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Abstract. A teleo-reactive program is a condition action sequence used
to control a reactive robot in response to stimuli in its environment,
but in such a way as to enable the robot to achieve a pre-defined goal
under normal conditions. This paper presents a systematic procedure for
constructing teleo-reactive programs. It extends the authors’ previous
work, in particular by considering the multiple-robot case and inter-robot
communication.

1 Introduction

This paper presents a procedure for constructing programs for teleo-reactive
robots. Such robots are reactive in that they act in direct response to the stim-
uli they receive from their environment. Additionally, however, their behaviour
is predisposed towards achieving particular goals. This is because their inter-
nal programs — which relate actions to stimuli — have been constructed using a
goal-sensitive procedure. They therefore occupy a middle ground between wholly
reactive robots [1] whose actions have no overall motivation, and wholly delib-
erative robots [2] whose actions — including on-the-fly planning - flow from an
explicit stored goal.

A significant advantage of a teleo-reactive robot is the relatively low resources
it needs for its internal logic, which consists of little more than a fixed rule-set
requiring minimal hardware for its execution. Unlike a deliberative robot, it does
not need on-board computational facilities capable of executing arbitrarily com-
plicated software. Nevertheless, provided that the rule-set has been constructed
with appropriate regard to the desired goal, the robot is likely to achieve it.

The basic principles of our method for constructing teleo-reactive programs
were set out in [4] but were restricted to single-robot worlds. The new contribu-
tion of this present paper is to extend the framework to deal with multiple-robot
worlds, which afford opportunities for exploiting communication and cooperation
to solve problems more effectively.

The material is organized as follows. The basic framework is presented in
Sections 2, 3 and 4. Extensions, including hierarchical programs, exogenous ac-
tions and multi-robot environments are presented in Sections 5 to 8. Issues of
scalability, construction tools and open questions are discussed in Sections 9 to
11.



2 Basic Aspects of Formulation

2.1 World Representation

Any world in which our robots operate is one capable of assuming various objec-
tive states. There is an assumed (first order) language in which such states can
be represented unambiguously. A state of a block-world might, for example, be
represented by the conjunction

(table, towers(size(1),2), towers(size(2),3))

signifying that the state comprises a table (on which towers may stand) together
with two towers each of size (height) 1 and three towers each of size 2. The state’s
description excludes the nature and locations of any robots operating upon the
world. The presentation of our framework does not actually require detailed
descriptors of the world - it is sufficient for different states to be distinguished
by simple atomic identifiers. We will denote by O the set of all objective states
for a particular application.

2.2 Robot Representation

Any robot in our framework has three main features: a set P of truth-valued
perceptions it may have, a set A of possible actions it may take and a program
relating actions to perceptions. In this paper we restrict the language of objective
states, perceptions and actions to be propositional. We will use the following
conventions. A perception is denoted by a conjunction of none or more atoms or
negated atoms; the empty conjunction is denoted by T (true). P is the set of all
perceptions. A (basic) action is denoted by an atom. A perception is a correct
observation made by the robot of some aspect of the world’s state or of itself
or of other robots. It is possible that an action may not be basic, in which case
it is expressed as a TR-program. The physical implementation of the perceiving
mechanism employs suitable hardware sensors whose details are here immaterial.
Note that a perception does not, in general, capture the entire state of the world.
On the contrary, our low-resource assumption entails that the robot normally
perceives only a very limited amount of information about that state.

Example 1. Returning again to block-world, a robot might have the perception
H A s2 signifying that it is holding a block and also seeing a tower of size 2. The
set A4 might contain the member L (place), signifying the action whereby the
robot places a block it is holding. Suppose that, if it is currently seeing the table
then it can place the block upon that, but if it is currently seeing a tower then
it can place the block upon the top of that tower. Its program might contain the
condition-action rule H, s2 — L! signifying that if the robot has the perception
on the left of the arrow then it may take the action on the right. If it takes this
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! In TR-program rules, the conjunction operator A is represented by



action then the world undergoes a change of state, and the perception of the
robot (and potentially of other robots) must be updated accordingly.

A TR-application is described by the four sets O, P, A and R, respectively,
the objective states, the perceptions, the possible actions and the robots. Associ-
ated with each kind of robot R0 in R are subsets of P and A, called RO-admissible
perceptions and actions, which represent its own particular capabilities. Note
that it is not necessary for all robots in an application to have identical capabil-
ities, but, unless otherwise stated, it is assumed that all robots are identical, so
that R is a singleton set = {R0}.

Definition 1. Let (O, P, A, R) be a TR-application. A situation is a pair (o,p)
where 0 € O and p € P and p is a perception that some robot RO € R may have
of o.

Note that situations are limited by the capabilities of the robots and an R-
admissible perception is one that is satisfiable in its intended interpretation. If
r be a rule in a TR-program for a robot type RO, then r is called R0O-admissible
if, and only if, its condition is an R0-admissible perception.

Example 1 continued. If P contains the descriptor —H, signifying that the
robot is not holding a block, then no rule can have the perception H,—H since
no robot can be both holding and not holding. Likewise, if the robot can see no
more than one tower at a time then we would disallow the perception s2, s3.

2.3 Program Execution

The robot’s internal program — which our framework aims to construct - consists
of an ordered set of condition-action rules of the kind seen above. The program
controls the behaviour of the robot in that the robot commits to the action of
the (textually) earliest rule whose perception is satisfied in the current state.
Ordering of rules enables their conditions to be simplified and also enables the
expression of preferred priorities between them.

