OOF: Open Optimization Framework

Obi C. Ezechukwu Istvan Maros
Department of Computing Department of Computing
Imperia College London Imperial College London

Exhibition Road Exhibition Road
London SW7 2BZ London SW7 2BZ
United Kingdom United Kingdom
imailto:oce@doc.ic.ac.uk mailto;im@doc.ic.ac.uk

Departmental Technical Report 2003/7
| SSN 1469-4174

April 2003

Abstract

Thereis currently a plethora of formats for representing optimization models and
instances. The varying degrees of support for these formats, coupled with their well-
documented deficiencies complicate the task of developing and integrating
optimization models and software. This hasled to new initiatives to develop new
forms of model representation, which address these deficiencies and exploit advances
in software technology, particularly the Internet. This paper describes a framework,
which not only comprehensively addresses the issue of model and instance
representation but also provides in-built support for distributed optimization,
particularly in the area of service delivery over the Internet.

mailto:oce@doc.ic.ac.uk
mailto:im@doc.ic.ac.uk

1
2

INTRODUGCTION ...ttt sttt ettt e et e s besaesbesaeese e e eeeseeseessesneeneeneenean 3
MODEL REPRESENTATION ...ttt seesee st sne e eneenes 4
21 A HISTORICAL PERSPECTIVE ..e.vtiueiueeteeeestestestestesseeseeseessessessessessessessssssesssssessessessessessessssssenes 5
2.2 L IMITATIONS L.ttt ettt ettt ettt ettt b e bt e e b e e sae e e be e e ae e e be e e ae e e beeebe e e abeeeneeeabeeeseesbeeenneenane 6
221 LOWLEVE INPUL FOIMBELS.......ciiiiirieirierieicrie et 6
A A O | - o L T o =T =S TSP 7
223 Algebraic Modelling LanQUAGES.........ccurueueririeiriirieiniesieesieseeesse e 8
224 HyDIid APPrOACH ..ottt 8
225 Custom IMPIEMENAtiONc.cociiiiieiere et e sne e 9
226 COMMON LIMITAONS.ciuiieiieeieeie ettt e bbb sne e e e e 9
23 NEW INITIATIVES. ..t ttteueeutesteste st sttt et se bt sre bt st ese e e e saesb e s b saees e e e e s e s e nneebesneebe e e ennenes 10
24 WHAT ISA COMPREHENSIVE SOLUTION? ...eitiitiiieeieeeeie st sreste e ssesie s see s s b sneeneeeeneas 12
BASIC CONCEPTS ... oottt sttt s be st e s be et es e et eteneeseesbesaesbeeneeneeneens 14
31 STRUCTURED IMODELLING.utteutteutesteesteesteeseeeeeseesseasseasseeseassesseessesssesssesnsessesseesseessesnsenns 14
32 D SR 16
33 DISTRIBUTED AND GRID COMPUTINGceutteuteeueesteesteeseesneesesseesseesseeseeseesssessesssesssesssessesnes 18
34 WVEB SERVICESttiutiiuieiteeitee it e rte ettt st e saeasbeabesatesaeesbeesbeesbeeabesaeesaeesaeanbeenbeanbesanesaeesreansean 21
3t R T 5 USSR 23
A © Y SRR 23
343 UDDI bbb e bt e b b sae bt ene e nnan 23
35 SUMMARY . eieiteeit ettt et ettt aee s seesbe e s be e see s aeesae e sheeabe e st e an e amseeReeaRe e Reeneeanesanesneenreenneennean 23
THE INTERNET: OPPORTUNITIES FOR ORooviiiiieieest st 24
41 THE INTERNET ASA DISTRIBUTED COMPUTERceuteuienietistestesresseeseeseenesne s ssesnesnesneessennens 28
4.2 THE INTERNET ASAN ELECTRONIC MARKETPLACEccutittitestestesieeseeseesessessessessessesneeneeneens 30
FRAMEWORK COMPONENTS.... oottt sre st s sbe e eneeeens 31
51 ALGEBRAIC MARKUP LANGUAGE (AML) ..ottt e 37
B.LL BACKGIOUNG.......cuiiiiiiiitieeete ettt st b e bbb e ene s 37
512 AdVaNtageS Of AMLccoiciiiieiiiet ettt b e bbb ene 40
513 SYNIAX OVEIVIEW. ..ttt sttt st b et sbe et e et et e s besaeebe st ene e e eneas 43
5.2 ORML (OPTIMIZATION REPORTING MARKUP LANGUAGE)cveiuiiterieeiienieniesie s 48
L3225 R = = To: (o | o 11 oo [P 49
522 Advantages Of ORMLcccceceeeeiierisese e se e s e see e sae sttt e e aesaeseestesnesre e eneeneenean 52
5.3 WSOP (WEB SERVICES OPTIMIZATION PROTOCOL)...uceveeeriesieseesreseeeeseeseesiesressessesseenenes 53
5.3 L BACKGIOUNG.......cuiiiiieiiiti ettt bbb bbb 54
B5.3.2 WSOP MOIVALION ...ccuvieiicie ettt ettt sttt et s s e steebeeabesatesnaesbeesbeenrenn 55
54 OSCP (OPTIMIZATION SERVICE CONNECTIVITY PROTOCOL) ...cviueeterieeeresieeeiesienesresieneeeens 57
541 BACKGIOUNG.......cuiitiiiiitiei ettt b e r e b e ebesn e ene e 58
542 OSCP MOUVALIONccuiiiiiiie e ceeete ettt e te s tee st e s e e teeeteseesaeesaeesreeteensesasessaesseesseesens 61
FUTURE DIRECTION ...ttt st sn e b s sbe e e e 62
LT N[T U S 63
BIBLIOGRAPHY ..ottt see sttt es e ae e teseesse s e ese e e ensenteseessessnssennneneenenns 64

Imperial College London 2003 2

1 Introduction

During World War |1, British military leaders asked scientists and engineersto
analyse several military problems: the deployment of radar, management of convoy,
bombing, anti-submarine and mining operations. The application of mathematics and
other scientific methods to these problems became known as operations research
(OR). In the years immediately following the end of World War 11, the field of OR
grew rapidly as many scientists realised that the principles that they had used to solve
problems for the military were equally applicable to problemsin the civilian sector.
These ranged from short-term problems such as scheduling and inventory control to
long-term problems such as strategic planning and resource allocation.

The promise of OR isto solve decision-making problems, and alarge part uses
optimization, which in turn employs mathematical programming. For a minimization
problem, a mathematical program can be written as:

min f(x) (1)
subject to X eS (2

where x is the n-dimensional vector of decision variables, S=Rn isthe set of feasible
solutions and f is the objective function. Sis usually determined by a set of equations,
0(x)=0, and/or a set of inequalitiesh(x)= 0. Logical relationships can also be
included. If there existsay e Ssuch that f(y) = f(x) for any x e Stheny iscaled an
optimal solution. For a maximization problem, (1) would be written as:

max f(x) ©)]

and an optimal solutiony e Swould exist if for any x e S f(y) = f(x) where S=Rn.

In this paper, the terms mathematical programming model, mathematical model,
optimization model are often used in the place of mathematical program, where
‘model’ denotes the fact that it is a symbolic representation of areal world problem,
which captures a sufficient amount of information for computational purposes.

The popularity of mathematical programming has grown agreat deal, sinceits early
years. This growth has been followed and driven by great advancesin the field
including new solution techniques, cheap computing platforms, and avast array of
software tools. Among these software tools are solution algorithm implementations
i.e. solversincluding those embedded in popular spreadsheet applications. These have
helped to greatly simplify the implementation and solution of optimization models,
thereby fuelling the acceptance of mathematical programming.

However, technology, software and standards related to model representation have
advanced at a much slower rate compared to technology for solving and analyzing
models once they are created. If at al, the highly fractured nature of model
representation and modelling in general has frustrated researchers and developersin
the field of mathematical programming. Thisis dueto the very low level of
portability, and re-use of optimization models and related software, and also the high

Imperial College London 2003 3

cost of model implementation. Moreover most real world model implementations are
less likely to run standalone and are more likely to be embedded in, or linked to an
application, most commonly a DSS (decision support system)—a computer based
technology for representation and computation of data and modelsin order to gain
insight into decision problems. Therefore the lack of flexibility of model
representations has also hindered the widespread commercial adoption of
mathematical programming.

Furthermore existing technol ogies have failed to take advantage of recent advancesin
computing particularly in the areas of the programming languages, the Internet, web
services [34] and more generally distributed computing [2].

In this paper we propose aformal and open-source framework which seeks to redress
the problems associated with model representation. This framework proposes
structured and portable formats for representing optimization and constraint
programming models, instance data, and result information. It aso provides a
recommendation which abstracts the process of invoking operations research
software—a collective term which refers to optimization and constraint programming
software. The aim of this framework is not to define yet another format or standard
for representing models, but rather to propose a scheme, which abstracts away from
the concept of representational formats and allows the portability of models from one
format to the other. The framework also includes a recommendation which will
enable application developers and vendors to take advantage of advancesin
programming language design and distributed computing particularly in the area of
Internet computing.

The two key driving factors behind the initiatives to create a new class of model
representation formats are: the problems associated with existing representational
formats,; and a desire to exploit advances in computing technology, particularly in the
area of the Internet. In order to fully explain these factors, a chapter is dedicated to
model representation, and another to the opportunities which the Internet provides to
operations research. In addition, the paper aso introduces the core components of the
framework, namely; AML (Algebraic Mark-up Language) [12] —a mark-up language
which is used to describe optimization and constraint programming models, and
instance data; ORML (Optimization Reporting Mark-up Language) [13], which
describes a syntax for representing result and analysis data for optimization and
constraint programming model instances, WSOP (Web Services Optimization
Protocol) [15] —a recommendation for distributing and accessing operations research
functionality via basic Internet protocols; and OSCP (Optimization Service
Connectivity Protocol) [14] —a Java recommendation which specifies contracts for
dynamically locating and invoking operations research software at runtime.

2 Model Representation

In this section we explore the past, present and future of model representation. We
provide a historical perspective on model representation which culminates with the
current formats and standards for representing optimization models, including the
limitations of these formats. Finally we look at ongoing initiatives aimed at creating
new formats for representing instances of optimization models.

Imperial College London 2003 4

2.1 A Historical Perspective

Initially, mathematical programmers needed away to express their models, and they
did so with general purpose programming languages like FORTRAN or what were
then called matrix generators. These matrix generators were in essence alibrary of
sub-routines which were used to generate and solve instances of optimization
problems. The library approach is still used today and notable librariesinclude IBM’s
OSL [25] and OR-Objects [39]. The latter of the two is a Java based library which
contains implementations of a set of solution algorithms, and provides classes for
representing model instances.

Some of the early matrix generators evolved further into primitive ‘ modelling
languages' or what we now refer to as input formats. At the time these represented
the first step towards advanced modelling languages. These ‘modelling languages
werein reality formats utilised by these systems for model representation. These
systems typically consisted of an implementation of a solution algorithm that relied on
aspecific format for problem input. An example of such asystem isIBM’s MPS
(Mathematical Programming System) which eventually gave rise to the MPS [33]
format for linear and integer programming. As the benefits of these input formats
filtered into the OR community, they were adopted by more and more solution
algorithm implementations—solvers. A number of these survived to the present day
as proprietary or industry standards e.g. the MPS format for linear programming. This
is due to the fact that a number of models particularly in the academic arena still exist
in this format, also a number of applications till utilise MPS as the de-facto standard
for representing model instances. In addition to the early formats, a whole new set of
input formats have been defined to cater for various classes of problems, or to take
advantage of special characteristics of specific problem instances. These include
XMPS [52] which isadirect extension of the MPS format used to represent non-linear
models, SF (Sandard Input Format) [42] aso used for representing non-linear
models. Support for these formats vary from one solver to another, and with the
exception of MPS, majority of them are proprietary and non-standard.

Building on early work on input formats and solver technology, a new breed of
algebraic modelling languages/systems emerged which abstracted away from the low
level input formats. These simplified the task of model implementation, by enabling
the expression of mathematical programs using symbolic notation. The symbolic
representations are transformed into alow level format by a compiler, so that they can
be read by a solver, which in turn produces solution text if and when a solution is
found. This solution text is reformatted and displayed to the user. Commercial
systems such as GAMS [45], AMPL [16] and MPL [32] usually consist of a
compiler/interpreter component which is responsible for converting the algebraic
model instance into alow level input format, and a stable of solvers which accept
these compiled models and produce a solution if and when oneis obtained. In
addition to the core task of solving models, these systems also provide additional
features such as database plug-ins for data management.

At present, programmers and modellers are left with two core approaches for
implementing and representing optimization models. On one hand it is possible to use
ahigh level algebraic language such as GAMS or AMPL, and on the other it is
possible to use a high level programming language such as C++ or C. With the latter

Imperial College London 2003 5

approach, custom solution algorithms have to be coded, or specia code hasto be
written to interface the model with an underlying solver or even an algebraic
modelling environment.

In the next section we explore the problems associated with the various forms of
model representation.

2.2 Limitations

It may be possible to argue that model representation in itself does not constitute a
crucial aspect of the mathematical programming process, as a solution still hasto be
obtained from the representation. Also we may want to perform additional tasks
before and after solving the model e.g. pre and post optimality analysis. However the
importance of model representation is cemented by the fact that little can be donein
terms of computation without a proper, accurate and computabl e representation of the
model and its associated instances. With the exception of the academic domain,
mathematical programs hardly exist in a standalone fashion. In amajority of cases
they are embedded in decision support systems, or some other dependent application.
After all the ultimate aim of implementing/devel oping optimization based systemsis
to solve rea life problems. Therefore, to fully appreciate the limitations of current
forms of model representation we have to look at difficultiesinvolved both in the
implementation of mathematical programming models and decision support systems.
The following paragraphs explore the various alternatives available to today’ s
practitioner and highlight the problems associated with each.

2.2.1 Low Level Input Formats

Real world applications of mathematical programming involve solving problems on a
large scale. Representing these problems using alow level format such as the MPS
format is both time consuming and error prone. Moreover these formats do not
distinguish between models and model instances. A model instance is amodel where
values have been assigned to the data structures or input parameters. Distinguishing
between amodel and an instance of a model increases the re-usability of the model, as
itispossible to solveit with different sets of data, and at different times if
necessary—e.g. when performing sensitivity analysis. Whereas a simple low level
text format such as MPS may be suitable across multiple platforms, it is not the most
re-usable. Moreover, thereisavast array of formats for representing optimization
models, and support for these formats varies from one commercial solver to another.
With the exception of the MPS format for representing L P and integer models,
majority of formats are proprietary or non-standard, and as such reduce the scope of
model implementations. Figure 2.1 illustrates this approach to model representation
and solver interfacing.

