actions, called untangled actions. Untangled actions
are compositional, i.e. synchronisation on untangled actions will not destroy their “conflict-freedom”. For
networks of processes, using global untangled actions derived from local ones, efficient reduction algorithms
can be devised for systems with a large number of small processes running in parallel.

Keywords: Untangled action, Conflict-freedom, Partial order reduction, Process algebra,
Compositionality, Determinism, and Partial confluence.

1 Introduction

Informally, an untangled action 2 is a special action in a discrete event system of
causality and conflict [24]. At any state of the system the action, if enabled, shall
not be entangled through any conflict with the rest of the system, and its only
contribution to the system dynamics is by causality. Therefore, if an untangled
action is not observed (due to hiding or other operations), its occurrence becomes
time irrelevant 3 . This gives us the opportunity to reduce the search space by
considering only one possibility of its occurrence time.

The notion of untangled actions is closely related to similar ideas in true concur-
rency semantics [24], partial order reduction [12,21], and Petri net unfolding [10].
Within process algebra, the closest work to ours is that of τ -confluence reduction
by Groote, van de Pol, Blom etc [8,7,2,3].

1 {X.Wang,M.Z.Kwiatkowska}@cs.bham.ac.uk
2 We prefer to use here the term “action” instead of “event” so as to distinguish between actions and their
occurrences. But in the rest of the paper they may be used interchangeably.
3 Some type of progress/maximality assumption is needed to guarantee that the action will eventually
occur.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Wang & Kwiatkowska

2 Motivations

This work is motivated by our experience in using process algebra (e.g. CSP and
FDR2 [6]) to verify asynchronous circuits [22], where high concurrency in gate-level
circuits induces serious state explosion problems. A well-known example is the tree
arbiter [5,25]. A tree arbiter consists of a tree of arbiter cells. Each arbiter cell
behaves as a two-way arbiter for its sons while at the same time acting as one of
the clients of its father node. In this way, a tree arbiter implements multi-way
arbitration through a hierarchy of two-way arbitration.

The state space of tree arbiters blows up exponentially wrt. the tree size, and
it is not readily amenable to reduction due to the conflicts inherent to arbitration.
Previously, Petri net unfolding techniques [10] and partial-order reduction enhanced
BDD methods [1] had been applied to it, with limited success. In this paper, we
will propose untangled action as a viable solution to this and similar systems.

r1+

r1+r2+

a2- a1-

a- a-

X

a1+ a2+

r+

a+

r1- r2-

r- r-

r1+

r1+

r1+

r2+

r2+

r2+

r+

a+

a2- a1-

a-
a-

r+

a+

X
r1+r2+

r1- a1+ a2+
r2-

r+

a1+ a2+a+

r-
r1-
r2-

r-

a-
r-

r-
a-

r2+

r2+

r1+

r1+

r2+

r2+

r1+

r1+

a1- a2-

r1 r2a1 a2

r a
.
 .
 .
 .
 .

arbcell

Figure 1. An arbiter tree, and the original and reduced LTSs of an arbiter cell

Untangledness is a simple idea. We will defer the theoretical justification to
later sections. For the arbiter cell example, it is not difficult to see that only two
actions are entangled in conflicts, i.e. a1+ and a2+. These tangled actions coincide
with so called output choice signal transitions [4]. With this information, it is
straightforward to give a state-space reduction algorithm by prioritising untangled
actions (similar to the chase reduction in FDR2) in the exploration of the state
space. That is, in a depth-first search, given a state with a non-empty set of
untangled outgoing transitions, we use some strategy to pick and prioritise one
from the set to explore; all the other transitions from the same state, untangled
or tangled, will be completely ignored in the exploration. In case a state has no
untangled transition, all the transitions from that state will need to be explored. It
is not difficult to apply the algorithm to reduce the LTS of the arbiter cell manually.
Figure 1 gives the reduced state space based on one possible prioritisation strategy.

However, the above reduction is correct only if we treat the arbiter cell as a closed
system and all the untangled actions are not observable to the checked properties.
Synchronisation with the environment may introduce new conflicts that can destroy

17

Wang & Kwiatkowska

the untangledness of the actions. The previous works on τ -confluence solve these
problems by considering only τ action [7,2,3] or locally visible and globally invisible
(lvgi) actions 4 without synchronisation [11].

Secondly, untangledness analysis with the environment factors taken into ac-
count is difficult since the analysis must avoid explicitly working on the global state
space, which is intractable in our context. In τ -confluence reduction, the proposed
solution is to use theorem proving on a symbolic representation (so called linear
processes) of global state spaces [3], or to use compositionality [11] as we have
adopted. However, since the involved actions must be synchronisation-free, their
compositionality does not apply to the tree arbiter, whose lvgi actions, e.g. r , a,
r1, etc., need further synchronisation.

In this paper, we propose a compositional technique for concurrent systems such
that untangledness analysis is done at a local level. A compositionality theorem
automatically calculates global untangled actions from the local ones. Using thus
obtained results, reduction can be applied on-the-fly on the global systems.
Structure of the paper. After the introduction of basic notations (Section 3)
and concurrent systems (Section 4), two important (partial) determinacy notions
on LTSs with lvgi actions, one stronger than the other, are proposed in Section 5.
The former is compositional on the lvgi actions without synchronisation potential
and induces a simple and efficient on-the-fly reduction procedure (Section 6). The
latter removes the synchronisation restriction and becomes compositional on all
lvgi actions, and thus enables compositional reductions (Section 7). Preliminary
experiment results are given and the paper is summarised in Section 8.

3 Basic Notation

A LTS (Labelled Transition System) is (A,S ,T , s0), consisting of a set A of visible
events called the alphabet, a (finite or infinite) set S of states, a transition relation
T : S × (A ∪ {τ})↔ S and the initial state s0 ∈ S .

(Event, Sequence and Trace) Let e be a visible event, a be a τ or visible
event, and ∆ be a subset of A. ∆τ and Aτ denote ∆ ∪ {τ} and A ∪ {τ}. k and l
are finite sequences of events (including the empty sequence, ε) 5 . t and u are finite
traces, i.e. finite sequences of non-τ events. k , l , t and u are the infinite variants,
while k̃ , l̃ , t̃ and ũ can denote both finite and infinite ones.

(Sequence operations) Juxtaposition is used for sequence concatenation, e.g.
k l̃ . | k̃ | gives us the length of the sequence k̃ (ω for infinity). head and tail (unary
prefix operator) are defined as normal. − is a binary infix operator removing from a
sequence left to right all the members in another sequence according to multiplicity,
e.g. e1e2e2e3e1e2 − e3e2e2 = e1e1e2 and e1e2 − e2e3 = e1.

(Prefix order, Projection and Containment) ≤ is the prefix order on se-
quences. pref () calculates the set of (finite) prefixes on a sequence. k̃ �∆ removes
from k̃ all the events not in ∆. They both can be lifted to operate on sets of se-
quences. We say l̃ contains k̃ iff ∀ a ∈ Aτ • k̃ �{a}≤ l̃ �{a}; l̃ trace-contains k̃ iff l̃ �A

4 Formally, given a network of processes, a lvgi action is one that is visible on an individual process but is
eventually hidden during process composition and thus invisible at the global network level.
5 Sometimes, a and e are also used as singleton sequences or traces.

18

Wang & Kwiatkowska

contains k̃ �A.

Definition 3.1 [Path and Arrow notation] Given a LTS, (A,S ,T , s0):

• a finite path is a finite sequence of alternating states and events, s0a1s1a2...ansn
(∈ PATH =̂ S × (Aτ × S)∗), where (si−1, ai , si) ∈ T for all 1 ≤ i ≤ n.
The labelling sequence of the path is a1a2...an (i.e. ε when n = 0). Similarly,
s0a1s1a2... (∈ PATH =̂ S × (Aτ × S)ω) is an infinite path and a1a2... is its
labelling sequence.

• s k−→ s ′ iff there is a k -labelled finite path going from s to s ′. s k−→ iff there is
a k -labelled infinite path starting from s.

• a−→ s ′ iff there exists a reachable state s in the LTS such that s a−→ s ′, and we
say s ′ is caused by a.

• s t=⇒ s ′ iff s k−→ s ′ and k �A= t ; s t=⇒ iff s k−→ and k �A= t ; s t=⇒ iff there
exists a state s ′ such that s t=⇒ s ′.

A state s is deadlocked, i.e. deadlock(s), iff s does not have any outgoing tran-
sition. A state s is divergent, i.e. divergent(s), iff there is an infinite τ -path in the
LTS that starts from s.

Definition 3.2 [Traces] Given a LTS, the set of finite traces FT is {t | s0 t=⇒
}, the set of infinite traces IT is {t | s0 t=⇒}, the set of deadlock traces LT
is {t | ∃ s • deadlock(s) ∧ s0 t=⇒ s}, and the set of divergence traces DT is
{t | ∃ s • divergent(s) ∧ s0 t=⇒ s}.

Definition 3.3 [Normalisation] A LTS, LTSN , is normalised iff all τ -transitions
are self-loops, i.e. s τ−→ s ′ ⇒ s = s ′, and there is no ambiguous transition, i.e.
s e−→ s ′ ∧ s e−→ s ′′ ⇒ s ′ = s ′′.

4 Concurrent Systems

Basic processes given as LTSs can be combined using the parallel and the hiding
operators to form a concurrent system [15].

SCS ::= LTS | SCS ‖ SCS ′ | SCS \ ∆ | SCS [R1−1]

Definition 4.1 [Parallel] Given LTS1 and LTS2, LTS1 ‖ LTS2 gives another LTS,
(A,S ,T , s0), where A = A1 ∪ A2, S = S1 × S2, s0 = (s0

1 , s
0
2) and T is the least

relation satisfying the following rules:

s1
a−→ s′1 a /∈A2

(s1,s2)
a−→ (s′1,s2)

s2
a−→ s′2 a /∈A1

(s1,s2)
a−→ (s1,s′2)

s1
e−→ s′1 s2

e−→ s′2

(s1,s2)
e−→ (s′1s

′
2)

Definition 4.2 [Hiding] Given LTS , LTS \ ∆ gives a new LTS, (A′,S ,T ′, s0),
where A′ = A\∆, and T ′ = T ′[τ/∆], i.e. substituting τ for every ∆ event on every
occurrence in T .

19

Wang & Kwiatkowska

Definition 4.3 [Renaming] Given LTS , LTS [R], where R : A ↔ A′ and dom R ∩
ran R = {}, gives a new LTS, (A′,S ,T ′, s0), where A′ = (A \ dom R) ∪ ran R, and
T ′ = {(s, a, s ′) | (a /∈ dom R ∧ (s, a, s ′) ∈ T) ∨ (∃ e • (e, a) ∈ R ∧ (s, e, s ′) ∈ T)}.

The definition allows m-to-n renaming. Usually only special cases are needed: 1-to-1
(R1−1), 1-to-m (R1−m) and m-to-1 (Rm−1) 6 .

4.1 Semantics

In classic CSP [15], stable failures and failure/divergences are the major semantic
models used in CSP. They are both finite trace models. However, there is a newly
developed infinite trace CSP model [16], the SBD model, which preserves all the
divergence traces in CSP processes.

Given a LTS, (A,S ,T , s0), a state s is stable, i.e. stable(s), iff ¬(s τ−→). Some-
times, we also use stable(s,∆) to mean ∀ a ∈ ∆ • ¬(s a−→). Given a set of
finite sequences, lmt() outputs a set of infinite sequences, each being the limit of a
chain of increasing (i.e. prefix order) finite sequences belonging to the set. Define
IB =̂ IT ∪ lmt(DT).

(Stable failures and Behaviours) The set of stable traces ST is {t | ∃ s •
stable(s) ∧ s0 t=⇒ s}. The set of stable failures SF is {(t ,∆) | ∃ s • stable(s) ∧
s0 t=⇒ s ∧ ∀ e ∈ ∆ • ¬ (s e−→)}. The type of behaviours is BEHV (A) =̂ A∗ ∪ (A∗ ·
{τω}) ∪ Aω. The set of behaviours BH is {k̃ | k̃ ∈ FT ∨ k̃ ∈ IT ∨ (k̃ = tτω ∧ t ∈
DT)}.

Definition 4.4 [SBD equivalences] LTS SBD= LTS ′ iff SBD(LTS) = SBD(LTS ′),
and LTS SBDF= LTS ′ iff SBDF (LTS) = SBDF (LTS ′), where SBD(LTS) =
(FT ,DT , IB) and SBDF (LTS) = (SF ,DT , IB).

Theorem 4.5 (Weakest congruence [20,13]) W.r.t. the parallel, hiding and
renaming operators defined above 7 , SBDF= is the weakest congruence preserving LT
and DT information on LTSs.

Definition 4.6 [U-determinism] Given a LTS, it is U-deterministic (i.e. unstably
deterministic 8) iff ST ∩DT = {} and te ∈ FT ⇒ (t , {e}) /∈ SF .

Proposition 4.7 Given U-deterministic LTS and LTS ′, LTS SBDF= LTS ′ iff
LTS SBD= LTS ′. Given U-deterministic LTS, there exists a normalised LTSN such
that LTS SBDF= LTSN .

Proposition 4.8 U-deterministic LTSs are closed under the parallel composition.

6 The m-to-n renaming and interface parallel operators can be reduced to the 1-1 renaming and alphabetised
parallel operators using transformations.
7 The weakest congruence result can be extended to the other CSP operators [15] since SBDF is a congru-
ence on those CSP operators as well [16].
8 As suggested by Roscoe [19], U-determinism does not quite coincide with the operational intuition of
determinism, e.g. it does not possess τ -inertness [8]. In this sense, detachability on an empty Ai set
(Section 5) is closer to this operational intuition. A thorough investigation of operational determinism has
recently been done by Hansen and Valmari [9]

20

Wang & Kwiatkowska

5 Untangled action analysis

Given a LTS consisting of τ action, lvgi actions and globally visible actions, the most
important ingredient of its state space traversal algorithm probably is, at a state
with multiple outgoing transitions, how to choose the next branch to pursue. The
decision can be split into two parts. One is what we call visible choices, which decide
the next visible action in the global behaviour. The other is called invisible choices;
they decide which specific next branch to follow in order to achieve the objective of
the visible choice. τ and lvgi transitions, as well as ambiguous transitions, give rise
to invisible choices. Usually, visible choices are intertwined with invisible choices.
But under certain conditions, they can be separated or detached from each other in
the sense that they are independent to each other. That is, no matter what invisible
choice is taken, it will not affect the achievement of the decided visible choice. For
the case that ambiguous transitions are not considered, this is τ -inertness [8].

This insight leads to the state space reduction algorithms in many process al-
gebraic frameworks [14,11,2,6]. The algorithm simply makes arbitrary decision on
invisible choices and ignores the other alternatives completely in the state space
traversal. It also forms the basis of our reduction algorithm in Section 6. We call
such systems detachable systems.

5.1 Detachability

A LTS is regarded as an acceptor of behaviours. Its alphabet A is partitioned by
Av and Ai , which are respectively the set of globally visible actions and the set
of lvgi actions. When being fed a global behaviour (i.e. k̃ ∈ BEHV (Av)), the
acceptor will control the invisible choices in the LTS and try to accept or reject the
behaviour. The different ways an acceptor decides on invisible choices give rise to
different acceptor strategies. Thus a strategy can be regarded as an unfolding of
the original LTS followed by a reduction that resolves all the invisible choices in it,
e.g. the reduced LTS in Figure 1 is a strategy of the original one. For the same
behaviour, the acceptor may have both a strategy to accept it and one to reject it.

Given LTS , formally a strategy, stg : PATH × BEHV (Av) 7→ (Aτ × S) ∪
{stop, reject}, is a minimal (subset order) partial function satisfying the rules:

(i) {s0} × BEHV (Av) ⊆ dom stg

(ii) (s0a1...sn , ek̃) ∈ dom stg ⇒ stg(s0a1...sn , ek̃) ∈ {(a, s) | sn
a−→ s ∧ a ∈

Aτ
i ∪ {e}} ∪ {reject | ¬ sn

e−→ ∧ stable(sn ,Aτ
i)}

(iii) (s0a1...sn , ε) ∈ dom stg ⇒ stg(s0a1...sn , ε) ∈ {(a, s) | sn
a−→ s ∧ a ∈ Aτ

i } ∪
{stop | stable(sn ,Aτ

i)}
(iv) (s0a1...sn , τω) ∈ dom stg ⇒ stg(s0a1...sn , τω) ∈ {(a, s) | sn

a−→ s ∧ a ∈
Aτ

i } ∪ {reject | stable(sn ,Aτ
i)}

(v) stg(s0a1...sn , k̃) = (a, s)⇒ (s0a1...snas, k̃ − (a �Av
)) ∈ dom stg

Initially, the acceptor is ready to be fed with any behaviour (rule 1). Once fed, the
acceptor starts the execution to consume the sequence step by step (rule 5). A state
of the execution (i.e. the input to the function) consists of a history (a finite path
in LTS whose labelling sequence, after the projection onto Av , gives a prefix of the

21

Wang & Kwiatkowska

fed behaviour denoting the consumed part) and a suffix of the behaviour (denoting
the remaining part). Minimality of the function implies that only reachable states
are defined on stg . Given a reachable state and a pending action, i.e. e on top
of the current suffix, the acceptor is free to make any invisible choice to transit in
LTS , e.g. (a, s), so long as the transition is consistent with e (the visible choice), i.e.
a ∈ Aτ

i ∪{e} (rule 2). When the execution reaches a state where no more consistent
invisible choice can be made, the acceptor will either stop (if the consumption is
complete) or reject (if incomplete). Given a behaviour k̃ and a strategy stg , the
acceptor’s execution produces a finite path if it ends with stop or reject ; otherwise
the execution produces an infinite path.
(Acceptance condition) We say stg is an accepting strategy for k̃ on LTS iff the
execution does not end with reject and produces a path whose labelling sequence
trace-containing k̃ . Otherwise, stg is a rejecting strategy for k̃ on LTS .

However, these strategies do not handle divergence correctly. For instance, if the
initial state of LTS has a τ loop, LTS has a simple rejecting strategy (i.e. following
the τ loop indefinitely) for any non-trivial Av behaviours. It is “unfair” for systems
like normalised LTSs, where the τ loops are self-loops, causing no state change
(“unprogressing loops”). Thus, an extra requirement shall be put on strategies.

Definition 5.1 [Fairness] A strategy stg is a fair strategy iff its (infinite) execution
cannot lead to a state after which, though an action e is pending to be consumed
(c.f. rule 2), it makes no further Av transition and an action a ∈ Aτ

i ∪{e} is always
enabled (i.e. on LTS) but never taken.

The definition is a kind of maximality and weak fairness requirement on actions
as that in partial order semantics. However, it is not applied on all actions. Only
the pending e and the Aτ

i actions will be guaranteed progress. Progress on e will
be able to guide strategies out of unprogressing loops. Progress on the Aτ

i actions
can guide strategies out of indefinite delays on any member of Aτ

i . It is necessary
for compositionality.

Definition 5.2 [May&Must acceptance] A LTS may-accept a behaviour iff there
exists an accepting strategy. It must-accept a behaviour iff there does not exist a
fair rejecting strategy.

It is not difficult to see that the set of may-accepted behaviours is exactly BH (LTS \
Ai) and thus implies the SBD-equivalence.

Definition 5.3 [Detachability] Given LTS and Ai ∪Av = A, Ai is detachable from
LTS (or LTS is detachable on Ai) iff LTS may-accept k̃ iff LTS must-accept k̃ for
all k̃ ∈ BEHV (Av).

Detachability has many good properties, some of which will be shown in Sec-
tion 6, where a reduction algorithm based on detachability will be given. Here we
will just mention U-determinism and a restricted form of compositionality.

Proposition 5.4 ∆ is detachable from LTS implies LTS \ ∆ is U-deterministic,
but not vice versa.

It is crucial, however, to notice that detachable LTS on ∆ does not imply

22

Wang & Kwiatkowska

detachable LTS \ ∆ (i.e. on {}). Hiding removes the distinctiveness among the
members of ∆; thus less progress requirement is placed on strategies and the fair
rejection of behaviours becomes easier. Indeed, Hiding shall not be applied on LTSs
any sooner than the reduction algorithm of Section 6 has used the distinctiveness.

Detachability is compositional (c.f. Theorem 7.1 for its exact formulation) if all
lvgi actions concerned are synchronisation-free. It is in part thanks to the progress
requirement on the Aτ

i actions. For example, R = e → R is detachable on {e} and
R′ = e ′ → e ′′ → Stop is detachable on {e ′} (i.e. even without any progress require-
ment). But, without the progress requirement on {e ′}, R ‖ R′ is not detachable on
{e, e ′}.

On the other hand, compositionality does not hold for lvgi actions with synchro-
nisation potential. Informally, it is due to the fact that detachability allows conflicts
within Ai actions (an extreme case is “auto-conflict” within one action). It is just
that the resolution of these conflicts does not affect the causality drive onto the Av

part which makes these conflicts detachable from those of the Av part. Once there
is synchronisation, conflicts can be propagated amongst processes and create new
ones that may not be detachable.

The following two processes give an example:

P = e → e → e ′ → Stop 2 e → e ′ → Stop
Q = e → e ′ → Stop

With Ai = {e}, P and Q are both detachable, although P contains an auto-
conflict in the sense that one branch needs two e actions to enable e ′ while the other
needs just one. The parallel composition of the two, however, is not detachable since
one branch will lead to the occurrence of e ′ while the other will not. Therefore, to
make compositionality fully work conflicts must be ruled out completely on Ai

actions. This gives us the notion of untangled actions.

5.2 Untangledness

With synchronisation on lvgi actions, untangledness shall be sensitive to the type
as well as the number of lvgi actions expended to drive causality.

Given LTSN 9 and Ai ∪ Av = A, a strategy, stg : PATH × BEHV 7→ (Aτ ×
S) ∪ {stop, reject}, is a minimal partial function satisfying:

(i) {s0} × BEHV ⊆ dom stg

(ii) (s0a1...sn , ek̃) ∈ dom stg ⇒ stg(s0a1...sn , ek̃) ∈ {(a, s) | sn
a−→ s ∧ a ∈

Aτ
i ∪ {head(ek̃ �Av

)}} ∪ {reject | ¬ sn
e−→ }

(iii) (s0a1...sn , ε) ∈ dom stg ⇒ stg(s0a1...sn , ε) ∈ {(a, s) | sn
a−→ s ∧ a ∈ Aτ

i } ∪
{stop | stable(sn ,Aτ

i)}
(iv) (s0a1...sn , τω) ∈ dom stg ⇒ stg(s0a1...sn , τω) ∈ {(a, s) | sn

a−→ s ∧ a ∈
Aτ

i } ∪ {reject | stable(sn)}
(v) stg(s0a1...sn , k̃) = (a, s)⇒ (s0a1...snas, k̃ − (a �A)) ∈ dom stg

9 A definition based on unnormalised LTSs is also possible. But it complicates the presentation and the
generality is not needed for this paper.

23

Wang & Kwiatkowska

Like the previous one, the acceptor controls the order and the occurrence of Ai

actions. Thus rule 3 and the parts of rule 2 and 4 not involving reject remain the
same. Unlike the previous one, Ai actions become visible in the fed behaviours (rule
1 and 5) and the acceptor is more sensitive (the parts of rule 2 and 4 involving
reject). For instance, once the right type and number of actions have occurred (i.e.
removed from the fed behaviours), a new action will be enabled on top of the current
suffix (i.e. the pending e). e cannot be delayed by any other A action; if it is not
simultaneously enabled on LTS , it may result in the immediate issue of reject (the
reject part of rule 2). It gives the acceptor more freedom in rejecting behaviours
(e.g. eee ′ behaviour of the P process above will incur reject). The acceptance
conditions remain the same except for the adaptation for Ai visibility.
(Acceptance condition) stg is an accepting strategy for k̃ on LTS iff the ex-
ecution does not end with reject and produces a path whose labelling sequence
trace-containing k̃ . Otherwise, stg is a rejecting strategy for k̃ on LTS .

Similarly, fairness can be simplified since the fed behaviours (with Ai visible)
can guide itself now.

Definition 5.5 [Fairness] A strategy stg is a fair strategy iff its (infinite) execution
cannot lead to a state after which the pending action e is always enabled (i.e. on
LTSN) but never taken.

Moreover, if we distinguish infinite rejecting strategies (i.e. infinite executions
not trace-containing the fed behaviour) from finite ones (i.e. finite executions ending
with reject), it is obvious that only finite rejecting strategies are needed.

Proposition 5.6 (Finite rejection) If there is an infinite fair rejecting strategy
for a behaviour, there is also a finite one for it.

May-acceptance and must-acceptance can be defined like in the previous section.
However, BH (LTSN) is only a subset of the may-accepted behaviours, and the
definition of untangledness shall change accordingly.

Definition 5.7 [Untangledness] Given LTSN (and Ai = ∆), ∆ is untangled in
LTSN (or LTSN is untangled on ∆) iff LTS must-accept k̃ for all k̃ ∈ BH .

Given ∆, its untangledness decision problem can be solved by a CSP refinement
check using stable failures model in Appendix A. This is due to the finite rejection
property. The LHS of the check (i.e. the specification) is a fixed process while the
RHS is two copies of LTSN coordinated by another fixed process. The refinement
problem of this form is in NLOGSPACE.

Proposition 5.8 Untangled action sets are closed under subset-hood and union.

(Maximal untangled set) Given ∆, its maximal subset of untangled actions
can be found by doing the CSP check on each singleton subset of ∆ and taking the
union of the successful ones.

Theorem 5.9 Untangled ∆ in LTSN is also detachable (not vice versa).

Note that untangledness, detachability, U-determinism etc. form a hierarchy of
partial determinacy properties. An interesting discussion of various determinacy

24

Wang & Kwiatkowska

and confluence notions in classic process algebras can be found in [18], where may-
testing and must-testing are also used to characterise determinacy. Confluence in
our context is the same as the untangledness on A (i.e. the full alphabet).

Untangled actions are compositional; global untangled actions can be calculated
from local ones. The compositionality theorem will be given in Section 7, where
a new compositional reduction technique enabled by it is also proposed. The new
technique feeds the global untangledness information to a specially designed on-
the-fly reduction procedure called chase+, which reduces state spaces by exploiting
detachability (c.f. Theorem 5.9).

6 Reduction Algorithm

The new algorithm is an extension of the chase function in FDR2 [6], and also shares
similarity with the reduction algorithms based on τ -inertness [2,11,14]. The idea is
based on the fact that in a detachable system a behaviour is accepted by its LTS iff it
is accepted by a fair strategy of the LTS. Thus the LTS can be reduced by removing
all other strategies in it, which results in an equivalent LTS containing just one
strategy. The most important ingredient of the reduction algorithm, consequently,
is finding the suitable fair strategy.

(Round robin strategy) Assume the actions in Aτ
i are arranged in a (directed)

cycle with a default starting position, and next(c,∆) is a function, which, given the
current action c and the set of candidate actions ∆, outputs the candidate following
c the closest in the cycle. (Note that, when c = ε, the default starting position is
assumed.) A subclass of fair strategies on finite state LTSs, called round robin
strategies, use a round robin strategy on the cycle to implement fairness. Formally
they are minimal partial functions satisfying the same conditions as in Section 5.1
but with rule 2 replaced by the following 10 :

2a ′. (s0a1...ansn , ek̃) ∈ dom stg ∧ ¬ fair loop(s0a1...ansn)⇒
stg(s0a1...ansn , ek̃) ∈ {(a, s) | sn

a−→ s ∧ a = next(an �Aτ
i
, {a : Aτ

i | sn
a−→

})} ∪ {(e, s) | sn
e−→ s ∧ stable(sn ,Aτ

i)} ∪ {reject | ¬ sn
e−→ ∧ stable(sn ,Aτ

i)}
2b ′. (s0a1...ansn , ek̃) ∈ dom stg ∧ fair loop(s0a1...ansn)⇒

stg(s0a1...sn , ek̃) ∈ {(e, s) | sn
e−→ s} ∪ {(a, s) | ¬ sn

e−→ ∧ sn
a−→ s ∧ a ∈

Aτ
i } ∪ {reject | ¬ sn

e−→ ∧ stable(sn ,Aτ
i)}

where fair loop(s0a1...sn) is true iff the maximal suffix of s0a1...sn that is a Aτ
i -path,

say siai+1...sn , contains a fair Aτ
i -loop but siai+1...sn−1 does not. A fair Aτ

i -loop is
a Aτ

i -loop that has gone through at least one round of the cycle.
Intuitively, this means that the strategy will give priority to Aτ

i transitions as
long as the Aτ

i transitions on top of the history have not formed a fair Aτ
i loop yet.