In order that the robot can remain always active, the program includes a
default rule whose condition is simply the atom T. This is the program’s last
rule and its action is often, though not always, the wander action W, introduced
next.

2.4 The Wander Action

It is important to the framework that the action set A for every robot shall
include a special action which we call wander and denote by W. It enables the
robot to change its perception without altering the world state. In the block-
world context, for instance, it corresponds to enabling the robot literally to
wander around on the table, so bringing different items into its range of vision.
It likewise enables the robot to have its perception updated (if appropriate) when
some other robot acts so as to change the state.



2.5 A Simple Example

Example 2. Here the world has a table and three blocks, and there is just
one robot. The table is regarded as a tower of size 0, and a single block as a
tower of size 1. The robot can perceive whether or not it is holding a block and
whether or not it is seeing a tower of any particular size. The actions of which it
is physically capable are pick, place and wander, denoted by K, L and W. A
pick action consists of taking the top block from a tower of size > 0 and holding
it. A place action consists of releasing a held block by placing it upon the top
of a tower of size > 0. A program for this robot might be

-H,sl—K, H,sl—L, H,s2—L T —W

In general, the result of any robot’s actions may vary according to the initial state
of the world presented to it. However, in this example the result is inevitably a
3-tower (that is, a tower of size 3) whatever the initial state, provided that W
is implemented in a fair manner — that is, allows all locations in the world to
be visited in the long run. Once this tower has been built the robot can only
wander indefinitely unless terminated by some extraneous mechanism.

The state having a 3-tower is, in fact, the intended goal for this program.
This goal is not explicit in the program, nor is it made known to the robot by
any other means. Instead, the program has been constructed by a procedure that
takes account of the intended goal (or goals). Note that the program above does
not allow the robot to deconstruct a tower of size > 1 even though the robot is
physically capable of doing so.

Even for a simple world and goal, a suitable program can be very difficult to
compose using intuition alone. Consider, for instance, a modest extension to this
example whereby the world has four blocks and the goal remains a 3-tower. The
program shown above can still achieve the goal from most initial states. However,
if the initial state has all four blocks arranged as a 4-tower or as two 2-towers
then the goal is unreachable. It is not immediately obvious which alternative
program would cope with those possibilities whilst remaining effective for the
other initial states.

Our approach to the systematic construction of a robot’s program employs a
procedure which exposes for analysis the full range of possibilities determined
by the assumed world together with the possible perceptions and actions of the
robot. Our procedure employs for this purpose a structure which we refer to as
an OP-graph. Analysis of this graph enables us to extract programs appropriate
to particular goals.

3 OP-Graphs

An OP-graph OPG is a structure showing the situations R0 may be in and the
possible actions it may take. Each directed arc in O PG signifies, and is labelled
by, some such action. When R0 is in a situation (o, p) its possible actions depend
only upon p and form a set denoted by A(p).



Definition 2. Let (O,P, A, {R0}) be a TR-application. OPG is a directed graph
whose nodes are all the acceptable situations admitted by the given application
and the characteristics of RO. The arcs emanating from (o,p) are precisely those
corresponding to A(p) and each one is directed to a situation that RO could be
in if that action were taken.

Thus OPG can be viewed as an elaboration of a conventional state-transition
graph, dealing with situations rather than with objective states alone.

Insofar as all possible actions are shown in it, this sort of graph is called
a complete OP-graph. Rather than showing what will happen, it shows what
could happen. A key feature of our framework is the process of pruning selected
arcs from such a graph to leave a reduced OP-graph OPR which commits R0
to take, in any situation, just one of the possible actions. OPR then shows what
will actually happen.

From any situation (o, p) in OPG, each action a in A(p) yields, in principle,
multiple arcs directed to all situations (o', p') for which ¢’ is the unique objective
state resulting from R0 taking action a and p' is a perception which R0 may have
of o’. However, for the sake of economy we restrict the graph so that any such p’
has to be the most ‘natural’ perception which R0 would have of o’ after taking
action a. For example, if R0 is seeing a 1-tower and places a held block upon it,
the most natural perception for RO to have of the resulting objective state is to
be seeing the 2-tower it has just built, rather than to be looking elsewhere. Using
this more economical representation of O PG is equivalent to avoiding composite
actions which would combine acting upon the world with wandering.?

The possible objective states for Example 2, named 1, 2, ... etc., are shown
in Figure 1, in which H denotes a block being held. Figure 1 shows, for each
perception p, the set O(p) of associated objective states and the set A(p) of
associated actions. In the perceptions, which are named a,b, ... etc., H denotes
holding, —H denotes not holding and sn denotes seeing a tower of size n.
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Fig. 1. States, Situations and Actions (Example 2)

2 However, it may require some perceptions to be explicitly formalised, that would
otherwise not be necessary. For example, one might have to include the perception
“looking at a tower of size 0”, as the state immediately after picking up the single
block in a tower of size 1.