Imperial College London 2003 6

Optimization Based System

Internal Matrix
Generator

Model Instance Solver / Solution
(matrix) Algorithm

Figure 2.1: Implementation with an inbuilt matrix generator

2.2.2 Callable Libraries

It is possible to utilise callable libraries to communicate directly with solvers, an
example of such alibrary isthe CPLEX Callable Library [28]. Thisisillustrated in
figure 2.2. These libraries in addition to solver interface routines also provide data
structures for representing the model and its associated parameters. Whereas this
relieves the burden of having to write code to generate the model matrix, it restricts
the portability and flexibility of the implementation. Thisis because it effectively ties
the implementation to a single solver or solution algorithm. If the solution algorithm
isfrom athird party, it also introduces the prospect of vendor lock-in. With such an
implementation it may be impossible to take advantage of advancesin solution
techniques, software and even hardware technology, or lower licensing costs.
Arguably it is possible to implement some level of abstraction or driver for the
callable librariesin use, so that they can be loaded at runtime depending on the
properties of the problem being solved. With such a scheme, if there are N potential
solvers, then the work to integrate these solvers will have to be repeated N times. An
exercise that is not only tedious and error prone but also potentially expensive. In
most cases the effort involved in doing this far outweighs the benefits of switching
solvers or solution algorithms, and as such is considered prohibitive. In either case,
this shouldn’t be done per implementation as it leads to the duplication of effort. Ina
number of other areas of computing, for example database programming, the
realisation of the need to eliminate this duplication of work has resulted in a number
of interface standards e.g. ODBC [37], JDBC [26], CORBA [8] etc. which abstract
away from low level implementation interfaces.

Imperial College London 2003 7

Optimization Based System

Solver / Solution
Algorithm

Figure 2.2: Interface based on callable library

2.2.3 Algebraic Modelling Languages

Although mathematical models may be implemented at a high level of abstraction
using an algebraic modelling language e.g. GAMS, AMPL, these are not the most
portable or re-usable of formats. Thisis because such implementations are restricted
within the particular modelling system which provides the algebraic language. This
means that it may not be possible to share the model with another party, as the
receiving party needs to have access to a similar environment in order to be able to
execute the model. The model will have to be re-implemented each time it is ported to
anew modelling system. Moreover as aready mentioned, majority of model
implementations exist as part of awider system, hence using an algebraic language in
such an implementation would more often than not require a hybrid approach as
described below.

2.2.4 Hybrid Approach

It is possible to use an agebraic modelling system as the backend for adecision
support system as opposed to using a single solver and or callable library. A scenario
which would warrant such a scheme is where the system needs access to more than
one solver. Implementing interfaces for multiple solvers can be a time consuming and
expensive exercise, and in order to avoid this, developers can chooseto interface to a
modelling system instead thereby delegating the task or details of solver interfacing to
it. However thisis assuming that it is possible to find a single modelling environment
with enough functionality to meet the requirements of the implementation. For non-
trivial models it may be impossible to find a single modelling language or software
with sufficient features to support an effective implementation. This is because most
modelling software and solvers address just afew among the many classes of models
that arise. This approach is highly inflexible at best and unworkable at worst, because
it is more often than not necessary for models of different kinds to be integrated in
order to address issues of importance.

It also introduces problems related to flexibility, scalability and vendor lock-in.
Majority of organisations prefer not to limit their implementations to a specific vendor
so that they can switch platforms as and when they wish to. This not only allows them
to take advantage of advances in software engineering, but also gives them the

Imperial College London 2003 8

opportunity to take advantage of cheaper licensing costs if the opportunity arises. The
hybrid approach isillustrated by figure 2.3.

Optimization Based System

Solver

Figure 2.3: Hybrid implementation utilising an algebraic modelling system

2.2.5 Custom Implementation

An aternative approach to model representation and solver integration isto
implement custom model data structures and custom solution algorithms. Needless to
say that thisisthe most time consuming of all the approaches, and raises serious
guestions about the re-usability, and flexibility of implementations based on it. This
scheme is most likely to be found in high end research or commercial applications,
and more often than not is the result of implementing a custom solution algorithm or
solver which takes into account specia properties of the problem being solved.

2.2.6 Common Limitations

In addition to the problems associated with integrating to a solver or underlying
modelling or optimization system, existing model representation techniques have
failed to keep up with advances in computing particularly in areas such: as data
portability; the Internet; and distributed computing. They also complicate the task of
integrating other tools into the mathematical programming process.

The application of the Internet and distributed computing to the area of optimization

isstill initsinfancy. The most notable attempt to date is the Kestrel solver from the
NEOS Server [35]. OptML [23] also aimsto leverage internet based protocols e.g.

Imperial College London 2003 9

SOAP [43] in transmitting and solving optimization problems. In order to leverage
the power of the Internet in optimization, it is necessary to define a framework which
not only deals comprehensively with the issue of model representation, but is also
designed to enable distributed optimization over Internet based protocols.

The focus of optimization has shifted from obtaining a solution to other aspects of the
mathematical programming process. These include post and pre optimality analysis,
requirements analysis, model simplification, automated assistance for model
formulation etc. As such it is often necessary to employ additional tools during the
mathematical programming process. A good example of such atool is MProbe [6]
which is used to perform pre-optimality analysis. However due to the proprietary
nature of modelling systems or optimization model implementations, it is often
difficult to integrate additional tools into the mathematical programming process. Any
new representation format should strive to simplify this process.

2.3 New Initiatives

Low level input formats such as the MPS format have been subjected to independent
revisions and extensions by a number of different parties. The result of these
significant but unsynchronized effortsis that although these formats are very useful to
many interested parties, they also suffer from many short-comings. Some of them
originate in design assumptions which were more relevant at the time of conception
than they are today, for example because the MPS format originates from the era of
punch cards, it is still limited to 80 character records. Many other limitations come
from the lack of aforma mechanism for amending these formats. The advent of the
Internet, and advances in software technology have also highlighted additional
shortcomings. Due to the significant demand for revamped and standardized formats
for communicating optimization models, there are anumber of initiatives aimed at
achieving just this. However some researchers have chosen to am for altogether new
formats, with contemporary technical assumptions, taking advantage of the wealth of
functionality and software available for exploiting the XML [31, 50] language, and
designed from the ground up with the mathematical programming advances of the last
30 years, and expected for the next 30 years, in mind. The most well known of these
are SNOML [27], and OptML Toolkit.

Both of these projects have focused on an XML dialect for representing instances of
linear and mixed integer programs. Except for afew differences both of them are
fundamentally similar as they have concentrated on representing the same level of
information. At this stage the major differences lie in their support for non-linear and
stochastic optimization, and representation of problem structure. Whereas the OptML
Toolkit utilises a proprietary stack based language to represent non-linear problems,
SNOML provides no specific support beyond the capabilities of MathML [29].
SNOML’ s support for stochastic programming is limited to support for multi-stage
recourse and probabilistic constraints whereas OptML provides no specific support. In
terms of problem structure OptML utilises statistical structure whereas SNOML uses
re-usable blocks and stage coupling.

These projects focus on the lowest common denominator in model representation i.e.
representing model instances. Thisis probably quite useful for standardising solvers
interfaces, and sharing/transmitting model instances, but none actually provide a

Imperial College London 2003 10

comprehensive answer to the problem of model representation. However thisis not to
say that these two projects do not represent a very significant step towards solving the
chronic problems associated with instance representation. In order to appreciate the
contribution which these projects could make to the practice of mathematical
programming, consider the problem of interfacing modelling languages and solvers. If
there are M modeling languages and N solvers, an industry standard based either on
OptML or SNOML would reduce the number of drivers required to interface these
modeling languages and solversto M + N. Without an industry standard M * N
drivers are required for every modeling language to be compatible with every solver.
Thisis of course discounting additional complications such as different platforms, e.g.
UNIX, Linux, and WIN32 introduce.

However the challenge of representing mathematical modelsis not restricted to solver
interfacing or indeed representing instances of mathematical models. Any new
representational format should aim to provide a comprehensive answer to the problem
of model representation, and aim to exploit the current strengths of optimization
software and advances in information technology, so asto meet the future
requirements of the OR community. Both of these approaches suffer from a number
of limitations which we identify below.

i. Model Instances vs. Models: Both of these projects have focused on the lowest
common denominator of problem representation i.e. model instances. This
ultimately reduces the re-usability of models, and is most likely to be suitable
only for interfacing to solvers. This provides little scope for model re-use,
storage, or even sharing among the research community. Thisis perhaps the
biggest weakness which both of these formats suffer. In relation to the issues
associated with re-use it also makes activities such as anaysis particularly
difficult, because these require some means of distinguishing between a model
and its associated data sets. Idedlly it should be possible to utilize the same model
representation when interfacing to additional tools such as analysistools.

ii. Generality: By focusing on model instances, these projects do not provide
sufficient generality to cater for the various classes of optimization models which
exist e.g. linear, non-linear etc. Ideally any new representation of optimization
models should be abstract and generic enough to encompass the various classes
of optimization problems which exist e.g. linear, non-linear etc. It should also
provide support for constraint programming problems.

iii. Support for Distributed Optimization: Arguably by providing an XML syntax
for transmitting model instances, both of these projects open up the possibility of
distributed optimization. In fact OptML aims explicitly to exploit the SOAP
protocol in order to provide remote optimization services. However the big
question is whether or not the entire focus of optimization islimited to obtaining
solutions to model instances. It is entirely feasible that there are other
optimization software/services which can be published/distributed on or viathe
Internet for example analysis services/tools. Ideally the representation should be
robust enough, to enable the offering of awhole variety of servicesviathe
Internet.

Imperial College London 2003 11

2.4 What Is A Comprehensive Solution?

This section attempts to provide the requirements for a comprehensive solution to the
problem of model representation. It lists the desirable/ideal features of any solution to
the problem of model representation. Although by no means exhaustive, it forms a
good foundation on which to base a solution.

Generality: A representational scheme should be generic enough to encompass
most of the optimization paradigms—e.g. linear programming, mixed integer
programming etc, and constraint logic programming. This reduces the burden on
application developers/programmers to cater for different representational
formats for each problem variant or scenario. Moreover as with all other software
requirements or specifications, models are likely to change or evolve, especially
in decision support environments. It would be highly tedious and expensive to
alter the model representation format and its associated interface each time this
happens.

Model and I nstance I ndependence: Representational independence of general
model structure and the detailed data needed to describe specific model instances
isaprerequisite of any model representation scheme. It is quite likely that the
same problem will be solved using different data sets on multiple occasions. A
good example isa DSS which has at its core an optimization model. Such a
system will ultimately generate different sets of model data and consequently
new model instances depending on user input. Arguably it is possible to
regenerate the model each time, but this would actually require the use of custom
code libraries, or representing the model instance with high level programming
structures, both of which introduce their own set of problems. Apart from the
inflexibility involved in such an approach, it potentially ties the implementation
to asingletoolkit and possibly vendor. It would also introduce alot of tedium
into the other aspects of optimization not directly related to obtaining a solution
e.g. requirements analysis, pre and post optimality analysis etc. By not using a
single representation format (iii) i.e. by implementing the model instance
structure directly in code, it is quite likely that a number of bugs could and will
be introduced into the system. The cost of such an implementation plus the added
cost of debugging and maintaining it, provide a strong case for avoiding this
where necessary.

Single Representation Format: It should be a single representation format that is
not only suitable for computer execution, but can also be transformed to formats
suitable for other purposes e.g. mathematical use, managerial communication etc.
Thisisrelated to item (iv).

Support for Multiple Views: Added ability to support multiple views of
mathematical models and model instances. It should facilitate model
representation independent of modelling language syntax, solver specific input
format, or solution algorithm. It should aso be possible to transform content
based on it to any other representation or format including modelling language or
solver specific input formats using well defined scheme.

Vendor | ndependent: The solution should be vendor independent and ideally
should be managed by a standards body or group. However it should be possible
to develop vendor services and extensions e.g. solver or algebraic language
interfaces, for it which can be plugged in using awell defined process.

Imperial College London 2003 12

Vi.

Vil.

viii.

Portability: This not only refers to portability of information i.e. syntax
definition files, models and model instances etc, but also to the portability of any
associated binaries or code libraries. A number of optimization systems have
become obsolete simply because they were tied to platforms which either became
obsolete, unaffordable or infeasible to support. As such, the representational
format should utilise industry standards such as XML to guarantee the portability
of the data. Also any libraries or binaries associated with the format should be
implemented using a platform independent language such as Java

Delineation of Responsibilities: There should be (and thereis) aclear
delineation of responsibility of the software involved in the optimization process
and the solution should take this into account and reinforce it. For example,
model representation is the sole responsibility of a modelling system, whereas
obtaining a solution is the responsibility of solution agorithm or solver. By
utilising a common method for problem representation, optimization software do
not have to rely on explicit programmatic interfaces, and as such different
software can be combined during the optimization process, without undue
concern about interaction between them. Such delineation becomes even more
important if the aim is to eventually publish and deliver optimization software via
the Internet, as there will obviously be a need to access a variety of services
independent of input formats.

Support for Distributed Optimization: Considering the wealth of research into
distributed computing including more recent work on grid computing, and the
limitless opportunities which this area provides to the practice of operations
research (seeix), arepresentational format should aim to cater for it. In the view
of the authors, thisis best done with a representational framework which at |east
meets criteria (i-vii, x).

Exploit the Power of the I nternet: The Internet represents the largest open
medium not only for transmitting information, but also for delivering
applications. The latter of which makesit possibleto view it asasingle
distributed computer of near unparalleled power. Internet based protocols such as
SOAP, and standards such as WSDL [46] and UDDI [47] have made it possible
to access and invoke applications in standard manner, the only requirement being
the ability to connect to the Internet. This ability to deliver and access computer
software viathe Internet using simple Internet based protocols with relative ease
and simplicity has opened up opportunities which hitherto had been unknown or
only dreamt off. Of mgjor importance is the ability to deliver optimization
software and or decision support software viathe Internet [3,4,5]. In order to take
advantage of these opportunities a consistent and robust means is required not
only to represent optimization model instances, or models, but which also makes
it possible to define or publish these software interfaces in a consistent manner
e.g. WSDL. This demands that such a solution not only be generic but also have
the widest possible range of applications as possible. As opposed to say for
example just representing model instances, it should aso cater for models,
analysis, documentation etc. Section 4 provides additional details on the
opportunities which the Internet provides to OR practitioners.

Accessibility: The components which comprise the solution should be openly and
freely available. This not only encourages faster uptake, but also greater
participation from other members of the operations research community.

Imperial College London 2003 13

3 Basic Concepts

This section introduces the core concepts which either influence the open optimization
framework or forms part of the base of the framework. It provides only basic
introductory information, and where appropriate illustrates the applicability of these
concepts to the practice of OR.

3.1 Structured Modelling

Structured modelling (SM) [18] is a systematic way of reasoning about models,
modelling systems and other systems which support or utilise models, based on the
ideathat every model can be viewed as a composition of definitional dependencies
among typed elements that are grouped and organized hierarchically. These elements
can either be primitive or can be dependent on the definition of other elementsin the
model. Elements are categorized into five groups, namely:

Primitive Entity: A primitive entity element is undefined mathematically. It
represents a primitive definition concerning a distinctly identifiable entity. The
intended scope of an entity is close to that of the noun as part of speech—a person,
place, thing, action, concept, event, quality, state etc. Every model must have at |east
one primitive entity element. Each isintroduced at the discretion and convenience of
the modeller without a presumption that it represents something irreducible or which
cannot be analysed.