Once one is formed (and exactly at this moment) the pending e transition will be
given priority (to implement the weak fairness on e). Thereafter, Aτ

i transitions
continue to have priority.

Proposition 6.1 Given LTS and Ai , a round robin strategy is a fair strategy.

10Strictly speaking, this section implicitly assumes normalisation on LTSs. It improves presentation but is
not technically needed.

25

Wang & Kwiatkowska

Applying a round robin strategy stg on LTS gives a reduced LTS. Similar to [2,3],
it can be shown that there exists a “representation mapping”, which, for our case,
maps an entry point to its exit point.

Let MCC = {...,Si , ...} be the equivalence induced by the reflexive, symmetric,
and transitive closure of Aτ

i transitions in LTS . Each member Si is an equivalence
class. Define the set of stg entry points on Si as ENT (Si) =̂ {s : Si | s = s0 ∨
(stg(s0a1...sn , k̃) = (e, s) ∧ e ∈ Av)}, and the set of stg exit points on Si as
EXT (Si) =̂ {sn : Si | ((s0a1...ansn , ek̃) ∈ dom stg ∧ fair loop(s0a1...ansn)) ∨
stable(sn ,Aτ

i)}. The set of stg exit points are exactly those states at which rule
2b′ is activated or Aτ

i -stability is reached.

Proposition 6.2 Given detachable Ai and a round robin strategy stg on LTS, if
any execution of stg at any time enters Si ∈ MCC with the intention to leave (i.e.
having a pending e), then the exit point (∈ EXT (Si)) is uniquely determined by its
entry point (∈ ENT (Si)).

(Representative function) Let ENT and EXT be the union sets of entry
and exit points for all Si ∈ MCC. Therefore there exists a representative function,
exit : ENT → EXT , mapping each entry point to its exit point. An exit point can
fully represent all its entry points. If the exit point is Aτ

i -stable, then the set of
outgoing transitions on the representative is exactly the set of outgoing transitions
on the point. Otherwise, the set of outgoing transitions on the representative is
exactly the set of Av outgoing transitions combined with a τ self-loop.

Definition 6.3 [Reduction function] Given detachable Ai from LTS , function
chase+(LTS ,Ai) outputs another LTS, (Av ,EXT ,T ′, exit(s0)), where T ′ =
{(s, e, s ′) : EXT × Av × EXT | ∃ si : S • s e−→ si ∧ s ′ = exit(si)} ∪ {(s, τ, s) | s ∈
EXT ∧ ¬ stable(s,Aτ

i)}.

Therefore, we can adopt a scheme similar to that in [2] to implement chase+ as
an on-the-fly procedure integrated in refinement or model checking. Note also that
round robin strategies are local strategies. That is, the definition only depends on
the pending action and the top elements of the history and the exit points can be
calculated by simply following the strategy. Therefore, the exit function need not
be explicitly constructed. It enables a simpler and more efficient implementation of
the chase+ reduction procedure.

Theorem 6.4 (Preservation) ∆ is detachable from finite state LTS implies
chase+(LTS ,∆) is normalised and chase+(LTS ,∆) SBDF= LTS \ ∆.

7 Compositional reduction

For the reduction technique of this paper to work effectively, it is preferable to
represent all processes (including U-nondeterministic ones) in the form of LTSN \
∆ rather than directly as unnormalised LTSs. Our philosophy is that if one is
inquisitive enough on details, all the unaccounted-for choices in LTS, i.e. those
due to τ -transitions or ambiguous transitions, can be accounted for by introducing
some extra lvgi actions. This will not result in any loss of expressiveness, e.g. w.r.t.

26

Wang & Kwiatkowska

SBDF models. Moreover, these lvgi choices need to remain so during the verification
process, unless they are detachable, in which case they can be hidden and removed
after reduction.

Therefore, a network of processes can be represented as SC [
−−−−→
LTSN], where SC

is a “process context”, and the following theorem can be applied on it.

Theorem 7.1 (Compositionality) 11 LTSN
1 and LTSN

2 have untangled action
sets U1 and U2 (respectively) implies U‖ is untangled in LTSN

1 ‖ LTSN
2 , where

U‖ = (A1 ∪A2) \ ((A1 \U1) ∪ (A2 \U2)).

Thus, our reduction works as follows:

(i) SC [
−−−−→
LTSN] can be transformed to (‖[

−−−−→
LTS ′N]) \ ∆.

(ii) On each LTS ′N , find the maximal untangled subset of ∆, say U .

(iii) Use the Theorem 7.1 to calculate the global untangled action set U‖ from
−→
U .

(iv) Apply chase+ on the global system and we have the final reduced system:

chase+(‖[
−−−−→
LTS ′′N],U‖) \ (∆ \U‖) 12 .

Preliminary experiment. The CSP check in [23] was tested on the arbiter cell.
It took a fraction of a second to correctly identify that the set of maximal untangled
subset is A \ {a1+, a2+}. Theorem 7.1 then showed that all the actions in the tree
arbiter, except those of a1+ and a2+, are untangled.

Since chase+ is not available in FDR2 yet, chase is used instead to reduce the
state space. Fortunately, this is correct due to the fact that a tree arbiter remains
a divergence-free system after the untangled actions are hidden. Actually nested
chase were applied along the tree of arbiter cells.

We checked the system using FDR2. The results are very encouraging compared
to previous works [1,10]. The checking time is nearly linear in the size of the tree
arbiter. More intriguingly the memory used is negligible (below 100MByte) and is
sub-linear relative to the tree size. Thus, it is fair to say that the state explosion
has been avoided.

8 Conclusion

Relative to previous works, the merits of the current work are summarised as follows:

• Our reduction technique is compositional and places minimal restrictions on the
synchronisation potential of processes.

• It gives an accurate treatment on divergence despite the interference between
divergence and compositionality. That is, a divergent process can delay other
parallel processes indefinitely. Our solution is to keep lvgi actions visible and use
fairness to guide state space traversal out of unprogressing loops.

• It uses a weakest possible failure equivalence and thus has advantages in reduction.

11Note that the maximality of untangled action sets is not necessarily preserved in this theorem.
12Another, potentially more efficient, approach is to push the hiding of U‖ downwards along the parallel

composition hierarchy as much as possible, and then apply nested chase+ layer by layer.

27

Wang & Kwiatkowska

• A hierarchy of partial determinacy properties are identified, e.g. untangledness,
detachability and U-determinism. They can be of independent interests. For
instance, it seems possible that any CSP process equals a (possibly infinite) non-
deterministic choice on a set of U-deterministic processes [19,15].

Acknowledgements We are gratful to A.W. Roscoe for reading an earlier draft
of this paper and giving valuable suggestions, and to Henri Hansen for explaining
their work on divergence-preserving operational determinism.

References

[1] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer and S. K. Rajamani. Partial-Order Reduction in
Symbolic State Space Exploration. CAV 1997: 340-351.

[2] S. Blom. Partial τ -confluence for Efficient State Space Generation. Technical Report SEN-R0123,
CWI, Amsterdam, 2001.

[3] S. Blom and J. van de Pol. State Space Reduction by Proving Confluence. CAV 2002: 596-609.

[4] A. Davis and S. M. Norwick. An Introduction to Asynchronous Circuit Design. The Encyclopedia of
Computer Science and Technology (vol 38), Marcel Dekker, New York, 1998.

[5] D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits. ACM
Distinguished Dissertations. MIT Press, 1993.

[6] Formal Systems (Europe) Ltd. Failures-Divergence Refinement: FDR2 User Manual, 1999.

[7] J.F. Groote and J.C. van de Pol. State space reduction using partial tau-confluence. MFCS 2000,
LNCS 1893.

[8] J. F. Groote and M. P. Sellink. Confluence for Process Verification. CONCUR 1995, LNCS 962.

[9] H. Hansen and A. Valmari. Operational Determinism and Fast Algorithms. CONCUR 2006.

[10] K. L. McMillan. Trace Theoretic Verification of Asynchronous Circuits Using Unfoldings. CAV 1995:
180-195.

[11] G. J. Pace, F. Lang and R. Mateescu. Calculating-Confluence Compositionally. CAV 2003: 446-459.

[12] D. Peled. Partial Order Reduction: Linear and Branching Temporal Logics and Process Algebras.
Proceedings of POMIV’96, DIMACS Series Vol. 29, AMS, 1997.

[13] A. Puhakka and A. Valmari. Weakest-Congruence Results for Livelock-Preserving Equivalences.
Proceedings of CONCUR ’99, LNCS 1664.

[14] Y. S. Ramakrishna and S. A. Smolka. Partial-Order Reduction in the Weak Modal Mu-Calculus.
CONCUR 1997, LNCS 1243.

[15] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1998.

[16] A. W. Roscoe. Seeing beyond divergence. Proceedings of “Symposium on the Occasion of 25 years of
CSP”, London, July 2004, LNCS 3525.

[17] A. W. Roscoe. The pursuit of buffer tolerance. Unpublished manuscript, 2005.

[18] A. W. Roscoe. Confluence thanks to extensional determinism. Bertinoro meeting on Concurrency,
BRICS 2005.

[19] A. W. Roscoe. Personal communication, March 2006.

[20] A. Valmari. The Weakest Deadlock-Preserving Congruence. Information Processing Letters 53 (1995)
341-346.

[21] A. Valmari. Stubborn Set Methods for Process Algebras. POMIV’96, DIMACS Series Vol. 29, AMS,
1997.

[22] X. Wang, M. Kwiatkowska. On process-algebraic verification of asynchronous circuits. ACSD 2006.

[23] X. Wang, M. Kwiatkowska. Compositional state space reduction using untangled actions. Tech. Rep.
CSR-06-7, School of computer science, University of Birmingham.

[24] G. Winskel. Event structures. In Advances in Petri Nets 1986, Part II; 1987.

[25] A. Yakovlev, A. Petrov and L. Lavagno. A Low Latency Asynchronous Arbitration Circuit. IEEE
Trans. on VLSI Systems, vol 2, no 3, 1994.

28

EXPRESS 2006 Preliminary Version

On Symbolic Verification of
Weakly Extended PAD

Ahmed Bouajjania,1, Jan Strejčekb,2, and Tayssir Touilia,3

a LIAFA, University of Paris 7, France

b LaBRI, Univeristy of Bordeaux 1, France

Abstract

We consider the verification problem of a class of infinite-state systems called wPAD. These systems can be
used to model programs with (possibly recursive) procedure calls and dynamic creation of parallel processes.
They correspond to PAD models extended with an acyclic finite-state control unit, where PAD models can
be seen as combinations of prefix rewrite systems (pushdown systems) with context-free multiset rewrite
systems (synchronization-free Petri nets). Recently, we have presented symbolic reachability techniques
for the class of PAD based on the use of a class of unranked tree automata. In this paper, we generalize
our previous work to the class wPAD which is strictly larger than PAD. This generalization brings a
positive answer to an open question on decidability of the model checking problem for wPAD against EF
logic. Moreover, we show how symbolic reachability analysis of wPAD can be used in (under) approximate
analysis of Synchronized PAD, a (Turing) powerful model for multithreaded programs (with unrestricted
synchronization between parallel processes). This leads to a pragmatic approach for detecting the presence
of erroneous behaviors in these models based on the bounded reachability paradigm where the notion of
bound considered here is the number of synchronization actions.

Keywords: rewrite systems, infinite-state systems, symbolic reachability analysis, model checking

1 Introduction

Reasoning about software systems requires the consideration of powerful models
which are in general infinite-state, i.e., they may have an infinite number of reach-
able configurations. Sources of complexity, and of infinity of the state space, may
be related to either data manipulation such as the use of variables over infinite data
domains, dynamic and unbounded-size data structures, etc, or to complex control
primitives such as procedures calls, (unbounded) dynamic creation of concurrent
processes, etc. One popular approach to handle this complexity is to combine ab-
straction methods with model-checking. Techniques such as predicate abstraction
allows to deal with aspects such as data manipulation and to generate abstract

1 Email: abou@liafa.jussieu.fr
2 Partly supported by the research centre Institute for Theoretical Computer Science (ITI), project
No. 1M0545. Email: strejcek@labri.fr
3 Email: touili@liafa.jussieu.fr

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Bouajjani et al.

models over finite data domains. Then, the so obtained abstract models can be
analyzed automatically using model checking algorithms, provided that such algo-
rithms exist for the considered class of abstract models. This is the case obviously
when abstract models are finite-state. However, as said above, in order to take
into account complex control primitives such as procedure calls and process cre-
ation, finite state models are not expressive enough. For instance, in the case of
sequential programs with recursive procedure calls, the needed abstract models are
(unbounded-stack) pushdown systems, and for programs with dynamic creation of
communicating finite-state processes, natural models are (unbounded) Petri nets.
Fortunately, there exist several algorithmic techniques (e.g., reachability analysis,
model-checking) which have been developed for the analysis and the verification of
these infinite-state models.

In this paper, we consider the case of programs which may contain both (re-
cursive) procedure calls and dynamic creation of processes (threads). One possible
approach to model such systems is to combine pushdown systems with Petri nets.
This corresponds to the use of Process Rewrite Systems (PRS) introduced in [18].
These models can be seen indeed as combinations of prefix rewrite systems and
multiset rewrite systems. The relevance of PRS in program modeling have been
discussed for instance in [9,10,8,2,3]. Subclasses of PRS which are of particular
interest for program modeling are for instance the class of PA processes, and the
larger class of PAD processes generalizing both PA and pushdown processes and
corresponding to synchronization-free PRS (i.e., models where parallel composition
is not allowed in the left-hand-side of the rewrite rules). Processes in these classes
allow indeed to model systems with procedure calls and parbegin-parend blocks
(i.e., launching a number of parallel threads, and wait for their termination before
proceeding). PAD allow in addition return values from sequential procedure calls.

Mayr has shown that the reachability problem (whether a given state is reachable
from another given state) for PRS is decidable using a reduction to the reachability
problem of Petri nets [18]. To get practical verification algorithms, symbolic reach-
ability algorithms have been investigated for significant subclasses of PRS such as
PA [17,10] and PAD [2,3]. These algorithms use (various kinds of) tree automata to
represent (regular) infinite sets of configurations (i.e., process terms). In particular,
we have provided in [3] a generic construction allowing to compute the set of (for-
ward or backward) reachable configurations of any subclass of PRS built from the
combination of prefix rewrite systems with an effectively semilinear class of multiset
rewrite systems (i.e., a class of systems for which reachability sets are always semi-
linear and effectively computable). We have shown that this leads to a symbolic
reachability analysis algorithm for PAD processes in a certain normal form.

The PRS formalism is not Turing powerful due to a subtle restriction on the
way synchronization is done between parallel processes. Roughly speaking, the
semantics of PRS implies that synchronization can only be allowed between parallel
processes with empty stacks.

In order to extend the modeling power of PRS, one approach is to add syn-
chronization by rendez-vous (à la CCS), which leads to a Turing powerful model
called synchronized PRS [22]. Similarly, PAD can be extended to synchronized PAD
(which is also a Turing powerful model). Approximate analysis algorithms for these

30

Bouajjani et al.

models using abstraction techniques have been proposed in [22].
Another approach for enhancing the modeling power of PRS (and PAD) consists

in adding global control states. The new models, called sePRS [12], can be seen
as parallel product of a PRS with a finite-state automaton representing a global
control. Obviously, sePRS are Turing powerful since they allow communication
between recursive parallel processes through the global control state. However, if the
structure of the control automaton is weak, which means that all its loops are self-
loops, then it can be proved that the obtained models, called wPRS, have a decidable
reachability problem [13] (the proof employs decidability of the reachability problem
for Petri nets). Similarly, if we add control states to PAD processes, we obtain
Turing powerful models, but the extension of PAD with weak control automata leads
to models, called wPAD, having a decidable reachability problem, and interestingly,
which can be proven to be strictly more powerful (w.r.t. strong bisimulation) than
PAD [14].

In this paper we extend the results on symbolic reachability analysis presented
in [3]. While [3] deals only with PAD processes in a certain normal form (now
called canonic PAD), here we show that the set of reachability states are com-
putable and effectively representable even for (general) wPAD systems. To do this,
we employ symbolic representations based on so-called commutative-hedge automata
(CH-automata), allowing to define sets of process terms modulo the associativity
of sequential composition, and the associativity-commutativity of the parallel com-
position. We show that these representations are effectively closed under the com-
putation of the post∗ and pre∗ images (i.e., computation of all successors and all
predecessors) for wPAD, as well as under the post and pre images (i.e., computation
of immediate successors and predecessors) for the whole class of wPRS.

Further, we solve the global model-checking problem of wPAD against the EF
logic. We consider a variant of EF logic which generalizes the standard action-based
EF logic by the use of atomic propositions corresponding to (potentially infinite)
sets of configurations which are definable using CH-automata. We prove that for
every formula in this logic, it is possible to construct a (CH-automata based) repre-
sentation of the set of all configurations (in a given wPAD) satisfying this formula.
This result closes an open problem formulated in [15] concerning the model-checking
problem of wPAD. Notice that global model-checking is a more general problem than
deciding whether a given configuration satisfies a given formula.

Our results concerning symbolic reachability analysis of wPAD can be used in the
analysis of synchronized PAD (SPAD) with a bounded number of synchronizations.
This leads to an approximate analysis procedure for SPAD based on computing
under approximations of their reachability sets by considering only reachable con-
figurations up to some fixed number of synchronizations. Such approximate analysis
method for SPAD can be used in practice to establish the existence of erroneous
behaviors, following the approach advocated in [19]. It constitutes a complemen-
tary approach to the abstract analysis (provided for the same models in [22]), which
is based on considering upper approximations of the set of possible behaviors and
which is useful for establishing the absence of erroneous behaviors.

The under approximation mentod for SPAD as well as proofs of Theorems 2.1
and 4.1 can be found in the full version of this paper [1].

31

Bouajjani et al.

2 Preliminaries

2.1 Process terms

Let Const = {X, . . .} be a set of process constants. For every C ⊆ Const , the set
TC of process terms over C is defined by the abstract syntax t ::= 0 | X | t� t | t‖t,
where 0 is the idle term, X ∈ C is a process constant; and � and ‖ mean sequential
and parallel compositions respectively.

We use ω to denote in a generic way � or ‖. We denote by ω the operator �
(resp. ‖) if ω = ‖ (resp. ω = �). Process terms are considered modulo the following
algebraic properties: associativity of �, associativity and commutativity of ‖, and
neutrality of 0 w.r.t. both � and ‖, i.e. 0 � t = t � 0 = t‖0 = t. Let ' be the
equivalence relation on T induced by these properties.

We distinguish four classes of process terms as:

1 – terms consisting of a single process constant only, in particular 0 6∈ 1,

S – sequential terms - terms without parallel composition, e.g. X � Y � Z,

P – parallel terms - terms without sequential composition, e.g. X‖Y ‖Z,

G – general terms - terms without any restrictions, e.g. (X � (Y ‖Z))‖W .

Process terms in canonical form are terms t defined by:

t ::= 0 | s | p
s ::=X | p1 � p2 � . . .� pn, n ≥ 2
p ::=X | s1‖s2‖ . . . ‖sn, n ≥ 2

It can easily be seen that every term has an '-equivalent term in canonical form.
In the following we work with terms in canonical form.

Term t is called seq-term if t = 0, or t = X for a constant X, or t = p1 �
p2 � . . . � pn where n ≥ 2. In the last case, the term is also called �-rooted term.
Further, t is called flat seq-term if t = X1�X2� . . .�Xn for n ≥ 0 (the case n = 0
corresponds to the term 0, and the case n = 1 corresponds to a process constant
X). By analogy we define par-terms, ‖-rooted terms, and flat par-terms.

2.2 Process Rewrite Systems and weak extension

Let M = {o, p, q, . . .} be an ordered set of control states and Act = {a, b, c, . . .} be
a set of actions. Let α, β ∈ {1, S, P,G} be classes of process terms such that α ⊆ β.
An (α, β)-wPRS (weakly extended process rewrite system) R is a finite set of rewrite
rules of the form (p, t1)

a
↪→ (q, t2), where t1 ∈ α, t1 6= 0, t2 ∈ β, p, q ∈M , p ≤ q, and

a ∈ Act . By M(R), Const(R), and Act(R) we denote sets of control states, process
constants, and actions occurring in rewrite rules of R.

An (α, β)-wPRS R induces a labelled transition system the states of which are
pairs (p, t) such that p ∈ M(R) is a control state and t ∈ β is a process term over
Const(R). The transition relation →R is the least relation satisfying the following
inference rules:

((p, t1)
a
↪→ (q, t2)) ∈ R

(p, t1) a→R (q, t2)

(p, t1) a→R (q, t2)

(p, t1‖t)
a→R (q, t2‖t)

(p, t1) a→R (q, t2)

(p, t1 � t)
a→R (q, t2 � t)

32

Bouajjani et al.

We extend the transition relation to finite words over Act in a standard way. The
reflexive and transitive closure of →R is denoted by ∗→R. To shorten our notation
we write pt in lieu of (p, t).

An (α, β)-wPRS where M(R) is a singleton is called (α, β)-PRS (process rewrite
system). In such systems we omit the single control state from rules and states.

Instead of (S,G)-PRS, (S,G)-wPRS, (G,G)-PRS, and (G,G)-wPRS we use more
readable names PAD, wPAD, PRS, and wPRS respectively. Let us note that the
classes PAD and wPAD subsume widely known models of infinite-state systems
as pushdown processes (PDA), basic parallel processes (BPP), and process algebras
(PA). The classes PRS and wPRS subsume also Petri nets (PN). More information
about expressiveness of (α, β)-wPRS and (α, β)-wPRS can be found in [14,13].

Given a state pt of a wPRS R, we define

PostR(pt) = {p′t′ | pt a→R p′t′ for some a} Post∗R(pt) = {p′t′ | pt ∗→R p′t′}

PreR(pt) = {p′t′ | p′t′ a→R pt for some a} Pre∗R(pt) = {p′t′ | p′t′ ∗→R pt}

The sets Post∗R(pt) and Pre∗R(pt) are called (forward and backward) reachability
sets. The sets PostR(pt) and PreR(pt) are called 1-step (forward and backward)
reachability sets. These definitions and notations can be extended to sets of states
in the obvious manner.

2.3 Canonic PRS

A canonic PRS R is a set of rewrite rules of the forms:

X1 �X2 � . . .�Xn
a
↪→ Y1 � Y2 � . . .� Ym (1)

X1‖X2‖ . . . ‖Xn
a
↪→ Y1‖Y2‖ . . . ‖Ym (2)

where n,m ≥ 0. Rules of the form (1) and (2) are called �-rules and ‖-rules
respectively. By Rω we denote the set of all ω-rules of R. Note that the sets R‖

and R� do not have to be disjoint as some rules (e.g. X
a
↪→ Y) are of both types.

Let α, β ∈ {1, S, P,G} be classes of process terms. A canonic PRS is called canonic
(α, β)-PRS if every rule t1

a
↪→ t2 of R satisfies t1 ∈ α and t2 ∈ β. Finally, canonic

PAD stands for canonic (S,G)-PRS.
Note that a canonic PRS does not have to be a PRS as we allow rules with 0 on

the left-hand side. Further, the definition of canonic (α, β)-PRS does not require
that α ⊆ β. The meaning of Const(R),→R,PostR,PreR, . . . remains the same.

Given a canonic (α, β)-PRS R, by R−1 we denote the canonic (β, α)-PRS with
rules obtained by swapping the left-hand and right-hand sides of the rules of R.
Notice that for every set of process terms L, PreR(L) = PostR−1(L) and Pre∗R(L) =
Post∗R−1(L).

The problem of computing reachability sets of PRS systems can be transformed
into the same problem for canonic PRS using the following theorem. The proof
of this theorem (available in [1]) employs a variant of the standard construction
given in [18]. However, our theorem differs from the one of [18] in several aspects.
In particular, (1) we transform an (α, β)-PRS into a canonic (α, β)-PRS, which is
not the case of Mayr’s transformation, and (2) in contrast to the original theorem

33

Bouajjani et al.

in [18], our theorem states that the same transformation of R works for all terms
over a given set of process constants.

A term substitution h is a function on process terms satisfying h(0) = 0 and
h(t1 ω . . . ω tn) = h(t1)ω . . . ω h(tn) for all finite sequences t1, . . . , tn of terms and
for both ω = �, ‖. In other words, a term substitution is fully specified by its
values on process constants. We say that a term subsitution h is finite if the set
{X | h(X) 6= X} of process constants is finite.

Theorem 2.1 For every (α, β)-PRS system R and every set of process constants
C we can construct a canonic (α, β)-PRS system R′ and a finite term substitution
h, such that for every t1, t2 over C ∪ Const(R) and every a ∈ Act(R) we have:

(i) t1
a→R t2 iff there exists t′1, t

′
2 satisfying h(t′1) = t1, h(t′2) = t2, and t′1

a→R′ t′2,

(ii) t1
∗→R t2 iff there exists t′1, t

′
2 satisfying h(t′1) = t1, h(t′2) = t2, and t′1

∗→R′ t′2.

3 Automata-based symbolic representations

In order to perform reachability analysis of PRS, we need representation structures
for (infinite) sets of process terms. For this purpose, we use a class of tree-automata,
called commutative hedge automata [3], which recognize sets of trees modulo asso-
ciativity / associativity-commutativity. These automata extend both (1) bottom-up
tree automata over ranked alphabets [6], and (2) hedge automata recognizing sets
of undounded width trees [4].

3.1 Preliminaries

Presburger arithmetic is the first order logic of integers with addition and linear
ordering. Given a formula ϕ, we denote by FV (ϕ) the set of its free variables. Let
FV (ϕ) = {x1, . . . , xn}. Then, a vector u = (u1, . . . , un) ∈ Zn satisfies ϕ, written
u |= ϕ, if ϕ(u) = ϕ[xi ← ui] is true. Each formula ϕ defines a set of integer
vectors [[ϕ]] = {u ∈ Zn | u |= ϕ}. Presburger formulas define semilinear sets of
integer vectors, i.e., finite union of sets of the form {x ∈ Zn | ∃k1, . . . , kn ∈ Z,x =
v0 + k1v1 · · ·+ knvm}, where vi ∈ Zn, for 1 ≤ i ≤ m (see [11]).

Given a word w over an alphabet Σ = {a1, . . . , an}, the Parikh image of w, de-
noted Parikh(w), is the vector (|w|a1 , . . . , |w|an). This definition can be generalized
to sets of words (languages) over Σ in the obvious manner.

As usual, a set of words is regular if it is definable by a finite-state automaton.
The notion of regularity can be transfered straightforwardly to sets of flat seq-terms.
Similarly, the notion of semilinearity can be transfered to sets of flat par-term by
associating with a term X1‖ · · · ‖Xn the vector Parikh(X1 · · ·Xn).

In the sequel, we will represent by γ a constraint which is either a regular lan-
guage or a Presburger formula. We say that a word w = a1a2 . . . an satisfies the
constraint γ if w ∈ γ (resp. Parikh(w) |= γ) when γ is a language (resp. a formula).

3.2 Commutative Hedge Automata

Let Σ = Σ′ ∪ ΣA be a finite alphabet, where Σ′ is a ranked alphabet, and ΣA is
a finite set of associative operators. We assume that Σ′ and ΣA are disjoint. For

34

Bouajjani et al.

k ≥ 0, let Σk denote the set of elements of Σ′ of rank k.

3.2.1 Σ-Terms:
Let X be a fixed countable set of variables {x1, x2, . . .}. The set TΣ[X] of Σ-terms
over X is the smallest set such that:

• Σ0 ∪ X ⊆ TΣ[X],
• for k ≥ 1, if f ∈ Σk and t1, . . . , tk ∈ TΣ[X], then f(t1, . . . , tk) ∈ TΣ[X],
• if f ∈ ΣA, t1, . . . , tn ∈ TΣ[X] for some n ≥ 1, and root(ti) 6= f for every

1 ≤ i ≤ n, then f(t1, . . . , tn) ∈ TΣ[X], where root(σ) = σ if σ ∈ Σ0 ∪ X ,
and root

(
g(u1, . . . , um)

)
= g.