Figure 2 shows the resulting graph OPG. For the sake of compactness, a
situation such as (2, f) is shown there simply as 2f.
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Fig. 2. Complete graph OPG (Example 2)

This graph implements the economy mentioned earlier. For example, the pick
(K) action applied at situation (1,e) changes the objective state to 4, and the
natural perception for the robot then to acquire is a — that is, to be looking at
the table. It is not necessary to show the possibility that K could instead take
(1,e) directly to (4,b) because we assume that in picking the block from the
table the robot would not simultaneously shift its perception to looking instead
at another block. Notice that, if the pick action had shown the robot moving
directly between (1,e) and (4, a), then the perception a would be redundant. It
is not difficult to transform the O PG given here to one in which the perception
a is eliminated.

These assumptions, however, follow from more basic ones concerning the
durations of actions and the possibility of exogenous impacts upon the world
by other agents (such as other robots or environmental factors). Later, when we
consider multiple-robot scenarios and actions which themselves are composed of
TR-programs, these assumptions will be reviewed.

The graph discloses how any situation can (or cannot) be reached from an-
other, in particular whether a given goal situation can be reached from a given
initial situation. It may also reveal subgraphs from which a given goal could never
be reached. Such considerations drive the next stage of the process, namely the
pruning of OPG to leave a reduced graph OPR in which each situation offers
exactly one action. The pruning operation amounts to the application of a plan
function. Different plan functions generally yield different reduced graphs.

4 Plan Functions

We illustrate the use of a plan function in Example 3, which extends Example 2.
We have the same robot as before but in a world having four blocks, and the goal



now is to build a 4-tower. The objective states and the associated perceptions
and actions are shown in Figure 3 and the complete graph is shown in Figure 4.
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Fig. 3. States, Situations and Actions (Example 3)
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Fig. 4. Complete graph OPG (Example 3)

A plan function (also called a policy) is any total function F' from perceptions
to actions. Some such function must be chosen in order to yield a program
which makes the robot’s action-selection deterministic. One possible function is
indicated by the reduced graph in Figure 5.

The corresponding program contains a rule p — a in each case that F(p) = a
and a is not W, together with the default rule to cover all cases where F(p) = W:

-H,s1 —-K, H,s1—L, Hs2—L H,s3—L T —W



Since in this example all perceptions (other than T) are pairwise jointly
impossible, any rule for which the action is W may correctly be relegated to
the default rule. More generally, this may not be the case if the policy has
been prioritised and/or optimised by taking into account the orderedness of
TR-programs.

The reduced graph shows the behaviour produced by this program. Its key
feature is the node set {(1,e), (1,4), (7,a)} which forms a trough, that is, a
subgraph containing no node from which the goal is reachable. The trough is
circled for emphasis in Figure 5. From all initial situations outside the trough,
the robot will achieve the goal unless it subsequently enters the trough. From
(7, h) it may wander into the trough, but if it wanders instead to (7, b) then the
goal will be achieved.

The essential problem in this example is in deciding upon the best actions for
perceptions a and e. Since each one has two possible actions there are four possi-
bilities to consider. It turns out that none of them can avoid a trough somewhere.
For instance, if we modify the original policy by choosing K for perception e and
W for perception a, we obtain a different OPR and this program

-H,s1— K, -H,s2—K, H,s2—L, Hs3—L, T —W

In this case the trough is formed by {(2,4d), (2,i),(3,€), (6,a),(6,h)}. Each of
perceptions a and e has the property of being associated with several objective
states having different best actions. The limited perceptions of the robot render
it unable to know which objective state the world is in and hence which of the
possible best actions to take.

Fundamentally, given the particular block-world and goal stipulated, the
robot in this example is not perceptive enough to cope with all situations. It
needs to know more in order to achieve more. In [4] we showed that one way
of elegantly improving the robot is to equip it with a single-register memory
capable of recording whether it has ever seen a tower of size at least 2, and to
treat the reading of the register’s state as another perception. For this modified
robot one can find a much better (though still imperfect) policy.

A procedure for programming these robots must therefore include a method
of choosing a plan function. This method should determine F'(p) as the overall
best action in A(p) taking account of all objective states associated with p.
Ideally, it should at least have the property that for any non-goal state there
will be some perception p for which F(p) is not W, for otherwise there would be
non-goal situations in which the robot was unable to change the world in order
to make progress.

The notion of a best action has to be defined primarily in terms of topological
features of the OP-graph, such as the reachability and proximity of goal states
and the propensity of paths to enter loops or troughs. However, it may also be
the case that certain actions are deemed to have a higher cost (in some defined
sense) than others, allowing richer kinds of merit ordering.
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Fig. 5. Reduced graph OPR (Example 3)

4.1 Computing the Value of a Policy

In [4] it was suggested that the value of a policy (plan function) might be based
upon the lengths of paths from each node in the OPR to the other nodes. More
precisely, to any path from a node s to another node s’ one can assign a utility
which combines a reward for the robot being at s’ with the cost of reaching it from
s via that path. If several paths emanate from s then their separate utilities can
be combined, taking into account their various probabilities, to form an expected
utility which effectively measures the benefit of the robot being at node s. The
main practical difficulty with this approach is that it does not afford any simple
algorithm for computing the expected utilities, since their inter-relationships are
non-linear.

A different way of evaluating a policy is the so-called method of discounted
rewards [3], defined as follows.