Compound Entity: A compound entity is a segmented tuple of primitive entity
elements and/or compound entity elements. In essence a compound entity is
dependent upon or references one or more already defined entities. A compound
entity is often defined by declaring arelationship or association between other extant
entities. It can represent amember of a set or relation in the sense of discrete
mathematics, or even the set or relation itself. Like primitive entity elementsit is not
value bearing.

Attribute: An attribute represents a segmented tuple of entity elements together with a
particular value in some range. This alows a value-bearing property to be defined in
connection with an entity or collection of entities, where the value is not necessarily
numeric. Most of the data “coefficients’ and “decision variables’ of conventional
models are represented in structured modelling as attribute elements.

Function: A function element is a ssgmented tuple of elements together with arule
that associates a particular value in some range to this tuple. To be more precise, in
the case of value bearing elements, the rule associates the values of these elementsto
the tuple provided that the values fall within some specified range. The function
element is an extension of the attribute concept in that function elements can
participate in the defining tuple and the value can be conditional i.e. it can be
dependent on the values of the value bearing elementsinvolved. The domain and
range are sets or spaces with no presumption concerning their mathematical structure.

Test: A test element islike afunction element except that it has a two-valued range of
true and false. Test elements facilitate defining logical aspects of amodel. One

Imperial College London 2003 14

common use is to take account of the equality and inequality constraints often
encountered in conventional models: atest element can be set up for each constraint
to indicate whether or not it is satisfied.

Primitive Entity
/ Constant
X
o
@
A\
Compound Entity Attribute

Variable

Function

|

type of

—
D
(2]
(21

Figure 3.1: Components of Structured Modelling

Figure 3.1 is graphical illustration of the elements of structured modelling and the
relationships between them. The definitional dependencies among elements of a
model are a central focus of structured modelling. It can be represented as arcsin an
acyclic graph which can be computationally active in the sense that certain types of
elements (function and test elements) have associated mathematical expressions for
computing their value. Expressing amodel in the form of such adiagramislargely an
exercise in objectivity. Using amodel for problem-solving, design, gaining insight or
other purposes involves largely subjective agenda—problems or tasks associated with
amodel. Typical problems and tasks have to do with drawing inferences, determining
and acceptable solution, ad-hoc query and optimization. Usually one or more
computerized model manipulation tools need to be applied in order to effectively
solve the problem or execute the task at hand. Thus structured modelling views
models and model-based systems as having computationally active definitional
dependency astheir central focus with manipulation by solvers and other tools to
achieve desired purposes.

Structured modelling not only provides a semantically complete, and formal means of
expressing/viewing mathematical models, but by treating the process of representing a
model as an objective task, and solving, analysing, as subjective tasks which can be
accomplished by avariety of tools it also delineates the responsibilities of the various
individuals or software involved in the mathematical programming process. It is of
course possible to take this view because the model representation istreated as a

Imperial College London 2003 15

completely different entity from the tools or software required to manipulate it or
even in fact generate it. An additional advantage or side effect of this viewpoint is that
it ispossible to deal with awide variety of models and modelling paradigms within a
single unified and rigorous formalism, generate multiple views of the same model,
and insulate the model from the software needed to manipulate it and vice versa. Thus
the SM approach already provides an implicit answer to some of the problems which
plague the practice of model representation, and as such can be leveraged to provide a
solution to the problem.

3.2 XML

The Extensible Markup Language, abbreviated XML was devel oped under the
auspices of the World Wide Web Consortium (W3C) in 1996 as a successor to SGML
[43]. Like its predecessor it is a meta-language for defining other languages, however
it ismuch simpler and much more straightforward. It is a markup language that
specifies neither the tag set nor grammar for the language, where grammar refersto
the set of rules which govern how the tags of the language are used.

By not specifying a grammar or tag set, XML enables definition of data content in a
variety of ways as long as the rules governing structure are obeyed. To illustrate this
point, consider HTML [24], which is another subset of SGML. HTML defines a strict
set of tags and a grammar which governs the use of those tags, so that for example a
<TR> element must appear within a<TABLE> element, and it is not possible to add
or use additional tags such as <NAME> which do not form part of the tag set defined
as part of the language. By defining the tag set and grammar of HTML when it was
created, it is not possible to add new tags or change the ordering of tagsin the
language without a new version of the language. Hence the language cannot be
thought of asflexible or easily extensible. XML on the other hand, by not defining a
tag set or grammar is completely extensible; thusits name. It is possible to combine
user defined tags in any order e.g. nesting a<NAME> tag within <PERSON>, and if
necessary define a grammar to govern the use of the tags. The following fragment
gives an example of an XML document.

<?xm version='"1.0" encodi ng="w ndows- 1252' ?>
<oof : opti m zati onModel xm ns:oof ="http://ww. oof.org/am"
xni ns: xsd="ht T p// W, W3 67 /20017 XMCScliena” 5
<const ant >
<scal ar Name>Rf </ scal ar Nane>
<docunent at i on>
<onText Conment >Ri skl ess rate of return</onText Comrent >
</ docunent ati on>
</ const ant >
</ oof : opti m zati onMbodel >

Figure 3.2: Sample XML document

Although this fragment in itself represents awell structured XML document, it is
open to many possible interpretations, because there is no grammar specified for it.
Thisillustrates the fact that although XML isinfinitely more extensible than its
predecessors due to the fact that it doesn’t specify agrammar, this also leaves XML
documents open to awide variety of interpretations. However the XML toolkit does
provide a means of defining agrammar and atag set for a class of documents. The
grammar encapsul ates the rules which govern the creation, manipulation, and

Imperial College London 2003 16

http://www.w3.org/2001/XMLSchema">

interpretation of the specific class of XML documents. Thisis achievable by using
either aDTD [31, 51], or an XML Schema [51].

A Document Type Definition or DTD for short establishes a set of constraints for an
XML document (or aclass of documents). A DTD for example could specify that for
a“wood” attribute, only “maple”, “ pine”, and “ oak” are acceptable values. This
allows a parser to determine if adocument conforms to the specified DTD. DTD is
not a specification on its own, but is defined as part of the XML specification. A
content author creates a DTD as an additional file referenced from within an XML
file, or includes it within an XML file. Due to the limitations of DTD which are
beyond the scope of this paper, it is envisaged that XML Schemawill eventually
replaceit.

XML Schema essentially serves the same purpose as DTD, but is more XML centric
i.e. follows XML syntax. To elaborate, DTD does not actually follow XML syntax i.e.
looks nothing like XML, which can be quite confusing; XML Schema on the other
hand shares the same hierarchical structure as XML, and as such is more intuitive.
XML Schema also provides support for namespaces which isamajor limitation of
DTD. For afull description of namespaces please see [51]. The fragment below
illustrates a sample schema el ement definition.

<xsd: conpl exType nane="scal ar Decl arati onType" >
<xsd: annot at i on>
<xsd: docunent ati on>
Defines a scalar i.e. constant attribute. This is an
attri bute which has a constant non-changi ng val ue
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el enent nane="docunent ati on"
type="oof: docunent ati onType"
m nCccur s="0" maxQccurs="1"/>
</ xsd: sequence>
<xsd: attri bute nane="scal ar Nane" type="xsd:string"/>
</ xsd: conpl exType>

Figure 3.3: .XSD element definition.

The most well known uses of XML are web and enterprise application related,
however there are several other uses of XML such as XSQL [41]—an XML based
syntax for specifying database queries, MathML [29]—an XML application for
describing mathematical notation and capturing both its structure and content. Due to
the fact that XML isamarkup language, it cannot only be used to describe the
structure of data but can also be used to specify other languages, which meet the XML
criteria. In other words XML provides a syntax, which can be used to create other
languages, provided that they conform to the XML standard.

As such, it is possible to use XML to define a human readable syntax/format for
representing optimization models and model instances, which separates the model
from the tools that need to manipulate it, and abstracts away from specific problem
domains, applications, and modelling paradigms. In essence a mathematical model
representation format which is based on XML can be used to achieve true portability
of models and model instances. It is also possible to define representational syntax for
additional information which is required during the mathematical programming

Imperial College London 2003 17

process such as instance data, solver options etc. In addition, it is possible to define
documents which combine model elements, instance data el ement and any additional
information for a specific purpose e.g. interfacing with a solver or an analysistool. In
essence it is possible to separate the model from the detailed data needed to specify an
instance of it, and any additional information required to solve it e.g. solver
commands.

Above all else because of the portable nature of XML, it is possibleto use it asthe
data exchange mechanism in an Internet based computing environment, hence remote
optimization services can be invoked with model information expressed in XML
format.

3.3 Distributed and Grid Computing

Grid Computing strives for a scenario in which the CPU cycles and storage of
millions of systems across a worldwide network function as aflexible, readily
accessible and open pool that can be harnessed by anyone who needs it, smilar to the
way power companies and their users share the electrical grid. Sun definesa
computational grid as"a hardware and software infrastructure that provides
dependable, consistent, pervasive, and inexpensive access to computational
capabilities." Grid computing can encompass desktop PCs, but more often than not its
focusis on more powerful workstations, servers, and even mainframes and
supercomputers working on problems involving huge datasets that can run for days.
It enables the virtualization of distributed computing resources such as processing,
network bandwidth and storage capacity to create a single system image, granting
user views a unified instance of content viathe Web. A grid user essentially seesa
single, large virtual computer. At its core, grid computing is based on a set of
standards and protocols—(Open Grid Services Architecture) OGSA [38] that enables
communication across heterogeneous, geographically dispersed IT environments.

Distributed computing refers to a concept similar to grid computing but on a smaller
scale. It is more geared to pooling the resources of networked end-user PCs,
workstations, and even servers which individually are more limited in their memory
and processing power, and whose primary purpose is to perform a specific task or
serve auser. There are many scales/levels and types of distributed computing
architectures, on asmall to medium scale, organisations can choose to distribute a
number of related and inter-communicating functionality/processes/services among a
small number of servers or computersin order to enhance performance, increase
resilience or perhaps simply to harvest re-use. When approached on alarge scale the
aim isto pool the resources of millions of computers as opposed to just afew.

Distributed computing and grid computing are both advancing in tandem and
depending on how you look at the current research and applications landscape, the
two either overlap or distributed computing is a subset of grid computing.

Aswe mentioned above, there are various levels and types of distributed computing
architectures, and both grid and distributed computing don't have to be implemented
on amassive scale. They can be limited to CPUs among a group of users, a
department, several departments inside a corporate firewall, or afew trusted partners
across the firewall.

Imperial College London 2003 18

In most cases today, a distributed computing architecture consists of very lightweight
software agents installed on a number of client systems, and one or more dedicated
distributed computing management servers. There may also be requesting clients with
software that alows them to submit jobs along with lists of their required resources.
An agent running on a processing client detects when the system isidle, notifies the
management server that the system is available for processing, and usually requests an
application package. The client then receives an application package from the server,
processes it and sends the results back to the server. The application may run asa
screen saver, or simply in the background, without impacting normal use of the
compuiter. If the user of the client system needs to run their own applications at any
time, control isimmediately returned, and processing of the distributed application
package ends. This must be essentially instantaneous, as any delay in returning
control will probably be unacceptable to the user.

The servers have several roles. They take distributed computing requests and divide
their large processing tasks into smaller tasks that can run on individual processing
clients (though sometimes this is done by a requesting system). They send application
packages and some client management software to the idle client machines that
request them. They monitor the status of the jobs being run by the clients. After the
client machines run these packages, they assemble the results sent back by the
processing client and structure them for presentation, usually with the help of a
database.

If the server doesn't hear from a processing client for a certain period of time, it may
send the same application package to another idle system. Alternatively, it may have
already sent out the package to several systems at once, assuming that one or more
sets of results will be returned quickly. The server isaso likely to manage any
security, policy, or other management functions as necessary, including handling
dialup users whose connections and | P addresses are inconsistent.

Figure 3.4 provides an illustration of abasic distributed computing architecture.
Obviously the complexity of a distributed computing architecture increases with the
size and type of environment. A larger environment that includes multiple
departments, partners, or participants across the Web requires complex resource
identification, policy management, authentication, encryption, and secure sandboxing
functionality. Resource identification is necessary to define the level of processing
power, memory, and storage each system can contribute.

Policy management is used to varying degrees in different types of distributed
computing environments. Administrators or others with rights can define which jobs
and users get access to which systems, and who gets priority in various situations
based on rank, deadlines, and the perceived importance of each project. Obviously,
robust authentication, encryption, and sandboxing are necessary to prevent
unauthorized access to systems and data.

Imperial College London 2003 19

Agent

Processing Client

Requesting Client

Processing Client

fHA0030 == [<- request D

=30 i 3

= =i

ved® response -> - i

jcato” o i Requesting Client
aof 000000

z-
i | Management Server(s)
Agent

Processing Client :|.
1

Requesting Client

Processing Client

Figure 3.4: Distributed computing architecture

Applying the concept of distributed computing to the practice of optimisation, it is
easy to envisage a scenario where optimisation resources such as solvers and
analysers are distributed on a network, and can be accessed by anyone (individual
researcher, corporate server, handheld device e.g. route planners) with the right
security permissions. This can not only be utilised in an enterprise environment, but
aso in the dlightly wider ASP (Application Service Provider) environment. This
ultimately reduces the cost of optimisation based solutions, but also reduces the
complexity and cost of such solutions, while increasing the software resources and
computing power available to the optimization community.

The slightly more limited but related concept of peer 2 peer (P2P) computing is
aready beginning to gain credence in the optimization community. Initiatives such as
NEOS Server provide optimization resources/'software that is accessible viasimple
Internet based protocols such as http, ftp and email.

The ability to describe optimization software interfaces, models, data, and results
represents a fundamental step towards deploying, accessing and sharing these
resources via distributed and easily accessible computer networks including private
networks (intranets, virtual private networks etc) and public networks such as the
Internet.

Imperial College London 2003 20

3.4 Web Services

From its early days, web technol ogies have been used to provide an interface to
distributed services (e.g., HTML forms calling CGI scripts) however web services
represent a new breed of web application. A web service is a piece of business logic
or software functionality, located somewhere on the Internet, that is accessible
through standard Internet protocols such asHTTP or SMTP. A web service can also
be viewed as an interface that describes a collection of operations that are accessible
viaanetwork through standardized XML messaging. A Web service is described
using a standard, formal XML notion, called its service description. It coversall the
details necessary to interact with the service, including message formats (that detail
the operations), transport protocols and location. The interface hides the
implementation details of the service, allowing it to be used independently of the
hardware or software platform on which it isimplemented and also independently of
the programming language in which it is written. This allows and encourages web
services-based applications to be loosely coupled, component-oriented, cross-
technology implementations. Web services fulfill a specific task or a set of tasks.
They can be used alone or with other Web Services to carry out a complex
aggregation or a business transaction.

The web services architecture is organized around the interactions of three main roles
namely: service provider, service registry and service requestor. These interactions
areillustrated in figure 3.5 and involve the publishing, location and binding of
operations. Together, these roles and operations act upon web services artifacts—a
web service software module and its associated interface descriptions.