Note that if f ∈ ΣA, we only consider terms of the form f(t1, . . . , tn)
such that for every i, the root of ti is different from f . Indeed, since f

is associative, f
(
t1, . . . , ti−1, f(u1, . . . , um), ti+1, . . . , tn

)
is equivalent to the term

f(t1, . . . , ti−1, u1, . . . , um, ti+1, . . . , tn).
Terms without variables are called ground terms. Let TΣ be the set of ground

terms of TΣ[X]. A term t in TΣ[X] is linear if each variable occurs at most once
in t. A context C is a linear term of TΣ[X]. Let t1, . . . , tn be terms of TΣ, then
C[t1, . . . , tn] denotes the term obtained by replacing in the context C the occurrence
of the variable xi by the term ti, for each 1 ≤ i ≤ n.

3.2.2 Definition of CH-automata:
Let us consider that ΣA = Σ′

A ∪Σ′
AC where Σ′

AC is a set of associative and commu-
tative operators. We assume that Σ′

A and Σ′
AC are disjoint. Then, a CH-automaton

is a tuple A = (Q,Σ, F,∆) where:

• Q is a union of disjoint finite sets of states Q′ ∪
⋃

f∈ΣA
Qf ,

• F ⊆ Q is a set of final states,
• ∆ is a set of rules of the form:
(i) a→ q, where q ∈ Q′, a ∈ Σ0,

(ii) f(q1, . . . , qk)→ q, where f ∈ Σk, q ∈ Q′, and qi ∈ Q,
(iii) q → q′, where (q, q′) ∈ Q′ ×Q′ ∪

⋃
f∈ΣA

Qf ×Qf ,
(iv) f(Reg) → q, where f ∈ Σ′

A, Reg ⊆ (Q \ Qf)∗ is a regular language given by a
finite-state automaton, and q ∈ Qf ,

(v) f(ϕ) → q, where f ∈ Σ′
AC , q ∈ Qf , and ϕ is a Presburger formula such that

FV (ϕ) = {xq | q ∈ Q \Qf}.

We define a move relation →∆ between ground terms in TΣ∪Q as follows: for
every two terms t and t′, we have t →∆ t′ iff there exist a context C and a rule
r ∈ ∆ such that t = C[s], t′ = C[s′], and:

• r = a→ q, with s = a and s′ = q, or
• r = q → q′, with s = q and s′ = q′, or
• r = f(q1, . . . , qk)→ q, with s = f(q1, . . . , qk) and s′ = q, or
• r = f(Reg)→ q, with f ∈ Σ′

A, s = f(q1, . . . , qn), q1 · · · qn ∈ Reg , and s′ = q, or
• r = f(ϕ) → q, with f ∈ Σ′

AC , s = f(q1, . . . , qn), Parikh(q1 · · · qn) |= ϕ, and

35

Bouajjani et al.

s′ = q.

Let ∗→∆ denote the reflexive-transitive closure of →∆. A ground term t ∈ TΣ is
accepted by a state q if t ∗→∆ q. Let Lq = {t ∈ TΣ | t

∗→∆ q}. A ground term t ∈ TΣ

is accepted by the automaton A if it is accepted by some final state q ∈ F . The
CH-language of A, denoted by L(A), is the set of all ground terms accepted by A.

We have the following fact [5,16,20,21,3]:

Theorem 3.1 The class of languages recognized by CH-automata is effectively
closed under boolean operations, term substitutions and inverse of finite term sub-
stitutions. Moreover, the emptiness problem of CH-automata is decidable.

3.3 CH-automata for PRS process terms

We consider process terms as trees and use CH-automata to represent sets of such
trees. Indeed, for any finite set C ⊆ Const , the set TC of process terms can be seen
as the set of Σ-terms TΣ where Σ0 = {0} ∪ C, Σ′

A = {�}, and Σ′
AC = {‖}.

Sets of process terms are recognized by CH-automata A = (Q,Σ, F,∆) such
that (1) Q is the disjoint union Q = Q′ ∪ Q� ∪ Q‖ where Q′ is itself the disjoint
union Q′ = Q0 ∪ Q−, and (2) the rules in ∆ are of the form: (a) X → q, where
q ∈ Q−, X ∈ Const, (b) 0 → q, where q ∈ Q0, (c) q → q′, where (q, q′) ∈
(Q0)2 ∪ (Q−)2 ∪ (Q�)2 ∪ (Q‖)2, (d) �(Reg) → q, where Reg ⊆

(
Q \ (Q� ∪ Q0)

)∗
is a regular language and q ∈ Q�, and (e) ‖(ϕ) → q, where q ∈ Q‖ and ϕ is a
Presburger formula such that FV (ϕ) = {xq | q ∈ Q \ (Q‖ ∪Q0)}.

In other words, the states in Q� (resp. Q‖) recognize trees whose root is � (resp.
‖). The states in Q− recognize constants in C, and the states in Q0 recognize 0.

4 Computing 1-step reachability sets for canonic PRS

Let us consider a canonic PRS R = R� ∪ R‖ and let A = (Q,Σ, F,∆) be a CH-
automaton recognizing a set L of process terms. We show that the sets PostR(L)
and PreR(L) are effectively representable and computable by CH-automata.

For a given canonic PRS R′ and a given set of terms L1, we write R′(L1) as an
abbreviation for PostR′(L1). In the following we use the fact that given a regular
set L2 of flat seq-terms, the set R′

�(L2) is again regular and easily constructible.
The same holds for any semilinear sets L3 of flat par-terms and R′

‖(L3).

We construct a CH-automaton A′ = (Q̃,Σ, F̃ , ∆̃) which recognizes R(L), where
Q̃ is the set of states, F̃ is the set of final states, and ∆̃ is the set of rules. Let C
be a finite set of process constants such that C ⊇ Const(R) and L ⊆ TC .

4.1 The set of states

The set of states Q̃ includes the set of states Q of A and contains new states qX ,
which are assumed to accept precisely the singletons {X} (i.e., LqX = {X}), for
each X ∈ C. Let QR be the set of states QR = {qX | X ∈ C}. In addition,
the set Q̃ contains states which recognize the set R(Lq) of immediate successors of
terms in Lq for each q ∈ Q∪QR. In order to ensure (during the construction) that

36

Bouajjani et al.

the recognized trees are always in canonical form, we need to partition the sets of
recognized trees according to their types (given by their root).

We associate with each q ∈ Q∪QR different states (q,−), (q, 0), (q,�), and (q, ‖)
recognizing immediate successors of terms in Lq which are respectively constants in
C, null (equal to 0), �-rooted terms, and ‖-rooted terms.

Let Q = Q0∪Q−∪Q�∪Q‖. We consider that the set Q̃ is equal to the union of
the following sets: (1) Q̃0 = Q0∪{(q, 0) | q ∈ Q∪QR}, (2) Q̃− = Q−∪QR∪{(q,−) |
q ∈ Q ∪QR}, and (3) Q̃ω = Qω ∪ {(q, ω) | q ∈ Q ∪QR}, for ω ∈ {�, ‖}. Moreover,
we consider that F̃ = {(q,−), (q, 0), (q,�), (q, ‖) | q ∈ F}.

4.2 Rewrite system over the alphabet of states

Rules in CH-automata (of the forms ω(γ) → q) involve constraints on sequences
of states, whereas the systems R� and R‖ are defined over the alphabet of process
constants. Therefore, we define the systems S� = α(R�) and S‖ = α(R‖) where α
is the substitution such that α(X) = qX , for every X ∈ C (extended in the standard
way to terms, rules, and sets of rules).

4.3 The set of transition rules

The set ∆̃ is defined as the smallest set of transition rules which (1) contains ∆, (2)
contains the set of rules X → qX for every X ∈ Const , and (3) is such that:

(β1) Closure rules: successors of process constants and 0:
(a) If X ∗→∆ q, then ω

(
Sω(qX)

)
→ (q, ω) ∈ ∆̃,

(b) If 0 ∗→∆ q, then ω
(
Sω(0)

)
→ (q, ω) ∈ ∆̃.

The rule (a) says that if X is in Lq, then all its immediate ω-successors obtained
by applying once the system Rω are also immediate successors of Lq. The rule
(b) says the same thing for successors of 0.

(β2) Closure rule: successors of ω-rooted terms: If ω(γ) → p ∈ ∆, then
ω
(
Sω(σ(γ))

)
→ (p, ω) ∈ ∆̃, where σ is the substitution such that ∀q ∈ Q∪QR,

σ(q) = {q} ∪ {qX | X
∗→∆ q} ∪ {0 | 0 ∗→∆ q}.

This rule says that if ω(X1, . . . , Xn) ∈ Lp and ω(X ′
1, . . . , X

′
m) ∈

Rω

(
ω(X1, . . . , Xn)

)
, then ω(X ′

1, . . . , X
′
m) is a ω-successor of Lp.

(β3) Propagation rule: If ω(γ)→ p ∈ ∆, then ω
(
Eω(γ)

)
→ (p, ω) ∈ ∆̃, where E

is a canonic PRS defined as E = {q ↪→ (q,−), q ↪→ (q,�), q ↪→ (q, ‖)}.
The rule says that if �(t1, . . . , tn) ∈ Lp and t′1 is a successor of t1, then
�(t′1, . . . , tn) is a successor of Lp. Moreover, if ‖(t1, . . . , tn) ∈ Lp and t′i is
a successor of ti, then ‖(t1, . . . , t′i, . . . , tn) is a successor of Lp.
Note that we need to distinguish between E‖(γ) and E�(γ) to ensure that the
prefix-rewrite strategy of the � is correctly taken into account.

(β4) Term flattening rules:
(a) If ω(γ) → (q, ω) ∈ ∆̃ and q′ ∈ γ, then q′ → (q,−) ∈ ∆̃ if q′ ∈ Q̃−, and

q′ → (q, ω) ∈ ∆̃ if q′ ∈ Q̃ω.
(b) If ω(γ)→ (q, ω) ∈ ∆̃ and 0 ∈ γ, then 0→ (q, 0) ∈ ∆̃.
The rules say that if ω(t) is a successor of Lq, then t is also a successor of Lq.

37

Bouajjani et al.

Theorem 4.1 For every canonic PRS R and every CH-automaton A, we have
PostR

(
L(A)

)
= L(A′).

The proof can be found in [1]. As PreR(L) = PostR−1(L), the previous con-
struction can also be used to compute 1-step backward reachability sets.

5 Computing reachability sets for PAD and wPAD

In this section, we solve the problem of computing both reachability sets and 1-
step reachability sets for PAD and wPAD systems. Computing reachability sets
is difficult for PRS in general. One of the reasons is that already the reachability
sets of Petri nets are not semilinear. In [3] we show that the reachability sets of a
given canonic PRS system R can be effectively computed provided the underlying
multiset rewrite system R‖ is effectively semilinear. This is, for example, the case
of canonic PAD systems due to the result of [7] concerning context-free multiset
rewrite systems (BPP processes).

Theorem 5.1 ([3]) Let A be a CH-automaton recognizing a set of process terms
and R be a canonic PAD. Then the sets Post∗R(L(A)) and Pre∗R(L(A)) are com-
putable and effectively representable by CH-automata.

Using this theorem and the results of the previous section, we get the following.

Theorem 5.2 For every PAD R and every CH-automaton A, the sets
PostR(L(A)), PreR(L(A)), Post∗R(L(A)), and Pre∗R(L(A)) are computable and ef-
fectively representable by CH-automata.

Proof. Theorem 2.1 implies that for every PAD R and every set of terms L, there
exists a canonic PAD R′ and a finite term substitution h such that Post∗R(L) =
h(Post∗R′(h−1(L))) and PostR(L) = h(PostR′′(h−1(L))), where R′′ is the set R′ re-
stricted to rules labelled with actions of Act(R). Hence, CH-automata representing
the sets Post∗R(L(A)) and PostR(L(A)) are constructible due to closure proper-
ties of CH-automata and Theorems 5.1 and 4.1. The proof for Pre∗R(L(A)) and
PreR(L(A)) is analogous. 2

Now we show that the previous theorem holds for wPAD as well. Recall that
states of wPAD are pairs pt of a control state p and a term t. The sets of such
states can be represented by CHA-mappings.

Definition 5.3 Let R be a wPRS. A CHA-mapping Λ is a mapping assigning to
each control state p ∈M(R) a CH-automaton Λ(p). A CHA-mapping Λ represents
the set of states L(Λ) = {pt | p ∈M(R), t ∈ L(Λ(p))}.

Theorem 5.4 For every wPAD R and every CHA-mapping Λ, the sets
PostR(L(Λ)), PreR(L(Λ)), Post∗R(L(Λ)), and Pre∗R(L(Λ)) are computable and ef-
fectively representable by CHA-mappings.

Proof. Let R be a wPAD. For each pair of control states p, q ∈ M(R) we set
Rp,q = {t1

a
↪→ t2 | pt1

a
↪→ qt2 is a rule of R}. Note that each Rp,q is a PAD system.

38

Bouajjani et al.

CHA-mapping Λ1 representing PostR(L(Λ)) is defined as follows. For each q ∈
M(R), Λ1(q) is an CH-automaton satisfying

L(Λ1(q)) =
⋃

p∈M(R)

PostRp,q

(
L(Λ(p))

)
.

CHA-mapping Λ2 representing Post∗R(L(Λ)) is defined inductively with respect
to ordering < on set M(R) of control states. For every minimal element r of
M(R), Λ2(r) is a CH-automaton satisfying L(Λ2(r)) = Post∗Rr,r

(
L(Λ(r))

)
. For

non-minimal element q of M(R), Λ2(q) is a CH-automaton satisfying

L(Λ2(q)) = Post∗Rq,q

(
L(Λ(q)) ∪

⋃
p<q

PostRp,q

(
L(Λ2(p))

))
.

CHA-mappings Λ1,Λ2 are constructible due to Theorem 5.2 and the fact that CH-
automata are closed under union. The proof for PreR(L(Λ)) and Pre∗R(L(Λ)) is
analogous. 2

As mentioned in [3], the generic algorithm presented there can employ known
algorithms computing semilinear overapproximations of reachability sets for Petri
nets in order to compute overapproximations of reachability sets for general canonic
PRS systems. If we use this approximative algorithm for canonic PRS instead of
exact algorithm for canonic PAD system in Theorems 5.2 and 5.4, we get an algo-
rithm computing overapproximations of reachability sets for general wPRS systems.
Note that 1-step reachability sets for wPRS systems can still be computed precisely
as Theorems 5.2 and 5.4 hold even for (w)PRS if we restrict our attention only to
1-step reachability sets.

6 Model checking of wPAD against EF logic

This section presents a straightforward application of Theorem 5.4. We consider a
variant of EF logic combining both action-based and state-based approaches. We
show that the global model checking problem of wPAD systems against this logic
is decidable.

Formulae of EF logic are defined as

ϕ ::= P | ¬ϕ | ϕ1 ∧ ϕ2 | 〈a〉ϕ | EFϕ,

where P ranges over set AP of atomic propositions and a ranges over Act . Here,
formulae are interpreted over states of wPRS systems. For each atomic proposition
P , let V (P) denotes its valuation, i.e. the set of states where P holds. We define
when a state pt of a given wPRS system R satisfies a formula ϕ, written R, pt |= ϕ,
by induction on the structure of ϕ.

39

Bouajjani et al.

R, pt |= P iff pt ∈ V (P)

R, pt |= ¬ϕ iff R, pt 6|= ϕ

R, pt |= ϕ1 ∧ ϕ2 iff R, pt |= ϕ1 and R, pt |= ϕ2

R, pt |= 〈a〉ϕ iff ∃qt′ such that pt a→R qt′ and R, qt′ |= ϕ

R, pt |= EFϕ iff ∃qt′ such that pt ∗→R qt′ and R, qt′ |= ϕ

Theorem 6.1 For every wPAD system R and every EF formula ϕ over atomic
propositions with valuations given by CHA-mappings, the set of states of R satisfying
ϕ is computable and effectively representable by a CHA-mapping.

Proof. The theorem follows directly from Theorem 5.4 and closure properties of
CH-automata. Here we mention just the induction step corresponding to operator
〈a〉. Let ϕ = 〈a〉ψ and let CHA-mapping Λ recognizes all states satisfying ψ. We
construct a CHA-mapping Λ′, which recognizes all states where ϕ holds, to satisfy
L(Λ′) = PreRa

(
L(Λ)

)
, where Ra is the set R restricted to rules with label a. Such

a CHA-mapping Λ′ is constructible due to Theorem 5.4. 2

This theorem gives a positive answer to open questions formulated in [15],
namely whether model checking of wBPP, wPA, and wPAD systems against action-
based EF logic is decidable. Our result is tight as model checking of state extended
PAD (defined as wPAD where rules may not respect the ordering on control states)
against EF logic is already undecidable. In fact, the problem is undecidable even
for the subclass of state extended PAD called multiset automata and EF formulae
with the only atomic proposition true (this can be proved by the arguments of [7]
showing that model checking of Petri nets against EF logic is undecidable).

7 Conclusion

We have presented an automata-based symbolic reachability analysis algorithm for
the class of wPAD systems. This algorithm is based on the use of a class of un-
ranked tree automata (called CH-automata) which can recognize sets of configura-
tions closed under the algebraic properties of the sequential and parallel composi-
tion. We used the reachability analysis algorithm, together with one-step successor
computation (and boolean operations on CH-automata), in order to define an al-
gorithm for the global model checking of wPAD against the EF logic with regular
atomic predicates. These results generalize those proved in [3] concerning the class
of (canonic) PAD systems, which is a strict subclass of wPAD, pushing the known
decidability limit of EF model checking further up in the (se/w)PRS hierarchy, and
answering open questions left in [15].

As shown in [1], our symbolic reachability algorithm for wPAD can be used to
compute under approximations of the set of reachable configurations of synchro-
nized PAD (SPAD), a (Turing) powerful model introduced in [22] for modeling
multithreaded programs (with dynamic creation of communicating processes and
procedure calls).

40

Bouajjani et al.

References

[1] Bouajjani, A., J. Strejček and T. Touili, On symbolic verification of weakly extended PAD, Technical
Report 2006-001, LIAFA, CNRS and University of Paris 7 (2006), full version of this paper.

[2] Bouajjani, A. and T. Touili, Reachability Analysis of Process Rewrite Systems, in: Proc. of FSTTCS
2003, LNCS 2914 (2003), pp. 74–87.

[3] Bouajjani, A. and T. Touili, On computing reachability sets of process rewrite systems, in: Proceedings
of RTA 2005, LNCS 3467 (2005), pp. 484–499.

[4] Bruggemann-Klein, A., M. Murata and D. Wood, Regular tree and regular hedge languages over
unranked alphabets, Research report (2001).

[5] Colcombet, T., Rewriting in the partial algebra of typed terms modulo ac, in: Proceedings of
INFINITY’02, ENTCS 68 (2002).

[6] Comon, H., M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison and M. Tommasi, Tree
automata techniques and applications, Available on: http://www.grappa.univ-lille3.fr/tata (1997).

[7] Esparza, J., Decidability of model checking for infinite-state concurrent systems, Acta Informatica 34
(1997), pp. 85–107.

[8] Esparza, J., Grammars as processes, in: Formal and Natural Computing, LNCS 2300 (2002).

[9] Esparza, J. and J. Knoop, An automata-theoretic approach to interprocedural dataflow analysis, in:
Proceedings of FOSSACS’99, LNCS 1578, 1999, pp. 14–30.

[10] Esparza, J. and A. Podelski, Efficient algorithms for pre∗ and post∗ on interprocedural parallel flow
graphs, in: Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POLP’00) (2000), pp. 1–11.

[11] Harrison, M. A., “Introduction to Formal Language Theory,” Addison-Wesley, 1978.

[12] Jančar, P., A. Kučera and R. Mayr, Deciding bisimulation-like equivalences with finite-state processes,
Theor. Comput. Sci. 258 (2001), pp. 409–433.

[13] Křet́ınský, M., V. Řehák and J. Strejček, Extended process rewrite systems: Expressiveness and
reachability, in: Proceedings of CONCUR’04, LNCS 3170 (2004), pp. 355–370.

[14] Křet́ınský, M., V. Řehák and J. Strejček, On extensions of process rewrite systems: Rewrite systems
with weak finite-state unit, in: Proceedings of INFINITY’03, ENTCS 98 (2004), pp. 75–88.

[15] Křet́ınský, M., V. Řehák and J. Strejček, Reachability of Hennessy-Milner properties for weakly
extended PRS, in: Proceedings of FSTTCS 2005, LNCS 3821 (2005), pp. 213–224.

[16] Lugiez, D., Counting and equality constraints for multitree automata, in: Proceedings of FoSSaCS 2003,
LNCS 2620 (2003), pp. 328–342.

[17] Lugiez, D. and P. Schnoebelen, The regular viewpoint on PA-processes, in: Proc. of CONCUR’98, LNCS
1466 (1998), pp. 50–66.

[18] Mayr, R., Process rewrite systems, Information and Computation 156 (2000), pp. 264–286.

[19] Qadeer, S. and J. Rehof, Context-bounded model checking of concurrent software, in: Proceedings of
TACAS’2005, LNCS 3440 (2005), pp. 93–107.

[20] Seidl, H., T. Schwentick and A. Muscholl, Numerical document queries, in: Proceedings of PODS’03
(2003), pp. 155–166.

[21] Touili, T., “Analyse symbolique de systèmes infinis basée sur les automates: Application à la vérification
de systèmes paramétrés et dynamiques,” Ph.D. thesis, University of Paris 7 (2003).

[22] Touili, T., Dealing with communication for dynamic multithreaded recursive programs, in: Proceedings
of VISSAS’05, 2005.

41

EXPRESS 2006 Preliminary Version

Local bigraphs and confluence: two

conjectures

(extended abstract)

Robin Milner

University of Cambridge

Bigraphs have been used to present a variety of models of concurrency within a single

framework, which also provides a theory applicable to all the models. As we seek

informatic understanding of extensive real-life systems that reconfigure themselves,

we cannot expect that our present repertoire of abstract process calculi (including

Petri nets, mobile ambients, CSP and π-calculus) will suffice. So, as we enlarge our

repertoire of calculi —perhaps specific to a certain application (e.g. in biology or in

pervasive computing)— there is a need for unifying theory.

The bigraphical model is an experiment in this direction. It is not a specific

calculus, but rather a framework for defining and combining such calculi. To define a

specific bigraphical reactive system (BRS) two ingredients are needed: its signature

defines its controls (the kinds of nodes allowed), and its reaction rules define how

bigraphs can reconfigure themselves.

Already the model has yielded some elements of a theory, especially of labelled

transitions and behavioural congruences [6,4,5,7], which is applicable to a variety of

BRSs. The present exercise addresses a different topic. First, in local bigraphs [8]

we introduce a new treatment of names that allows them to have multiple locality

(an example follows shortly). Similar work in bigraphs is by Bundgaard and Hilde-

brandt [3]. Second, we study the notion of confluence —i.e. independence among

actions— in this setting, in the belief that it will arise frequently in applications.

One need only think of modelling behaviour within a building: activity at one end

of the building is largely independent of activity at the other end.

This summary omits some details, but should be accessible to those unfamiliar

with bigraphs. It summarises work whose aims are as follows: to understand how

activities in local bigraphs can conflict with one another, leading to non-confluence;

to represent the λ-calculus —the classic setting for confluence studies— within local

bigraphs; and thereby to learn conditions under which confluence can be assured

within this wider setting. The work is in progress; the summary ends with two

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Milner

yx x z

z

x′

z′

Fig. 1. A local bigraph G : 〈{xy}, {xz}, {z}〉→〈{x′}, {x′z′}〉

conjectures.

Mathematical framework: We work in s-categories. They differ from categories in

that each arrow f has a support |f |, a finite set; composition g ◦f is defined only if

|g| ∩ |f | = ∅, and then |g ◦f | = |g| ∪ |f |. Two arrows f and g are support equivalent,

f l g, if they differ only by a bijection between their supports. Support is important

for the notion of occurrence of one bigraph in another. For example, our Conjecture

1 rests upon analysis of when and how two redex occurrences can overlap each other.

1 Local bigraphs

Local bigraphs are arrows in an s-category whose objects are interfaces. An interface

I = X = 〈X0, . . . , Xm−1〉 has width m, a finite ordinal, and assigns to each location

i ∈ m a finite set Xi of names. The Xi need not be disjoint; thus, for example, any

x ∈ X0 ∩X1 has dual locality.

If J = Y is another interface with width n, then a local bigraph G : I → J has m

sites and n roots (or regions). Each region contains an unordered tree, whose root

is the region and whose other members are either nodes or sites; the latter must be

leaves. The interfaces dictate an assignment of names to each site and each region;

the inner and outer names of G are those of I and J respectively. The support

|G| of G is its set of nodes; we say that F and G overlap if their supports are not

disjoint.

Figure 1 shows a local bigraph with three sites (shaded) and two roots; the

trees are represented by nesting. Each node may have ports, the number depending

on the node’s kind or control (not shown). The set of ports and inner names is

partitioned into links; a link is either free (an outer name) or bound by a binding

port. The example has two free links, x′ and z′, and one link bound by a port on

the largest node. Binding ports are shown as circles, free ports as bullets.

There is a scoping discipline: if a link is bound, then its inner names and ports

must lie within the node that binds it; if a link is free, with outer name x, then x

must be located in every region that contains any inner name or port of the link.

The composition of G : I → J with F : H → I, written G ◦F , is easy to define

graphically: insert the roots of F in the sites of G, joining links at like names and

eliding the names. Observe that, via composition, nodes in different regions can

become separated by arbitrarily many node boundaries —while still sharing links.

An agent a : ε→ I has no sites; ε is the trivial interface with width 0. We use

43

Milner

0 1

x0

0 1

zx0

renew resource
R

x1

z

x0

x0

1

resource
R′

0

x1
0 := 1 1 := 1

Fig. 2. A parametric reaction rule

lower-case letters for agents.

2 Reaction rules and λ-calculus

We are interested in parametric (reaction) rules that reconfigure agents. Such a

rule has a redex R : H →K and a reactum R′ : H ′→K, which may have different

numbers m and m′ of sites. A parameter for the rule is then an agent a : H ⊕ I,

with width m. The interface H ⊕ I has width m; it combines two interfaces H and

I, each with width m, by taking the union of names at each location. H represents

names of a to be bound by R; I represents names of a to be exported by extra free

links through R.

Figure 2 shows a parametric rule where R and R′ both have two sites. So it takes

a parameter a = a0 ‖ a1 of width 2, with factors a0 and a1 each of unit width. The

the parallel composition ‖ is derivable from the tensor product in s-categories; if a

and b have widths m and n and disjoint supports, then in a ‖ b –with width m+n–

they are placed side-by-side, sharing free links. Sites in R and R ′ are numbered; an

assignment j := i written in the jth site of R′ means that the reaction should place

here a copy of the ith factor of a. Thus the rule shown will discard a0 and duplicate

a1, putting one copy at each site of R′. (We omit details of how each copy’s names

are determined.)

We can think of the rule as the renew node fetching from the resource node (via

the shared link z) a new copy of its resource a1. Since R has two regions, the renew

and resource nodes may be arbitrarily far apart in a large bigraph containing an

occurrence of the redex R; so the rule offers the possibility of action at a distance.

Let us now define a certain λ-calculus, Λsub, in the usual way. It is a version

with explicit substitutions, but with coarser steps than that of Abadi et al [1]. The

terms are

M ::= x | λxM | MN | M [x:=N]

The final term construction should be read ‘M where x means N ’; it should not to

be confused with {N/x}M , the result of replacing all free occurrences of x in M by

N .

44

Milner

x

x

applam(x) varx

sub(x) defx

sub def

lam app
var

x

x

Fig. 3. Ions for the Λ̂big, with their algebraic representation

Definition 2.1 (reduction) The reduction rules in Λsub are as follows:

(λxM)N . M [x:=N]

({x/y}M) [x:=N] . ({N/y}M) [x:=N] where M has a unique

free occurrence of y

M [x:=N] . M where M has no free occurrence of x .

Reductions may be applied to any subterm of a term.