Definition 3. Let F' be a policy for a TR-application {O,P,A,{R0}) and let
s = (o,p) be a situation in the OPR determined by F. The discounted reward
V (s, F), effectively measuring the benefit of RO being at s, is given by the expec-
tation

V(s,F) = E[r(s,F) +(F(p)) x V(s', F)]

In the above, r(s, F') is the immediate reward for taking the action F'(p) at s. The
factor v(F'(p)) discounts the benefit of reaching any s’ via that action. Normally,
we choose 0 < y(F(p)) < 1 to reflect the cost to the robot — in time or other
resources — of performing successive actions.

Unless one has good reason to distinguish the rewards for actions from dif-
ferent situations, the fine tuning provided for in the above definition can be
dispensed with. It then suffices to use a fixed discount factor 0 < v < 1 and two
fixed values r, R such that



r(s,F) = R if the action F(p) taken at s leads immediately to a goal
r(s,F)=r otherwise

in the simpler definition
V(s,F) = E[r(s,F) + v x V(s', F)]

The immediate reward for reaching a goal should always outweigh that for reach-
ing a non-goal. We can arrange this by making R positive and large and making
r negative. The overall value of F' is the average value of V (s, F') taken over all
nodes s in OPR. This is equivalent to adding a virtual initial node 7 to OPR,
connecting it by equiprobable arcs to all other nodes and computing V (i, F') as
the overall value of F'.

Example 4. We consider an OPR having 4 situations named 1, 2, 3 and G.
G is a goal and the others are not. The policy transitions — that is, the arcs
in OPR - are (1, 2), (1, 3), (2, 1) and (2, G), all having probability 0.5. The
discounted rewards (in which the identity of the policy F' is left implicit) are:

V(1) =05 +vxV(2)+05(r+vxV(3))

V(2)=05(r+vxV(Q1))+05(R+vxV(GQ))
V(3)=0
V(G)=0

and the policy’s overall value is their average, which is (3r + R)/(4(2—+)). More
generally, the overall value is always some linear combination of the immediate
reward parameters, here r and R.

The key practical advantage of the method is that, for an OPR having n
situations, it yields n linear equations relating their discounted rewards, which
can be computed easily using standard algorithms. An alternative to the ex-
haustive brute-force computation of policies is offered in [5], which describes a
learning-based approach. Returning to Example 3, the A(p) sets determine that
there are 256 possible policies. There are 19 situations, and varying the policy
merely varies the arcs connecting them. Identifying the best policy requires solv-
ing 256 sets of linear equations in 19 unknowns. A modern desktop computer
can achieve this in less than a minute. A test run was made for the case r=-1,
R=100, v=0.9 and identified two optimal policies

{(a7 W)’ (b7 L)7 (cﬂ L)’ (d3 K)’ (eﬂK)3 (f’ W)7 (g7 W)’ (h7 W)’ (7/5 W)}

{(aﬂ W)7 (bﬂ L)’ (C7 L)7 (d7 K)7 (e’ K)7 (f’ W)’ (gﬂ K)’ (h7 W)’ (Zﬂ W)}

each having an overall value of 241.22. The policy corresponding to the OPR in
Figure 5 for this example, namely

{(a,L),(b, L), (¢, L), (d, K), (e, W), (£, W), (9, W), (h, W), (i, W)}

turns out to be the third-best one, having overall value 215.19. Its OPR has a
trough, containing 3 situations, which can be entered from 8 exterior ones. By
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contrast, for each of the two optimal policies the OPR has a trough, containing
5 situations, which can be entered from just 1 exterior one. The policy values
therefore correctly reflect the propensity, on average, of the robot failing to reach
the goal by entering a trough.

The ranking of policies is largely insensitive to the choice of values for r, R
and ~ provided that R strongly dominates r in magnitude. The smaller 7 is, the
less important is the dominance of R over r. Thus the method does not require
domain-oriented intuitions about these parameters beyond giving prominence to
goal situations.

4.2 Summary of Procedure for Single Robots

The procedure for programming a robot R0 intended to operate singly in the
world can be summarized as follows:

Step 1 construct OPG from the characteristics of R0 and the world;
Step 2 identify the intended goal situation(s);

Step 3 generate possible plan functions and choose the best one F';
Step 4 assemble R0Q’s program from F' and, if possible, simplify its rules.

5 Hierarchical Actions

So far, it has been assumed that all actions are atomic. In practice it is likely
that actions could be more complex, themselves requiring a TR-program for
their execution. Recall that a TR-program executes by selecting the first rule
with a true condition and carrying out the prescribed action. We make two
assumptions about this execution strategy. First, an action a may have a physical
pre-condition such that it can be initiated only if this pre-condition is true.
The physical pre-condition would normally be implied by the condition of the
rule specifying that a be carried out, but the contrary case is possible too. For
example, if at some point the action was “switch on motor” and for some reason
the TR-program selected the same action again when the motor was already
running (e.g. due to an error) the motor would not be switched on a second time
and the action initiation command would be ignored. The physical pre-condition
in this case is that the motor is not already switched on. Second, we assume an
action a taken according to a rule p — a does not normally cause its explicit
enabling condition p to be violated until the action finishes.

When complex actions are allowed the execution sequence of a TR-program
is extended. First we give an example to illustrate the procedure.

Example 5. Let TR1, TR2 and T R3 be the schematic programs below, where
TR1 is the main program, and TR2 and T R3 are programs for actions a2 and
a3 respectively. Other actions are basic actions.