Serviceregistry: Thisis asearchable registry of service descriptions published by
service providers. The registry manages repositories of information on providers and
their services including business data such as name, contact information, and data
describing policies and software bindings—information needed to access and invoke
the services. A registry usually offersintelligent search capabilities and business
classification or taxonomy data (called “yellow pages’ data). Service requestors find
services and obtain binding information (in the service descriptions) during
development for static binding or during execution for dynamic binding. For statically
bound service requestors, the service registry is an optional role in the architecture,
because a service provider can send the description directly to service requestors.
Likewise, service requestors can obtain a service description from other sources
besides a serviceregistry, such asalocal file, FTP site, or aweb site, Advertisement
and Discovery of Services (ADS) or Discovery of Web Services (DISCO).

Service provider: A service provider hosts an implementation of aweb service. From
a business perspective, the provider is considered the owner of the service. It defines a
service description for the web service and publishesit directly to service requestor(s)
or alternatively to a service registry. With the direct method of publication, the service
provider delivers the service description directly to the service requestor either
through email, FTP, or adistribution CD, and simultaneously makes the service
available to the requestor. This method islikely to be used in a scenario where the
web service is used to provide connectivity between enterprise applications, and the
registry model is more likely to be used in a scenario where the web serviceis
targeted at a much wider audience and is operated on alicensing scheme. From an

Imperial College London 2003 21

architectural or systems deployment point of view, the service provider is considered
the platform which hosts the service. For example a solver vendor could provide and
publish aweb service for solving a certain class of optimization model using a
particular algorithm. This service can either be published to aregistry for general
access or it can be published directly to a handful of corporate clients viaa CD.

Fublish
WSDL, UDD

Find

Servics

Provider

Figure 3.5: Rolesin a Web Services Architecture, courtesy of IBM Corporation.

Service requestor: From a business perspective, thisis the business that requires
access to a certain piece of functionality or a business process, for example a share
dealing service operating a portfolio optimization system which requires accessto a
non-linear solver. It is the business that discovers and invokes software assets
provided by one or more service providers. From an architectural perspective, thisis
the application (e.g. a portfolio optimization system) that is looking for and invoking
or initiating an interaction with aservice. A service requestor uses a find operation to
retrieve the service description locally or from the service registry and uses the
service description to bind with the service provider and invoke or interact with the
web service implementation. Service provider and service requestor roles are logical
constructs and a service can exhibit characteristics of both. The service requestor role
can be played by a browser driven by a person or a program without a user interface
e.g. an enterprise application or even another Web service.

Although the web services architecture can be considered independently of any
particular standards, clearly interoperability isrequired for large scale adoption of the
architecture. A number of key industry leaders have been working to develop a set of
XM _L-based open standards that enable the web services architecture to be
implemented: WSDL, SOAP, and UDDI. These are covered briefly in the following
sections.

Imperial College London 2003 22

3.4.1 WSDL

The web services description language (WSDL) isan XML technology that describes
the interface of aweb servicein a standardized way. WSDL describes aserviceas a
set of 'ports which group related interactions that are possible between the application
(service requestor) and the web service (service provider). The interactions that are
possible though a port are described as 'operations which may have an input message
and optionally aresulting output message. WSDL standardizes how aweb service
represents the input and output parameters of an operation, the function’ s structure,
the nature of the invocation (in only, in/out, etc.), and the service' s protocol binding.

There are two different kinds of uses for WSDL documents. During development of
an application that will use aweb service, the developer needs to know the interface
to the service that the application will bind to. When the application is running it
needs details of a specific implementation of that service so that it can bind to it.

WSDL describes a service in terms of possible interactions with it. A WSDL
document provides the potential information content of interactions with aweb
service but doesn't explain how to communicate that information between an
application and aweb service. For this purpose, WSDL allows a'binding' to be
specified, in practice thisis likely to be another XML -based standard, SOAP.

3.4.2 SOAP

The Simple Object Access Protocol (SOAP) is a standard for XML-based information
exchange between distributed applications. It provides a standard packaging structure
for transporting XML documents over avariety of standard Internet technologies
including SMTP, HTTP, HTTPS, and FTP. It also defines encoding and binding
standards for encoding non-XML RPC (Remote Procedure Calls) invocationsin XML
for transport. It provides a simple structure for RPC: document exchange. Although
other transports are possible, SOAP is typically transmitted over HTTP providing a
platform for communication with/between web services. With WSDL and SOAP it is
possible to describe web services and use web services from an application. However
ameansis still required for discovering web services. This can be achieved via
Universal Discovery, Description and Integration (UDDI).

3.4.3 UDDI

UDDI isaspecification for distributed registries of web services. It enablesa
worldwide registry of web services for advertisement, discovery, and integration
purposes. A UDDI web services registry isitself aweb service which can be accessed
via SOAP from an application that wishes to discover other web services. UDDI
specifies interfaces for applications to publish web services (as WSDL documents)
and to discover web services (viatheir WSDL documents). A UDDI entry actually
contains more that just aWSDL interface and implementation; it can also include
further metadata such as quality of service parameters, payment mechanisms, security
and keywords for resource discovery.

3.5 Summary

With the web services standardsiit is possible to publish (WSDL, UDDI), find
(WSDL, UDDI) and bind (WSDL, SOAP) web services in an interoperable manner.

Imperial College London 2003 23

The ability to define optimization models, model data, and results using a standard
XML notation enables us to define XML messages based on the SOAP standard for
communicating with optimization services. Thisin turn enables us to define a
standard set of interfaces to these servicesin terms of WSDL, subject to the
agreement of various parties including vendors. Thisis not to say that all interactions
or operations can be standardized but a vast mgority of them can be, for example
solver invocation. In the case where thisis not possible, it would still be possible for
individual parties to define custom interfaces based on this XML notation. By
describing a framework for XML based representation of optimization artefacts
(models, data etc) it would then be possible to move towards a situation where
optimization services can be located by simply searching a UDDI registry, and
invoked using standard internet based protocolse.g. HTTP.

4 The Internet: Opportunities for OR

The Internet is the largest free and open repository of information known to man.
Hence the primary and probably the most obvious opportunity, which it affordsto OR
isthe ability to easily, share or disseminate information. The importance of thisto
both the research community and the commercia world cannot be overstated.
However information dissemination and access do not constitute the greatest
opportunity which the Internet provides to OR practitioners. In fact easy accessto
information, and ease of publication is associated with the Internet and appliesto
every field of endeavour including OR, and as such can be taken as a given fact.
Hence it is not worth considering in any great detail within the context of this paper.

The other opportunities that the Internet offers to OR only become clear when we
fundamentally alter our perception of it to fit two models: (a) asingle distributed
computer; (b) an electronic marketplace for optimisation resources. To appreciate the
relevance of these views we must consider the problems associated with utilising
optimisation based approaches for solving real world problems. Thisis best illustrated
with an example. Consider the case of Eisengard Sharedealing Inc. Eisengard
operates in avery competitive commercial environment. Established in 1898, up until
the early 1990s it enjoyed alucrative position as a market leader in the private
investor brokerage market. Thiswas of course before the web led to online
sharedealing services, opening up the competition floodgates. Eisengard has recently
launched its online share dealing service; however it still finds itself lagging behind
its newer, smaller and more innovative competitors. To compound mattersit is
suffering from a severe downturn in trading volumes brought about by harsh stock
market conditions. Long term investors are dissuaded from holding stock market
instruments due to low and sometimes negative returns. Short to medium term
investors are dissuaded from trading by the volatility of stock indexes. A management
group is championing the idea of introducing an online portfolio manager (a DSS) to
its range of services. Thiswould provide portfolio-planning services for long term
investors, and financial engineering (derivatives etc) to enable short-term investors
exploit the volatility in stock markets.

In order to achieve this, the Eisengard board has assembled aworking group in order
to evaluate the feasibility of thisidea, and prepare an initial proposal highlighting the
risks associated with implementing it. The vision which this group has of the

Imperial College London 2003 24

proposed system is that of aweb front-end, utilising data which Eisengard currently
maintains on its enterprise database, and driven by a shared optimization engine.

Up until this point this has been a non-standard problem scenario in the sense that the
motivation for introducing an optimization based solution differs from one industry to
another, and quite possibly from one organisation to another. However the results of
the evaluation will be much more standard in the sense that the problems associated
with utilising optimization techniques to tackle real world issues transcend industry,
sector and business borders, and even the commercial vs. academic barrier. The
Eisengard survey islikely to highlight one or more of the following problems:

Awareness. The working group may not be aware of the relevant optimization
approaches that can be applied to its problem. Initsreport it islikely to request that
consultants be engaged in order to recommend the best optimization paradigm and/or
model(s) to suit its requirements. Even after the best possible optimization approach
or paradigm is chosen, the working group also has to decide the best possible means
of implementing the model rapidly. If the organization lacks OR knowledge or has
never implemented aDSS, it isalso likely to require the services of consultantsin
order to draw up alist of implementation options.

Accessibility: Most organisations considering a DSS solution do not have access to or
own copies of the decision technology components required for a successful
implementation e.g. models, modelling environment and possibly model data. As
such, organizations have to purchase the individual components required after
identifying the right options. This identification process would probably involve
evaluating solutions or products from avariety of vendorsin order to find the option
that best matches the organisation’s needs. As opposed to mass marketed software,
the cost of this evaluation process can be quite high especialy if the organisation in
guestion does not have any in-house optimization knowledge. In which case, it would
probably have to resort once again to outsourcing this task to external consultants.

Compatibility: Most organisations have awell defined I T infrastructure, and additions
to this infrastructure have to meet specific requirements. Referring to the example
scenario, if the Eisengard infrastructure is based on the SOLARIS platform, then al
new software would have to be able to run on this platform. Requirements such as
these only serve to narrow down the list of options available to an organisation, and
leads to decisions based on the convenience of the solution rather than the features of
the product in question. For example, it is quite likely Eisengard will discount the use
of avery powerful solver tailored to financial optimization models, in favour of a
more generic version simply because the latter can run on their operating system.

Applicability: Mgority of optimization technologies are marketed in a generic version
which may require further customization to suite the needs of individual
organizations. For example, if an organization purchases an algebraic modelling
environment, it may discover that it has to write a specific solver to meet its needs as
opposed to using one of the generic solvers bundled with the system. In fact it isalso
possible that an organisation does not find any mass market solutions which meet its
needs and has to resort to creating a custom implementation from scratch. Thisis not
only an expensive, but also atime consuming process which could quite easily result

Imperial College London 2003 25

in the duplication of effort especidly if the software has aready been implemented in
aresearch capacity but left unpublished due to the costs involved in distributing it.

I nteroperability: Many real world problems require the combination of multiple
technologies to provide a satisfactory solution. In our example scenario, Eisengard
would probably require to combine web technologies such as HTML, Java, one or
more solvers, and analysistools in order to implement its solution. Moreover the
company would like to leverage its existing database, for example information already
held on stock prices, customer portfolios, risk profiles etc, as opposed to recreating
this from scratch ssmply for the purpose of implementing a DSS. Considering that
each technology has its specific input formats, language, and other idiosyncrasies,
combining themisalot easier said than done. In some cases such alevel of
integration may simply not be possible especially where there is alarge age difference
between technologies, for example when integrating to legacy applications. In cases
whereit is possible, it requires agreat deal of system development effort, which is not
only time consuming but can also be expensive.

The Eisengard working group will probably highlight the need to overcome these
obstaclesin its feasibility study, and the potential (possibly unknown) cost associated
with such a project. The results of the survey may dissuade the board from authorising
the project, especialy if it deems that the risks and associated costs of the project far
outweigh any benefitsit may add to its market position, especially where these
benefits are not known or easily measurable.

It is not only the adoption of optimization technologies which is problematic;
distributing optimization technologies or solutions can be aso be fraught with
difficulty. To illustrate with an example, consider the case of Craig a graduate student,
who is working on an optimization model for valuing exotic financial instruments. He
has devel oped a solution algorithm (solver) to cater for the special characteristics of
instances of this problem. Craig would like to market both his model and if possible
his solution algorithm to the investment banking market. When he considers thisidea
in detail he beginsto realise that there are actually a number of uphill obstacles which
he would have to overcome. These are almost symmetrical to the problems
experienced by users of optimization technology.

Advertisement: Aswith all other products, consumers have to be made aware of new
optimization technologies. With traditional products including mass-market software
thisis normally achieved through mass advertising campaigns. Given the specialist
nature of optimization technology, this approach is often not cost effective or feasible.
Thisis especially true in cases where the software or model is the product of an
academic research exercise. Academic institutions and students often find it difficult
to publicise their work, and the end result isthat alot of the work islost or buried,
except in cases where it has actually been commissioned by an external organisation.
In our example scenario, Craig would find it very difficult to advertise his model or
solver to the wider market place. It is quite likely that his research group may have
links to one or more external organisations however they are hardly representative of
the whole market place. This problem is symmetrical to the awareness and
accessibility problems experienced by optimization technology users.

Imperial College London 2003 26

Heterogeneity: Similar to all other technology markets, thereis avariety of platforms
within the optimization market. This often means that suppliers have to support a
number of different platforms. Thisis compounded by the fact that a number of
optimization software still utilise platform dependent programming languages such as
C/C++, as opposed to more modern platform independent languages such as Java.
Needless to say the cost of developing for and supporting multiple platforms can be
quite high, and choosing to develop on a single platform obviously narrows the appeal
of the product. As such, product providers are left in an amost impossible solution
where they have to develop and support products on a number of platforms. This
problem is also compounded if the software in question is a plug-in for other software
or requires other software to work. For example if the product is a modelling
environment which requires solversto function, the product provider not only hasto
contend with operating system specific issues, but also with different solver interface
mechanisms. In our example scenario, Craig the graduate student has to decide not
only on which operating system to develop for, but also has to ensure that the
interface to his solver is as generic as possible. This problem is symmetrical to the
compatibility problems experienced by consumers.

Versioning: Recent experience dictates that computing technology is an ever
changing phenomenon. It is not possible to rely on the stability of technology
products or platforms. Thisisillustrated by the constant releases of operating system
versions and related patches. Suppliers of optimization technology are often forced to
play catch-up with operating system, or platform vendors. Occasionally perfectly
stable and working software is rendered useless due to changes in the underlying
technology e.g. mass migration to a newer operating system. The cost of thisis often
high and occasionally is plain and ssmply impossible to bear. A number of
optimization software has become obsolete simply because the platform to which they
were originally ported is no longer in existence or has simply become uneconomic to
support. Even in the absence of shitsin the user platform, avariant of this problemis
encountered if there is a need to upgrade and maintain the software over time. This
problem isthe dual of the applicability and interoperability problems experienced by
optimization technology consumers.

Customization: This problem is symmetrical to the applicability and interoperability
problems experienced by consumers. In the same way in which consumers have to
integrate optimization technology into their existing infrastructure, or with other
pieces of optimization/decision support technology, providers are faced with the
problem of offering coordinated or integrated interoperable software solutions. Given
the high cost of making customized software for each scenario, producing near
generic solutions is often the most feasible way forward. However achieving a near
generic solution is often a difficult task especially if the software requires input from
or provides output to other softwarei.e. isused within a suite. This problemis
compounded if the other components of the suite are produced by different vendors or
providers. Even in the case where there is no need to produce an interoperable
solution, consumers often request customizations of technology which fit their
particular problem scenario. Needless to say, the cost of producing such solutions can
be quite high.