Thus reductions are allowed even inside an explicit substitution. In the second rule,

{x/y}M distinguishes a particular free occurrence of x to be replaced by N . The

three rules together achieve β-reduction. The explicit substitution [x:=N] acts ‘at

a distance’ on each free occurrence of x in turn, rather than migrating a copy of

itself towards each such occurrence as in [1].

We now turn to Λ̂big, the BRS corresponding to Λsub. Figure 3 shows its

signature both graphically and algebraically. There are five controls (kinds of node),

shown as ions (elementary bigraphs); a var-node has no sites, an app-node has two,

and the rest have one. lam- and sub-nodes bind a link; var- and def-nodes have

one port. The shapes of a node is unimportant, except that the shape of the app-

node signifies that its sites are in left-to-right order. 1 Note that binding names are

parenthesized.

To export free names from their occupants, the ions with sites are generalised

to

lam(x) ⊕ idZ app⊕ (idY | idZ)

sub(x) ⊕ idZ defx ⊕ idZ .

The app-ion exports names Y from its first site, Z from its second.

1 Multiple-site Controls are definable from single-site ones, site, with the help of a sorting discipline.

45

Milner

Two new operators appear here. In this abstract we do not define operators

formally, but illustrate their meaning by examples. A prime composition F |G is

like F ‖G (and derivable from it), but it merges the outer regions of F and G into

one. The operator ⊕ is called extension. The extension I ⊕ I ′ of interfaces (with

same width) was defined earlier. Given G : I → J and ω : I ′→ J ′ (a wiring, i.e.

a node-free bigraph) one can form G ⊕ ω : I ⊕ I ′→ J ⊕ J ′ provided the interface

extensions are defined; it has the same tree structure as G, but the linkage of G is

extended by adding the linkage of ω. Thus idY | idZ , with inner width 2 and outer

width 1, is a suitable extension for app; it exports the union of the inner name-sets

Y and Z as outer names. The operators ◦ , ‖ , | and ⊕, though partial, have a rich

algebraic theory.

The free names in a bigraph built from the above ions correspond exactly to the

free variables in a λ-term. Thus λxx(xy) will translate into the bigraph

(lam(x) ⊕ idy) ◦ (app ⊕ (idx | idxy)) ◦ (varx ‖ ((app⊕ (idx | idy)) ◦ (varx ‖ vary))) .

(Here a set such as {xy} has been written without curly brackets.) Of course,

this notation is not recommended for developing λ-calculus theory! – but it has

the advantage that the free names exported with each term constructor are made

explicit.

We now translate Λsub into Λ̂big. The translation function [[M]]X is indexed

by the set X, which must include all the free variables of M . Thus each term M

has many bigraph images. This technique was used to model the asynchronous

π-calculus [4].

Definition 2.2 (λ-terms into bigraphs)

[[x]]X]x
def
= varx ⊕X

[[λxM]]X
def
= (lam(x) ⊕ idX) ◦ [[M]]X]x

[[MN]]X
def
= (app⊕ (idX | idX)) ◦ ([[M]]X ‖ [[N]]X)

[[M [x:=N]]]X
def
= (sub(x) ⊕ idX) ◦ ([[M]]X]x | ((defx ⊕ idX) ◦ [[N]]X)) .

We shall not discuss this translation fully. But it is worth noting that alpha-

convertible λ-terms have equal images; this is because bound names are elided by

composition. We are now ready to present the reaction rules for the BRS Λ̂big.

Definition 2.3 (dynamics) Λ̂big has three reaction rules: A (apply), C (copy)

and D (discard). They are shown both graphically and algebraically in Figure 4.

Note that rule C has width 2. Thus, in C, an occurrence of the ‘variable’ x may

be distant from the defining equation that will replace it with a ‘term’. This rule

exploits the multiple locality of names in local bigraphs; it is similar to the rule of

Figure 2.

We now assert that reaction in Λ̂big exactly matches reduction in Λsub:

46

Milner

xx

0

0:=0
lam

app

sub
def

A

1
1:=1

sub

0 1
0:=0

def

D

def

0 0:=0
1 :=0

var def

C

x

x

R R′

A app ◦ (lam(x) ‖ id) sub(x) ◦ (idx | defx)

C varx ‖ defx id ‖ defx

D sub(x) ◦ (id | defx) id

Fig. 4. Parametric reaction rules for Λ̂big

Proposition 2.4 (reaction matches reduction) [[M]]X . g if and only if

M . M ′ for some M ′ such that [[M ′]]X l g .

In fact, for each reduction by a rule for Λsub there is a matching reaction by the

corresponding rule for Λ̂big, and conversely. In a recent draft O’Conchuir [9] has

proved (strong) confluence directly for Λsub, so this translates immediately into a

confluence proof for Λ̂big. Our purpose here is different; we use the bigraphical

representation to illustrate the confluence properties that we seek for bigraphs in

general.

3 Confluence in bigraphs

Recall that for any given reduction or reaction relation ‘ . ’ there are three familiar

notions of confluence, shown in Figure 5. They all say that if g can react to become

either g0 or g1, then these two reacta can in turn react to reach a common result.

Clearly one-step ⇒ strong ⇒ weak, and it is well-known that these implications are

strict in general. The most positive result for a BRS would be that strong confluence

holds outright. This is indeed true (the Church-Rosser theorem) for the classical λ-

calculus, and (by O’Conchuir) for Λsub also. However, in bigraphs we cannot expect

47

Milner

one−step strong weak

*

* *
g

g1

g0

g
′

g

g1

g0

g
′

g

g1

g0

g
′

Fig. 5. Three notions of confluence

this in general. Instead, we shall look for conditions that ensure non-interference

between two competing reactions g . g0 and g . g1; such conditions may depend

on the reaction rules that underlie the two translations, and on the extent to which

the two redices overlap (if at all) in g. Moreover, it is in general easier to establish

weak confluence in such cases.

If we succeed in showing that weak confluence always holds for a certain class of

agents under certain reaction rules, and if this class is itself preserved by reaction,

then we may look to well-known methods from the theory of the λ-calculus that

allow us to deduce strong from weak confluence. One such method is based upon de-

velopments [2]. A development is a reduction sequence M . M1 . M2 . · · · in

which the only redices reduced are the residuals of an arbitrary set of redices present

initially in M . The method is based upon the theorem that if all developments are

of finite length, then weak confluence implies strong confluence.

Before going further, we note that BRSs can be wilder than the λ-calculus! One

property, used again and again in case analyses for the λ-calculus, is that when a

term contains two redices then they are either disjoint or else nested (one inside the

other). This fails for ground redices in BRSs; worse, it even fails for the parametric

redices underlying them. Indeed, Figure 6 shows two possible parametric redices

which are intimately entwined, each partly inside the other.

A A
A′A′ B′

B′

BB

gredexes SR yy
xx

Fig. 6. An agent g containing two intertwined redices R and S

We do not know whether this property —redices nested or disjoint— is essential

for weak confluence, or for finiteness of developments, in a BRS. However, recent

investigation has explored a classification of ways in which two competing redices can

overlap. If a parametric redex R supports a reaction g . g0, then r = (R ⊕ ω) ◦a

occurs in g, for some parameter a and wiring ω. Similarly, if redex S supports a

reaction g . g1, then s = (S ⊕ ζ) ◦ b occurs in g. The ground redices r and s can

overlap in different ways; for example s may not overlap with R, but may partly

overlap with a. The investigation identifies four principal cases for such overlap,

and claims that under certain further conditions the weak confluence diagram can

be completed by g0 . ∗g′ and g0 . ∗g′. As this work is not complete we confine

ourselves at present to two indeterminate conjectures about reactions in BRSs:

Conjecture 1 (weak confluence in Λ̂big) Weak confluence holds for certain

sets of agents in certain BRSs, including the set of all images of Λsub-terms in

48

Milner

Λ̂big.

Conjecture 2 (finite developments in Λ̂big) Developments are finite for

certain sets of agents in certain BRSs.

Together, these two results will lead to strong confluence for the agents mentioned.

Conjecture 1 is reasonably firm, since (as indicated) much of the analysis has

been done. Conjecture 2 is left vague at present. It is possible that, in Λ̂big,

developments are finite only under some constraint. O’Conchuir’s detailed study [9]

may help to identify such a constraint.

Conclusion

The aim of this work is not to find yet another proof of the Church–Rosser theorem

for a variant of the λ-calculus, but rather to learn from such proof techniques in

order to analyse confluence for a wider class of agents and reaction rules than that

for which it has hitherto been studied. This will lead to a better understanding not

only of practically useful BRSs, but also of confluence itself.

References

[1] Abadi, M., Cardelli, L., Curien, P-L. and Levy, J-J. (1991), Explicit substitutions. Journal of Functional
Programming 1, pp375–416.

[2] Barendregt, H. (1984), The Lambda Calculus: its Syntax and Semantics. North Holland.

[3] Bundgaard, M. and Hildebrandt, T. (2006), Bigraphical semantics of higher-order mobile embedded
resources with local names. Proc. GT-VC 2005, Electronic Notes in Theoretical Computer Science
154(2), pp7–29.

[4] Jensen, O-H. and Milner, R. (2003), Bigraphs and transitions. Proc 30th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), 2003, 16pp.

[5] Jensen, O.H. and Milner, R. (2004), Bigraphs and mobile processes (revised). Technical Report 580,
University of Cambridge Computer Laboratory. Available from http://www.cl.cam.ac.uk/users/rm135.

[6] Leifer, J. and Milner, R. (2000), Bisimulation congruences for reactive systems. Proc. CONCUR2000,
LNCS, Vol 1877, pp243–258.

[7] Leifer, J. and Milner, R. (2006), Link graphs, transitions and Petri nets. To appear in Mathematical
Structures in Computer Science.

[8] Milner, R. (2004), Bigraphs whose names have multiple locality. Technical Report UCAM-CL-TR-603,
University of Cambridge, Computer Laboratory. Available from
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-603.pdf .

[9] O’Conchuir, S. (2006), Λsub as an explicit substitution calculus (draft).

49

EXPRESS 2006 Preliminary Version

General reversibility

Vincent Danos
CNRS & Université Paris 7

Jean Krivine
INRIA Rocquencourt & Université Paris 6

Pawe l Sobociński1

Computer Laboratory, University of Cambridge

Abstract

The first and the second author introduced reversible ccs (rccs) in order to model concurrent computations
where certain actions are allowed to be reversed. Here we show that the core of the construction can be
analysed at an abstract level, yielding a theorem of pure category theory which underlies the previous
results. This opens the way to several new examples; in particular we demonstrate an application to Petri
nets.

1 Introduction

The reversible calculus of communicating systems (rccs) [1] is essentially Milner’s
ccs [9] with the caveat that some observable actions in the standard labelled tran-
sition system (lts) semantics are understood to be reversible. Technically, the the-
oretical development involved the engineering of explicit syntax for keeping track
of a computation history. Such a history, together with a ccs term, forms the
configuration of a given process. Appropriate new structural operational seman-
tics (sos) rules allowed the reversible components of a given state’s history to be
undone. Phillips and Ulidowski [10] proposed a different approach to keeping the
record of a computation’s history; instead of keeping an explicit representation of
history together with an unevaluated term, they keep the structure of terms essen-
tially unaltered by making the sos rules static. Causality is kept track of by tagging
actions with so-called communication keys.

In [2], it was argued that a calculus such as rccs (or ccsk of [10]) is suited
for modelling transactions – ie computations where several agents interact in order

1 Research partially supported by epsrc grant EP/D066565/1.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Danos, Krivine and Sobociński

to agree on a common irreversible action; see [3] for example. Indeed, it seems
that guaranteeing the soundness of such transactions is easy enough since policies
are normally specified by requiring the local states of the participants to satisfy
certain criteria. On the other hand, completeness seems to be more difficult, since
the existence of a possible computation leading to all of the agents having the
required state does not guarantee that such a state will be reached – for instance,
the agents may deadlock while racing to obtain the necessary shared resources. If
we stipulate that the actions leading to transactions are reversible and enrich the
participants with histories, meaning that the intermediate actions can be undone,
the irreversible computations are “essentially” the transactions. More concretely,
it was shown in [2] that the lts where the labels are taken to be the transactions
and the lts of processes with histories and reversible actions, where the reversible
actions are equated with τs, are weakly bisimilar.

In this paper we show that the design of a calculus such as rccs involves an
underlying abstract construction of the history category from a category of computa-
tions. The fact that the computations agree essentially with the causal (irreversible)
computations in the original category is captured by an equivalence of categories.

The main contributions of this paper are:

(i) the observation that subcategories R of reversible and I of causal computa-
tions form a factorisation system 〈I,R〉 on the category of computations C
(cf §3);

(ii) given a factorisation system 〈I,R〉 on C, an explicit construction of the “cat-
egory of histories” h?(C,R) (cf Definition 4.3);

(iii) a proof that h?(C,R) essentially follows from a free construction; concretely
we prove that h?(C,R) is equivalent to a certain category of fractions (cf
Theorem 4.5);

(iv) an equivalence of categories h?(C,R) ' I (cf Theorem 4.4) – this is the
main result of the paper and guarantees that in order to capture the causal
computations it is enough to keep the reversible parts of a computation along
as part of the state and allow these histories to be undone;

(v) a direct application of Theorem 4.4 to the categories of computations induced
by Petri nets;

(vi) an explanation of how Theorem 4.4 relates to the previous work [2] concerning
rccs. In particular, a weak bisimulation that relates the lts of transactions
to the lts of reversible histories where the reversible actions are treated as
internal (cf Theorem 5.3).

Structure of the paper
In §2 we recall the basic concepts of categories of fractions and factorisation

systems. In §3 we introduce several examples, including Petri nets, and show that
the sets of causal and reversible computations form factorisation systems. The
construction of the history category together with our main Theorem 4.4 is given in
§4. Finally, in §5 we explore the connections with labelled transition systems. The
paper assumes a basic acquaintance with the categorical notions of adjunctions and

51

Danos, Krivine and Sobociński

symmetric monoidal (sm) categories.

2 Categories of fractions and factorisation systems

Categories of fractions
Given a category C and an arbitrary class of morphisms Σ, we denote by C[Σ−1]

the category of fractions obtained by “freely” adding formal inverses to the arrows
of Σ (see, for instance [5]).

The category of fractions is characterised by a universal

C

F
!!DD

DD
DD

DD
D

Φ // C[Σ−1]

F ′

��
D

property: the existence of a functor Φ: C → C[Σ−1] which
sends each arrow in Σ to an isomorphism, and moreover,
given a category D and a functor F : C → D which takes
each arrow in Σ to an isomorphism, the existence of a unique
functor F ′ : C[Σ−1]→ D such that F ′Φ = F .

Factorisation systems
Given a category C and two arrows f, g ∈ C we shall

A

f

��

p //B

g

��
C

h

>>

q
//D

write f ⊥ g if f and g satisfy the following property: given
a commutative diagram with p, q arbitrary morphisms of C
there exists a unique morphism h : C → B such that gh = q

and hf = p, as illustrated. Notice that ⊥ is not symmetric.
Given an arbitrary set X of arrows of C there are two closure
operations which use ⊥:

X⊥ = { y in C | ∀x ∈ X . x ⊥ y } and X> = { y in C | ∀x ∈ X . y ⊥ x }.

If we let Iso(C) (Ar(C)) be the class of all isomorphisms (morphisms) of C then
it’s immediate that Iso(C)⊥ = Ar(C) = Iso(C)>.

The following are standard properties enjoyed by the closure operations:

Proposition 2.1

(i) X⊥>⊥ = X⊥;

(ii) X>⊥> = X>;

(iii) X ⊆ X ′ ⇒ X ′⊥ ⊆ X⊥

(iv) X ⊆ X ′ ⇒ X ′> ⊆ X>.

Following [4], we define a prefactorisation system as follows:

Definition 2.2 [Prefactorisation system] A prefactorisation system for a category
C consists of two classes I, R of arrows of C such that I⊥ = R and R> = I.

By the first two parts of Proposition 2.1 it is immediate that for any class of
arrows X of C,

〈
X>,X>⊥

〉
and

〈
X⊥>,X⊥

〉
are prefactorisation systems.

The following are some of the well-known properties of prefactorisation sys-
tems [4]:

Proposition 2.3 Suppose that 〈I,R〉 is a prefactorisation system on C. Then:

52

Danos, Krivine and Sobociński

(i) Iso(C) ⊆ I, Iso(C) ⊆ R and I ∩ R = Iso(C);

(ii) I and R are closed under composition.

The conclusion of Proposition 2.3 implies that I andR are actually subcategories
of C since they contain the identities and are closed under composition. We shall
take advantage of this by often confusing I and R with the subcategories they form
the arrows of.

Definition 2.4 [Factorisation system] A prefactorisation system 〈I,R〉 on C is a
factorisation system if every arrow p in C can be written p = g ◦ f for some f in I
and g in R.

Example 2.5 Clearly 〈C, Iso(C)〉 and 〈Iso(C),C〉 are factorisation systems in any
category. Probably the most well-known factorisation system is of course 〈E ,M〉 in
the category of sets Set, where E is the class of surjections and M is the class of
injections.

The following is a well-known property of factorisation systems:

Lemma 2.6 〈I,R〉-factorisation is unique up to isomorphism: if p : A → B in
C can be factorised p = g1f1 and also p = g2f2 where fi : A → Ci is in I and
gi : Ci → B is in R for i = 1, 2, then there exists a unique isomorphism h : C1 → C2

such that hf1 = f2 and g2h = g1

3 Reversibility

Following the theoretical exposition, we give a number of motivating examples of
factorisation systems. We shall consider categories of computations which decom-
pose into an underlying set of atomic actions, some of which are a priori specified as
reversible. Given a computation which consists of both types of actions, it should
be possible to break it up into a causal (non-reversible) component followed by a
maximal reversible component. If we denote the causal computations by I and the
reversible computations by R, it turns out that 〈I,R〉 usually forms a factorisation
system on the category of computations.

Example 3.1 [Single-threaded reversibility] Consider an alphabet Σ = I + R for
some sets I and R; we think of I as a set of irreversible atomic actions and R as a
set of reversible atomic actions. Let Σ∗ denote the free monoid over Σ considered
as a one-object category.

Let R = R∗ and let I = R> = Σ∗I + ε – the set of all strings which end with an
irreversible action, together with the empty string. Then 〈I,R〉 is a factorisation
system on Σ∗.

Example 3.2 [Multi-threaded reversibility] Let C be the free sm category on a
graph G – ie one first forms the free category on G and then the free sm category
on the resulting category. We think of the vertices of G as representing the states
of a particular thread of computation, and the edges as possible actions. Then,
following this intuition, the arrows of C represent multithreaded computations of
finitely many non-communicating processes, with the tensor product ⊗ representing
parallel composition.

53

Danos, Krivine and Sobociński

Suppose that the edges of G are partitioned into two sets, I and R. Let GR

denote the graph with the same nodes as G but with the edges restricted to the
members of R.

Let R be the free sm category on GR. Clearly R is a subcategory of C in a
canonical way. Let I = R>. It is easy to verify that I is the smallest subcategory
of C which contains the isomorphisms of C, arrows of the form iα with i ∈ I and
whose arrows are closed under ⊗. Then 〈I,R〉 is a factorisation system on C.

It is instructive to consider a more substantial example in order to illustrate the
theory. Here we shall consider Petri nets as sm categories in the tradition of [8].
Note, however, that we do not deal with strict symmetric monoidal categories. We
shall first need to recall the notion of a tensor scheme [6] and the associated notion
of a free sm category on a tensor scheme; indeed, as we shall see, tensor schemes
are very closely related to Petri nets. Note that tensor schemes can also be used in
order to construct ordinary (ie non-symmetric) free monoidal categories.

Definition 3.3 [Tensor scheme]A tensor scheme S consists of a set V of vertices,
a set E of edges, and functions s, t : E → V ∗, where V ∗ is the free monoid (the set
of finite words) on V . Every tensor scheme leads to a free sm category C – see [6]
for details. Intuitively, the objects of C can be seen as finite words (ie the product
in V ∗ is interpreted as ⊗ in C) in V and the arrows of C are generated freely from
the basic edges in E. Concretely, the arrows can be seen as certain equivalence
classes or as certain string diagrams; see [11]. Notice that the procedure described
in Example 3.2 can be seen as a special case of a tensor scheme (where all the edges
have one letter words as sources and targets).

Definition 3.4 [Petri net] A Petri net N with a set of states S and set of transitions
T is a graph s, t : T → S⊕ where S⊕ is the free commutative monoid on S. A Petri
category CN is the free sm category on N , considered as a tensor scheme. 2

The Petri category CN can be thought of as the category with arrows the (truly)
concurrent computations of a net N .

Example 3.5 [Petri net reversibility] Suppose that the set T of transitions N can
be partitioned T = I+R, where the set I contains the transitions which are deemed
irreversible and R the transitions deemed reversible. We obtain a factorisation
system 〈I,R〉 as in our previous examples.

Let R be the free sm category on NR, the Petri net with the same places as
N and with R as its set of transitions, considered as a tensor scheme; it is clearly
a subcategory of CN in a canonical way. Let I = R> – the arrows of I can be
described roughly as in Example 3.2. The pair 〈I,R〉 forms a factorisation system
on CN .

Consider the concrete example of a net illustrated in Figure 1, where precisely
the unfilled transitions (g1 and g2) are taken to be reversible. Suppose that places
x1 and x2 initially contain one token each; intuitively, we can consider places x1

and x2 as agents which each have an option of committing to two transactions:

2 One fixes a particular ordering of places for the source and the target of each transition, the order is
immaterial.

54

Danos, Krivine and Sobociński

x1

y

z1

z2

x2 z3

g1

g2

f1

f2

f3

2

Fig. 1. A simple Petri net, the filled transitions are irreversible.

x1 can commit to either f1 or f2 while x2 can commit to f2 or f3. In terms of
CN this amounts to the fact that there are arrows f1 : x1 → z1, f3 : x2 → z3 and
f2.g1 ⊗ g2 : x1 ⊗ x2 → z2. Notice that if x1 chooses to perform g1 and x2 commits
to f3 then the computation begun by x1 is stuck unless the g1 transition can be
reversed and f1 chosen instead.

Consider the effect of adding new transitions g1? and g2? to act as the inverses
of g1 and g2 respectively. If we deem that reversed computations are the same as
doing nothing then the resulting Petri category is just CN [R−1]. However, this
setting is clearly unsuitable to model the expected behaviour of the net: consider
starting with a single token in x2 and performing the g2 transition. Since now g1?

is enabled, we can perform g1? and then f1, thus arriving at a behaviour which is
not in the specification – x2 being able to commit to action f1.

4 Histories

A key technical feature of rccs is that histories are kept as part of the state, which
allows reversible moves to be backtracked correctly. Here we repeat the construction
at a higher level of abstraction, assuming only the presence of a factorisation system.

Definition 4.1 [Category h(C,R) of histories] Suppose that 〈I,R〉 is a factorisa-
tion system on C. Let h(C,R) be the category with:

• objects: arrows g in R;
• arrows: commutative diagrams, as illustrated, where f

is in C and f ′ ∈ I.

P1

g1 ��

f ′ //P2

g2��
Q1 f

//Q2

Notice that given an object g1 : P1 → Q1 in h(C,R) and an arbitrary arrow
f : Q1 → Q2, there exists a unique up-to-isomorphism object g2 of h(C,R) and
arrow f ′ : P1 → P2 in I such that 〈f, f ′〉 : g1 → g2 is in h(C,R) – here g2 ◦ f ′ is
just the 〈I,R〉-factorisation of f ◦ g1. Notice that if f ∈ R, then using the fact that
arrows of R compose and uniqueness of factorisation (Lemma 2.6), we have that
f ′ ∈ Iso(C).

Recall from Proposition 2.3 that we can consider I to be a category. There
is an obvious functor M : h(C,R) → I which takes an object g1 : P1 → Q1 to P1

and the diagram above to the arrow f ′ : P1 → P2. Returning to our intuitions,
this functor takes a computation to its causal (non-reversible) component. Using
the final remark of the previous paragraph, M sends arrows which have a lower

55

Danos, Krivine and Sobociński

h(C,R)
M

��
a

Ψ --
h?(C,R)

M?nnIN

XX N?
33

∼

Fig. 2. Histories and causal computations.

component in R to isomorphisms.
There is also a (full and faithful) functor N : I → h(C,R), which

P1

��

f //P2

��
P1 f

//P2

takes an object P1 ∈ I to the identity on P1 (null history) and a
morphism f : P1 → P2 to the illustrated diagram.

Proposition 4.2 N is left adjoint to M .

Proof. Given g1 : P1 → Q1 ∈ h(C,R), consider the illustrated mor-

P1

��

//P1

g1��
P1 g1

//Q1

phism εg1 = 〈g1, id〉 : NM(g1) → g1. It is easy to verify that ε
defines a natural transformation NM ⇒ idh(C,R) – it is the counit
of the adjunction. The unit is trivial as MN = idI , and the triangle
identities are easily checked. 2

Recall that our intuition is that the objects of h(C,R) represent
(reversible) histories. We shall now extend h(C,R) with “reversed” computations
with the effect that such histories can be undone.

Definition 4.3 [Category h?(C,R) of reversible histories] Suppose that 〈I,R〉 is a
factorisation system. Let Φ: C→ C[R−1] be the canonical functor to the category
of fractions. Let h?(C,R) denote the category with:

• objects: arrows g in R;
• arrows: formal diagrams, as illustrated, with f ∈ I,
f? ∈ C[R−1], such that f?Φ(g1) = Φ(g2f) in C[R−1].

P1
f //

g1 ��

P2

g2��
Q1 f?

//Q2

There is an evident functor Ψ: h(C,R)→ h?(C,R) which maps the lower com-
ponent of a history morphism from C to C[R−1] via Φ:

P1

g1 ��

f ′ //P2

g2��
Q1 f

//Q2

7−→
P1

g1 ��

f ′ //P2

g2��
Q1 Φf

//Q2

Let M? : h?(C,R)→ I be the functor which takes an arrow of h?(C,R) to its upper
component. Clearly M?Ψ = M .

Theorem 4.4 M? is an equivalence of categories.

Proof. Let N? = ΨN : I → h?(C,R) (see Fig 2) – clearly M?N? = idI , we shall
show that there exists a natural isomorphism N?M? ⇒ idh?(C,R).

Indeed, since Ψ is the identity on objects, we have N?M?g = ΨNMΨg = NMg,
and thus it suffices to show that Φε is a natural isomorphism, where ε is the counit

56

Danos, Krivine and Sobociński

of the adjunction N aM . We illustrate Ψεg, clearly it is an invertible morphism of
h?(C,R). Naturality is straightforward.

2

P

��

//P
g
��

P Φg
//Q

Recall from Example 2.5 that 〈C, Iso(C)〉 and 〈Iso(C),C〉 are
trivial factorisation systems in any category C. The conclusion
of Theorem 4.4 implies immediately that h∗(C, Iso(C)) ' C and
h∗(C,C) ' Iso(C).

We shall now show that h?(C,R) essentially follows from a free
construction. Let R′ = { 〈g, ϕ〉 ∈ Ar(h(C,R)) | g ∈ R}, the set of those arrows of
h(C,R) where the lower component is in R (cf paragraph following Definition 4.1).

Theorem 4.5 There is an equivalence of categories h?(C,R) ' h(C,R)[R′−1].

Proof. Let X = h(C,R)[R′−1]. Since we know that h?(C,R) ' I, it is enough to
show that also X ' I. Let Φ′ : h(C,R)→ X be the canonical quotienting functor.
Since M : h(C,R) → I sends every member of R′ to an isomorphism, we have a
unique functor M ′ : X → I such that M ′Φ′ = M . Let N ′ = Φ′N : I → X. Then
M ′N ′ = M ′Φ′N = MN = idI .

Let ε : NM → idh(C,R) be the counit of the

N ′M ′g N ′M ′h //

Φ′εg

��

N ′M ′g′

Φ′εg′
��

g
h

// g′

adjunction N aM . Clearly Φ′ sends each com-
ponent of ε to an isomorphism in X. Since Φ′

is the identity on objects, we have that for each
object g ∈ X, Φ′εg : N ′M ′g → g is an isomor-
phism. It remains to check that Φ′ε defines a
natural transformation N ′M ′ → idX. To do
this we need to check that the commutativity of an arbitrary square, as illustrated,
where h is in X.