TR1 {1 —dl, 2— a2, T —d2}
TR2 {e3—d3, ¢4 — a3, ¢5— a3, T — d4}
TR3 {6 — db, T —> d6}

11



Initially, suppose that TR1 is executed and that a state arises such that ¢2
is true. Then action a2 (i.e. program T R2) is initiated. In accordance with the
principle that while ¢2 is true action a2 is carried out, T'R2 should continue
to execute while c2 is true. To ensure this the implicit enabling condition c2
is conjoined with each explicit enabling condition of T'R2. The physical pre-
condition is that T'R2 is not already operating. But also in accordance with
the principle that an action initiation is ignored if the physical pre-condition is
false, a second instance of program 7'R2 is not initiated when action a2 is again
required. Now both programs TR1 and T R2 are operating; if ¢2 should become
false (say as a consequence of T'R2) then some other action in T'R1 would be
selected and T R2 should be stopped. As the enabling condition of T'R2 is false,
that program is not carried out and indeed can be terminated. The second of
our assumptions ensures that ¢2 must have become false by some other activity
and so T'R2 should no more be carried out. In addition, it may be that T'R2
causes action a3 (program T R3) to be started. Its implicit enabling condition is
(c2 A (c4V ¢5)) and its physical pre-condition is that T'R3 is not operating. If
either ¢2 or both of ¢4 and ¢5 should become false then the program 7T'R3 should
terminate. The effect of the termination of a program is analogous to its being
interrupted by a higher priority program.

The execution procedure for a hierarchy of TR-programs can now be given.
A program (or action) may be initiated if its physical pre-condition is true.
Otherwise it is ignored. The enabling conditions of rules in a complex action are
determined from the conditions of the sequences of rules that can result in their
being initiated. This is defined formally in Definition 4, in which it is assumed
that the hierarchy of program calls does not contain any loops. That is, no TR-
program T' causes, through its actions, another program to be called that calls
T.

Definition 4. Let T be a TR-program that is initiated by the action a. The
enabling condition E of a rulep — binT is E =pA(e1V...Ve,), where each
e; is the enabling condition of a rule c — a in any program A.

Although actions may be described by TR-programs, this paper does not
yet consider how hierarchies of programs might be engineered. For instance, we
assume that an action is basic when constructing the OPG, even though it may
be known that it is not. It is assumed that the program for a non-basic action is
already known — it is not to be synthesised from an OPG containing only basic
actions. Hierarchical construction is an issue for further work.

6 Exogenous Actions

The world may be acted upon by agents other than the robot R0 under consid-
eration. Such actions are called exogenous. They are not necessarily benign and
are not necessarily predictable. In a block-world, for instance, we may imagine
that while RO is following its own agenda, some other agent is randomly knock-
ing the top blocks off towers and leaving them scattered around singly upon the
table. This may or not be helpful to R0, depending upon the circumstances.

12



Exogenous activity can be represented in the graph OPG by introducing a
special action named x. An arc labelled x may be drawn from any situation sl to
any other s2 when we wish to entertain the possibility that another agent effects
the transition from sl to s2. x is included in R0’s action set. Then, if RO selects
x in situation sl the effect is to make RO wait for the other agent to achieve s2.
Whether RO does select x in situation s1 depends, of course, upon its program
and hence upon the underlying plan function.

If the exogenous agent behaves unpredictably then, in general, it is hard to
obtain a significant benefit from this new provision. By contrast, if this other
agent is predictable — in particular, is itself a robot with a known plan function
- then it can be exploited to advantage in circumstances where R0 acting alone
would be inefficient in achieving the goal or be unable to reach the goal at all.
Our consideration of exogenous actions from now on will therefore concentrate
upon multiple-robot scenarios. Actions that arise from serendipitous actions of
the environment are not considered when finding or evaluating policies.

7 Multiple Robots

In any TR-application there can be one or more robot types with one or more
robots of each type. Robots of the same type are called clones. The descrip-
tion of OPG has so far assumed just one robot. As explained in Section 6, the
presence of other robots can be benign, or not. The changes required to OPG
to accommodate several robots are of two kinds, but in any event an OPG is
always constructed from the point of view of one robot, say RO.

— The additional robots may affect the set of objective states O, and possibly
the perceptions P of R0; however, since these are dependent only upon the
capabilities of a single robot, it is less likely they will be affected, unless, for
example, the robots are themselves upgraded to be able to perceive other
robots.

— From each situation there may be additional arcs for exogenous actions by
other robots that will affect the situation of R0. These additional arcs are
labelled by x and are interpreted from R0’s point of view as a wait action.

The change in O could be large. However, unless R0 needs to identify the other
robots by name, states can be described using anonymous references to those
robots. So in block world, for example, instead of requiring states that describe
R0 and 3 other robots holding a block, it may be sufficient to record that RO is
holding a block and that some other robot is also doing so. Which one, or how
many, may not be important.

When constructing an OPR from some OPG when the x-arcs are due to
robot clones, care must be taken to obtain a consistent policy. To see what this
means, suppose the chosen action for R0 in situation s; = (01, p1) is x, using the
rule py — x, and leading to situation s» = (02, p2). Then the clone that causes
the transition represented by x could not be perceiving p; else it too would have
to obey the rule p; — z. In that case neither robot would take any action as
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each would be waiting for the other. Thus an x-arc is allowed from a perception
p (for RO) only if it does not require some other robot also to be perceiving p.
This requirement is necessary only if the other robot is a clone of R0.