The problems encountered by both consumers and providers of decision technology
software are caused to a great extent, by the model used to distribute optimization

Imperial College London 2003 27

software. Optimization and on awider level operations research is a specialist market,
and as such is not suitable to the traditional models used to distribute software. It is
uneconomical for the software providers, and as such there is often minimal or zero
marketing of optimization technologies e.g. in the case of solutions produced as part
of aresearch effort. In the case of software which does gain afoothold in the market,
it is often expensive to keep the software up to date and to cater for the needs of all
the consumer groups. On the part of the consumers, there are a variety of products and
solutions out there, mgjority of which they are not aware of. In fact it is probably safe
to say that a number of organisations do not realise that the problems which they face
can be solved by the use of optimization technology. In the case where the companies
are aware of the applicability of optimization technology to their problem, they are
often unaware of all the alternatives available to them. Even when all the obstacles are
overcome, the organizations have to integrate the solutions into their existing
technology infrastructure. Thisis of course assuming that the organization in question
iswilling and able to bear the cost of the exercise to this stage and beyond.

These problems can be overcome or at least mitigated by leveraging the capabilities
of the Internet, and advances in Internet based software technology particularly in the
sphere of web services and grid computing. To achieve this, we must alter our
perception of the Internet to that of a single distributed computer or that of an

el ectronic marketplace for optimization resources.

4.1 The Internet as a Distributed Computer

Advances in distributed computing technology, and also grid computing have enabled
application developers and architects to treat networks (including the Internet), asa
single computer. Distributed computing standards such as WSDL, SOAP and UDDI
have enabled the delivery of logic over the Internet or any other medium which
supports Internet based protocols such asHTTP, HTTPS, and SMTP. In this paper we
are predominantly concerned with the ability to deliver optimization functionality
over the Internet, as this ability circumvents a number of the issuesinvolved in the use
and distribution of optimization technology.

In order to effectively deliver optimization technology over the Internet, there are
three major problems that need to be addressed namely: (a) description of
optimization functionality; (b) registration of optimization technology; and (c) a
means of invoking optimization software over the Internet. The following paragraphs
describes the technol ogies and standards which can be used to address these
problems, and aso highlights the building blocks that would need to be put in place
for the technologies to be applied on awide scale.

Describing Optimization Technology: WSDL provides a standard means of
describing software delivered over the Internet, particularly interfaces to such
software and any additional meta-data needed to access the software. Therefore, it can
be used to describe the interfaces to optimization technology. This could solve the
interoperability problems which consumers experience, but for the fact that
optimization technol ogies have vendor specific input requirements. Thereis no
portable means of describing optimization resources e.g. models, model data and
solutions, however if such ameans did exist, then it would be possible to solve the
interoperability problem experienced by users, and to an extent the customization

Imperial College London 2003 28

problem experienced by suppliers. By utilising a portable and abstract means to
describe optimization resources, it would be possible to integrate different
technologies from different vendors with little or no effort. WSDL meta-data could be
used to provide further information such as the quality of the software e.g. the quality
of solution algorithms or the applicability to particular problems. The use of WSDL
meta-data could be used to address the issues associated with applicability. By
abstracting the interface to optimization software, thereby making it easier for various
vendors to publish their software, it would be possible to have different flavours of
the same software concept e.g. different solvers that cater for specific scenarios which
share the same interface but are differentiated by meta-data.

Registration of Optimization Technology: As already mentioned UDDI provides a
means of advertising, discovering, and integrating web services. It provides a‘yellow’
and ‘white’ pages type of service for software vendors and consumers. By utilising
the UDDI standard, optimization software vendors could publish their software to a
central repository of optimization software, i.e. atype of ‘ Decision Support Central’,
where vendors can advertise their products, and consumers can search for software.
This ssimultaneously solves the advertisement and awar eness problems experienced
by vendors and users respectively. Vendors can advertise their software (possibly free
of charge) to a central repository where users can search for the software. The use of
UDDI is of course contingent on the ability to describe the interfaces and
characteristics of the software being advertised using a standard such asWSDL. This
in turn is also contingent on being able to abstract away the vendor specific interface
details of the software.

I nvoking Optimization Software: The SOAP protocol provides a standard means of
invoking software utilising Internet based protocols suchasHTTPand HTTPS. It is
based primarily on the exchange of XML documents and attachments. In a scenario
where it is possible to abstract the interfaces to optimization software using XML,
then it is easy to envisage a scheme where optimization software can be located on a
network and invoked using SOAP. Software vendors could locate their software on
the Internet, and publish the interface using WSDL, and users could invoke the
software using SOAP. This solves the problems of heterogeneity and versioning.
Vendors no longer have to concern themselves with details of the user’ s environment,
and can develop for asingle environment i.e. their server environment. In the case
where the software is intended to form part of awider suite of technologies, provided
that the interfaces to the other components of the suite can also be abstracted using a
common XML terminology, then the vendor does not need to concern itself with
interconnectivity issues. Users can mix and match products based on their needs,
especialy if al of the products in question conform to the same interface conventions.
The problem of versioning looses relevance, as changes to the software are
completely transparent to the users, excluding changes to the core interface. Even in
the case of changes to the interface, the vendor can use a phased roll-out of a new
interfacei.e. keep supporting the old interface until all their customers have moved to
the new interface. In the scenario where the vendor chooses to update or fix the
internal workings of the software, or change its platform, the changes can be made
without the knowledge of the users. Thisis because the software is centralised and is
accessed over the Internet utilising a straightforward protocol, and is not located or
tied to the user’ s environment. This mode of delivery is not only cheaper but aso
means that vendors have much shorter release and bug fix cycles. The use of SOAP

Imperial College London 2003 29

will aso solve the compatibility and accessibility problems experienced by users.
Users will no longer require that optimization software is compatible with their
existing infrastructure, as there will be no need to locate the software on their IT
landscape. Provided the software is accessible via SOAP it will be easy to integrate it
with their existing systems.

By utilising web services standards such as WSDL, UDDI, and SOAP, it is possible
to deliver optimization functionality over the Internet. Given the specialist nature of
the market for optimization technology, this presents the most efficient means of
utilising and distributing optimization technology. However the optimization market
is fragmented due to the prevalence of vendor standards, and in order to achieve a
situation where optimization software can be effectively delivered over the Internet,
there is aneed to abstract away from these standards. Thisis best achieved using a
meta-language such as XML. This can be used to abstract vendor specific interface
requirements, so that software can be accessed/invoked in a reasonably
straightforward manner. This doesn’t imply that vendors cannot publish and distribute
their software using their own XML based interface standards; however thiswill only
be a dlight improvement if at all to the current situation. Users would still haveto
contend with the same interoperability, compatibility, and applicability which they
face at present. Conversely vendors still have to face the heterogeneity and
customization problems which they face at the moment.

Another approach to delivering optimization software over the Internet is the ASP
(Application Service Provider) model. An application service provider (ASP) isa
company that offersindividuals or enterprises access over the Internet to applications
and related services that would otherwise have to be located in their own personal or
enterprise computers. Sometimes referred to as "apps-on-tap,” ASP services are
expected to become an important alternative, not only for smaller companies with low
budgets for information technology, but also for larger companies as aform of
outsourcing. The OSP [40] project utilizes this approach for delivering optimization
software over the Internet. Whereas this approach is aviable alternative to the
traditional models used to distribute optimization software, it doesn’t solve the full
range of problems that have been identified above. It probably solves user problems
associated with awareness and accessibility, and the advertisement and versioning
problems experienced by vendors. However the other problems remain unabated with
this model. This becomes clearer if we consider the fact that optimization technol ogy
israrely used in a standal one fashion excluding perhaps applications within the
research arena. For example, this model is not applicable in the case of a company
which plans on implementing a decision support system. However in the case of a
single or a handful or individuals who wish to make use of an algebraic modeling
environment, then this may offer the most cost efficient alternative.

4.2 The Internet as an Electronic Marketplace

The previous section covered the possibility of delivering optimization software over
the Internet, and provided details of the technological building blocks that can be used
or would be required to achieve such a situation. From the previous section it is quite
clear to see how the Internet could function as a common medium where software
vendors and buyers can conduct business. As such this section will not cover these
details again as this will be redundant. The only concept not addressed by the

Imperial College London 2003 30

previous section is that of distributing re-usable optimization resources. Thisincludes
among other things models, model data, analysis hints—e.g. query patterns used to
identify a stable solution, etc.

Among the issues involved in using and selling optimization resources are those of
awareness and advertising. Users are often not aware of optimization techniques or
models which are applicable to their particular problem, even in the case where the
problem is arelatively standard one e.g. mean-variance portfolio optimization. In the
case where the users are aware of the optimization paradigm that can best be applied
to their problem, they face the possibility of having to implement models from
scratch. They may aso have to provide or collect the data for the models, whichin
some cases may be wholly unnecessary. Sellers may also posses models which they
wish to publish or sell. One option for doing thisis of course selling the mathematical
formulation of the problem, however buyers are faced with the task of having to
implement this once they obtain it. The sellers are a so faced with the challenge of
advertising the model in its current format. In the case where the model is the product
of academic research, the only exposure it islikely to receiveisin ascientific journal.

If we consider a scenario where it is possible to describe a model implementation or
any other optimization resource using an abstract notation, say for example XML. A
pleasant side-effect of such a notation is that these resources will ultimately become
re-usable entities. This could lead to a situation where they are marketed or distributed
as commodities in themselves. It is also possible to establish a common electronic
brokerage service where buyers can purchase resources and easily integrate them into
their environments with little or no programming effort, and sellers could sell
resources provided that the resources are represented using a common notation or
lingua-franca. By utilising a common notation, they can ensure that their products can
be utilised in the widest variety of systems/environments possible. Moreover for
electronic advertising purposes, it is easier to cater for a scenario where all resources
are described using a common, user friendly and publishable notation.

The Internet can thus be used as an electronic marketplace where re-usable
optimization resources can be traded. In addition to the resources traded on this
marketplace, it could also be used to provide training material to aid novice users
choose the best optimization resources which best apply to their problem scenario.
The market could also provide additional data on the resources such as applicability,
quality, tolerance, testimonials etc.

S Framework Components

This framework was the product of a decision support system project at London’s
Imperial College. At the onset of the project it was clear that there was a need to
support avariety of optimization paradigms e.g. linear programming, stochastic
programming etc. and even constraint programming. In a decision support
environment particularly one in which optimization or constraint programming
models are generated at runtime using heuristics or rules, it isimportant to provide
support for avariety of paradigms. It therefore was apparent that an abstract and
portable means was required to represent models, irrespective of the model typei.e.
linear, non-linear etc. and irrespective of the underlying technology that would be
employed to process the model. As opposed to using a proprietary standard or format,

Imperial College London 2003 31

a decision was made to use a meta-language such as XML. The Algebraic Markup
Language (AML) was created for this purpose. It is a markup language based on the
XML language, and allows the portable representation of models. It is flexible enough
not just to support most if not all classes of optimization models but also constraint
programming models.

Given the need to differentiate between models and model instances, it was aso
necessary to abstract the representation of model data. It is quite feasible that a model
could be solved repeatedly with awide range of data sets, and thisis indeed done
during analysis. As such it would be wholly inefficient to tie the model datato the
model itself. Also different solution subroutines require datainput in different ways,
hence the data format in itself hasto be abstracted to enable the easy merging of the
data and the model to create an instance for a particular solution algorithm. The AML
syntax caters for the separation of model and model data, and provides constructs for
the full representation of model data.

A model and its associated instance(s) would only be artefacts of modern art if they
served no purpose. Their purpose is generally realised when they are solved by
invoking a solution subroutine, or when they are analysed. L eaving the complexities
involved in invoking solvers, libraries or analysis components aside, once these
software are invoked the data they return generally hasto be utilised either by a
decision support system, or any other tool or software responsible for presenting the
results. In the same way in which there is a need to abstract the representation of the
models and instance data, it is equally important to abstract the representation of
solution, infeasibility, and analysis data. V arious optimization systems e.g. solvers,
analysis tools have vendor specific formats for representing their output and given the
necessity to abstract away from vendor specific formats and thus reduce vendor
dependencies, aid usability and integration, a requirement emerged for an abstract
representation for reporting datai.e. solution, infeasibility and analysisinformation. In
order to achieve this, the Optimization Reporting Markup Language (ORML) was
devised. It isan XML based markup language which enables the representation of
solution, infeasibility, and analysisinformation. AML and ORML form the basic
building blocks of the OOF, and as such can be used in isolation of the other
components of the framework.

Having defined abstract representations for models and instance data, there was a
need to define a policy for converting these representations into a concrete model
instance or model representation for atarget modelling system, solver or analysis
software, and also for converting the results of these target systems into the reporting
data representation format. Ultimately to obtain a solution to or analyse a model, the
model and its data have to be converted to aformat which the target system or library
can understand. In the same guise the format utilised by the target system for
representing its output has to be converted to the ORML format so that it can be
utilised by the calling application. In the case where there are N target systems, this
has to be done N times, because the model and data representations are abstract, and
the output from the target solvers or analysis systems are vendor specific. Although it
is not possible to avoid this situation completely, it is possible to abstract the
conversion process in itself. Thisis achieved by the Optimization Service Connectivity
Protocol (OSCP) which isaJavalibrary that abstracts away from, and shields the
application from the complexities involved in integrating external components. This

Imperial College London 2003 32

library is similar to the JDBC API provided by Sun Microsystems. In essence, the low
level protocol details involved in communicating with the third party component is
delegated to a driver—a software library that is responsible for low level interfacing
to athird party component or library. Although the driver can be provided by the
component vendor, it doesn’t necessarily have to be. It can be written and distributed
by anyone, or organization, therefore there doesn’t have to be any ties to the product
vendor.

Model Generator

AML ORML

AML ORML

Solver | Analysis Tool

Figure 5.1: OSCP API abstraction of software interfaces

The library abstracts the process of integrating third party products such as solvers
and analysis tools, and simplifies or abstracts the protocol involved in communicating
with such products. The reason for implementing the OSCP API in the Java language
isto enable use across multiple platforms. This avoids the situation whereit istied to
a particular operating system or environment. The APl was developed for a scenario
in which there is a need to integrate optimization software running within the same
environment i.e. local integration (illustrated by Figure 5.1), as opposed to a scenario
where the software being integrated runs in aremote location. The OSCP API in its
present state is still open to discussion, and islikely to be revised in the near future so
asto take into account contributions by vendors and industry experts.

The model in which optimization software is purchased and installed on the users
machine, or on a more specific note, one in which decision support softwareis
bundled with optimization software and installed on the users machineis quite an
expensive and administration intensive model for distributing software. This applies
to all software in general and isn’t limited to decision support software, hence
companies often opt for the model where software or functionality isheld in asingle
repository and distributed or accessed via Internet based protocols.

Imperial College London 2003 33

Provides Data in AM
ormat Data Provider

Provides Model

Developer can obtain ;
ation in AML format

model implementation
and data in a standard
format from a provider.