It is well-known that arrows in X are equivalence classes of zig-zags in h(C,R)
where each of the reverse arrows is in R′. Using the functoriality of N ′M ′ and the
fact that ε is a natural transformation, we can “fill in” the diagram below at each
point, and since h = (Φ′γn)−1Φ′αn . . . (Φ′γ1)−1Φ′α1, naturality easily follows by a
straightforward diagram chase.

N ′M ′g
Φ′NMα1//

Φ′εg

��

N ′M ′g1

Φ′εg1
��

N ′M ′s1
Φ′NMγ1oo

Φ′εs1
��

Φ′NMα2// . . . Φ′NMαn // M ′N ′gn

Φ′εgn
��

N ′M ′g′
Φ′NMγnoo

Φ′εg′
��

g
Φ′α1

// g1 s1
Φ′γ1

oo
Φ′α2

// . . .
Φ′αn

// gn g′
Φ′γn

oo

2
Considering Examples 3.1, 3.2 and 3.5, Theorem 4.4 states that to understand

the structure of causal computations it is enough to remember the maximal re-
versible component of a given computation and allow these histories to be back-
tracked.

Returning to the discussion concerning the net of Figure 1, the missing ingredient
was clearly the explicit keeping track of the history of the current computation –
ie instead of working in CN [R−1] we work in the history category h?(CN ,R).

57

Danos, Krivine and Sobociński

(cf Definition 4.3). Our main result, Theorem 4.4, establishes that the categories
h?(CN ,R) and I are equivalent, which confirms that the computations of nets with
histories are essentially the same as the causal computations of the original net.
Of course, the main result is clearly more general than this particular example, for
instance it underlies the previous work on rccs [1, 2].

Indeed, it is interesting to compare the concrete implementation of a reversible
process algebra, like rccs, with the abstract construction we present in this paper.
Roughly, the definition of rccs in [1] can be summed up as the development of a
correct syntactic presentation of the category of reversible histories h?(C,R), where
C is the category of computations of ccs.

5 Free categories as transition systems

The categories of Examples 3.2 and 3.5 can be thought of as a transition systems as
well as categories; indeed, since the categories are generated freely, their arrows can
be seen as (equivalence classes of) traces in the transition systems. Here we shall
elucidate the consequences of our main Theorem 4.4 for the underlying transition
systems, obtaining a direct generalisation of the main result of [2]. Notice however
that the results of §4 are more general, since the underlying categories are not
assumed to be free; indeed, the only assumption is the presence of a factorisation
system.

Let S = 〈V,E〉 be a tensor scheme with edges E partitioned into sets of irre-
versible actions I and reversible actions R. Let C be a freely generated sm category
over S. Let R be the subcategory of C generated by SR = 〈V,R〉. Let I = R>.
Then 〈I,R〉 is a factorisation system. 3

Definition 5.1 Let TS(C) be defined as follows:

• states are isomorphism classes of objects of C;
• transitions are labelled with elements of E and arise as follows

P1 ⊗ P2
α⊗P2−−−→ P ′1 ⊗ P2 in C, α ∈ E

[P1 ⊗ P2] α I [P ′1 ⊗ P2]

Using the fact that C is freely generated, any non-invertible arrow of C generates
a finite set of traces in TS(C). We shall refer to each possible trace of an arbitrary
morphism f in C as a serialisation of f .

A trace σ is said to be causal if it is a serialisation of an arrow f in I. A trace
σ is an i-transaction if it is causal and contains precisely one action i ∈ I (and
arbitrarily many actions from R). Let CTS(C) be the lts with the same states as
TS(C), but with transitions

[P] σ I [P ′] in TS(C), σ an i-transaction

[P] i I [P ′] in CTS(C)

3 We leave it as future work to determine sufficient conditions on a subcategory which ensure that R =
R>⊥.

58

Danos, Krivine and Sobociński

Thus CTS(C) is the lts of transactions. Correspondingly, we shall now define
the history lts, where states are enriched with a history, and the transitions are
those of TS(C) as well as new transitions which allow backtracking.

Definition 5.2 Let RTS(C) be defined as follows:

• states: isomorphism classes of objects h(C,R) (structural isomorphisms);
• transitions labelled with elements of E ∪R∗ where R? = { r? | r ∈ R }. They are

derived from morphisms in h?(C,R), as illustrated below:

P1

g1
��

f //P2

��
g2��

Q1 ⊗Q2
α⊗Q2 //Q′1 ⊗Q2

, α ∈ E

 P1

g1 ��
Q1 ⊗Q2

 α I

 P2

g2��
Q′1 ⊗Q2



P1

g1
��

f //P2

��
g2��

Q1 ⊗Q2
r−1⊗Q2 //Q′1 ⊗Q2

, r ∈ R

 P1

g1 ��
Q1 ⊗Q2

 r? I

 P2

g2��
Q′1 ⊗Q2


It is clear from the construction of h?(C,R) that any morphism in h?(C,R) induces
a set of serialisations (traces) in RTS(C).

Theorem 5.3 Consider a free sm category C generated from a tensor scheme S =
〈V,E〉 with E = I +R, together with an induced factorisation system 〈I,R〉 where
R is the subcategory of C freely generated by SR = 〈V,R〉. Let CTS(C) be the lts of
transactions (cf Definition 5.1) and RTS(C) be the reversible lts (cf Definition 5.2)
where the reversible actions are considered to be silent. Then CTS(C) ≈ RTS(C).

Proof. We shall show that the (object part of the) functor M? : h?(C,R) → I is
actually a functional weak bisimulation.

Recall that M?(P
g−→ Q) = P . Clearly M? is well-defined as

P

g
��

f //P ′

g′
��

Q
α⊗X

//Q′

P
g

��

//P
(†)

��

fi //P ′

��
Q g∗

//P fi

//P ′

a function from states of RTS(C) to states of CTS(C). Suppose
that there is a transition

[P
g−→ Q] α I [P ′

g′−→ Q′].

Then either α ∈ R, in which case the transition is silent – we
have P ′ ∼= P so we can counter with the empty trace.

If α /∈ R then we have the first diagram where f is in I. Since
we are in a free category, any serialisation of f must contain α as
a unique action from I. Thus f leads to a trace in TS(C) which
is an α-transaction – ie we have a labelled transition [P] α I [P ′] in CTS(C).

Now consider an arbitrary transition [P] i I [P ′]. Let P
fi−→ P ′ be the cor-

responding arrow in I. Then in particular we have the square (†) in h∗(C,R), as
illustrated in the second diagram. Let g∗ be the inverse to g in C[R−1]. Clearly i is
the only irreversible action in any serialisation (in RTS(C)) of the combined second
diagram, so we have a weak transition [p

g−→ q] I ∗ i I [p′ → p′]. 2

59

Danos, Krivine and Sobociński

6 Conclusion

The main contribution of this paper is the development of the underlying abstract
concepts which become apparent when designing “reversed” versions of known for-
malisms, such as Petri nets or ccs. In particular, we show that the problem reduces
to developing the particular syntactic representations (such as the concrete syntac-
tic representation of histories in rccs) of the reversible history category h∗(C,R).
The fact that the resulting computations capture the intended causal behaviour can
then be seen as a consequence of our Theorem 4.4, which is formalism independent.
We hope that this conceptual clarification will be of use to designers of reversible
formalisms.

Another contribution is the observation that breaking up a computation into
irreversible-reversible components naturally leads to a factorisation system on the
category of computations. As part of future work, we plan to study such factori-
sation systems in more detail. We also plan to explore connections with previous
work on factorisation systems in rewriting theory [7].

References

[1] Danos, V. and J. Krivine, Reversible communicating systems, in: Proceedings of Concur’04, LNCS
3170 (2004), pp. 292–307.

[2] Danos, V. and J. Krivine, Transactions in RCCS, in: Proceedings of Concur’05, LNCS 3653 (2005),
pp. 398–412.

[3] Danos, V., J. Krivine and F. Tarissan, Self-assembling trees, in: SOS’06, ENTCS (2006), to appear.

[4] Freyd, P. J. and G. M. Kelly, Categories of continuous functors, i, Journal of Pure and Applied Algebra
2 (1972), pp. 169–191.

[5] Gabriel, P. and M. Zisman, “Calculus of fractions and homotopy theory,” Springer-Verlag, 1967.

[6] Joyal, A. and R. Street, The geometry of tensor calculus, i, Advances in Mathematics 88 (1991),
pp. 55–112.

[7] Melliès, P.-A., A factorisation theorem in rewriting theory, in: Proceedings of CTCS ’97, LNCS 1290
(1997), pp. 49–68.

[8] Meseguer, J. and U. Montanari, Petri nets are monoids, Information and computation 88 (1990),
pp. 105–155.

[9] Milner, R., “A Calculus of Communicating Systems,” LNCS 92, Springer, 1980.

[10] Phillips, I. and I. Ulidowski, Reversing algebraic process calculi, in: Proceedings of FoSSaCS ’06, LNCS
3921 (2006), pp. 246–260.

[11] Street, R., Higher categories, strings, cubes and simplex equations, Applied Categorical Structures 3
(1995), pp. 29–77.

60

EXPRESS 2006 Preliminary Version

Synchrony vs Asynchrony
in Communication Primitives

Daniele Gorla1

Dip. di Informatica, Univ. di Roma “La Sapienza”, Italy

Abstract

We study, from the expressiveness point of view, the impact of synchrony in the communication primitives that arise when
combining together some common and useful programming features like arity of data, communication medium and possibil-
ity of pattern matching. For some primitives, we show how their synchronous version can be encoded in their asynchronous
counterpart via a fully abstract encoding, thus proving that the two versions have the same expressive power. For the re-
maining primitives, we prove that no ‘reasonable’ encoding can exist, thus proving that synchrony adds expressiveness to
the language.

Keywords: Expressiveness, Encodings, Communication Primitives, Process Calculi.

1 Introduction

One distinguishing feature of languages for concurrent systems is the choice of the com-
munication primitives they use for inter-process exchange. These primitives can range
from very skeletal ones [14,6] to more sophisticated and powerful programming constructs
[11,16,2,7]. It is then natural to formally study and compare these primitives from the
expressive power perspective. As a consequence, results in this research line illuminate
the peculiarities of every primitive and, thus, they can be exploited to choose the ‘right’
primitive when designing new languages and formalisms.

In [12], we studiedasynchronouscommunication primitives and the impact that some
very common and useful programming features (likearity of data, communication medium
and possibility ofpattern-matching) have on their expressiveness. As a result, we came out
with:

• eight languages (that, for the sake of uniformity, were small variants of theπ-calculus
[20]), whose communication primitives were obtained by combining the above men-
tioned features;

• and with a hierarchy of such languages, based on their relative expressive power.

1 Email: gorla@di.uniroma1.it

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

M, D, No

M, D, Pm

 s→ a

M, C, No : s↔ a

M, C, Pm : s→ a

P, D, No

P, D, Pm

P, C, No

P, C, Pm


s↔ a

Fig. 1. The Impact of Synchrony in Communication Primitives

In this paper, we extend the results presented in [12] to assess, from the expressiveness
point of view, the impact ofsynchronyin such primitives. Indeed, as we shall prove, the
claim “for many purposes, synchronous message passing can be regarded as a special case
of asynchronous message passing” [23] strongly relies on the accessory features that equip
the communication primitives. In particular, for each of the eight languages studied in [12],
we shall see whether their synchronous version has the same expressive power as their
asynchronous counterpart or not. In the first case, we can freely implement the primitives
asynchronously, since asynchrony usually poses fewer implementative problems; in the
second case, asynchronous implementations are less innocuous.

Our results are summarised in Figure1. There,M andP denote monadic/polyadic data
exchanges;C and D denote channels/dataspaces;Pm and No denote presence/absence
of pattern matching;s and a denote synchrony/asynchrony; finally,s → a means that
the synchronous version of the primitive is strictly more expressive than its asynchronous
counterpart, whereass↔ a means that the two versions have the same expressive power.

To study the expressive power of a programming language, several techniques can be
exploited. A first, very rough, test is to determine whether a language is Turing complete
or not; however, since almost all ‘useful’ languages are Turing complete, this criterion is
too coarse to compare different languages. A second, more informative, approach to show
that a language is more expressive than another one is to find a problem that can be solved
in the former under some conditions that cannot be met by any solution in the latter.

Another interesting approach to compare two languages consists in encoding one in the
other (where an encoding is a function that translates terms of one language in terms of the
other language) and studying the properties of the encoding functions. This is the approach
we shall follow in this paper and it is very appealing for at least two reasons. First, it is a
natural way to show how the key features of a language can be rendered in the other one.
Second, it allows us to also carry out quantitative measures on language expressiveness:
we can consider aspects like the size and the complexity of the encoding of a term w.r.t. the
source term and, consequently, quantitatively assess the encoding proposed.

This paper is organised as follows. In Section2, we start by comparing the impact
of synchrony in theπ-calculus [16]; in this way, we gently introduce the reader to the
problem and sum up the main related achievements. In Section3, we present the sixteen
concurrent languages arising from the combination of the four features studied (synchrony,
data arity, communication medium and presence of pattern-matching). In Section4, we
present some criteria that an encoding should satisfy to be a good means for language
comparison. Then, in Section5, we prove the results depicted in Figure1; more precisely,
we shall provide (i) a fully abstract encoding for all those languages whose synchronous
and asynchronous versions have the same expressive power, and (ii) some intuitive reasons

62

on the impossibility for a ‘reasonable’ encoding for all those languages where synchrony
improves expressiveness. Finally, Section6 concludes the paper by discussing the results
in Figure1. Due to space limitation, proofs have been omitted from this extended abstract
and can be found in an on-line longer version.

2 Synchrony and Asynchrony in theπ-calculus

The π-calculus was originally equipped with synchronous, monadic and channel-based
communication primitives [16]; a few years later, its asynchronous version appeared in
literature [13,1] and became a reference point for its simplicity of distributed implementa-
tion [10,21]. Some effort has been spent to prove that the two formalisms have the same
expressive power [13,1,22,4]; nowadays, it is widely believed that this is the case.

The idea underlying these encodings is that a synchronous exchange can be simulated
by a sequence of asynchronous exchanges. As an example, consider the encodings from
[13,1]:

Honda and Tokoro’s Boudol’s

[[a〈b〉.P]] a(y).(y〈b〉 | [[P]]) (νc)(a〈c〉 | c(y).(y〈b〉 | [[P]]))

[[a(x).P]] (νc)(a〈c〉 | c(x).[[P]]) a(z).(νd)(z〈d〉 | d(x).[[P]])

wherea〈b〉.P denotes the output prefix (sendb alonga and, after reception, behave like
P), a(x).P denotes the input prefix (receive something froma and use it to replacex in the
continuationP), (νc)P denotes the restriction ofc to P (c is accessible only from withinP)
andP | Q denotes the parallel composition of processesP andQ.

These encodings are proved sound by exploiting some ad hoc techniques; e.g., Boudol
only proves that his encoding is adequate w.r.t. a Morris-like preorder. On the other hand,
[22,4] aim at stronger results for such an encoding: in particular, the first paper shows that it
enjoys full abstraction w.r.t. a typed version of barbed equivalence [17], whereas the second
paper proves full abstraction w.r.t. to may and fair testing [9,18] restricted to the translation
of synchronous contexts. In both cases, it is necessary to reduce the observational power
of the contexts since a context that does not abide by the protocol put forward by the
encoding can easily break full abstraction.2 In the first case, the type system characterises
the respectful contexts, whereas in the second case the encoding itself yields them. Of
course, the first alternative entails a stronger full abstraction result, because in general it
accepts more contexts than the translated ones; however, it is usually much more complex.
Thus, for the sake of simplicity, in this paper we shall adopt the second alternative; we
strongly believe that all our full abstraction results could be also formulated in terms of
typed equivalences, instead of translated equivalences.

Recently [5], it has been proved that there is no encoding of the synchronousπ-
calculus in its asynchronous version preservingmust testing[9] and enjoying a few minimal
properties.3 This raises the problem of which equivalence should be adopted when defin-

2 For example, processesa〈b〉.a〈b〉 anda〈b〉 | a〈b〉 are equated both by barbed equivalence and by may/fair testing; nev-
ertheless, [[a〈b〉.a〈b〉]] and [[a〈b〉 | a〈b〉]] are not equivalent anymore. The problem is that [[a〈b〉 | a〈b〉]] can exhibit two
top-level outputs, whereas [[a〈b〉.a〈b〉]] only one; if the receiving context sends no acknowledgement back, the second output
of [[a〈b〉.a〈b〉]] (that is blocked by the encoding of the first prefix) is never unleashed. The same problem holds for Honda
and Tokoro’s encoding, but with processesa(x).a(y) anda(x) | a(y).
3 Another impossibility result is [19], but it relies on the interplay between output prefixes and non-deterministic choice.

63

ing the full abstraction property to assess expressiveness of two languages. As testified by
the case of theπ-calculus, such a choice is crucial, mainly when proving that a language
L1 is more expressive than another languageL2: every separation result based on a fixed
equivalence could be criticised by saying that it actually compares not the expressive power
of the languages, but the discriminating power of the equivalences. For this reason, to prove
thatL1 is at least as expressive asL2, we shall fix a set of minimal properties that every
encoding should satisfy and prove that no encoding ofL2 in L1 satisfying such properties
exists.

3 A Family of Process Languages

Syntax. We assume a countable set ofnames,N , ranged over bya,b, x, y,n,m, · · · . Nota-
tionally, when a name is used as a channel, we shall prefer lettersa,b, c, · · · ; when a name
is used as an input variable, we shall prefer lettersx, y, z, · · · ; to denote a generic name, we
shall use lettersn,m, · · · . The (parametric) syntax of our languages is given in the upper
part of Figure2. The different languages are obtained by plugging into this basic syntax a
proper definition for input prefixes (IN) and output processes (OutProc). As usual,0 and
P|Q denote the terminated process and the parallel composition of two processes, resp.;
(νn)P restricts toP the visibility of n; finally, if n = m then P and !P are the standard
constructs for name matching and process replication.4

In this paper, we study the synchronous/asynchronous versions of the primitives arising
by the possible combinations of three features:arity (monadic vs. polyadic data),commu-
nication medium(channels vs. shared dataspaces) andpattern-matching. As a result, we
have a family of sixteen languages, denoted asL β1β2, β3, β4, where
• β1 = s, if we have synchronous communications, andβ1 = a, otherwise;
• β2 = p, if we have polyadic data, andβ2 = m, otherwise;
• β3 = c, if we have channel-based communications, andβ3 = d, otherwise;
• β4 = pm, if we have pattern-matching, andβ4 = no, otherwise.

Now, the full syntax of every language is obtained from the productions in the lower
part of Figure2. There,˜ denotes a (possibly empty) sequence of elements of kind;
whenever useful, we shall write a tuplẽas the sequence of its elements, separated by a
comma; sometimes, we shall also consider tuples simply as sets. Templates of kindx are
calledformal and can be replaced by every name upon withdrawal of a datum; templates
of kind pnq are calledactualand impose that the datum withdrawn contains exactly name
n. As usual,a(· · · , x, · · ·).P and (νx)P bind x in P; the corresponding notions of free and
bound names of a process,Fn(P) and Bn(P), and of alpha-conversion,=α, are assumed.
We let N(P) denoteFn(P) ∪ Bn(P).

Notice that inL , ,pm theif -then construct is redundant because it can be implemented
via pattern matching; we kept it for the sake of uniformity with the other languages. Finally,
notice thatL a

, , can be seen as the sub-language ofL s
, , where every output prefix is

followed by a0 continuation. Thus, the non-trivial contribution of this work is in giving a
converse encoding, or in proving that this cannot exist.

Operational semantics. The operational semantics of the languages is given by means of

4 Notice that, for the sake of simplicity, we used here replication and aif-then construct instead of recursion and the more
powerful if-then-elseused in [12]; this choice does not undermine all our results that still hold also with the other operators.

64

Basic Processes:

P,Q,R ::= 0
∣∣∣∣∣ OutProc

∣∣∣∣∣ IN.P ∣∣∣∣∣ (νn)P
∣∣∣∣∣ P|Q ∣∣∣∣∣ if n = m then P

∣∣∣∣∣ !P
L a
, , : OutProc::= OUT

L s
, , : OutProc::= OUT.P

L m,d,no : P,Q,R ::= . . . IN ::= (x) OUT ::= 〈b〉

L m,d,pm : P,Q,R ::= . . . IN ::= (T) OUT ::= 〈b〉

L m,c,no : P,Q,R ::= . . . IN ::= a(x) OUT ::= a〈b〉

L m,c,pm : P,Q,R ::= . . . IN ::= a(T) OUT ::= a〈b〉

L p,d,no : P,Q,R ::= . . . IN ::= (x̃) OUT ::= 〈̃b〉

L p,d,pm : P,Q,R ::= . . . IN ::= (T̃) OUT ::= 〈̃b〉

L p,c,no : P,Q,R ::= . . . IN ::= a(x̃) OUT ::= a〈̃b〉

L p,c,pm : P,Q,R ::= . . . IN ::= a(T̃) OUT ::= a〈̃b〉

where T ::= x
∣∣∣∣∣ pnq (Template)

Fig. 2. Syntax of the 16 Languages

a labelled transition system(LTS) describing the actions a process can perform to evolve.

Judgements take the formP
α
−−→ P′, meaning thatP can becomeP′ upon exhibition of label

α. Labelstake the form

α ::= τ
∣∣∣∣∣ a?̃b

∣∣∣∣∣ (ν̃c)a!b̃
∣∣∣∣∣ ?̃b

∣∣∣∣∣ (ν̃c)!b̃

Traditionally, τ denotes an internal computation;a?̃b and (ν̃c)a!b̃ denote the recep-
tion/sending of a sequence of namesb̃ along channela; when channels are not present,
?̃b and (ν̃c)!b̃ denote the withdrawal/emission of̃b from/in the shared dataspace. In (ν̃c)a!b̃
and (ν̃c)!b̃, some of the sent names, viz.̃c (⊆ b̃), are restricted. Notationally, (ν̃c) !b̃
stands for either (ν̃c)a!b̃ or (ν̃c)!b̃; similarly, ?̃b stands for eithera?̃b or ?̃b. As usual,
Bn((ν̃c) !b̃) , c̃; Fn(α) and N(α) are defined accordingly.

The LTS provides some rules shared by all the languages; the different semantics are
obtained from the axioms for input/output actions. The LTS relies onπ-calculus structural
equivalence,≡, that rearranges a process to let it evolve according to the rules of the LTS
and that is defined by the following standard axioms [20]:

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

!P ≡ P | !P if n = n then P ≡ P P≡ P′ if P =α P′

(νn)0 ≡ 0 (νn)(νm)P ≡ (νm)(νn)P P| (νn)Q ≡ (νn)(P |Q) if n< Fn(P)

65

The common rules of the LTS are reported below (since they are an easy adaptation of an
early-style LTS for theπ-calculus, we do not comment on them and refer the interested
reader to [20]):

P
?̃b
−−→ P′ Q

!b̃
−−→ Q′

P | Q
τ
−→ P′ | Q′

P
a?̃b
−−−→ P′ Q

a!b̃
−−−→ Q′

P | Q
τ
−→ P′ | Q′

P
α
−−→ P′ n < N(α)

(νn)P
α
−−→ (νn)P′

P
(ν̃c) !b̃
−−−−−→ P′ n ∈ b̃ \ { , c̃}

(νn)P
(νn,̃c) !b̃
−−−−−−−→ P′

P
α
−−→ P′ Bn(α) ∩ Fn(Q) = ∅

P | Q
α
−−→ P′ | Q

P ≡ P1
α
−−→ P2 ≡ P′

P
α
−−→ P′

To define the semantics for the basic actions of the various languages, we must specify
when a template matches a datum. Intuitively, this happens whenever both have the same
length and corresponding fields match (i.e.,pnqmatchesn andx matches every name). This
can be formalised via a partial function, calledpattern-matchingand writtenMatch, that
also returns a substitutionσ; the latter will be applied to the process that performed the
input to replace formal templates with the corresponding names of the datum retrieved.
These intuitions are formalised by the following rules:

Match(;) = ε Match(pnq; n) = ε Match(x; n) = {n/x}

Match(T; b) = σ1 Match(T̃; b̃) = σ2

Match(T, T̃ ; b, b̃) = σ1 ◦ σ2

where ‘ε’ denotes the empty substitution and ‘◦’ denotes substitution composition. Now,
the operational rules for input actions in languagesL ,d, andL ,c, are

(T̃).P
?̃b
−−→ Pσ a(T̃).P

a?̃b
−−−→ Pσ

wheneverMatch(T̃ ; b̃) = σ. Symmetrically, the rules for output actions in languages
L a
,d, , L a

,c, , L s
,d, andL s

,c, are, respectively,

〈̃b〉
!b̃
−−→ 0 a〈̃b〉

a!b̃
−−−→ 0 〈̃b〉.P

!b̃
−−→ P a〈̃b〉.P

a!b̃
−−−→ P

Notation: A substitutionσ is a finite partial mapping of names for names;Pσ denotes
the (capture avoiding) application ofσ to P. As usual, we let=⇒ stand for the reflexive

and transitive closure of
τ
−→ ,

α
==⇒ stand for =⇒

α
−−→=⇒ and

τ
−→k denote a sequence ofk

τ-steps. We shall writeP
α
−−→ to mean that there exists a processP′ such thatP

α
−−→ P′;

a similar notation is adopted forP =⇒ andP
α
==⇒ . Moreover, we letφ range over visible

actions (i.e. labels different fromτ) andρ to range over (possibly empty) sequences of
visible actions. Formally,ρ ::= ε | φ · ρ, where ‘ε’ denotes the empty sequence of

66

actions and ‘·’ represents concatenation; then,N
ε
==⇒ is defined asN =⇒ and N

φ·ρ
===⇒ is

defined asN
φ
==⇒

ρ
==⇒ .

4 Quality of an Encoding

We now compare the synchronous and the asynchronous version of the communication
primitives just presented by trying to encode every synchronous language in its asyn-
chronous version. Formally, anencoding[[·]] is a function mapping terms of the source
language into terms of the target language. As already said, the relative expressive power
of our languages can be established by defining some criteria to evaluate the quality of the
encodings or to prove impossibility results.

Roughly speaking, the encoding must not change the semantics of a source term, i.e.
it must preserve the observable behaviour of the term without introducing new behaviours.
This means that the encoded term and the source one should be engageable in the same
kinds of interactions and that aspects like deadlock and divergence are either present in
both terms or in neither of them. We now discuss two possible ways of formalising this
requirement. The first one, calledfull abstraction, is usually exploited for encodability
results; the second one, calledreasonableness, is usually exploited in the impossibility
results.

Full abstraction. When a language can be encoded in another one, we shall prove that the
encoding function enjoysfull abstractionw.r.t. barbed equivalence restricted to translated
contexts. This is a satisfying result since (weak) barbed equivalence is often considered
to be the ‘touchstone’ semantic theory for several process languages.Barbed equivalence
is obtained by closing under name restriction and parallel composition a relation called
barbed bisimilarity, that equates two terms that offer the same observable behaviour along
all possible computations.

In our framework, acontextC[·] is a process built up from a hole [·] (to be filled with
any process) by using parallel composition and restriction. Formally,

C[·] ::= [·]
∣∣∣∣∣ P | C[·]

∣∣∣∣∣ (νn)C[·]

Definition 4.1 [Barbs]5

• P ↓OUTk holds true iff P
(ν̃c)!b̃
−−−−−→ and|̃b| = k; P ↓OUTa holds true iff P

(ν̃c)a!b̃
−−−−−−→ .

• P ↓INk holds true iff P
?̃b
−−→ and|̃b| = k; P ↓INa holds true iff P

a?̃b
−−−→ .

• Let o range over{OUTk,OUTa, INk, INa}; then,P ⇓o stands for∃P′.P =⇒ P′ ↓o.

Definition 4.2 [Barbed Bisimilarity and Equivalence] A symmetric relation< between
processes is abarbed bisimulationif, for every (P,Q) ∈ <, it holds that

(i) P ↓o impliesQ ⇓o, and
(ii) P

τ
−→ P′ impliesQ =⇒ Q′, for someQ′ such that (P′,Q′) ∈ <.