Example 6. We previously considered in Example 2 the behaviour of a single
robot in a block-world comprised of a table and three blocks. Here we elaborate
this case by allowing multiple clones. The objective states, perceptions and ac-
tions are shown in Figure 6. As before, the objective state descriptor H denotes

(@]

P O(p) A(p)
; 515’1515’251 a|H,s0| 4,58 |L,W,x
3 i b| H, sl 4,8 |L,W,x
4lsl. sl H c| H, s2 5 LW, x
o d|-H, s0(1, 2, 3,6, 7| W, x
6ls1 <1 T* el-H,s1| 1,2,6 |K,W,x
7 s,2 I,-I* f|-H, s2 2,7 K, W, x
8ls1, i‘I, H* g|—H, s3 3 K, W, x

Fig. 6. States, Situations and Actions (Example 6)

that the robot under consideration is holding a block. The new descriptor H*
denotes that some other robot is holding one. Introducing H* increases the num-
ber of states to 8 whereas, in the single-robot case, there were just 5. Some of
the O(p) sets become correspondingly enlarged, and each A(p) set now contains
the exogenous action x. The OPG has 17 situations and there are 1458 possible
plan functions, of which just 88 are clone-consistent in the sense outlined earlier.

Choosing again the parameter values r=-1, R=100, v=0.9, the best policy
among those catering for an exogenous action x is

{(a, W), (b, L), (¢, L), (d, %), (¢, K), (f, K), (9, K) }
whose overall value is 102.88. Figure 7 shows a very small fragment of the OPR

corresponding to this policy. Consider any clone R0 governed by this policy. In

------ 6d «— 2d f «—>4h-------
1
I
I
I
I

Fig. 7. Fragment of an OPR (Example 6)

the situation (2, d) there is a 1-tower and a 2-tower, and RO is looking at the
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table and not holding. For this perception the policy requires R0 to wait for
another clone, say R1, to effect the transition from (2, d) to (6, d), that is, to
pick (K) a block from the 2-tower. jFrom R1’s point of view this is a transition
from (2, f) to (4, b). The only action that can alter the objective state from 2
to 4 is K, so taking that action requires R1’s policy to contain (f, K). Since
clones share the same policy, it follows that R0’s policy must also contain (f,
K) — which it does. This precisely illustrates what we mean by the policy being
consistent for the clones. Put succinctly it requires that, under a shared policy
F, if F enables one clone to wait for a transition to occur then F' must enable
another clone to effect that transition.

For this example the best policies happen to be ones that do not cater for
exogenous actions, namely

{(a, W), (b, L), (¢, L), (d, W), (e, K), (£, W), (9, W)}

{(a,W),(d,L),(c, L), (d, W), (e, K),(f, W), (9, K)}

each of which has overall value 239.74. These are also the best policies for the
single-robot case of Example 2. This shows that using several clones to pursue
a goal is not necessarily always better than using just one.

Instead of cloning, two robots R0 and R1 can be assigned distinct policies to
pursue the common goal. This requires the property of cooperativeness whereby
if either policy enables its robot to wait for a transition to occur then the other
policy must enable its robot to effect it. The consistency requirement for clones
is just a special case of this, namely self-cooperativeness. We do not possess
a way of computing, or even estimating, the overall value of a set of several
policies. Their individual values do not provide a reliable guide to the value of
co-implementing them among several robots. The policy value for a particular
robot reflects only how it is expected to fare in the context of possible actions
by other robots but, unless it can perceive what those others are actually doing,
its policy cannot take any account of their joint influence, for instance whether
they are cooperating or merely getting in each other’s way. In cases where this
kind of joint planning is important it is necessary that robots should be able to
communicate, which is the subject of the next Section.

8 Communicating Robots

The extension of the framework to allow several robots has so far excluded
any communication between them. If non-communicating robots appear to co-
operate in achieving a task then this is merely a fortituitous manifestation of
emergent behaviour. In [4] we called this “as-if” co-operation.

In this Section we show how deliberate (planned) co-operation can be ob-
tained by enabling robots to communicate. We avoid the need to devise special
languages and protocols for this by restricting the communicable elements to
be perceptions of the kind already employed. If some robot R1 has an atomic
perception p then we can allow another robot R0 to have the atomic perception
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p* whose meaning is that R1 is perceiving, and communicating to R0, that p is
true. We assume that the content of p is instantly transmissible from R1 to R0
by some suitable broadcasting mechanism. With this provision in place, policy
formation for R0 can then take account of what it receives from R1 in addition
to its own direct perceptions of the world.

Example 7. Consider the 4-blocks problem of Example 3 but with a physical
restriction applied that a robot may pick a block only from a 1-tower, that is,
not from any higher tower. Whether there be one robot or several, the possibility
then arises of creating a state having a pair of 2-towers. In Example 3 this was
unproblematic because either tower could be deconstructed to supply blocks
with which to extend the other in the quest to build a 4-tower. With the new
restriction, however, such a state is guaranteed to produce a trough.