Model Provider

Software/Developer

Develops

WSOP Service 1o = ;
Description i WSOP Service
—<ETTEve Bocument 1 Description
UDDI Registry HHHHHHH
T s
r— r—
.
SOAP Request based on AML
] [—
ooonoon SOAP Response based on ORML 0ooooan
Optimization Based System Optimization Service Provider

Figure 5.2: Framework web services approach to OR software delivery

Thismodel is beginning to gain prevalence in enterprise environments, as web
browsers and Internet protocols have proved to be a reliable medium for running or
accessing software. Technologies such as Java Applets have made it possible to
download software from a central repository and execute on the user’ s browser. Other
technologies such as Java Servlets, Java Server Pages, XML, and SOAP have made it
possible to access software remotely using Internet based protocols. Consider a case
where an organization wishes to distribute a decision support system which requires
one or more solvers and analysis tools. The organisation would face a choice between
three major options: (a) create an application which has to be installed on the user’s
machine together with all the software it depends on i.e. solvers, analysistools etc.;
(b) create an application which isinstalled on the users machine but uses distributed
computing technologies e.g. SOAP, RMI, EJB etc. to access other components
installed in a central repository; (c) create aweb application e.g. a Java Applet which
uses distributed computing technologies to access central resources. Of all these
options (c) isthe most cost effective, followed by (b) for reasons which will be
explained later on in this paper. This realisation is beginning to dawn on OR
practitioners hence the various projects aimed at developing remote and centralised
services for delivering optimization and decision support software e.g. NEOS, and
DecisionNet [10]. The authors recognised this need as well, and as such one of the
core aims of the framework isto leverage the power of the Internet and Internet based
protocols so as to enable delivery of optimization functionality over the Internet. In
fact, one of the major reasons why XML was used as the basis for ORML and AML
was to open up the possibility of taking advantage of Internet messaging protocols

Imperial College London 2003 34

such as SOAP. The Web Services Optimization Protocol (WSOP) which forms part of
the framework was created in response to the need to distribute functionality using
Internet based protocols. Itsrolein the framework isillustrated by figure 5.2. It
attempts to address the common issues which arise from distributing and accessing
OR software over the Internet, and recommends in terms of WSDL the basic
interfaces for services delivered over the Internet. It is not intended as a standard, but
rather a recommendation contributed to by members of the research community as
well as product vendors.

The four components of the framework (AML, ORML, OSCP, and WSOP) between
them provide an integrated solution to the many problems facing delivery and use of
optimization software in today’ s environment. Thisis achieved by first of all
providing a solution to model, model instance, and reporting information
representation, and then building on top of these to aleviate the problems associated
with integrating optimization software, delivering and accessing optimization
functionality over the Internet. The features of the individual components of the
framework are covered in the following subsections; however the general strengths of
the framework can be summarised as follows:

Portability: It isnot tied to any particular vendor or standard and it is portable across
different platforms and systems. Its constituent markup languages abstract away from
vendor specific requirements and formats, and the use of XML guarantees portability
across applications and platforms. Thisis because the use of XML effectively
delegates the interpretation of the data to vendor specific plug-ins or to the back-end
of optimization services delivered over the Internet. XML initself is pure text and as
such can be utilised across the majority of platforms and can be transmitted over basic
protocols. In addition to the use or XML, the choice of Java as the implementation
language of the OSCP API aso guarantees the portability of code libraries. Finaly, by
basing the WSOP on web services standards, the choice of the implementation
language can be delegated to the service provider and is completely invisible to the
service user or the serviceregistry. In fact, the only thing which all three parties share
in common is their dependence upon the Internet. Both the OSCP API and WSOP
recommendation both abstract away from vendor interfaces and vendor
implementation details, therefore enhancing the portability of the framework.

Delineation of Softwar e Responsibilities: It isamost a given that different software
are employed at any one time when implementing a decision support system or
applying optimization theory to area world problem. Although these software
perform different rolesit is often difficult to establish a clear demarcation between
their responsibilities therefore complicating the integration process. For exampleitis
difficult to differentiate solvers embedded in spreadsheet applications from the
application itself; as such devel opers wishing to exploit these solvers are forced to use
the full blown spreadsheet application in its entirety. To present another example, an
algebraic modelling environment is of little practical use without its stable of solvers,
and as such using the environment purely for model representation, leads to the
redundancy of the embedded solvers. In an ideal world developers should be able to
integrate a variety of software in order to implement or arrive at a solution. For
example it should be possible to use a representation format, with a variety of solvers
possibly from different vendors, one or more analysis tools, and one or more model
presentation tools without being forced to integrate the analysis tool into the

Imperial College London 2003 35

modelling language which provides presentation and representation, or to utilise the
solvers provided with either the analysis tool or the modelling language. The
framework enforces the delineation of software responsibilities, by utilising abstract
representations for information (models, instance data etc.), and by defining
abstractions of software interfaces in terms of the role of the software. For example a
solver interface is abstracted in a different way from that of an analysistool. Thisis
because the primary role of a solver isto obtain a solution where one exists, and an
analysistool isresponsible primarily for analysis. As such, the interfaces defined are
respectively for obtaining a solution and performing analysis. In essence, it enables
developers to assembl e software which fulfil various responsibilitiesin order to
achieve the desired solution. For example, based on the framework, a piece of
software can be used for formulation, another for presentation, a solution algorithm
for obtaining a solution, and an analysis tool for analysing the results without having
to worry about the integration of these different sets of software. Thisis because they
all operate on abstract representations defined by the AML and ORML languages, and
can be easily integrated with either the OSCP or WSOP recommendation.

Generality: The framework is intended as a generic solution that supports the
majority if not al of the optimization paradigms currently in existence, in addition to
constraint programming. As already mentioned, the framework maintains a clear
delineation of responsibilities between its components, and the responsibility of
information representation lie with AML and ORML. Aswith any other situation
where there is specialization, this provides unique advantages. By focusing solely on
representation, and delegating the processing and manipulation of the representation
to other components, it is possible to specify arepresentational scheme that is robust
enough to meet the demands imposed by the various optimization paradigms and
approaches. An added bonus is also the ability to represent constraint programming
problems.

Ease of Integration: One of the core aims of the framework is to facilitate the easy
use and integration of optimization software. In order to achieve this, it abstracts the
interfaces of optimization software, and shields the calling applications from the low
level interface intricacies. It offers two main modes of integration, either using the
OSCP or WSOP recommendation, neither of which exposes the calling application to
the low level detailsinvolved in communicating with the software. The OSCP API
utilises abstract interfaces for communicating with third party software, and delegates
low level interface invocations to an implementation of the driver, and as such shields
the user from low level integration details. The WSOP recommendation on the other
hand specifies services in terms of WSDL, and relies only on the user being able to
send and receive information over the Internet. The details of the services or their
implementation are completely shielded by the WSDL descriptions and the Internet.

Internet Service Delivery: The framework enables the delivery of optimization
services over the Internet. Thisis achieved in great part by the use of XML asa
representational format. This enables transmission of optimization
commands/requests over Internet based XML messaging protocols complete with
model, or/and instance data, and receipt of responses in the form of solution data,
infeasibility and analysis information. In addition to the ability to utilise Internet
messaging protocols, the use of XML enables the specification of services or
interfaces which are common to optimization software delivered viathe Internet. This

Imperial College London 2003 36

is achieved via the WSOP recommendation. Thisis provided as atool to enable
service providers to deliver software functionality viathe Internet, and also reduce the
overhead involved in integrating optimization services, thereby encouraging users to
adopt this model for purchasing software.

Re-Usability: The framework is organized using a component based approach in a
manner which reduces the coupling between the components wherever possible. The
integration components (OSCP and WSOP) are built on top of the representational
components (AML and ORML) and as such have to be used in conjunction with them.
However, the representational components can be used standal one, and the two
integration components have no dependencies on each other. In essence, although
thereisahigh level of cohesion between components, there is very minimal coupling
except where explicitly necessary. This model makesit easier to re-use individual
components, seamlessly add new components, and extensively modify individual
components of the framework with measured impact.

Although at its core the framework is concerned with the representation of
information, it attempts to leverage its own strengthsin this area to provide arecipe
for integrating optimization software, and for delivering optimization functionality
over the Internet. Hence the framework is described as an integrated solution which
not only comprehensively solves the problem of model representation, but takes
advantage of advancesin computing technology particularly in distributed computing
to aid in the delivery and integration of optimization functionality. The following
subsections provide descriptions of itsindividual components, including their intent
and their core features.

5.1 Algebraic Markup Language (AML)

The Algebraic Markup Language or AML provides syntax for accurately representing
optimization models, and model data. It's neither a new modelling language, nor does
it attempt to define a new standard for optimization model instance representation.
Oneonly hasto look at the current landscape of optimization software to become
pessimistic about any such attempts. It is currently littered with a variety of modelling
languages, industry and vendor specific input formats for optimization model
instances. As such, introducing a new modelling language or input format would only
serve to add to the current state of mayhem. Rather what AML proposesto doisto
abstract away from modelling languages and vendor specific formats completely. In
essence this involves defining a representational format that can be transformed into
a multiplicity of other formats.

5.1.1 Background

Optimization models and model instances are ultimately just bits of information
which can be encoded in avariety of ways. At the moment, this can be done with
mathematical notation in an electronic document e.g. word document or rtf, with a
modelling language supported by some modelling environment, or alow level input
format for representing mathematical model instances. Representations based on
mathematical notation are best reserved for communicating the idea of the model, and
are ultimately unsuitable for computational purposes. At this point it is also worth
noting that projects such as MathML do provide notation for representing
mathematical notation as markup, however these are generally concerned with the

Imperial College London 2003 37

presentation of the mathematical elements of the model, and although it is possible to
define the mathematical form of optimization modelsin thisway, it serveslittle
purpose other than for presentation. MathML doesn’t provide or cater for the concepts
of computable models (model parameters, constraints etc.), or separate instance data;
al of which are basic requirements of arepresentational format.

The presentation form of optimization modelsi.e. the mathematical form and any
additional text required to explain it, isnormally used to convey the idea of the model
to other OR practitioners, computer scientists, management etc. Thisformat in itself is
barely useful for computational purposes, and as such has to be converted by an
implementation process to one that is suitable for computer execution. This can be
achieved by using an algebraic modelling system and language, or ahigh level
programming language. Theoretically, low level input formats can also be scripted
manually although this would be a highly tedious and error prone process.

In the case where optimization models are implemented using a high level algebraic
modelling language, the implementation has to be compiled by the modelling system
into aform which atarget solver can recognize. This can easily be achieved using a
software bridge. In essence one form of representation is converted into another form
expected by atarget component. In general modelling systems have a stable of solvers
to cater for different varieties of models. As such, consider a case where a modelling
system has M solvers. The process of bridging the modelling language to a solver
specific representation has to be repeated M times. Consider the case where there are
N modelling systems. This processin total would have to be repeated N x M times, as
illustrated by figure 4.3. The problem is of course exacerbated by different operating
systems or operating system versions. If there are Z target environments, then this
figure could be anything as high Z x M x M. In the case where the model is
implemented in a high level programming language such as C++, the process of
interfacing to external solvers or modelling tools, the bridging/interfacing process till
has to be repeated. Thisis of course excluding the case where a solver is specifically
implemented for, and integrated into the model.

Whether or not amodel isimplemented using an algebraic modelling language or a
high level programming language, the intent of the implementation is purely for
computation. More often than not, thisis not suitable for any form of advanced or
effective communication. To illustrate this point, consider an example where a
management board has agreed on the requirements for an optimization model, chosen
asuitable model, and implementation work has begun on the model. If at any stage
during the implementation, problems are discovered with the model, and thereisa
need to modify it, the modification would have to be made to the mathematical
notation of the model and any supporting documentation, and presented to the board
for approval. If these changes are approved by the management, then they are fed
back into the implementation process. The computational form of the model is
completely excluded from the communication material asit will probably be
unintelligible to managers, business analysts, and all others non-technical members of
the decision making process. The opposite also happens when thereisa shift in
requirements. In this case it islikely that the origina mathematical form of the model
would be modified first in response to the new requirements. These changes then have
to be applied separately to the implementation.

Imperial College London 2003 38

Modelling Solver

Language
1 1
Modelling Language Bridge
l.\,l N x M Bridges M
Required
Modelling Solver
Language

FIGURE 5.3: Bridging model representations and solver interfaces

It is clear that there are currently two main forms of encoding optimization models:
(a) presentation; (b) computational. Asthe namesimply, one is concerned solely with
the presentation of models, while the other is concerned with a computable
representation of the model, where computable refers to one that can be processed by
a computer for the purposes of obtaining a solution or for analysis. These two
schemes result because the computational form of the model is probably too large and
complex or simply unintelligible to novices to be used as a communication tool.
Whereas the presentation form of the model is purely for communication and cannot
be used for computational purposes. Thusin atypica scenario, there are at least two
digoint representations of a model in existence, one for communication and the other
for computation. Maintaining these two in sequence or transforming from one to the
other can be quite an expensive process and often results in bugs being introduced to
the model implementation.

In an ideal world, it should be possible to buy an off the shelf model implementation
which has gone through the development and implementation cycle, and as such can
be considered stable. However this introduces the added problem of having to
integrate the model into an existing infrastructure, or having to obtain an environment
where the model can be executed. Implementations are generally either tied to a
particular modelling language, or operating system, or even solver. Consider the
scenario where a research student obtains an optimization model implemented using
an algebraic modelling environment. If the student’ s university does not licence or
support the modelling environment, the student may have to re-implement the model
using a supported or licensed modelling environment. The same dilemmais faced by
companies, and more so because they generally have awell defined IT infrastructure,
and find it more difficult to integrate new productsinto it.

In general, the encoding schemes used for representing optimization models are too
closely aligned with the ultimate target or use of the model. In essence as opposed to
representing the information about the model, the schemes are more concerned with
what the representation is going to be used for. Asillustrated in the preceding
paragraphs this leads to a number of problems, which can be summarised as follows:

Imperial College London 2003 39

I. Lack of portability: Models are generaly not portable from one
implementation platform to another. This could be as a result of vendor
specific representation formats, or dependencies on atarget platform or
operating system. Ideally arepresentation format should not be platform or
vendor dependent.

ii. Single purpose representation: Representations are used either solely for
computation or presentation. Ideally there should be one representation
format for both purposes.

iii. Lossof re-usability: The extent to which amodel can be re-used is dictated
by the language or format in which it was implemented. Users need to have
an environment, platform or tool which supports the implementation language
or format in order to effectively use the model.

Ignoring the intricacies of optimization models, it is possible to define an encoding
scheme which abstracts away from the current forms of representation, and which
can be used to generate multiple views. In essence, capture the information about the
model without tying the representation either to an execution environment or to a
particular view or use. Thisinvolves defining a modelling language or syntax which
can be used to generate multiple views with little or no effort, and which more
importantly than anything else is suitable for computer execution, i.e. as opposed to
focusing on just capturing the information about the model for communication
purposes it should also be suitable for computation purposes. It is highly unlikely that
all the product vendors in the market today can be encouraged to adopt asingle
common format for representation, so it isimportant that the language is an
abstraction of existing formats and doesn’t explicitly or strictly require vendor
support. Hence there should be no ties to any vendor specific requirements, standards
or formats.