5 In order to obtain meaningful equivalences, barbs inL M,D, should be defined by also specifying the argument of the
action. However, since we shall not give full abstraction results for such languages, we ignore this aspect. By the way, notice
that for languagesL P,D, the arguments of the action are not strictly necessary, since the barbed equivalence arising from this
different kind of barbs would coincide with� defined here.

67

Barbed bisimilarity,
•

�, is the largest barbed bisimulation.P andQ arebarbed equivalent,
written P � Q, if and only ifC[P]

•

� C[Q], for every contextC[·].

As already said in Section2, a good form of full abstraction for a given encoding
[[·]] : L1 → L2 is w.r.t. translated observers, i.e. observers that abide by the schema
imposed by the encoding function. Thus, we now restrict the equivalences introduced so far
to keep this choice into account: first, not all the barbs from Definition5 can be observed by
a translated observer; second, we only need to consider translated contexts when defining
barbed equivalence. The following definition formalises these ideas; there, we say that an
actionα performed by aL2-process can be consumed by the translation of aL1-processR

if [[R]]
ρ
==⇒

α′

−−→ , with α′ synchronisablewith α (i.e., withα′ = ?̃b andα = (ν̃c) !b̃, or
vice versa) andBn(ρ) ∩ N(α) = ∅.

Definition 4.3 [Translated Barbed Bisimilarity and Equivalence] Fix an encoding [[·]] :
L1→ L2.

• Let P be aL2-process;P ↓tro holds true iff P ↓o with an action that can be consumed by
the translation of someL1-process;P ⇓tr

o is defined accordingly.

• A symmetric relation< betweenL2-processes is atranslated barbed bisimulationif,
for every (P,Q) ∈ <, it holds that

(i) P ↓tro impliesQ ⇓tr
o , and

(ii) P
τ
−→ P′ impliesQ =⇒ Q′, for someQ′ such that (P′,Q′) ∈ <.

Translated barbed bisimilarity,
•

� tr , is the largest translated barbed bisimulation.

• P andQ aretranslated barbed equivalent, written P� tr Q, if and only if C[P]
•

� trC[Q],
for every contextC[·] resulting from the translation of aL1-context via [[·]] extended
with [[[·]]] , [·].

Reasonable Encoding.To prove that two languages have different expressive power, we
shall leave full abstraction out (since it requires to fix an equivalence relation): instead, we
shall collect together some ‘reasonable’ requirements and prove that no encoding function
satisfying them exists. The main requirement isfaithfulness: the encoding must preserve
and reflect the barbs (i.e., the encoding should maintain all the original barbs without intro-
ducing new ones); moreover, it should also preserve and reflect divergence. However, these
two requirements alone are not enough to control deadlock. Thus, we shall also require
that the computations of a process correspond to the computations of its encoding, and
vice versa; this property is usually known asoperational correspondence. Furthermore,
a good encoding cannot depend on the particular names involved in the source process,
since we are dealing with a family of name-passing languages; we call this propertyname
invariance. Finally, the encoding should not decrease the degree of parallelism in favour
of centralised entities that control the behaviour of the encoded term; we express this last
property ashomomorphism w.r.t.‘ |’.

Definition 4.4 [Reasonable Encoding] An encoding [[·]] is reasonableif it enjoys the fol-
lowing properties:

(i) (homomorphism w.r.t. ‘|’): [[P1|P2]] , [[P1]] | [[P2]].

(ii) (name invariance):[[Pσ]] , [[P]]σ, for every permutation of source language
namesσ.

68

(iii) (faithfulness): P⇓o iff [[P]] ⇓o′ ; P diverges iff [[P]] diverges.

(iv) (operational correspondence):
(a) if P =⇒ P′ then [[P]] =⇒ [[P′]];
(b) if [[P]] =⇒ Q then there exists aP′ such thatP =⇒ P′ andQ =⇒ [[P′]].

Evaluation criteria. To sum up, for our encodability results we aim at proving that the
encoding function does not introduce divergence and that it enjoys full abstraction w.r.t.
translated barbed equivalence; on the other hand, we shall establish our impossibility re-
sults by proving that no reasonable encoding exists. Usually, the latter proofs are by con-
tradiction: we assume that a reasonable encoding exists and show that it cannot be reason-
able. This can require a lot of work. However, in this paper, we shall exploit the simple
proof-technique developed in [12]: exhibit a process that cannot reduce but whose encod-
ing reduces. This fact, together with operational correspondence, implies that the encoding
introduces divergence.

Proposition 4.5 Let P be a process such that P
τ
−→/ but [[P]]

τ
−→ ; then,[[·]] is not reason-

able.

5 The Impact of Synchrony in Communication Primitives

In this section, we first consider those languages in which synchrony does not play a cru-
cial rôle, i.e. those primitives whose synchronous and asynchronous versions have the
same expressive power. We then analyse those primitives in which the presence of syn-
chrony matters, i.e. those primitives whose asynchronous version is less expressive than
the synchronous one.

L s
m,c,no and L a

m,c,no have the same expressive power.Easily, Boudol’s encoding

[1] can be used to prove thatL s
m,c,no is encodable inL a

m,c,no with an encoding function
that does not introduce divergence (trivially) and that enjoys full abstraction w.r.t. translated
barbed equivalence (see [22]).

L s
p,c,pm and L a

p,c,pm have the same expressive power.To prove thatL s
p,c,pm can be

reasonably encoded inL a
p,c,pm, it suffices to impose that the first name of every datum is

a restricted channel used to unleash the continuation of the output prefix; conversely, every
template starts with a new variable over which an acknowledgement is sent upon reception
of the datum. This discipline is rendered by the following encoding:

[[a〈̃b〉.P]] , (νc)(a〈c, b̃〉 | c().[[P]])

[[a(T̃).P]] , a(x, T̃).(x〈〉 | [[P]])

for c andx fresh.
The encoding just presented is satisfying because it does not introduce divergence and

enjoys full abstraction, as proved in the following theorem.

Theorem 5.1 The encoding[[·]] : L s
p,c,pm −→ L a

p,c,pm does not introduce divergence;
moreover, P� Q if and only if[[P]] � tr [[Q]] .

69

L s
p,c,no and L a

p,c,no have the same expressive power.This result is an easy corollary

of the encodability ofL s
p,c,pm in L a

p,c,pm: it suffices to restrict both the domain and the

range of the encoding function to the sub-calculi ofL s
p,c,pm andL a

p,c,pm with templates
made up only by formal fields.

L s
p,d,pm and L a

p,d,pm have the same expressive power.To prove thatL s
p,d,pm can be

encoded inL a
p,d,pm, consider the following translation:

[[〈b1, . . . ,bk〉.P]] , (νc)(〈c, c,b1, . . . ,bk〉 | (pcq).[[P]])

[[(T1, . . . ,Tk).P]] , (x, y,T1, . . . ,Tk).(〈x〉 | [[P]])

wherec, x andy are fresh names. Intuitively, data of length one in a translated term are
‘auxiliary’ messages used as acknowledgements (ack, for short), to activate the continu-
ation of an output action. The translation of output prefixes guarantees that ‘actual’ data
in the source term are translated to data whose length is at least two; this clear distinction
ensures us that no interference between an ‘actual’ data exchange and an ‘auxiliary’ ack
exchange can ever happen. Moreover, the fact that acks rely on restricted names rules out
interferences between different acks.

Theorem 5.2 The encoding[[·]] : L s
p,d,pm −→ L a

p,d,pm does not introduce divergence;
moreover, P� Q if and only if[[P]] � tr [[Q]] .

L s
p,d,no and L a

p,d,no have the same expressive power.Let us define the following

notation: 〈
k
. . .〉 denotes〈b1, . . . ,bk〉, where thebi ’s are any names; similarly, (

k
. . .) denotes

(x1, . . . , xk), where thexi ’s are pairwise and distinct names. Now, consider the following
encoding ofL s

p,d,no in L a
p,d,no:

[[〈b1, . . . ,bk〉.P]] , 〈
4k+1
. . .〉 | (

4k+2
. . .).(〈b1,b1,b1,b1, · · · ,bk,bk,bk,bk〉 | (

4k+3
. . .).[[P]])

[[(x1, . . . , xk).P]] , (
4k+1
. . .).(〈

4k+2
. . .〉 | (x1, y1,w1, z1, · · · , xk, yk,wk, zk).(〈

4k+3
. . .〉 | [[P]]))

for y1,w1, z1, . . . , yk,wk, zk fresh and pairwise distinct names and with the input variables in
(

4k+1
. . .), (

4k+2
. . .) and (

4k+3
. . .) fresh for the continuation process. Intuitively, data of arity 4k within

translated terms correspond to actual source data; data of arity 4k + 1, 4k + 2 and 4k + 3
are, instead, only used for synchronisation purposes. In particular, an exchange of arity
4k+ 1 (that, from now on will be calledpreliminary) intuitively means “a datum of arityk
is available”; an exchange of arity 4k+2 (that, from now on will be calledinitial) intuitively
means “a datum of arityk is going to be consumed”; finally, an exchange of arity 4k + 3
(that, from now on will be calledfinal) intuitively means “a datum of arityk has been
consumed”. Consumption of ak-ary source level datum happens within a 4k-ary exchange
(that, from now on will be calledconsumptive).

Of course, it is easy to have interferences between the auxiliary data introduced by the
encoding of different processes, but this does not create any problem since such data only
depend on the length of the translated actions. Consider, e.g., the encoding of theL s

p,d,no-
process (x).P | 〈b〉 | (y).Q | 〈c〉 and the reduction that replacesx with b in P andy with c in

70

Q. It is immaterial which of the two 5-ary ‘preliminary’ data (either the one from [[〈b〉]]
or the one from [[〈c〉]]) is accessed by [[(x).P]], since these are top-level asynchronous
outputs and the names appearing in it are irrelevant. A similar argument holds also for the
‘initial’ 6-ary and the ‘final’ 7-ary data.

We believe that also this encoding enjoys full abstraction w.r.t. translated barbed equiv-
alence; however, because of the interferences just discussed, we have still not been able to
prove this result, though no counter-example against this conjecture has emerged yet. We
leave this aspect for future work; for the moment, we prove the (not trivial) reasonable-
ness of this encoding and argue thatL s

p,d,no andL a
p,d,no have a comparable expressive

power.

Lemma 5.3 Let [[P]]
τ
−→np+ni+nc+nf Q, where np/ni/nc/nf are the number of prelimi-

nary/initial /consumptive/final steps in the reduction from[[P]] into Q. Then,

Q ≡ (ν̃n)(
∏np−ni

h=1 ((
4kh+2
. . .).(〈

4kh. . .〉 | (
4kh+3
. . .).[[P1

h]]) | 〈
4kh+2
. . . 〉 | (

4kh. . .).(〈
4kh+3
. . . 〉 | [[Q1

h]])) |∏ni−nc
j=1 (〈

4kj
. . .〉 | (

4kj+3
. . .).[[P2

j]] | (
4kj
. . .).(〈

4kj+3
. . . 〉 | [[Q2

j]])) |∏nc−nf

m=1 ((
4km+3
. . .).[[P3

m]] | 〈
4km+3
. . . 〉) | [[R]])

Lemma 5.4 If [[P]]
τ
−→n Q, then P

τ
−→np P′ and Q

τ
−→4np−n [[P′]] , where np is the

number of preliminary steps in the reduction from[[P]] into Q.

Proposition 5.5 The encoding[[·]] : L s
p,d,no −→ L a

p,d,no is reasonable.

Proof. By Lemma5.4, both divergence freedom and operational correspondence are easy
to prove; the remaining requirements are trivial. �

L s
m,d,no is more expressive thanL a

m,d,no.

Theorem 5.6 There exists no reasonable encoding of Ls
m,d,no in L a

m,d,no.

Proof. Consider the processP , 〈a〉.〈b〉. If every trace of [[P]] was made up only by
output labels, then it would be easy to prove that〈a〉.〈b〉 and〈b〉.〈a〉 have the same traces;
thus, [[P | (x).if x = b then Ω]] would diverge, since [[〈b〉.〈a〉 | (x).if x = b then Ω]]
must diverge (here and in what follows,Ω denotes a divergent process). So, there exists a
trace of [[P]] with at least an input label in the trace; letρ1·?n · ρ2 be any of such traces
and let ?n be the first input label. Notice that, by barb preservation,ρ1 cannot be empty
and must contain at least an output label (νm̃)!m; by definition of the LTS and asynchrony,

[[P]]
?m
−−−→ that, again by asynchrony, implies that [[P]]

τ
−→ . By Proposition4.5, [[·]]

cannot be reasonable. �

L s
m,d,pm is more expressive thanL a

m,d,pm. The scenario is similar to the previous one,
but pattern matching lead us to consider a more complicated process, viz.

〈a〉 | (paq) | 〈b〉.Ω | 〈a〉 | . . . | 〈a〉 | 〈b〉 | . . . | 〈b〉

for a proper number of〈a〉 and〈b〉 in parallel. The idea is to prove that its encoding diverges.
Roughly speaking, since the encoding of〈b〉.Ω does not diverge, we have that the encoding

71

of Ω must be blocked by an input action relying on an actual templatepmq. We let the
encoding of〈a〉 | (paq) reduce until the moment in which〈m〉 appears in the dataspace; then,
we activate the encoding of〈b〉.Ω that (possibly after some interactions with the encoding
of 〈a〉 | . . . | 〈a〉 | 〈b〉 | . . . | 〈b〉) yields a divergent process. See the full paper for further
details.

L s
m,c,pm is more expressive thanL a

m,c,pm. Intuitively, communications inL s
m,c,pm

atomically verify the channel and the sent value (if pattern matching is involved) and si-
multaneously activate the continuation of the sending process. Thus,L a

m,c,pm should
provide the possibility of atomically verifying the channel and the sent value as well, but
this excludes any information for synchronisation purposes. See the full paper for a formal
proof.

6 Concluding Assessment

We have studied the impact of synchrony in the eight communication primitives that arise
when combining three common and useful programming features: arity of data, commu-
nication medium and presence of pattern matching. Our results have been summarised in
Figure1; we now briefly discuss them.

It is evident that polyadicity is the only feature that alone ensures fully abstract encod-
ings of synchrony in asynchrony: this is related to the possibility of equipping polyadic
data exchanges with auxiliary information (either a restricted channel that will be exploited
for acknowledgement purposes, or the length of the data) used to synchronise the sending
and the receiving process.

For monadic and channel-based communications, we have that absence of pattern
matching makes synchrony encodable asynchronously, whereas presence of pattern match-
ing rules out any such (reasonable) encoding. The problem is that pattern matching intro-
duces the possibility of atomically matching the name transmitted in the communication;
this leaves no space for any auxiliary synchronisation information.

Finally, monadic and dataspace-based communications are too weak to ensure any rea-
sonable encoding: the problem is that there is no way to associate a datum with the process
that emitted it. The latter fact entails that those languages that exploit such primitives (e.g.,
Ambient [6] or CCS [14]) cannot freely interchange their synchronous and asynchronous
versions, though the latter ones are still Turing powerful [6,3].

Acknowledgements.We would like to thank the EXPRESS’06 reviewers for their positive
attitude and for several fruitful comments that improved the presentation of the work.

References

[1] G. Boudol. Asynchrony and theπ-calculus (note). Rapport de Recherche 1702, INRIA Sophia-Antipolis, May 1992.

[2] A. Brown, C. Laneve, and G. Meredith.πduce: a process calculus with native XML datatypes. InProc. of 2nd Int.
Workshop on Services and Formal Methods, volume 3670 ofLNCS. Springer, 2005.

[3] N. Busi, R. Gorrieri, and G. Zavattaro. A process algebraic view of Linda coordination primitives.Theoretical
Computer Science, 192(2):167–199, 1998.

[4] D. Cacciagrano and F. Corradini. On synchronous and asynchronous communication paradigms. InProc. of ICTCS’01,
number 2202 in LNCS, pages 256–268. Springer, 2001.

72

[5] D. Cacciagrano, F. Corradini, and C. Palamidessi. Separation of synchronous and asynchronous communication via
testing. InProc. of EXPRESS, ENTCS. Elsevier, 2005.

[6] L. Cardelli and A. D. Gordon. Mobile ambients.Theoretical Computer Science, 240(1):177–213, 2000.

[7] G. Castagna, R. De Nicola, and D. Varacca. Semantic subtyping for theπ-calculus. InProc. of LICS, pages 92–101.
IEEE Computer Society, 2005.

[8] R. De Nicola, D. Gorla, and R. Pugliese. On the expressive power of KLAIM-based calculi.Theoretical Computer
Science, 356(3):387–421, 2006.

[9] R. De Nicola and M. Hennessy. Testing equivalence for processes.Theoretical Computer Science, 34:83–133, 1984.

[10] C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the join-calculus. InProceedings of POPL
’96, pages 372–385. ACM, Jan. 1996.

[11] D. Gelernter. Generative Communication in Linda.ACM Transactions on Programming Languages and Systems,
7(1):80–112, 1985.

[12] D. Gorla. On the relative expressive power of asynchronous communication primitives. InProc. of FoSSaCS’06,
volume 3921 ofLNCS, pages 47–62. Springer, 2006.

[13] K. Honda and M. Tokoro. An object calculus for asynchronous communication. InProc. of ECOOP ’91, volume 512
of LNCS, pages 133–147. Springer, 1991.

[14] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[15] R. Milner. The polyadicπ-calculus: A tutorial. InLogic and Algebra of Specification, volume 94 ofSeries F. NATO
ASI, Springer, 1993.

[16] R. Milner, J. Parrow, and J. Walker. A Calculus of Mobile Processes, I and II.Information and Computation, 100(1):1–
40, 41–77, 1992.

[17] R. Milner and D. Sangiorgi. Barbed bisimulation. InProc. of ICALP ’92, volume 623 ofLNCS, pages 685–695.
Springer, 1992.

[18] V. Natarajan and R. Cleaveland. Divergence and fair testing. InProc. of ICALP’95, volume 944 ofLNCS, pages
648–659. Springer, 1995.

[19] C. Palamidessi. Comparing the expressive power of the synchronous and the asynchronousπ-calculi. Mathematical
Structures in Computer Science, 13(5):685–719, 2003.

[20] J. Parrow. An introduction to the pi-calculus. InHandbook of Process Algebra, pages 479–543. Elsevier Science, 2001.

[21] B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-calculus. InProof, Language and
Interaction: Essays in Honour of Robin Milner, Foundations of Computing. MIT Press, May 2000.

[22] P. Quaglia and D. Walker. On synchronous and asynchronous mobile processes. InProceedings of FoSSaCS 2000,
volume 1784 ofLNCS, pages 283–296. Springer, 2000.

[23] G. Tel. Introduction to distributed algorithms. Cambridge University Press, 1995.

73

EXPRESS 2006 Preliminary Version

Event Structure Spans for Non-deterministic
Dataflow

Lucy Saunders-Evans1,2

Computer Laboratory
University of Cambridge

Cambridge, England

Glynn Winskel3

Computer Laboratory
University of Cambridge

Cambridge, England

Abstract

A compositional semantics for non-deterministic dataflow processes is described using spans of event struc-
tures; such a span describes a computation between datatypes, themselves represented by event structures,
as itself an event structure. The spans of event structures represent certain profunctors (a generalisation
of relations) used previously in a compositional semantics of non-deterministic dataflow and in the seman-
tics of higher-order processes. Deterministic spans of event structures are shown to correspond to stable
continuous functions and their semantics of dataflow to reduce to the usual fixed-point semantics of Kahn.

Keywords: Event Structures, Spans, Non-deterministic Dataflow.

1 Introduction

A dataflow process is built as a network of more basic processes connected by
channels. In particular processes may be connected to allow feedback loops from
output to input.

In [3], Kahn demonstrated that a denotational semantics could be given to a
dataflow network of deterministic processes as a least-fixed point solution of a set
of equations describing the components.

Brock and Ackerman showed in [1] that giving a semantics to nondeterministic
dataflow processes was far from easy. In particular, input-output relations between
sequences of values on input and output channels carry too little information about

1 We thank the referees for their helpful suggestions.
2 Email: ls275@cam.ac.uk
3 Email: gw104@cam.ac.uk

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Saunders-Evans, Winskel

the behaviour of networks to support a compositional semantics. The following
example is essentially that presented in [9]. Let A1 be the process that outputs a
token, waits for a token on input and then outputs another token. Let A2 be the
process that either outputs a token and stops or waits for a token on input and then
outputs two tokens. Let a token be represented by t. The input-output relations of
A1 and A2 are the same:

{(∅, ∅), (∅, t), (t, t), (t, tt)}.

Let F be the process that copies every input to two outputs through which the
output of the process Ai is fed back to the input channel. Observe that the process
A1 placed in this context produces a process which can output two tokens whereas
the process A2 results in a process that can only output a single token.

�
�-�

-
-

FAiC[Ai] =

This confirms that there is no denotational semantics of nondeterministic dataflow
in terms of traditional input-output relations. For similar reasons traditional uses
of powerdomains also fall short.

Although traditional relations are insufficient, it was however shown in [2] that
a form of relational compositional semantics was possible, but at the cost of moving
to generalised relations, profunctors. Here we provide a representation of the stable
port profunctors used there in terms of spans of event structures.

In more recent years feedback of the kind found in dataflow has reappeared
in a variety of new contexts, which are condensed in a more abstract and general
formulation of the properties a feedback operation, called trace, should satisfy. Let
C be a category with a symmetric monoidal structure, ⊗. A trace operation for C
is defined to be a family of operations, TrC

A,B : C(A⊗ C, B ⊗ C)→ C(A, B). The
intuition behind this operation is illustrated in the following diagram:

- -

--

- -

-...
.................

............
.........
.......
.........
...........

....................PC

A B
P

A B

C

A trace operation must obey a number of axioms to ensure it behaves correctly. The
reader is referred to [2], which this paper supplements, for details and full references
of this rich area.

2 Spans of Event Structures

Event structures model a process as a set of event occurrences with relations to ex-
press how events causally depend on others, or exclude other events from occurring.

Definition 2.1 An event structure is a tuple, (E, ≤, #), where:

• E is a set of events;
• ≤ is a partial order on E. Define [e] to be {e′ | e′ ≤ e}. It must be the case that

75

Saunders-Evans, Winskel

[e] <∞ for all e ∈ E;
• # is a binary, irreflexive, symmetric relation such that e1#e2 and e2 ≤ e3 implies

that e1#e3.

Define the set of configurations (states) C(E) of an event structure E to be the
downwards closed subsets of the set of events such that no two events are in conflict.

Definition 2.2 A set of configurations X of E is described as compatible iff
⋃
X

does not contain any conflicting events. We write X ↑ when X is compatible or in
the case of two configurations w and z we write w ↑ z.

It is well-known since [6] that event structures can represent both processes and
datatypes, which at the time of [6] was remarked on as creating a curious mismatch
with classical denotation semantics (where a processes denotes an element of a
domain). The double role of event structures can be resolved by working with
spans of event structures. A span