We first consider the case where the task is given to one or more clones
having no communication. The objective states, perceptions and actions are
shown in Figure 8. As before, the state descriptor H denotes that the robot

(@]
1 s2, s2
2 |sl, s1, s1, sl P O(p) A(p)
3| sl,sl,s2 a| H, sl 6,7, 12 L, W, x
4 s1, s3 b| H, s2 7,13 L, W, x
5 s4 c| H, s3 8 L, W, x
6 |sl,sl,sl, H d|-H, sl 2,3,4,9,10 K, W, x
7| sl,s2,H e|-H, s2 1,31 W, x
8 s3, H f|—H, s3 4,11 W, x
9 |sl, s, s1, H* g|-H, s4 5 W, x
10| sl, s2, H* h|H,s0| 6,7,8 12,13 |L,W,x
11 s3, H* i|-H, s0|1, 2, 3, 4,5, 9, 10, 11| W, x
12s1, s1, H, H*
13| s2, H, H*

Fig. 8. States, Situations and Actions (Example 7)

under consideration is holding a block whilst H* denotes that some other robot
is holding one. There are 30 situations and 3888 possible plan functions, of which
just 64 are clone-consistent. Choosing again the parameter values r=-1, R=100,
v=0.9, the optimal clone-consistent policy is

{(a, L), (b, L), (c, L), (d, K), (e, W), (,%), (9, W), (h, W), (i, W)}

whose value is 282.86. Figure 9 outlines the OPR corresponding to this policy.
(From all nodes in the ringed subgraph at the top there is a path to (7, h). In
this situation there is a 1-tower and a 2-tower, and a robot is holding a block
and looking at the table. Its action is to wander, either to (7, b) or to (7, a). (7,
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b) is in the ringed subgraph marked ‘succeeds’, all of whose nodes lead to the
goal. (7, a) is in the ringed subgraph on the right, which is a trough: in this case
the fatal situation (1, €) having a pair of 2-towers is created. Assuming that the
emergent arcs from any node are equiprobable, there is a probability of 1/2 at
(7, h) of the robot entering this trough.

Fig. 9. Outline of optimal OPR (Example 7)

We can reduce the probability of entering a trough in this example by en-
abling our robot to receive communication from another clone as to whether or
not the latter is currently seeing a 2-tower. If it knows that a 2-tower is being
seen then in state 7 it can desist from placing its block on the 1-tower and instead
wait for another clone to alter the state exogenously and so remove the jeopardy.
The problem formulation is therefore adjusted slightly by replacing perception
a by two new alternates

al: H, sl s2* and a2 : H,sl,—s2*

Here s2* denotes that another robot is communicating that it is perceiving a
2-tower, whilst —s2* denotes that it is not communicating this. This results in
31 situations and 11664 possible plan functions, of which just 182 are clone-
consistent. With r=-1, R=100, v=0.9, the optimal clone-consistent policy is

{(al,%), (a2, L), (b, L), (c, L), (d, K), (e, W), (f,%), (9, W), (h, W), (i, W)}

whose value is 295.33. Figure 10 outlines the OPR corresponding to this policy.
The ‘succeeds’ subgraph now contains two situations to which the robot may
wander from (7, h). These are (7, b), as before, and now also (7, al), the situation
in which it is holding a block, seeing a 1-tower and knowing that another robot
is seeing a 2-tower. The rule (al, x) in the above policy ensures that the robot
will then, as we intended, wait for another robot to remove the jeopardy. On the
right of the figure the trough remains because the robot may wander instead to
(7, a2) and then, not knowing whether a 2-tower exists, create the fatal situation
(1, e). We do not, of course, have to choose a policy which assigns action L to
perception a2, but any other action for a2 yields a policy that is significantly
sub-optimal. In the OPR for the optimal policy the probability of wandering
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Fig. 10. Outline of optimal OPR (Example 7)

from (7, h) into the trough is now just 1/3, a modest but definite improvement
over the case where there was no communication.

The use of communication in the manner illustrated is semantically equiva-
lent to the alternative of simply increasing the ability of a robot to perceive by
its own means more of the objective state. Viewed in this way, we could have
cast the new perceptions as

al : H,sl,s2 and a2: H,sl,-s2

on the assumption that a robot was physically equipped to see, simultaneously,
both a 1-tower and a 2-tower, however far apart they might be. In engineering
terms, however, it is more practical to broadcast perceptions through one uniform
technology than to equip robots with a diverse range of perceptual sensors.
So although the two views are equivalent, we prefer the one we interpret as
communication.

9 Scalability

A key concern for a framework of this kind is that it shall adequately scale
up to the treatment of realistic scenarios. For a scenario having perceptions
D1,--.,Pn the number of distinct policies is the product |A(p1)| x ... % |A(pn)|-
We have already emphasized that the framework is intended for simple robots in
which each action set A(p;) is small. Given this, the number of policies depends
chiefly upon the number n of distinct perceptions and, correspondingly, upon
the diversity of the objective world as modeled for any particular problem.
The key to scalability therefore lies, in our view, in the use of appropriate
representation. In the case of blockworld, the tower-building examples examined
in this paper fall into a general class in which the basic perceptions (other than
holding and not holding) need only be seeing a tower of the desired height, or
one of lesser height or one of greater height. It is therefore not necessary to
represent the seeing and acting-upon of all specific heights (1, 2, 3, etc.), unless
the robot’s physical capabilities happen to be predicated upon specific heights.

18



Although we must not claim here that scalability is an issue of little concern,
we do believe that, with appropriate world-modeling, the framework enables the
feasible design of simple robots operating in moderately complicated worlds.
But, only further case studies could properly test that belief.