AML achievesthis by using XML, and in particular the XSD recommendation. As
aready mentioned XML is a meta-language which can be used to define other
languages. XML guarantees the portability of data by delegating the interpretation of
the data to the receiver and/or sender. In essence the meaning of the data is decoupled
from its representation. AML by building on the strength of XML provides a portable
representation of optimization and constraint programming models. It serves as an
abstraction of current representation formats, and supports multiple views generated
either through the use of XSL T, custom programmatic constructs, or a combination of
both. In essence, AML decouples the use of the optimization models from their
representation. The use and interpretation of the model is ultimately delegated to the
receiving application. It also guarantees the re-usability of models, and is not tied to
any particular paradigm, modelling language, programming language, operating
system, or vendor specific format. The following subsections provide more
information on the advantages of AML, and a summary of its core syntax.

5.1.2 Advantages of AML

This section lists the advantages which AML offers over the current formats and
methods for representing optimization and constraint programming models. They can
be summarised as follows:

i. Portability: Asalready mentioned AML offers a portable means of representing
optimization models. It isbased on XML, hence it istext based and can be used

Imperial College London 2003 40

across multiple platforms, environments and programming languages. It abstracts
away from modelling languages and model representation formats by
concentrating on the representation of the model and its associated data, and
delegating the processing of the model to the target environment. Because the
target environment is quite likely to require a specific format, AML supports the
generation of other representation formats. In essence it is possible to generate
other views of the model and its associated data from asingle AML
representation. This essentially abstracts away from vendor or platform specific
requirements, thereby guaranteeing the true portability of models.

Support for multiple views: AML supports the generation of different views of a
model and its associated data from asingle AML representation. There are a
number of reasons why thisis required, among them are: the need to support
views specifically meant for communication; and views that are required for
computation by a specific target environment e.g. an algebraic modelling system.
There are anumber of means by which this can be accomplished, among them:
the use of XSL; and the use of a purpose built transformation engine. It may be
possible to generate views of the model perhaps for communication purposes by
the use of XSL stylesheets and a general purpose transformer. In the case of
generating a representation for a specific algebraic modelling environment, it
may be necessary to utilise a purpose built transformer designed and built
specifically for the target environment. Figures 5.4 and 5.5 illustrate this.

Target
Representation
Stylesheet

Target Model
Representation

Generic Transformer

Figure 5.4: Trandation using an XSL stylesheet

Target Model
Representation

Purpose Built Transformer

Figure 5.5: Translation using a purpose built transformer

Imperial College London 2003 41

vi.

Model and instance separation: AML provides a clear demarcation between a
model and the data required to create an instance of the model. Ultimately it will
be necessary to solve a model repeatedly using different data sets. Thereforeit is
necessary to be able to specify the data set independently of the model. Else the
model would have to be changed each time the data changes. AML enforcesthis
separation of data and model, thereby ensuring that models can be re-used over
and over again with different sets of datai.e. different instances of the model can
be generated simply by specifying different data sets.

Re-usability: AML guarantees the re-usability of models by two principal means:
(@) by its portability; (b) by separating models and instance data. The portability
of the AML format ensures that models can be easily ported from one
environment to another. Therefore amodel obtained in AML format can be
easily ported to the user’ slocal environment or an organisations local
infrastructure. Also in a scenario where an organisation or a user uses AML as
the format for representing optimization models, it is easier to change the
underlying modelling infrastructure e.g. algebraic modelling languages, solvers
etc. Thisis because AML does not have any vendor or format specific features
and can be easily transformed into other formats. In addition to portability, AML
guarantees re-use by separating models and the data required to represent specific
instances. Therefore, models can be re-used with different data sets and it may
even be possible to re-use data sets depending on the application. This not only
makes it easier to perform tasks such as analysis, but fits into the decision
support philosophy where models will are repeatedly run against different sets of
data. Re-usability ultimately makes it possible to turn models into entities which
can be distributed just like code libraries.

Generality: Unlike a number of other representation formats AML isnot tied to
any particular paradigm such as linear, non-linear, stochastic programming, or
even optimization alone. It supports the representation of al known classes of
optimization models, and the data required to represent their instances. In
addition, it supports the representation of all known classes of constraint
programming models and model data. All of thisis achieved using a common
syntax; hence there is no requirement to use a different syntax for different
classes of problems or for representing constraint programming problems.
Support for Internet based applications. Apart from providing a means for
abstracting away from other languages or representation formats, one of the key
benefits of XML isthat istext based and can be used in conjunction with a
number of Internet-based messaging protocols such as SOAP. By basing AML
on XML, thisfeature of XML isautomatically inherited by AML, and as such it
ispossible to use AML in Internet based applications. Models and model data
can be transmitted using common Internet based protocols such asHTTP,
HTTPS, SMTP, etc. As such, AML exploits and provides the means to exploit
advances in computing technology in the areas of the Internet and distributed
computing. The ability to transmit models and model data over the Internet or
intranets completely re-defines the traditional model of distributing optimization
functionality and to awider extent the design and implementation of optimization
based systems. It becomes possible to centralise functionality, and provide access
to this functionality using aweb services approach to software delivery. This has
enormous impact on the topology and cost of software systems. As opposed to
the scenario where a system has to be delivered with all additional software such
as solvers, analysistools or even an embedded modelling environment, systems

Imperial College London 2003 42

can be delivered as a skeletal structure which can then access additional
resources via Internet based messaging protocols. This provides a whole host of
advantages such as easier software delivery, ease of maintenance, and lower
licensing costs.

5.1.3 Syntax Overview

This section provides a summary of the core syntax of AML. Thisisnot intended as a
definitive nor comprehensive list of the features of AML, but rather as an insight into
the capabilities of the language and its core syntax. More detailed information on the
AML syntax isprovided in [12].

5.1.3.1 Documentation

AML isaself documenting language, and as such it is possible to embed
documentation directly into models. There are two levels of documentation supported
by the language: onTextComment; and offTextComment. The reason for thisis so that
it is possible to distinguish between code-level comments and user targeted
documentation. The onTextComment documentation type is intended for user level
commentsi.e. comments that can be formatted and used to generate detailed reports
for users, whereas off TextComment is used to document the model! itself i.e. comment
the model text. The reasons for providing model level comments vary, but normally
centre on aiding easy understanding and improving maintainability. The following
segment provides an example of an AML documentation element.

<docunent ati on>
<onText Corment >user | evel conment goes here</onText Conment >
<of f Text Conment >nodel | evel coment goes here</ of f Text Comment >
</ docunent ati on>

Figure 5.6: AML documentation fragment.

5.1.3.2 Operators

AML provides a number of operatorsincluding arithmetic, logical and set operators.
These are typically used to build arithmetic expression and define model parameters,
sets, constraints, objectives etc. Figure 5.7 provides an example of an expression
definition which makes use of a ssmple division operator.

5.1.3.3 Sets

The intended scope of aset is close to that of the noun as part of speech—a person,
place, thing, action, concept, event, quality, state etc. Every model must have at least
one set element. An example of aset isacollection of securities, or a collection of
time periods. AML supports two types of sets: complex and simple sets. A simple set
is best thought of as an irreducible concept i.e. abasic set which is not dependent
upon other sets. A complex set on the other hand is one which can be dependent on or
more other sets, simple or complex. Figures 5.8 and 5.9 provide examples of simple
and complex set definitions respectively.

Imperial College London 2003 43

<conpl exExpr essi on>
<l hAl gebr ai cExpr essi on>
<operation>
<set Oper at i on>SUMK/ set Oper at i on>
<i ndex>
<i ndexNane>t </ i ndexNane>
<set Nane>securi ti es</ set Name>
</ i ndex>
<bi ndi ngExpr essi on>
<l hExpr essi on>
<el enent Ref erence>
<attri but eName>Dv</attri but eNane>
<attributel ndex>
<i ndexString>t</indexString>
<set Nane>securiti es</ set Name>
</ attri butel ndex>
</ el emrent Ref er ence>
</ | hExpr essi on>
<oper at or >*</ oper at or >
<r hExpr essi on>
<el enent Ref er ence>
<attri but eNane>Dnx/ attri but eNane>
<attri but el ndex>
<i ndexString>t</indexString>
<set Nane>securiti es</ set Nane>
</ attri butel ndex>
</ el emrent Ref er ence>
</ r hExpr essi on>
</ bi ndi ngExpr essi on>
</ operati on>
</ | hAl gebr ai cExpr essi on>
<oper at or >/ </ oper at or >
<r hAl gebr ai cExpr essi on>
<expr essi on>
<el enent Ref er ence>
<attri but eName>Ti nePeri od</ attri but eNane>
</ el enent Ref er ence>
</ expr essi on>
</ r hAl gebr ai cExpr essi on>
</ conpl exExpr essi on>

Figure 5.7: Example expression using a division operator

<set>
<si mpl eSet >
<set Nane>Equi t i es</ set Name>
<docunent at i on>
<onText Conment >
This set represents the candidate equity portfolio
</ onText Corment >
</ docunent ati on>
</ si npl eSet >
</ set>

Figure 5.8: Smple set declaration

Imperial College London 2003 44

<set >
<conpl exSet >
<set Nane>Por t f ol i o</ set Nanme>
<r hs>
<l hSet >Equi ti es</| hSet >
<set Qper at or oper and="uni on"/ >
<r hSet >Bonds</ r hSet >
</ rhs>
</ conpl exSet >
<docunent ati on>
<onText Corment >Candi dat e nmi xed portfolio</onText Conment >
<of f Text Corment >
Sanpl e conpl ex set declaration
</ of f Text Conmrent >
</ docunent ati on>

<[set>

Figure 5.9: Example complex set declaration

5.1.3.4 Attributes

AML supports three attribute types. scalars; parameters; and variables. A scalar
represents a constant or never changing value. It isfixed at the time of model
definition and can only be changed by altering the model. Figure 5.10 provides an
example of ascalar definition.

<const ant >
<scal ar Name>Rf </ scal ar Nanme>
<r hs>
<scal ar Val ue>3. 75</ scal ar Val ue>
</ rhs>
<docunent ati on>
<onText Commrent >Ri skl ess rate of return</onText Coment >
</ docunent ati on>
</ const ant >

Figure 5.10: Scalar declaration

A parameter represents a value-bearing property which can be defined in connection
with aset or other attributes. In essence, it provides a means of assigning valuesto the
concepts encapsulated in a set. Figure 5.11 is an example of a basic parameter
declaration.

Variable is a self explanatory term, it refers to an attribute type whose value is placed

under the control of a solver or atarget environment. Figure 5.12 illustrates a variable
declaration.

Imperial College London 2003 45

<par anet er >
<nanme>Nt </ name>
<r hs>
<expr essi on>
<l hExpr essi on>
<el enent Ref er ence>
<at tri but eName>Dv</ attri but eNane>
<attri but el ndex>
<i ndexString>t</indexString>
<set Nane>securiti es</ set Nane>
</ attributel ndex>
</ el emrent Ref er ence>
</ | hExpr essi on>
<oper at or >*</ oper at or >
<r hExpr essi on>
<el enent Ref er ence>
<attri but eName>Dnk/ attri but eNane>
<attri butel ndex>
<i ndexString>t</indexString>
<set Nane>securiti es</ set Name>
</ attributel ndex>
</ el ement Ref er ence>
</ r hExpr essi on>
</ expr essi on>
</ rhs>
<docunent ati on>
<of f Text Coment >Par anet er decl ar ati on</ of f Text Conment >
</ docunent ati on>
</ par anet er >

Figure5.11: Parameter declaration

<vari abl e>
<name>anount | nvest edl nSecuri t y</ nane>
<i ndex>
<i ndexNanme>i </ i ndexNane>
<set Nane>Port f ol i o</ set Nanme>
</i ndex>
<l ower Bound>
<conpar at or >gr eat er Than</ conpar at or >
<boundVal ue>
<f | oat >0. 0</ f| oat >
</ boundVal ue>
</ | ower Bound>
<upper Bound>
<conpar at or >l essThan</ conpar at or >
<boundVal ue>
<fl oat >0. 4</f | oat >
</ boundVal ue>
</ upper Bound>
<docunent ati on>
<onText Comment >
Amount invested in each security fromthe
candi date portfolio
</ onText Comrent >
</ docunent ati on>
</vari abl e>

Figure 5.12; Variable declaration

Imperial College London 2003 46

5.1.3.5 Functions

AML provides syntax for representing both constraints and objective functions. The
major difference between a constraint and an objective function is that the latter
doesn’'t have aright hand side valuei.e. doesn’'t make use of equality or inequality
operands. Objective functions are not mandated by the AML syntax, and assuch it is
easy to represent a constraint programming model in AML. The following figures
provide examples of constraint and objective function declarations respectively.

<constraint>
<constraintldentifier>
<const rai nt Nane>
Total Anopunt Invested In Securities
</ const r ai nt Nane>
</constraintldentifier>
<constrai nt Functi on>
<expr essi on>
<l hExpr essi on>
<el enent Ref er ence>
<attri but eName>Dv</ attri but eNane>
<attributel ndex>
<i ndexString>t</indexString>
<set Nanme>securiti es</ set Nane>
</ attributel ndex>
</ el enent Ref er ence>
</ | hExpr essi on>
<oper at or >*</ oper at or >
<r hExpr essi on>
<el enent Ref erence>
<attri but eNane>
deci sionVari abl e
</ attri but eName>
<attribut el ndex>
<i ndexString>t</indexString>
<set Nanme>securiti es</ set Nane>
</ attri butel ndex>
</ el enent Ref er ence>
</ r hExpr essi on>
</ expressi on>
</ const rai nt Functi on>
<conpar at or >equal </ conpar at or >
<r hs>
<literal>1</<literal >
</rhs>
<docunent at i on>
<onText Comrent >
total anmpunt invested in securities
</ onText Corment >
</ docunent at i on>
</ constraint >

Figure 5.13: Example constraint declaration

Imperial College London 2003 47

<obj ecti ve>
<t ar get >maxi m ze</t ar get >
<obj ecti veName>Opti m zed Portfolio Return</objectiveNanme>
<obj ecti veFuncti on>
<expr essi on>
<l hExpr essi on>
<el enent Ref erence>
<attri but eNanme>
deci si onVari abl el
</ attri but eNane>
<attri butel ndex>
<i ndexString>t</indexString>
<set Nane>securi ti es</ set Name>
</ attributel ndex>
</ el enent Ref er ence>
</ | hExpr essi on>
<oper at or >*</ oper at or >
<r hExpr essi on>
<el enent Ref er ence>
<attri but eNane>
deci si onVari abl e2
</ attri but eNane>
<attri but el ndex>
<i ndexString>t</indexString>
<set Nane>securiti es</ set Nane>
</ attri butel ndex>
</ el emrent Ref er ence>
</ r hExpr essi on>
</ expr essi on>
</ obj ecti veFuncti on>
</ obj ective>

Figure 5.14: Objective declaration

5.2 ORML (Optimization Reporting Markup
Language)

ORML is the companion technology to AML. Whereas AML is concerned with the
representation of optimization models, ORML is concerned solely with representing
the information that is generated as a result of manipulating those models.
Unfortunately the differences in representation formats are not limited to just models
or model instances, but also extend to the representation of results, where the term
‘results’ refersto information that is generated by solving or analysing amodel. What
ORML proposes to do, isto abstract the representation of this information. Because
ORML like AML, deals with the abstraction of representation, it can be argued that
both should be treated as two halves of the same technology or concept, however it is
entirely likely that an organization or individual may use AML on its own, perhaps
for the purposes of model sharing or storage.