E
d
~~~~

~~ out
  A

AA
A

A B

represents a computation process from a type, represented by event structure A, to
the type B, an event structure, as again an event structure E. The morphisms d
and out specify how the event structure inspects input and delivers output. There
are many possible variations on spans as the morphisms d and out can have dif-
ferent natures. A systematic way to explore the range of possibilities via monads
and distributed laws was suggested in [11] and is the subject of ongoing research.
For the purposes of this paper however we can restrict to spans in which d is a
demand morphism and out is rigid. Such spans first arose as representations of the
profunctors used in a denotational semantics of higher-order processes [7] .

A rigid morphism, f : E1 → E2, between event structures consists of a function
between the respective sets of events that obeys the following properties:

• For all e1 in E1, [f(e1)] = f [e1].
• For all e1 and e2 in E1, if f(e1) = f(e2) or f(e1)#f(e2) then e1 = e2 or e1#e2.

A rigid morphism determines a stable function on configurations (i.e., it preserves
intersections of compatible configurations).

A demand morphism d : E1 → E2 is a function from the set of events E1 to the
finite configurations of E2. It must obey the following properties:

• e1 ≤ e2 implies d(e1) ⊆ d(e2);
• d(e1) 6↑ d(e2) implies e1#e2.

A demand morphism may be extended to act on configurations as well as events.
Let d : E1 → E2 be a demand morphism between E1 and E2. We can extend this
to a function d† : C(E1)→ C(E2) by

d†(x)
def
=

⋃
e∈x

d(e)

for x ∈ C(E1). The fact that d†(x) is a configuration follows directly from x being

76



Saunders-Evans, Winskel

a configuration and that d(e1) 6↑ d(e2) implies that e1#e2.
For this paper, we restrict attention to spans of a special kind:

Definition 2.3 Let A d← E
out→ B be a span of event structures where E, A and B

are event structures, d is a demand morphism and out is a rigid morphism.

Where there is no confusion, we describe a span by its vertex i.e., A d← E
out→ B

will be referred to as E.
We can compose spans sequentially. Given two spans A

d1← E1
out1→ B and

B
d2← E2

out2→ C, their composition is the span A
d← E3

out→ C where E3 is given as
follows

• Events: {(x, e) ∈ C(E1)× E2 | g1(x) = f2(e)};
• Causality : (x1, e1) ≤ (x2, e2) iff x1 ⊆ x2 and e1 ≤ e2;
• Conflict : (x1, e1)#(x2, e2) iff x1 6↑ x2 or e1#e2.

The demand and output morphisms of the composition d and out are given by

d(x, e)
def
= x and out(x, e)

def
= e .

The morphism d clearly has the properties of a demand morphism and out has
the properties of a rigid morphism. This construction corresponds to a pullback
construction in the category of event structures. (In fact spans form a bicategory
in the usual manner of spans [5].)

As well as sequential composition, it is also possible to define a parallel com-
position of spans (this forms the symmetric monoidal structure, ⊗, referred to in
Section 1).

Definition 2.4 Given two event structures, (E1, ≤1, #1) and (E2, ≤2, #2), their
parallel composition (E1, ≤1, #1)⊗ (E2, ≤2, #2) is the event structure with:

• Events: E1
⊎
E2

• Causality : (i, e1) ≤ (j, e2) iff i = j and e1 ≤i e2

• Conflict : (i, e1) ≤ (j, e2) iff i = j and e1#ie2

Where appropriate, we assume that the events in E1 and E2 are distinct and
therefore write e1 for (i, e1). We also make use of the notation x ∩ Ei for the
projection πi(x) of a coonfiguration x ∈ C(E1 ⊗ E2) to a configuration in Ei.

The parallel composition of A d1← E1
out1→ B and C

d2← E2
out2→ D is

E1 ⊗ E2

d1⊗d2

xxrrrrrrrrrr
out1⊗out2

&&LLLLLLLLLL

A⊗ C B ⊗D

where (d1⊗d2)(i, e)
def
= {i}×di(e) and (out1⊗out2)(i, e)

def
= (i, outi(e)) for i = 1, 2.

From these constructions, it is possible to give a semantics to non-deterministic
dataflow.

77



Saunders-Evans, Winskel

3 Stable Families

It is sometimes difficult to define constructions on event structures directly and it
is often simpler to first define them in terms of stable families, from which an event
structure can then be obtained from the prime configurations. Stable families will
be made use of in the definition of the trace construction.

Definition 3.1 A stable family, F , is a set of sets with the following properties.

• Coherence ∀X ⊆ F . (∀x, y ∈ X.x ↑ y)⇒
⋃
X ∈ F .

• Stability X ↑⇒
⋂
X ∈ F for all non-empty X ⊆ F . .

• Coincidence-freeness

∀x ∈ F , e1, e2 ∈ x. e1 6= e2 ⇒
∃y ∈ F . y ⊆ x & ((e1 ∈ y) & (e2 6∈ y))or ((e2 ∈ y) & (e1 6∈ y)).

• Finiteness ∀x ∈ F .∀e ∈ x.∃y ∈ F . y ⊆ x & e ∈ y & |y| <∞.

It can be deduced that a stable family, ordered by inclusion, forms a prime
algebraic domain [6,10]. If x is a member of a stable family F and e ∈ x let

[e]x
def
=

⋂
{y ∈ F|e ∈ y & y ⊆ x}.

Then [e]x ∈ F and is called a prime configuration of F . It is a complete prime of

(F , ⊆). Because of coincidence-freeness, taking max([e]x)
def
= e is well-defined.

4 Trace for Event Structures

This section is devoted to defining a trace operation TrC
A,B which takes a span from

A⊗ C to B ⊗ C to a span from A to B. Consider a span

E
d
zzuuuuu out

$$J
JJJJ

A⊗ C B ⊗ C
We first build a stable family out of those configurations of E which are secure.
Roughly a configuration x is secure if the demand of each event e ∈ x is met by the
input in A or previous output to C, which we imagine is fed back as input. This
idea is formalised below.

Definition 4.1 A configuration x of E is secure if each of its events is secured in
x. An event, e, is secured in x iff

∃e1, · · · , en ∈ x. en = e & ∀i ≤ n. {e1, ..., ei−1} ∈ C(E) &
d(ei) ∩ C ⊆ out{e1, ..., ei−1}.

Such a sequence, e1, ..., en, is known as a securing sequence.

The subset of C(E), consisting of all the secure configurations will be shown to
be a stable family, from which we then obtain an event structure. Our proofs will
make use of a relation ≺x expressing the extra causal dependency on a configuration
x of E which is introduced through feedback.

Definition 4.2 Let x be a configuration of E. For all events e1 and e2 in x, define

78



Saunders-Evans, Winskel

e1 →x e2 iff out(e1) ∈ d(e2) ∩ C, and
e1 ≺x e2 iff e1 < e2 or e1 →x e2.

We define {e}x to be the set ≺x
? −1{e} for all e ∈ x.

Lemma 4.3 An event e is secured in x iff

i) (d†({e}x)) ∩ C ⊆ out(x) and

ii) ≺x is well-founded on {e}x.

Proof. if : Assume (i) and (ii). In order to prove that event e is secured in x,
we require a securing sequence for e. First note that the set {e}x is finite as ≺x

is well-founded and the set of ≺x-predecessors of an event is also finite. Thus we
may tentatively take the securing sequence to be the set {e}x = {e1, · · · , en} with
the events indexed such that

ei ≺x ej ⇒ i < j and en = e

Observe that the set {e1, ..., ei−1} is a configuration of E for all i ≤ n. This follows
immediately from the definition of ≺x.

It remains to confirm that, for all i ≤ n, d(ei)∩C ⊆ out{e1, ..., ei−1}. Consider
an event c ∈ d(ei) ∩ C for some i ≤ n. As d†({e}x) ∩ C ⊆ out(x), it is clear that
c = out(ej) for some ej in the sequence. It is the clearly the case that ej ≺x ei and
therefore that j < i. This confirms that c ∈ out{e1, ..., ei−1}.
only if : Assume that event e is secured in configuration x of E and therefore that
there is a securing sequence e1, ..., en such that en = e. Let S = {e1, ..., en}.

We first show that

e′ ≺x ei ⇒ e′ ∈ {e1, ..., ei−1}(†)
and therefore that e′ = ej for some j < i.

From the definition of ≺x, if e′ ≺x ei then either e′ < ei or e′ →x ei. As
{e1, ..., ei−1} is a configuration and therefore downwards closed with respect to <,
if e′ < ei then e′ ∈ {e1, ..., ei−1}. If e′ →x ei then out(e′) ∈ d(ei) ∩ C. As out is a
rigid morphism, out(e′′) = out(e′′′) implies that e′′ = e′′′ for all events, e′′ and e′′′ in
x. As d(ei)∩C ⊆ out{e1, ..., ei−1}, e′ must therefore be a member of {e1, ..., ei−1}.

Observe that d(ei)∩C ⊆ out{e1, ..., ei−1} for all i such that 1 ≤ i ≤ n. It follows
from (†) that {e}x ⊆ S and so d†({e}x) ⊆ d†(S). As d(ei) ∩ C ⊆ out{e1, ..., ei−1}
for all i ≤ n, d†(S) ∩C ⊆ out{e1, ..., en−1} and so d†(S) ∩C ⊆ out(S). Recall that
S is a subset of x and therefore property i must hold.

Property (†) implies that {ei}x ⊆ {e1, ..., ei} and therefore that it is a finite set.
If ek is below el in a chain then k < l so {ek}x ⊂ {el}x. As {en}x is finite, there
can therefore be no infinite chains. 2

Corollary 4.4 For all x ∈ C(E), x is secure iff ≺x is well-founded on x and d†(x)∩
C ⊆ out(x).

Proof. Follows directly from Lemma 4.3. 2

In order to prove that the subset of C(E) consisting of the secure configurations
is a stable family, we make use of the following Lemma:

79



Saunders-Evans, Winskel

Lemma 4.5 Suppose x and y are secure configurations of E with x ↑ y. Let e ∈
x ∩ y. Then e′ ≺x e iff e′ ≺y e for all events e′ and {e}x = {e}y.

Proof. For all e, e′ ∈ x, if e′ ≺x e then either e′ < e or e′ →x e. It is enough
to prove that e′ ∈ y. If the former is true then, as y is a configuration, e ∈ y

implies that e′ ∈ y. If the latter then, as x and y are compatible, y is secure and
out(e′) ∈ d(e) ∩ C, so e′ ∈ y. 2

Theorem 4.6 The family consisting of all secure configurations of E is a stable
family.

Proof. Let S = {x ∈ C(E) | x secure}. We show S is a stable family.

Coherence: ∀X ⊆ S. (∀x, y ∈ X.x ↑ y)⇒
⋃
X ∈ S.

Assume X is a pairwise compatible subset of S. It is clear that
⋃
X is a configu-

ration of E and that, if e ∈
⋃
X then e ∈ x for some x in X. As e is secured in x

and x ⊆
⋃
X, there is a securing sequence for e in

⋃
X.

Stability : ∀X ⊆ S. X ↑ ⇒
⋂
X ∈ S.

Suppose X ⊆ S and X ↑. Then as
⋂
X ∈ C(E) we only require in addition that⋂

X is secure. By Corollary 4.4 it suffices to show

(i) ≺T
X is well-founded on

⋂
X, and

(ii) d†(
⋂
X) ∩ C ⊆ out(

⋂
X).

By Lemma 4.5, for e ∈
⋂
X we have that

≺?T
X
−1{e} = ≺?

x
−1{e}

for all x ∈ X. As each ≺x is well-founded on x ∈ X—each such x is secure—we
obtain (i) that ≺T

X is well-founded on
⋂
X. To show (ii) observe that

d†(
⋂
X) ∩ C ⊆ d†(x) ∩ C ⊆ out(x)

for all x ∈ X. Therefore

d†(
⋂
X) ∩ C ⊆

⋂
x∈X

out(x) = out(
⋂
X)

as out being rigid is a stable function.

Finiteness: ∀x ∈ S.∀e ∈ x.∃y ∈ S. y ⊆ x and e ∈ y and |y| <∞.
If x is secure then each event e in x must have a securing sequence. This determines
a finite secure configuration in S which contains e.

Coincidence-freeness: ∀x ∈ S, e1, e2 ∈ x. e1 6= e2 ⇒
∃y ∈ S. y ⊆ x and ((e1 ∈ y) and (e2 6∈ y))
or ((e2 ∈ y) and (e1 6∈ y)).

Assume e1, e2 ∈ x ∈ S & e1 6= e2.

80



Saunders-Evans, Winskel

Consider the secure configurations≺x
? −1{e1} and≺x

? −1{e2}. If e2 is a member
of ≺x

? −1{e1} then e2 ≺+
x e1. As x is secure, it cannot be the case that e1 ≺+

x e2.
Therefore e1 6∈ ≺x

? −1{e2} if e2 ∈ ≺x
? −1{e1} and vice versa. 2

We can now define the trace operation.

Definition 4.7 Define Tr(A⊗ C d← E
out→ B ⊗ C) to equal A d′

← E′ out′→ B. E′ is
the event structure constructed as follows:

• Events: the prime configurations p of S for which out(max(p)) ∈ B.
• Causality : p1 ≤ p2 iff p1 ⊆ p2.
• Conflict : p1#p2 iff p1 6↑ p2 in S.

For p ∈ E′, we define d′(p)
def
= d†(p) ∩A and out′(p)

def
= out(max(p)).

In order to show that out′ is rigid we observe the following.

Lemma 4.8 For e1 and e2 in x ∈ C(E), if e1≺x
?e2 and e1 6≤ e2 then out(e1) ∈ C.

Proof. The above is proved by a simple induction on the length of the string of
events between e1 and e2.

Suppose that e1 ≺x e2. This implies that e1 →x e2 and so out(e1) ∈ C. Suppose
that the property holds for all strings of length less than or equal to k i.e., assume
that if e1≺x

ke2 and e1 6≤ e2 then out(e1) ∈ C. Suppose e1≺x
k+1e2 and e1 6≤ e2.

Then there exists an e′ with e1≺x
ke′ and e′ ≺x e2. If e1 6≤ e′ then, by the induction

hypothesis, out(e1) ∈ C. If e1 ≤ e′ then, as e1 6≤ e2, we have e′ 6≤ e2 and so
out(e′) ∈ C as required. 2

Lemma 4.9 The map out′ is a rigid morphism:

Proof. From lemma 4.8, for p, p′ in E′, if p ⊆ p′ then out(max(p)) ≤ out(max(p′)
and so out′(p) ≤ out′(p′). This implies that out′[p] ⊆ [out′(p)] for all p ∈ E′. If
e ≤ out(p′) then, as there must be some element within p′ that maps to e, it is clear
that the downwards closed subset of p′ with this as the maximum element will be
mapped to e by out′. This implies that [out′(p)] ⊆ out′[p].

Assume out′(p′)#out′(p). This implies that max(p′)#max(p) and therefore that
p′#p. 2

Theorem 4.10 A
d′
← E′ out′→ B is a span.

Proof. It is easily seen that E′ is an event structure. Lemma 4.9 confirms that
out′ is indeed a rigid morphism. The fact that d′ has the correct properties follows
directly from the definition. 2

Relying on previous work [2], we can show that the operation Tr obeys the trace
axioms up to isomorphism. In [2], a trace operation was given for stable port pro-
functors. Spans of event structures represent such profunctors; a span A d← E

out→ B

induces a profunctor Ê where Ê(a, b)
def
= {x ∈ C(E) | d†(x) ⊆ a & out(x) = b}.

The representation respects both sequential and parallel composition as well as the
trace operation.

81



Saunders-Evans, Winskel

5 Deterministic Dataflow

To connect with Kahn’s and Plotkin’s classic work [3,4] we define the notion of a
deterministic span. These spans produce a unique maximum output for each input
and therefore can be used to model deterministic dataflow processes. The trace
construction described above is shown to correspond to the fixed point construction
detailed in [3].

Definition 5.1 The span

E
d
~~~~

~~ out
 A

AA
A

A B

is deterministic iff d(e1) ↑ d(e2)⇒ ¬(e1#e2).

The extra requirement of the demand morphism ensures that no two conflicting
events of E can require consistent configurations of A. Such spans can be related
to functions between the configurations of A and B.

Definition 5.2 Let A d← E
out→ B be a deterministic span. Define

∼
E: C(A)→ C(B)

by
∼
E (a)

def
= out{e ∈ E | d(e) ⊆ a} , for all a ∈ C(A).

Proposition 5.3 The function
∼
E is stable and continuous for all deterministic

spans E.

Proof. As the demand of an event is a finite configuration it follows straightfor-
wardly that

∼
E is continuous. To see it is stable we observe that

∼
E factors into the

composition out ◦ F where

F (a) = {e ∈ E | d(e) ⊆ a} , for a ∈ C(A) .

The function F : C(A)→ C(E) preserves all intersections, so certainly stable, while
the function out : C(E)→ C(B) is rigid so stable. Their composition

∼
E is therefore

stable.
2

Proposition 5.4 The composition of two deterministic spans is deterministic.

Proof. Let A d1← E1
out1→ B and B

d2← E2
out2→ C be deterministic spans.

Let A d← E3
out→ C be their composition.

Let (x1, e1) and (x2, e2) be events in E3 and assume d(x1, e1) ↑ d(x2, e2). This
is true iff d1

†(x1) ↑ d1
†(x2). As E1 is deterministic, x1 ↑ x2. Consequently, d2(e1) ↑

d2(e2) from the definition of composition. This implies that ¬(e1#e2), as E2 is
deterministic. As x1 ↑ x2 and ¬(e1#e2) it follows that ¬((x1, e1)#(x2, e2)). 2

Lemma 5.5 Let A⊗ C d← E
out→ B ⊗ C be a deterministic span.

Let a ∈ C(A). There is a continuous function ϕ : C(E) → C(E) such that

Sec(a)
def
= µS.ϕ(S), the least fixed point of ϕ, is a secure configuration of E and

82

Saunders-Evans, Winskel

moreover is the maximum secure configuration x of E such that

d†(x) ∩A ⊆ a.

Proof. For S ⊆ E define

ϕ(S) = {e ∈ E | d(e) ⊆ a ∪ (C ∩ out(S))}.

That ϕ is a function between configurations follows from determinism, while conti-
nuity follows from finiteness of demands as in the proof of Proposition 5.3.

Then µS.ϕ(S) =
⋃

i∈ω Si, a union of an ⊆-increasing chain of configurations of
E given inductively by

S0 = ∅
Si+1 =ϕ(Si).

Observe that, as ϕ is a function from configuration to configuration, Si ∈ C(E) for
all i.

We show by induction that Si secure for all i ∈ ω.
Base case: The property trivially holds for S0.
Inductive step: Assume that Sk is secure. Each event in Sk is secured and therefore
has a securing sequence within Sk. Any additional events e in Sk+1 have d(e)∩C ⊆
out(Sk). We can therefore give a securing sequence for e by combining the securing
sequences of the events upon which it depends according to ≺Sk+1

. Therefore Sk+1 is
secure. This shows that Sec(a) is secure for all a ∈ C and it is clear that d†(Sec(a))∩
A ⊆ a.

Suppose there exists an x ∈ C(E) that is secure and for which d†(x) ∩A ⊆ a.
We show by well-founded induction on ≺x that

∀e ∈ x. e ∈ Sec(a).

Suppose e′ ∈ Sec(a) for all e′ ≺x e. Then d(e) ∩ C ⊆ out(Sec(a)) as x is secure
and by assumption d(e)∩A ⊆ a. Hence d(e) ⊆ a∪ (C ∩ out(Sec(a))) and therefore
e ∈ ϕ(Sec(a)) = Sec(a). 2

Corollary 5.6 If a span is deterministic then its trace is deterministic.

Proof. Let A⊗ C d← E
out→ B ⊗ C be a deterministic span. Let p1, p2 ∈ Tr(E) with

demands a1, a2 ∈ C(A) such that a1 ↑ a2.
As each d†(pi) ⊆ ai ∪ (C ∩ out(pi)) for i = 1, 2, they are also both subsets of

a1 ∪ a2 ∪ (C ∩ out(pi)). Hence as p1 and p2 are secure p1, p2 ⊆ Sec(a1 ∪ a2) and so
p1 ↑ p2. 2

Let A dem← E
out→ B be a deterministic span.

Lemma 5.7 For all w ∈ C(A),

∼
Tr(E) (w) = B ∩ outSec(w) .

Proof. By definition

∼
Tr(E) (w) = out{p ∈ Tr(E)|A ∩ d†p ⊆ w} .

83

Saunders-Evans, Winskel

If A ∩ d†p ⊆ w with p ∈ Tr(E) then p is secure, so p ⊆ Sec(x) by the maximum

property of Sec(x)—Lemma 5.5. It follows that
∼

Tr(E) (w) ⊆ B ∩ out(Sec(w)). To
see the reverse inclusion, note that for any e ∈ Sec(w) with out(e) ∈ B we have
[e]Sec(w) ∈ Tr(E). 2

In conclusion we can understand the trace of a deterministic span in terms of a
least fixed point of its associated function; the trace of deterministic event structures
reduces to the trace known to Kahn [3].

Theorem 5.8 Let A d← E
out→ B be a deterministic span. For all w ∈ C(A),

∼
Tr(E) (w) = B ∩ µz ∈ C(B ⊗ C).

∼
E (w ∪ (C ∩ out(z))) .

Proof. By Lemma 5.7,

∼
Tr(E) (w) = B ∩ out(µx. φ(x))

where φ : C(E)→ C(E) is the continuous function given by

φ(x) = {e ∈ E|d(e) ⊆ w ∪ (C ∩ out(x))}

for x ∈ C(E).
Define the continuous function ψ : C(B ⊗ C)→ C(B ⊗ C) by taking

ψ(u) =
∼
E (w ∪ (C ∩ u))

for u ∈ C(B ⊗ C).
It is easy to see that out : E → C(B⊗C) is a strict continuous function between

the domains of configurations. Directly from their definition we see that

out ◦ φ(x) = ψ ◦ out(x)

for x ∈ C(E); both expressions equal

out{e ∈ E|d(e) ⊆ w ∪ (C ∩ outx)} .

By a well-known property of least fixed points we now know that µu. ψ(u) =
out(µx. φ(x)), which gives the result directly. 2

6 Concluding Remarks

Event structure spans provide an intuitive semantics for both deterministic and
nondeterministic dataflow processes. This semantics is a good example of the way in
which event structures can be used to represent both types and operations between
types.

The spans of event structures used here were first discovered in joint work with
Mikkel Nygaard [7] where they appeared as an informative, more operational rep-
resentation of the profunctors used as denotations of an affine language for higher-
order processes. It was realised later that they also represented the profunctors

84

Saunders-Evans, Winskel

used in an earlier ‘relational’ model of nondeterministic dataflow [2]. Such spans
are part of a more general picture, the beginnings of which are sketched in [11].
But we believe that our treatment of nondeterministic dataflow in itself makes a
convincing case for the usefulness of spans of event structures in semantics.

References

[1] Brock, J. and W. Ackerman, Scenarios: A model of non-determinate computation, Formalization of
programming concepts 107 (1981).

[2] Hildebrandt, T. T., P. Panangaden and G. Winskel, A relational model of nondeterministic dataflow,
MSCS (2003).

[3] Kahn, G., The semantics of a simple language for parallel programming, Information Processing 74
(1974), pp. 471–475.

[4] Kahn, G. and G. Plotkin, Concrete domains, Theoretical Computer Science 121 (1993), pp. 197–277.

[5] MacLane, S., “Categories for the Working Mathematician,” Graduate Texts in Mathematics 5, Springer,
1998, second edition.

[6] Nielson, M., G. D. Plotkin and G. Winskel, Petri nets, event structures and domains, Theoretical
Computer Science 13(1) (1981), pp. 85–108.

[7] Nygaard, M., “Domain Theory for Concurrency,” Ph.D. thesis, University of Aarhus (2003).

[8] Rabinovich, A. and B. A. Trakhtenbrot, Communication among relations, in: M. Paterson, editor,
Proceedings of the 6th ICALP, LNCS 443 (1990), pp. 294–307.

[9] Russell, J. R., Full abstraction for nondeterministic dataflow networks, in: FOCS, 1989, pp. 170–175.

[10] Winskel, G., Event structure semantics for CCS and related languages, in: ICALP ’82, 1982.

[11] Winskel, G., Relations in concurrency (invited talk), LICS’05 (2005), full version available at
www.cl.cam.ac.uk/users/gw104/.

85

EXPRESS 2006 Preliminary Version

Extensionality of Spatial Observations
in Distributed Systems

Luı́s Caires1 and Hugo Torres Vieira2

CITI / Departamento de Inforḿatica, FCT Universidade Nova de Lisboa, Portugal

Abstract

We discuss the tensions between intensionality and extensionality of spatial observations in distributed systems, showing that
there are natural models where extensional observational equivalences may be characterized by spatial logics, including the
composition and void operators. Our results support the claim that spatial observations do not need to be always considered
intensional, even if expressive enough to talk about the structure of systems. For simplicity, our technical development
is based on a minimalist process calculus, that already captures the main features of distributed systems, namely local
synchronous communication, local computation, asynchronous remote communication, and partial failures.

Introduction

Logical characterizations of concurrent behaviors have been introduced for a long time now.
A fundamental result in the field, due to Hennessy and Milner [13], is the characterization
of behavioral equivalence in process algebras as indistinguishability with respect to a modal
logic. Such results are important not only theoretically, but also because of their influence
in the design of practical specification languages for software systems. Hennessy-Milner
logic (HML) adds to propositional operators the action modality〈λ〉A, allowing the logic
to observe a grain of behavior: a process satisfies〈λ〉A if it satisfiesA after performing
actionλ. HML characterizes behavioral equivalence in the sense that two processes are
strongly bisimilar if and only if they satisfy exactly the same formulas.

More recently, spatial logics for concurrency [6,9,4] have been proposed with the aim
of specifying distributed behavior and other essential aspects of distributed computing sys-
tems. In general terms, these developments reflect a shift of focus in concurrency research,
that has been building up from the last decade on, from the study of centralized concurrent
systems to the study of general distributed systems. While centralized processes may be
accurately modeled as pure objects of behavior, in distributed systems many interesting

1 Luis.Caires@di.fct.unl.pt
2 htv@di.fct.unl.pt

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Caires and Vieira

phenomena besides pure interaction, such as location dependent behavior, resource usage,
and mobility, must be considered.

Present in all spatial logics for concurrency are the composition operatorA | B and the
void operator0 [4]. Intuitively, a system satisfiesA | B if it can be decomposed in two
disjoint subsystems such that one satisfiesA and the other satisfiesB, while a system satis-
fies0 if it is the empty system. The guarantee (logical adjunct of the composition operator)
A.B, introduced in [9], allows the logic to talk about contextual properties. Namely, a pro-
cess satisfiesA.B if whenever composed with a system that satisfiesA, yields a (possibly
larger) system that satisfiesB. Decomposition and composition of systems as mentioned
here is generally interpreted up to structural congruence, and thus structural congruence
seems to play a key role in the semantics of spatial logics.

Observation of features such as spatial separation are frequently considered intensional
because they usually induce fine distinctions among processes that are not substantiated
by purely behavioral (extensional) observations. According to Sangiorgi [20], “A logic
is intensional if it can separate terms on the basis of their internal structure, even though
their behaviors are the same”. Moreover, in many situations, it turns out that the logical
equivalence induced by a spatial logic on processes, is not only strictly finer than behavioral
congruence, but coincides with structural congruence [20,5,11,21].

These results contributed to widespread the impression that spatial observations, as
those induced by spatial connectives, are intrinsically intensional, imposed extraneously
so to increase the power of the observer. For example, Hirschkoff has shown [14] that
if the so-called intensional connectives composition and void are removed from a spatial
logic for the pi-calculus, while retaining the guarantee, one obtains a logic whose sep-
aration power precisely coincides with strong bisimulation and may then be considered
extensional. The ability of the spatial connectives to capture structural congruence is also
attributed to their ability to count, separate, and express arithmetical constraints,e.g., about
the number of subsystems of a given system. The observational power of spatial logics
may then sometimes appear a bit arbitrary, in the sense that structural congruence does not
have a canonical status among behavioral process equivalences, and is frequently seen just
as a technical convenience, with a syntactic flavor, to ease the presentation of a calculus
operational semantics.

On the other hand, it has been argued [4,2,3] that the intensional character of logical
characterizations of spatiality in distributed computation may be, at least in part, incidental,
and does not necessarily reflect the fundamental motivation for introducing spatial logics
for concurrency. Ideally, we would like spatial observations, as captured by spatial log-
ics, to reflect natural distinctions and similarities between distributed systems, in a context
where spatial location is a relevant observable, in parity with more standard behavioral ob-
servables. We expect spatial observations of the sort, captured by spatial logic operators
such as composition, to be taken modulo an intended notion of equality of the observable
space-time structure, independently on whether such equality relation is technically defined
using a notion of structural congruence. If certain spatial-behavioral observations precisely
capture the observable structure of a model in our sense, they would have to be considered
extensional, even if able to detect aspects of spatial structure.

In this paper, we pursue the informal discussion started above in technical terms. Namely,
we make precise the claim that spatial observations, including structural ones, may be un-
derstood as purely extensional in fairly natural models of distributed systems. To discuss

87

Caires and Vieira

the several issues of interest in a simplified setting, we consider a minimal distributed pro-
cess calculus, obtained by extending the smallest concurrent fragment of CCS with flat
anonymous locations. Our model can be seen as a general abstraction of the essence of
distributed systems, already featuring all the key ingredients present in distributed process
calculi, although in a possibly less refined way. Processes may synchronously commu-
nicate locally to a site through standard CCS-like synchronization, and asynchronously
communicate at a distance, by means of a migration primitive. We also allow systems
to nondeterministically exhibit partial failures, as in [1,12]. Notice that it is not our aim
here to propose yet another distributed process calculus, but rather to set up a convenient
setting to compare distributed system observational equivalences and their spatial logical
characterizations.

Our technical contributions may be summarized as follows. After introducing the pro-
cess calculus and its reduction semantics, we define observational equivalence by adopting
the canonical notion of reduction barbed congruence. Barbed congruence [17] and re-
duction barbed congruence [16] are currently accepted as the standard approach to define
reference behavioral equivalences for general process calculi. After showing some basic
properties of reduction barbed congruence in our setting, we define strong bisimulation,
an alternative coinductive characterization of observational equivalence, which is shown
equivalent to reduction barbed congruence. The interesting aspect of our definition of
strong bisimulation is that it contains “intensional” clauses (in the sense of [20]), namely a
clause expressing separation, and a clause for observing the empty system. We then use the
characterization of reduction barbed congruence in terms of strong bisimulation to identify
a spatial logic characterization of both reduction barbed congruence and strong bisimula-
tion: our logic is an extension of HML with the composition and void operators of spatial
logic. The same line of development is also carried out for the weak case. In this latter
setting, we prove minimality of the logic, thus showing the essential role of all of the logic
operators, in particular of the spatial operators, in the intended expressive and separation
power. We can verify that in both the strong and weak cases the process equivalences in-
duced by the logics are coarser than structural congruence, and that the presence of the
composition and void operators, semantically interpreted in the standard way, do not carry
any lack of extensionality (with extensionality interpreted with reference to a standard ob-
servational equivalence), even if the logics can express separation and counting constraints
on the structure of systems.

1 A Simple Model of Distributed Systems

In this section we present the syntax and operational semantics of our distributed process
calculus. Assume given an infinite setΛ of names, ranged over bya, b, c.

Definition 1.1 [Actions, Processes and Networks] The setsA of actions, P of processes,
andN of networksare given by:

α ::= ā
∣∣∣ a ∣∣∣ τ P,Q ::= nil

∣∣∣ P | Q
∣∣∣ α.P ∣∣∣ go.P N,M ::= 0

∣∣∣ N | M
∣∣∣ [P]

For actions we consider the outputā, the inputa and the internal computationτ . For
processes, we consider the smallest fragment of CCS featuring some form of concurrency,
thus we have inactionnil , parallel compositionP | Q, and action prefixingα.P . On top

88

Caires and Vieira

of this, we introduce a notion of distribution by locating processesP inside sites of the
form [P], anonymous for simplicity, and by adding the migration capabilitygo.P to pro-
cesses which, since sites are not natively named, allows processes to non-deterministically
migrate to other sites. A distributed system is thus represented by a network consisting of
a collection of sites spread in space, by means of spatial compositionN | M , which we
will abbreviate using

∏
j∈J

[
P j

]
for a J-fold collection of sites.0 stands for the empty

network. We usefn(N) to denote the set of free names of a networkN , defined as usual.
The operational semantics of our calculus follows, captured by the relations of structural
congruence and reduction.

Definition 1.2 [Structural congruence]Structural congruence, noted≡, is the least con-
gruence on processes and networks such that(P,nil , |) and (N ,0, |) are commutative
monoids, andP ≡ Q implies[P] ≡ [Q].

Definition 1.3 [Reduction]Reduction, notedN → M , is the relation between processes
inductively defined as follows

[ā.P | a.Q | R]→ [P | Q | R] (Red Comm) [τ.P | Q]→ [P | Q] (Red Tau)

[go.P | Q] | [R]→ [Q] | [P | R] (Red Go) [P] | N → 0 (Red Fail)

N → N ′

N | M → N ′ | M (Red Cong)
N ≡ N ′ →M ′ ≡M

N →M
(Red Struct)

The rule (Red Comm) specifies interaction between two processes through co-action
synchronization locally inside a site, while rule (Red Tau) specifies internal action of a
process. Rule (Red Go) specifies that a process prefixed bygomay migrate to another site.
Rule (Red Fail) expresses that any non-empty network may fail, thus modeling fail-stop
failure of an arbitrary subsystem.