10 Framework Tools

As the examples in this paper demonstrate, even quite simple problems can
determine large and complex situation graphs whose manual characterization
would be highly tedious and error-prone. To reduce the scope for erroneous
formulation we employ, for blockworld (and, potentially, other scenarios) an
OPG-generator program which, for any designated set of blocks, robots, actions
and goal, autonomously constructs the OPG graph and further checks it against
robust integrity constraints.

We further employ a policy-generator program for building policies capable
of executing, in a multi-robot case, with or without the constraint of clone-
consistency. Testing for clone-consistency is an intricate and delicate task, ow-
ing to the need to transpose one robot’s view of any world transition into the
view of that same transition from the perspective of some other robot. The
policy-generator employs, when testing for clone-consistency, tables of assuredly-
equivalent transition views constructed in advance by the O PG-generator.

A third program, the policy-evaluator, computes the overall value of each
policy. With potentially thousands of policies to consider, this process needs to
be as efficient as possible. A key optimization here is to reuse reward values for
individual nodes. As each policy (after the first) is evaluated, the program com-
pares this policy with the preceding one to identify those nodes whose rewards
remain invariant under this policy change. Under any policy each node has an
associated subgraph (in the corresponding OPR) containing the nodes reach-
able from it. If this subgraph is topologically invariant upon switching to a new
policy then the latter inherits the earlier rewards for that node and for all others
in the subgraph. The policy evaluator performs appropriate graph traversals to
test this property efficiently. In practice this tactic reduces enormously the time
spent on computing node rewards.

We do not yet possess a principle for ordering policies so as to optimize
the time required to evaluate them. However, there is an intuitive argument
that ordering policies so as to minimize their pairwise differences will favour the
reusability of node rewards as just indicated. Therefore, the policy-generator
employs the analogue of a “gray-tones” algorithm which ensures (a) that each
policy differs from its predecessor by precisely one (p,a) pair and (b) that all
policies will be generated. Using these principles, the policy-generator assembles
for each policy the corresponding equations relating the node rewards, solves
them using a Gaussian procedure and then computes the overall policy value.

All these programs are currently written in LPA-Prolog®, enabling the re-
shaping of examples to be undertaken through transparent and easily-adapted

3 Logic Programming Associates Ltd. London, UK, (http://www.lpa.co.uk)
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representations. Despite the relative tardiness of an interpretive formalism such
as Prolog, it takes only a minute or so to evaluate 10,000 policies on an Apple
G4 platform.

11 Discussion

TR-robots, their applications and many extended treatments of them have been
investigated extensively by Nilsson [6, 7]. His formulation of the basic nature of
any such robot shares some similarities with our own in focusing upon perception-
action rules and their impact upon the objective world. However, it differs sig-
nificantly from ours in imposing upon the rules a stricter structure than we do.
In particular, he imposes the so-called regression property. This requires that
the effect of any rule p — a shall be to cause the condition of some earlier rule
to become satisfied and that p shall be weaker (i.e. implied by) the condition of
any other rule having that same effect. Additionally, these arrangements must
lead ultimately to the achievement of the goal.

This regression property combines considerations that are actually unrelated
to one another — the capacity of rules to enable the conditions of other rules,
and the significance of rule ordering. In our framework the disposition of rules to
become enabled and of their actions to promote progress towards the goal is not
enforced a priori, but is instead only expected to emerge as a natural outcome of
the design process. Moreover, our treatment attaches no goal-related significance
to rule ordering. Indeed, the ordering of rules is immaterial if perceptions are
pairwise mutually exclusive. For us, the only benefit of rule ordering is that it
caters for the suppression within any rule of those perceptual conjuncts known,
by default, to be satisfied by virtue of some earlier rule having been enabled
with their logical complements satisfied. It is, therefore, merely the analogue of
the default ‘negation-by-failure’ rule employed to confer programming economy
in formalisms like Prolog. Altogether, our view is that the regression property is
overly restrictive as an a priori constraint upon robot design.

The main contributions of our framework to the design of TR-robots are the
following. First, our method of accommodating exogenous behaviour, includ-
ing multi-robot interaction, solely through the special x-action and its associ-
ated clone-consistency principle. Second, our method of supporting inter-robot
communication solely through suitable enrichment of perceptions. Both of these
provisions extend substantially the power of the framework without requiring
any extension of the robots’ basic structure or any additional mechanisms for
their implementation. Third, our precise analytical procedure for evaluating their
policies. In all of these we have sought to maintain maximum simplicity in both
concept and formulation.

There are many other issues of interest that we intend to investigate in future
work, including the following:

— the use of memory to enlarge a robot’s perceptive capability. Accommodating
and broadcasting perceptions of the form m = v, where m names a memory
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store and v names its value, effectively enables robots to access and exploit
shared memory;

— the enhancement of the rule language to definite-clause logic, enabling the
formulation of recursive hierarchical TR-programs more expressive than flat
propositional programs;

— the construction of better algorithms for policy evaluation and optimization
in order to favour scalability;

— the empirical testing of policies by simulation, in particular to assess how
well the “best” policy for an individually-designed clone behaves when im-
plemented in a multi-clone scenario;

— the establishing of principles for evaluating the efficacy of co-implemented
non-cloned robots possessing distinct, individually-designed policies. This is
perhaps the hardest task of those listed here but would offer major benefits,
since it appears from our own studies that inter-robot cooperation is most
useful when the robots have distinct but complementary capabilities.
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