Our aim now is to define a natural notion of observational equivalence on networks. To
that end, we adopt the canonical notion of reduction barbed congruence, according to which
two systems are observationally equivalent if no context can distinguish between them by
barb detection. In our case, we restrict to one-hole spatial contexts, ase.g., in [1,12], hence
of the formC [•] ::= N | •, for some networkN .

We use the standard notion of barb observation [17], even if it assumes in a sense
the existence of a global observer, which might be debatable in the context of distributed
systems. Thus a networkN exhibits barba, notedN ↓a, if there areP,Q,M such that
N ≡ [a.P | Q] | M , hence reflecting the fact that any external observer can get to know
that an input is ready via some channel name, at some accessible site. We now define our
reference observational equivalence relation, along the lines of [18,16].

Definition 1.4 [Strong reduction barbed congruence]Strong reduction barbed congruence,
noted', is the largest symmetric relationR such that for all(N,M) ∈ R:

For all barbsa, if N ↓a thenM ↓a (Barb closed)

If N → N ′ then there isM ′ s.t.M →M ′ and(N ′,M ′) ∈ R (Reduction closed)

For all contextsC [•], (C [N] , C [M]) ∈ R (Context closed)

We establish some standard properties of strong reduction barbed congruence, such as

89

Caires and Vieira

' is a congruence. Notice that we just consider in this paper, congruences under spatial
(static) contexts. As explained above, this does not carry a lack of generality, given the
main motivations of our development. Moreover:

Proposition 1.5 We have≡ ⊂ '.

Proof. The proof of⊆ follows standard lines. To prove that≡ is strictly included in' we
may show that[a.nil | a.nil] ' [a.a.nil] but [a.nil | a.nil] 6≡ [a.a.nil]. 2

It follows from the congruence property that strong reduction barbed congruence is
closed under composition. In particular for site composition, we have:

Lemma 1.6 LetP i andQi (i ∈ J) be collections of processes. If for alli ∈ J we have[
P i

]
'

[
Qi

]
, then also

∏
j∈J

[
P j

]
'

∏
j∈J

[
Qj

]
.

Although Definition1.4is standard, with reference to the global observation of barbs in
networks, observations already leak some relevant information about the distributed struc-
ture of systems. Lemma1.7states that strong reduction barbed congruent networks always
result from an underlying one-one and onto correspondence of strong reduction barbed
congruent sites. In particular, we conclude strong reduction barbed congruent networks
always have the same number of sites.

Lemma 1.7 Let M,N be networks such thatN ,
∏

j∈J

[
P j

]
, whereP j (j ∈ J) is a

collection of processes, andN ' M . Then there is a collection of processesQj (j ∈ J)
such thatM ≡

∏
j∈J

[
Qj

]
and for all j ∈ J we have

[
P j

]
'

[
Qj

]
.

Proof. (Sketch, full proof in [7]) We consider a context that holds processes that may mi-
grate andmarkevery site ofN with an input on the unique name, and we make sure that
every input is located at a different site. SinceM behaves the same asN under this con-
text (and using a symmetric reasoning) we obtain thatM has#J sites. We then exploit
failures inN that leave only a single site active, being that this behavior must be mim-
icked by failures inM that also leave just one site up. These singled out sites are strong
reduction barbed congruent, hence hold the same unique input, thus ensuring an unique
correspondence. We then consider another context that may clean up the marker and all
other foreign elements, which then allows us to conclude the sites were originally strong
reduction barbed congruent. 2

2 Strong Bisimilarity

Since strong reduction barbed congruence relies on universal quantification over all con-
texts, we now propose a more manageable characterization of observational equivalence.
More concretely, we introduce a labeled transition system with the aim of capturing the
contextual behavior of the networks, by means of observing process commitments, in turn
expressed by transition labels. Building on such labeled transition system, a coinductive
definition of bisimilarity is then presented.

The set of transition labels, notedL, is given byL , {α | α ∈ A} ∪ {[a] | a ∈
Λ}, and ranged over byλ. Transition labels reflect internal computation (τ), and abstract
communication and mobility from and to the external environment. Output (ā) and input (a)
transitions represent the interaction with a process that migrates from the outer environment
and communicates on a given channel.

90

Caires and Vieira

Grow transitions ([a]) are used to allow the observation of process migration from the
system to the external environment. Such a grow transition allows the labeled transition
system to import a minimal piece of the external environment, providing the system with a
candidate migration target. This turns out to be essential for covering the case of networks
with a single site, since in that case only the enlargement of the system with a new site
gives processes intending to migrate a possible destination.

Given these ingredients, we define our labeled transition system. As we will show later,
these labels are essential to capture reduction barbed congruence.

Definition 2.1 [Commitment]Commitment, notedN
λ−→ M , is the relation on processes

and labels inductively defined as follows

[ā.P | a.Q | R] τ−→ [P | Q | R] (Comm) [τ.P | Q] τ−→ [P | Q] (Tau)

[ā.P | Q] ā−→ [P | Q] (Out) [a.P | Q] a−→ [P | Q] (In)

[go.P | Q] | [R] τ−→ [Q] | [P | R] (Go)

[P] | N τ−→ 0 (Fail) N
[a]−→ N | [a.nil] (Grow)

N
λ−→ N ′

N | M λ−→ N ′ | M
(Cong)

N ≡ N ′ λ−→M ′ ≡M

N
λ−→M

(Struct)

We can verify thatτ commitments match reductions and conversely. Notice that al-
thoughe.g., the systems[nil] | [nil] and[τ.nil] have exactly the same commitment graph,
they are not observationally equivalent in the light of Lemma1.7. Thus, in order to prop-
erly capture strong reduction barbed congruence, we include in the definition of strong
bisimulation two spatial clauses (referred to as “intensional clauses” in [20]).

We then have:

Definition 2.2 [Strong Bisimulation] A binary relationB ⊆ N ×N is astrong bisimula-
tion if and only if it is symmetric and whenever(N,M) ∈ B then

N ≡ N ′ | N ′′ ⇒ ∃M ′,M ′′ . M ≡M ′ | M ′′ ∧ (N ′,M ′) ∈ B ∧ (N ′′,M ′′) ∈ B

N ≡ 0 ⇒ M ≡ 0

N
λ−→ N ′ ⇒ ∃M ′ . M

λ−→M ′ ∧ (N ′,M ′) ∈ B

We remark that the second clause in Definition2.2 is subsumed by the third one since
only void systems have no possible internal actions (due to failures), however we prefer to
include it in the definition for the sake of uniformity with the corresponding weak version,
and thus avoid some extra incidentality.

Notice also that the first clause properly distinguishes[τ.nil] and[nil] | [nil], because
there is no way to split[τ.nil] (up to≡) in two parts with some transition each.

We prove that strong bisimulations are equivalence relations closed under union, and
define:

Definition 2.3 [Strong bisimilarity]Strong bisimilarity, noted∼, is the largest strong bisim-
ulation.

91

Caires and Vieira

2.1 Full Abstraction

This section is devoted to proving that strong bisimilarity, as defined in Definition2.3,
characterizes strong reduction barbed congruence in a fully abstract way. The proof builds
on a series of intermediate technical results.

Lemma 2.4 Let M be a network andP j(j ∈ J) a collection of processes where∏
j∈J

[
P j

]
∼ M . Then there is a collection of processesQj(j ∈ J) such thatM ≡∏

j∈J

[
Qj

]
and for all j ∈ J ,

[
P j

]
∼

[
Qj

]
.

Proof. By induction on the size ofJ , using the separation and emptiness clauses. 2

The proof of the main result of this section (Theorem2.6) is not technically involved,
but critically depends on next Lemma2.5, that expresses a key compositionality principle
of our calculus. Notice that the basic building block of systems referred to in the statement
of Lemma2.5 is the process: since we have to take migration into account, it is essential
to assure compositionality at the process level. We abbreviate collections of sites such that
each one holds a collection of processes.

Lemma 2.5 Let J be a finite set andIj , for all j ∈ J , be a finite set. LetP j
i andQj

i be

processes such that for allj ∈ J andi ∈ Ij we have
[
P j

i

]
∼

[
Qj

i

]
. Then∏

j∈J

[∏
i∈Ij

P j
i

]
∼

∏
j∈J

[∏
i∈Ij

Qj
i

]
Proof. (Sketch, full proof in [7]) By coinduction on the definition of strong bisimulation.
We sketch the proof for the interesting case of migration.

We exploit the grow transition using a fresh name, in the sense that it does not occur in
neither one of theP j

i s andQj
i s, which creates a possible target for migrations and allows

us to isolate migrating processes, since we can decompose and observe the input on the
fresh name. Using this technique and since we can establish that the newly created sites
are bisimilar, we can be sure to obtain a collection of sites that respects the statement of the
Lemma for any choice of target of the migration. Notice that a migration on one side need
not be always matched by a migration on the other, because the migrating process cane.g.,
be inaction, in which case, a migration may be matched by an internal computation step.2

By Lemma2.4 and Lemma2.5 we prove strong bisimilarity is a congruence, from
which follows, in standard lines, that∼ ⊆ '. We then prove' ⊆ ∼, using Lemma1.6
and Lemma1.7to address the structural issues. We can then state:

Theorem 2.6 (Full abstraction) We have∼ = '.

2.2 Logical Characterization of Strong Bisimilarity

In this section, we characterize strong bisimilarity (and thus strong reduction barbed con-
gruence) in logical terms, using a simple spatial logic.

Definition 2.7 [Spatial logicLs] Formulas are defined by the following syntax:

(Formulas)A,B,C ::= T
∣∣∣ ¬A ∣∣∣ A ∧B ∣∣∣ 0

∣∣∣ A | B
∣∣∣ 〈λ〉A

92

Caires and Vieira

Our logic, besides the usual action modality from HML, includes the composition and
void operators of spatial logics, interpreted in the standard way. For example, we may
express property “network has exactly one site” by the formula¬0 ∧ ¬(¬0 | ¬0). The
semantics of the logic is given by the denotation of the formulas, i.e., a formula denotes the
set of networks that satisfy it.

Definition 2.8 [Semantics ofLs] A formula’s denotation is inductively given by

JTK , N J¬AK , N\JAK JA ∧BK , JAK ∩ JBK J0K , {N | N ≡ 0}

JA | BK , {N | ∃N ′, N ′′ . N ≡ N ′ | N ′′ ∧N ′ ∈ JAK ∧N ′′ ∈ JBK}

J〈λ〉AK , {N | ∃N ′ . N
λ−→ N ′ ∧N ′ ∈ JAK}

We writeN |= A to meanN ∈ JAK. We say that networksM andN are logically
equivalentw.r.t. Ls, writtenM =Ls N , if and only if they satisfy exactly the same formulas
of Ls, namely if and only if, for any formulaA of Ls, we haveM |= A ⇐⇒ N |= A.
We now state our logical characterization result.

Theorem 2.9 (Logical Characterization of∼) We have∼ = =Ls .

Proof. (Sketch, full proof in [7]) Proof of∼ ⊆ =Ls follows by a standard induction on
the structure of the formulas. We prove=Ls ⊆ ∼ by coinduction on the definition of
strong bisimulation, using the witnessR , {(N,M) |N =Ls M}. Proof of the emptiness
clause is immediate. For both the separation and transition clauses we build on the fact
that the image set of the transition for the latter and of all possible decompositions for the
former is finite (up to structural congruence). We then exploit the finiteness of these finite
sets to prove that there is a (logical equivalent) correspondence between at least one of
their elements. Otherwise we could collect the finite set of all formulas that distinguish
them in a conjunction that must hold for both networks, either after a decomposition or
after an action, since they are logically equivalent. We then obtain our bisimilar result by
coinduction. 2

As a corollary we immediately conclude that=Ls precisely characterizes'. Thus the
separation power of our spatial logic coincides with behavioral equivalence, even if it in-
cludes the basic structural connectives of composition and void, allowing it toe.g., express
arithmetical constraints on the number of sites in a system. We may however ask whether
these structural operations are essential to characterize behavioral equivalence, in other
words, whether the logic is minimal in some sense. We will give a positive answer to this
question in the next section, in the more interesting case of weak behavioral equivalences.

3 Weak Bisimilarity

In this section we refine our previous results by considering a coarser observational equiv-
alence, disregarding internal action, thus we adopt weak reduction barbed congruence as
the reference observational equivalence. We denote by⇒ the reflexive-transitive closure
of reduction (→) and state that a networkN weakly exhibits a barba, notedN⇓a, if there
isN ′ such thatN ⇒ N ′ andN ′↓a. We then have:

93

Caires and Vieira

Definition 3.1 [Weak reduction barbed congruence]Weak reduction barbed congruence,
notedu, is the largest symmetric relationR such that for all(N,M) ∈ R:

For all barbsa, if N ↓a thenM⇓a (Barb closed)

If N → N ′ then there isM ′ s.t.M ⇒M ′ and(N ′,M ′) ∈ R (Reduction closed)

For all contextsC [•], (C [N] , C [M]) ∈ R (Context closed)

We establish some standard properties of weak reduction barbed congruence, such as
u is a congruence. We relateu to the strong reduction barbed congruence.

Proposition 3.2 We have' ⊂ u.

Proof. The proof of⊆ follows standard lines. To prove that' is strictly included inu we
may show that[go.nil] u [nil] but [go.nil] 6' [nil]. 2

Note that from Proposition3.2 and Proposition1.5 we immediately conclude≡ ⊆ u.
From the congruence property we obtain that reduction barbed congruence is closed under
composition, which in particular for site composition gives us:

Lemma 3.3 LetP i andQi (i ∈ J) be collections of processes. If for alli ∈ J we have[
P i

]
u

[
Qi

]
, then also

∏
j∈J

[
P j

]
u

∏
j∈J

[
Qj

]
.

As for the strong case, weak reduction barbed congruence is already able to distinguish
systems based on aspects of their structure, for instance, weak reduction barbed congruent
networks always have the same number of sites. Also, as stated in Lemma3.4, weak
reduction barbed congruent networks weakly reduce to a one-one and onto correspondence
of weakly reduction barbed congruent sites.

Lemma 3.4 Let M,N be networks such thatN ,
∏

j∈J

[
P j

]
, whereP j (j ∈ J) is a

collection of processes, andN u M . Then there is a collection of processesQj (j ∈ J)
such thatM ⇒

∏
j∈J

[
Qj

]
and for all j ∈ J we have

[
P j

]
u

[
Qj

]
.

Proof. (Sketch, full proof in [7]) The general idea is similar to that in the proof of
Lemma1.7. However, since now we may only weakly observe a barb, a different trick
must be used to make sure that the migration of all the mark-placing processes has already
occurred. We thus exploit the failure behavior of the context at a chosen point, avoiding
in this way any chance for the migratory processes to postpone their choice of target, thus
ensuring an unique correspondence. 2

3.1 Weak Bisimilarity

We now propose a coinductive characterization of weak reduction barbed congruence.

Weak commitment
λ=⇒ is the transition relation such thatN

λ=⇒ N ′ whenN
τ−→

∗

M ′ λ−→ M ′′ τ−→
∗
N ′ andλ 6= τ , andN

τ=⇒ N ′ whenN
τ−→

∗
N ′. Given this we

define weak bisimulations by adapting the labeled transition and separation clauses to the
weak case. Notice that, contrasting with the strong case, the emptiness clause is essential
here to distinguish,e.g., [nil] from 0.

Definition 3.5 [Weak Bisimulation] A binary relationB ⊆ N ×N is aweak bisimulation

94

Caires and Vieira

if and only if it is symmetric and whenever(N,M) ∈ B then

N ≡ N ′ | N ′′ ⇒ ∃M ′,M ′′ . M ⇒M ′ | M ′′ ∧ (N ′,M ′) ∈ B ∧ (N ′′,M ′′) ∈ B

N ≡ 0 ⇒ M ≡ 0

N
λ−→ N ′ ⇒ ∃M ′ . M

λ=⇒M ′ ∧ (N ′,M ′) ∈ B

We can prove that weak bisimulations enjoy usual properties, such as being equivalence
relations, and closure under union. We thus define:

Definition 3.6 [Weak bisimilarity]Weak bisimilarity, noted≈, is the largest weak bisimu-
lation.

3.2 Full Abstraction

In this section, we prove that weak bisimilarity characterizes weak reduction barbed con-
gruence in a fully abstract way, proof of which builds on the following results.

Lemma 3.7 Let M be a network andP j (j ∈ J) a collection of processes such that∏
j∈J

[
P j

]
≈ M . Then there is a collection of processesQj (j ∈ J) such thatM ⇒∏

j∈J

[
Qj

]
and for all j ∈ J ,

[
P j

]
≈

[
Qj

]
.

Proof. By induction on the size ofJ , using the separation and emptiness clauses. 2

Lemma3.8 is the cornerstone for proving full abstraction (Theorem3.9). As for the
strong case we must ensure compositionality at the process level due to process mobile
capability, as process migration to sites results in inner site composition.

Lemma 3.8 Let J be a finite set andIj , for all j ∈ J , be a finite set. LetP j
i andQj

i be

processes such that for allj ∈ J andi ∈ Ij we have
[
P j

i

]
≈

[
Qj

i

]
. Then∏

j∈J

[∏
i∈Ij

P j
i

]
≈

∏
j∈J

[∏
i∈Ij

Qj
i

]
Proof. By coinduction on the definition of strong bisimulation. The proof follows the lines
given for Lemma2.5, with several adaptations needed for the weak case. Interesting to
notice, in the strong case a migration of the inaction process could be mimicked by an
internal computation, while here it can be mimicked by the empty sequence of internal
actions (we no longer distinguish[go.nil] from [nil]). 2

By Lemma3.7 and Lemma3.8 we prove that weak bisimilarity is a congruence, after
which proof that≈ ⊆ u follows in standard lines. To proveu ⊆ ≈ the difficulty lies in
the spatial clauses, given by Lemma3.3and Lemma3.4. Thus:

Theorem 3.9 (Full abstraction) We have≈ = u.

3.3 Logical Characterization of Weak Bisimilarity

We characterize weak bisimilarity (and thus weak reduction barbed congruence) using the
spatial logicLw.

95

Caires and Vieira

Definition 3.10 [Spatial LogicLw] Formulas are defined by the following syntax:

(Formulas)A,B,C ::= T
∣∣∣ ¬A ∣∣∣ A ∧B ∣∣∣ 0

∣∣∣ A �� B
∣∣∣ 〈〈λ〉〉A

The logicLw is obtained fromLs by adapting the composition operator, now noted
A �� B, and the action modality, now noted〈〈λ〉〉A, to the weak case as defined in Defini-
tion 3.11. We leave the void operator with it’s standard interpretation (notice thatN ⇒ 0
is a trivial condition, due to the failure behavior).

Definition 3.11 [Semantics ofLw] A formula’s denotation is inductively given by

JTK , N J¬AK , N\JAK JA ∧BK , JAK ∩ JBK J0K , {N | N ≡ 0}

JA �� BK , {N | ∃N ′, N ′′ . N ⇒ N ′ | N ′′ ∧N ′ ∈ JAK ∧N ′′ ∈ JBK}

J〈〈λ〉〉AK , {N | ∃N ′ . N
λ=⇒ N ′ ∧N ′ ∈ JAK}

We prove logical characterization of≈, following the lines of Theorem2.9.

Theorem 3.12 (Logical Characterization of≈) We have≈ = =Lw .

As a corollary of Theorem3.12we conclude that the separation power ofLw precisely
coincides with weak reduction barbed congruence, even if it includes the spatial operators
composition and void. At this point, we may ask, as at the end of Section2.2, whether
the spatial operators are essential to the characterization. We may verify thatT can be
expressed as〈〈τ〉〉0, and〈〈τ〉〉A asA �� 0. Thus letLmin

w be the(T, 〈〈τ〉〉A)-free fragment of
Lw. We may show thatLmin

w is as expressive asLw, and moreover that all of its connectives
are essential for its expressiveness.

Theorem 3.13 (Minimality) The logicLmin
w is minimal. Moreover, the spatial operators

are essential to characterize weak reduction barbed congruence.

Proof. (Sketch, full proof in [7]) We show that any logic obtained fromLmin
w by removing

each connective is strictly less expressive.

• (¬A) In the¬-free fragment we are not able to express property1 , {N | ∃P . N ≡
[P]}, nor distinguish[nil] | [nil] from [nil].

• (A ∧B) In the∧-free fragment we can no longer express property1.

• (0) In the0-free fragment we can no longer express property{N | N ≡ 0}, nor tell0
and[nil] apart.

• (A �� B) In the��-free fragment we can neither express property2 , {N | ∃P,Q . N ≡
[P] | [Q]} nor separate[nil] | [nil] from [nil].

• (〈〈α〉〉A, α = ā, a) The〈〈α〉〉-free fragment does not tell[α.nil] and[nil] apart.

• (〈〈[a]〉〉A) The〈〈[a]〉〉-free fragment does not distinguish[go.b.nil] from [nil].
2

96

Caires and Vieira

4 Concluding Remarks

We have studied observational equivalences in a distributed computation model, having
obtained spatial logic characterizations of observational congruence in both the strong and
weak cases. Our long term goal is to get a better understanding of how structural fea-
tures contribute to observable distributed process behavior. Taking as reference semantics
for observational congruence the standard reduction barbed congruence, we have derived
equivalent characterizations of observational congruences in terms of co-inductively de-
fined bisimilarities. The logics considered are natural extensions of HML with spatial op-
erators, interpreted in the standard way.

We have thus shown, in a precise sense, that spatial logics, in particular the structural
operators they offer, are not necessarily intensional, and may offer adequate expressive
power for logically characterizing distributed behavior. We have also concluded, in the
case of the specific process model here considered, that the composition operatorA | B
is essential to capture (extensional) observational equivalence. Intuitively, such structural
observations do not violate extensionality because distributed process behavior already has
a related observational power, due to migration behavior and failures.

Observational equivalences of distributed systems have been studied extensively in the
context of CCS-like models; a comprehensive survey may be found in [10]. However,
it seems that logical characterizations have not been much discussed, and the distributed
process equivalences proposed were technically defined by means of location or history-
sensitive transition systems, where the use of location names plays a key role, both in the
dynamic and static cases. Here, we build on a more abstract notion of spatial observation,
avoiding the use of location names, and consider a calculus with anonymous sites, and
migration primitives in the spirit of more recent proposals of calculi for distribution and
mobility [8,19].

Our adoption of the simplest fail-stop failure model was motivated by the belief that it
already captures the key consequences of failure, cf., the folklore slogan that in a distributed
system one cannot distinguish a failed system from a system that will respond (much) later.
The fail-stop model has been frequently adopted in formalizations of failure since [1], even
if recent related works prefer to trigger failure by means of an explicit “kill” primitive [12].
Failures play an essential role in our results, even if, for the weak case, it is open whether
failures, as we have modeled here, are absolutely essential. However, it is conceivable that
other notions of failure, and a different set of spatial behaviors and spatial observations,
may lead to results comparable to the ones reported in this paper.

It is interesting to compare our results with those of [14], where an extensional spatial
logic (for theπ-calculus) is considered. In that work, extensionality is obtained by remov-
ing the composition and void operators, while retaining the guarantee, whereas here we
obtain extensionality by retaining the composition and void operators, while doing without
the guarantee. We believe that the guarantee could be added to our developments, with-
out breaking the results. Then, it would be instructive to see how to capture indirectly the
action modalities, as in [15]. It would be certainly important to assess how to extend the
general approach presented here to richer models, with name restriction, name passing, and
full computational power.

97

Caires and Vieira

AcknowledgmentsWe acknowledge the Fundação para a Cîencia e Tecnologia PhD
Scholarship SFRH / BD / 23760 / 2005 and project IP Sensoria IST-2005-16004. We thank
the anonymous reviewers for their comments, and Luı́s Monteiro and Luca Cardelli for
useful remarks.

References

[1] Amadio, R. M. and S. Prasad,Localities and Failures (Extended Abstract), in: P. S. Thiagarajan, editor,Foundations of
Software Technology and Theoretical Computer Science, Lecture Notes in Computer Science880(1994), pp. 205–216.

[2] Caires, L.,Behavioral and spatial properties in a logic for the pi-calculus, in: I. Walukiwicz, editor, Proc. of
Foundations of Software Science and Computation Structures’2004, Lecture Notes in Computer Science (2004).

[3] Caires, L.,Proof Techniques for Distributed Resources and Behaviors using Spatial Logics, in: (discussion at)
Symposium on Trustworthy Global Computing, 2005.

[4] Caires, L. and L. Cardelli,A Spatial Logic for Concurrency (Part I), Information and Computation186(2003), pp. 194–
235.

[5] Caires, L. and E. Lozes,Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency, Theoretical
Computer Science10 (2006).

[6] Caires, L. and L. Monteiro,Verifiable and Executable Specifications of Concurrent Objects inLπ , in: C. Hankin, editor,
7th European Symp. on Programming (ESOP 1998), number 1381 in Lecture Notes in Computer Science (1998), pp.
42–56.

[7] Caires, L. and H. T. Vieira,Extensionality of Spatial Observations in Distributed Systems (Draft), Technical Report
TR-DI/FCT/UNL-1/2006, DI/FCT Universidade Nova de Lisboa (2006),http://ctp.di.fct.unl.pt/˜htv/
pub/extspatial.pdf .

[8] Cardelli, L. and A. D. Gordon,Mobile ambients, in: M. Nivat, editor,First International Conference on Foundations of
Software Science and Computation Structures (FoSSaCS ’98), Lecture Notes in Computer Science1378(1998).

[9] Cardelli, L. and A. D. Gordon,Anytime, Anywhere. Modal Logics for Mobile Ambients, in: 27th ACM Symp. on
Principles of Programming Languages(2000), pp. 365–377.

[10] Castellani, I.,Process algebras with localities, in: J. Bergstra, A. Ponse and S. Smolka, editors,Handbook of Process
Algebra, North-Holland, 2001 pp. 945–1045.

[11] Conforti, G., D. Macedonio and V. Sassone,Spatial Logics for Bigraphs, in: L. Caires, G. F. Italiano, L. Monteiro,
C. Palamidessi and M. Yung, editors,Automata, Languages and Programming, 32nd International Colloquium, ICALP
2005, Lecture Notes in Computer Science3580(2005), pp. 766–778.

[12] Francalanza, A. and M. Hennessy,A Theory of System Behaviour in the Presence of Node and Link Failures, in:
M. Abadi and L. de Alfaro, editors,CONCUR, Lecture Notes in Computer Science3653(2005), pp. 368–382.

[13] Hennessy, M. and R. Milner,Algebraic laws for Nondeterminism and Concurrency, JACM 32 (1985), pp. 137–161.

[14] Hirschkoff, D.,An Extensional Spatial Logic for Mobile Processes, in: P. Gardner and N. Yoshida, editors,CONCUR
2004 15th International Conference, Lecture Notes in Computer Science3170(2004), pp. 325–339.

[15] Hirschkoff, D., É. Lozes and D. Sangiorgi,Minimality Results for the Spatial Logics, in: P. K. Pandya and
J. Radhakrishnan, editors,Foundations of Software Technology and Theoretical Computer Science, Lecture Notes in
Computer Science2914(2003), pp. 252–264.

[16] Honda, K. and N. Yoshida,On reduction-based process semantics, Theoretical Computer Science151(1995), pp. 437–
486.

[17] Milner, R. and D. Sangiorgi,Barbed bisimulation, in: W. Kuich, editor,Automata, Languages and Programming, 19th
International Colloquium, Lecture Notes in Computer Science623(1992), pp. 685–695.

[18] Montanari, U. and V. Sassone,Dynamic congruence vs. progressing bisimulation for ccs., Fundamenta Informaticae16
(1992), pp. 171–199.

[19] Riely, J. and M. Hennessy,Distributed processes and location failures, Theor. Comput. Sci.266(2001), pp. 693–735.

[20] Sangiorgi, D.,Extensionality and Intensionality of the Ambient Logics, in: 28th Annual Symposium on Principles of
Programming Languages(2001), pp. 4–13.

[21] Tuosto, E. and H. T. Vieira,An observational model for spatial logics., Electronic Notes in Theoretical Computer
Science142(2006), pp. 229–254.

98