In essence, AML representation need never actually be used directly in computation,
but rather can be trandated to other formats which suit the user’ s computational
environment. If both are treated as the same technology and distributed as such, cases
where they are used individually are bound to raise serious questions about the
validity of such a strategy. For example consider the case of a Prof. Morgan, who is
an OR lecturer. For reasons of portability she aways specifies her modelsin AML,
and insists that her students do the same. The reason for this is because she and her
students use different modelling environments, and as such require aformat which
will allow them to share models easily. So if for example she uses the ZX algebraic

Imperial College London 2003 48

modelling system, she can transform models submitted by her students to the ZX
format using aZX trandlation toolkit downloaded from an open source repository and
then execute the model within her own modelling environment. In essence, she and
her students are using AML purely for sharing models, and never actually execute the
model in AML format. Hence the issue of results never really arises. In such a
scenario, if ORML and AML were bundled as part of the same technology, then the
professor and her students would have alot of redundant functionality which they do
not make use off, and which from their point of view would only serve to increase the
size and complexity of the technology.

For this reason, ORML is published as a different and independent technology which
can be used in conjunction with AML to guarantee true portability of representation,
not only of models or model data but also results.

5.2.1 Background

Representational problems are not limited solely to models, or instance data, but also
extend to the results of performing computations on such models or their instances.
This arises due to vendor specific interface requirements. By definition, interfacing
does not only involve data input, but also data output. Thisimpliesthat if the input or
the protocol involved in supplying it is specific to a particular piece of software, then
the output from such software is bound to be specific to it aswell. Invariably systems
wishing to make use of such software become dependent upon it, and any
representation formats which it uses, thereby complicating the task of integrating
similar or related software into the solution landscape.

AML only provides half of the solution to the problem of abstracting away from
vendor specific data formats. Whereas it provides a means of abstracting away from
formats for input datai.e. models and model data, it doesn’t address the problem of
obtaining the results of computations performed on such models or their instances.
Not addressing this problem would lead to a situation where vendor specific
representations have to be interrogated in order to obtain the results of computations.
Apart from the fact that this would almost certainly wipe out alot of the gains made
by using aformat such as AML for input representation, it also means that the user’s
environment is once more coupled to the underlying optimization system. Such a
scenario isillustrated by figure 5.15. In essence, even though a portable representation
format is used by the client system to represent models, it still has to be aware of the
downstream optimization engine in use and its specific format requirements, and it
will have to use API or syntax specific to such a system in order to obtain the results
of computation. The arguments for using a scheme such asthis are likely to find little
or no sympathy among devel opers or modellers, as there would be no benefit gained
from investing in the effort to use a portabl e representation.

Using vendor specific result representation formats also complicates the task of
delivering optimization functionality viathe Internet. Apart from the fact that the
vendor representation has to be encoded in afashion which is suitable for Internet
transport, application clients have to make use of API specific to the vendor in order
to access this representation. The pitfalls of such a scenario are best illustrated with a
hypothetical case. Consider the case of OptiSoft Inc., asmall specialist software house
which produces the iOpt solver. In order to reduce its distribution costs and the risk of
piracy, and to generate higher revenues through a service metering approach to

Imperial College London 2003 49

licensing, its management has chosen to distribute the iOpt functionality over the
Internet as aweb service. So as to gain afoothold in the market, and to avoid being
edged out by their larger competitors, they decided to adopt AML as the de-facto
format for representing input to their iOpt web service,

OR Engine
(e.g. Solver)

Translated Model
Instance

invoke with translated Model

read result in native format

AML Transformer

Decision Support
System

Native Result
Format

Figure 5.15: Direct result access

However as there is no portable means of representing solver output, they resort to
using an encoded version of the native iOpt output. Thisresults in a situation where
OptiSoft customers implement software specifically for manipulating the iOpt output
format. Inundated with support calls related to their result representation format, and
requests for more education and training material, the board decide that it would bein
the strategic interests of the company to implement a parser library to help their
customers integrate the iOpt service easily into their infrastructure. This of course
means that Opti Soft will once more be in the business of distributing iOpt related
software through the conventional mechanisms as opposed to doing so viaweb
services. Issues which it had to sought to avoid begin to re-appear again, such as
managing release cycles, interface changes, etc. It also means that Opti Soft customers
are once again tied to asingle vendor and the vendor’ s representation format. As such,
integrating an additional solver from adifferent vendor will ultimately involve time
and money, not to mention the risk that is introduced by switching to a different result
manipulation API. It may even be possible that the new solver does not provide
information which is similar to that of iOpt, and as such the customer(s) in question
may have to re-define the way in which the results are presented.

Imperial College London 2003 50

Examining the scenario depicted by figure 5.15 and considering the above example, it
is clear that a non portable format for result representation, leads to a scenario where
direct dependencies are established between the application client and third party
software. In the example above, even though OptiSoft and its customers have chosen
aportable format for representing models and model data, the problems which they
sought to avoid reappear because they are using a non-portable format for
representing results.

ORML provides a solution to this problem by abstracting away from formats and
syntax utilised by specific software and/or vendors for representing result data. Like
AML, itis XML based, and essentially defines a syntax or language for representing
result data, independent of the source. As such, it provides applications with asingle
integrated view of computation results. Computation results not only refer to solution
data, but also infeasibility information and analysis results. Analysisin this sense not
only refersto post-optimality analysis information, but also to pre-optimality analysis

including model validation.

OR Engine
(e.g. Solver)

<

Purpose Built Transformer

Decision Support
System

Native Result Format

Figure 5.16: Optimization engine access via a trandlation toolkit

Combining AML and ORML leads to an architecture where the syntax specific to the
underlying optimization framework is completely invisible to the client application.
Input can be represented in AML format, and using a transformation toolkit
transformed into a format expected by the underlying OR engine, the output from this
engine can be transformed by the same toolkit into ORML format. Therefore the
application’s view islimited to the tranglation toolKkit, thus shielding the upstream
application components from changes to the underlying OR engine. This schemeis
illustrated by figure 5.16. Thisis particularly true for services delivered over the
Internet, as there will be no requirement to provide a transformation toolkit for the
vendor software, because access is via Internet protocols. In essence if the service
interface is defined in terms of AML and ORML, application developers have to do
little or no work to make use of or integrate the service. In the case of software that is

Imperial College London 2003 51

installed and accessed locally i.e. resides within the same infrastructure as the
application client, the application client’s view can be limited by a proxy which
encapsul ates the specific transformation toolkit required for the software. This will
further insulate the client from changes to the toolkit. Even in cases where this is not
done, the application client’s view of resultsis not affected by changesto the
downstream OR software provided atransformer exists for the target software, or the
target software provides direct support for ORML.

In summary, the ORML format provides applications with as single unified view of
result information, irrespective of the source of the result. It is based upon XML and
as such supports the generation of multiple views from the same content. Unlike
AML, ORML content will typically either be created directly by OR software or a
transformation library will have to be used to convert software specific datainto
ORML format. This complicates the structure of ORML dlightly as different software
use different schemes for representing result information. Furthermore thereis no
uniformity of the data set that is returned by various software. Therefore ORML has
to be robust and generic enough to cater for differences in representation.

5.2.2 Advantages of ORML

The advantages of the ORML approach to result representation can be summarised as
follows:

i. Unified view of results: It provides applications, application clientsand to a
wider extent users with asingle unified view of computation results
irrespective of the source. Developers and modellers no longer have to provide
specialised code to deal with the various representation formats employed by
different software. Rather, it is possible to utilise acommon code-set for
manipulating results. More importantly, thiswould lead to a situation where
changes to the underlying third party OR software have little or no impact on
upstream application components. The interfaces of such components are
limited to the ORML representation of results, which in turn can be built up
from native formats. Consequently the application and its constituent
components are completely de-coupled from the result representation format
employed by downstream OR software.

ii. Generality: It provides support for the known classes of optimization and
constraint programming problems. It is not limited to a particular class of
models or a specific paradigm. It is also robust and versatile enough to
encapsul ate the result representation format employed by a variety of
optimization software in today’ s environment, and aims to cater for future
formats.

iii. Support for multiple views and report generation: Judging by its name,
ORML isclearly alanguage designed to support reporting. Due to the fact that
it isbased on XML it is possible to generate a variety of views of result
information either by using relatively simple stylesheets or specialised
transformation engines. To illustrate, consider the case where the result datais
being used in adecision making environment, it is very likely that technical
staff such as OR practitioners would prefer to view the technical aspects of the
result, the managers a detailed management style report, and other people
involved in the process may just want a summary or an overview. Three
different stylesheets can be applied to the same result data to generate the

Imperial College London 2003 52

views required by these three different groups of individuals. In an
environment where OR plays alarge part, it is quite likely that these
stylesheets would be pre-defined beforehand and as such can simply be
applied to the results as soon as they are obtained in order to quickly generate
the reports/information required by the different participants in the process.
This not only saves time, but offers practitioners the flexibility to utilise
results for avariety of purposes and in avariety of ways. It also completely
eliminates the need to re-process modelsin order to obtain different views of
what is essentially the same information, or the need to build specialised
software to generate different views of result information.

iv. Efficiency: With some traditional modelling tools or OR softwareit is
necessary to repeatedly process modelsin order to access different sets of
result data or to present data in different formats. ORML eliminates the need
to do thisasit makesit possible to represent the entire result data set in a
densely populated XML structure which can then be repeatedly queried or
transformed into alternative views.

v. Portability: Although portability isnot a key requirement of result
representation, it is nonethel ess an important advantage offered by ORML. It
isquite likely that results will be used in different environments including
operating systems, perhaps stored in different locations such as relational
databases. Therefore it isimportant that the result format is portable so that it
can be utilised or stored on any environment without loss of information.
Consider the case where amodel solution forms part of the input to acritical
corporate decision, it is very likely that the solution will be saved in alocation,
possible written to a database, and referred to in subsequent management
meetings and presentations. |n such a scenario the advantage of having a
portable presentation becomes clear.

5.3 WSOP (Web Services Optimization Protocol)

WSOP is a recommendation which aims to specify a common lingua-franca for
conducting operations research transactions over the Internet. It builds upon the
typing mechanisms provided by ORML, and AML to define a set of data exchange
guidelines and interfaces which allow the seamless discovery and integration of
operations research functionality. One of the goals of distributed computing and in
particular web servicesis to enable a situation where disparate computer systems can
communicate effortlessly without the need for code changes or vendor specific
interface implementations. WSOP aims to achieve this goal for operations research
software by providing a common means of describing, invoking and managing
functionality. It also aimsto simplify on the part of the provider, the process of
describing and advertising such functionality.

It achievesits aims by the identification and cataloguing of operations research
processes and the partitioning of the operations involved in such processes into logical
groups according to the roles which they play in the process. It formsthe last part of
the OOF trilogy/set that can be used to enable the seamless access and distribution of
optimization functionality over the Internet. The other two are AML, and ORML
which provide the typing mechanisms utilised by WSOP. Combining the three
enables organisations to publish OR technology over the Internet, and customers to
easily access such technology. Thisis because AML and ORML both provide

Imperial College London 2003 53

independent and portabl e representation formats for representing data and when
combined with the generic set of Interfaces defined by WSOP leads to a situation
where enterprises always have the same view of servicesirrespective of the provider
or the underlying technology employed by the provider.

This accomplishes the single most important objective of the WSOP initiative, which
isto enable a situation where application clients can automatically discover and
invoke optimization services via common Internet protocols without the need for a
specific integration exercise or any form of human intervention. WSOP in achieving
this also simplifies the process of describing, advertising and managing optimization
services. Consequently preventing the domination of the market by a handful of large
players and the proliferation of vendor specific approaches—interfaces, schemes etc.
for publishing functionality on the Internet. It is neither a standard nor isit yet a
proposed standard, but rather a recommendation on how best to solve the problems
encountered in delivering or accessing operations research functionality over the
Internet, in order to exploit the opportunities which the Internet and distributed
computing technology provides.

5.3.1 Background

The goal of delivering operations research functionality over the Internet is obscured
by a number of obstacles, some of which are symmetrical to problems which users or
organizations would face in attempting to access such functionality. These can be
grouped under broad headings such as: usability, flexibility, data definition, security,
management of services etc. These problems are not strictly limited to operations
research alone nor do they originate from it. In fact, the problems associated with
conducting business over the Internet have led to initiatives such as ebXML x[11] and
OASIS[36] whicham to facilitate global trade by delivering acommon set of
internationally agreed upon XML semantics and related document structures, that
govern business data exchanges over the Internet. However the objective of delivering
operations research functionality over the Internet has only recently materialised, and
as such little discussion has gone on as to how best to achieve this. Issues with which
the wider computing and Internet commerce computing community have been
grappling with for arelatively long time have as yet not been considered by the OR
community. Delegating the task of resolving these issuesto vendorsislikely to result
in a situation not that much better than the current one, where alarge number of
vendor specific schemes exist for solving what are essentially common and
reasonably straightforward problems. This not only resultsin duplication of effort and
the wasting of resources, but ultimately complicates the task of purchasing or utilising
OR functionality delivered viathe Internet. It could also lead to a situation where a
few large players dominate the marketplace making it difficult for newer or smaller
playersto gain afoothold.

The WSOP initiative aims to stimulate discussion of these issues and more
importantly at recommending a collective solution to them. Despite its name, WSOP
is more than just a message exchange protocol; it seeks to provide architectural
solutions to problems which are involved in distributing operations research
functionality over the Internet. It is not intended as a standard, but rather a
recommendation of how to solve common problems. It is structured in such away so
asto enable it to be used in application-to-application communication within an
enterprise, aswell asin the larger Internet arena. It is based on open international

Imperial College London 2003 54

standards such as XML, WSDL and SOAP, and utilises the typing technology offered
by AML and ORML.

5.3.2 WSOP Motivation

In order to fully appreciate WSOP, it isimportant to explain some of the issues which
motivateit. It is not possible to cover the full range of issues which the
recommendation tackles, as they do not fall within the scope of this paper. However a
summary of the key issuesis provided in this section.

5.3.2.1 Usability and Flexibility

These are perhaps the most difficult problems to overcome in order to effectively
deliver operations research functionality viathe Internet. Publishing software over the
Internet in itself is not a difficult task given the current array of tools in the software
market which are aimed at doing just this. The problem though isin what state the
software is published, and how usable it is. If anything, an interface which is very
complicated, fault intolerant or error prone will discourage users from making use of
it. Therefore the real challenge isto ensure that services are described in such away
that they are intuitive, easy to use and robust. Given enough demand, and adequate
resources, vendors are bound to achieve this, if for no other reason but to encourage
the purchase of their services. However, in the case where vendors provide their own
specific solutions i.e. define interfaces and architectures specific to the technology
which they are offering, a new and perhaps even more damaging problem would
arise—inflexibility. The best analogy for this problem isthat of the language barrier
faced by tourists. Whereas an interface provided by a particular vendor might suit its
purposes, if auser wishes to switch to another vendor, the user would have to re-write
parts of their system, in just the same way atourist generally hasto learn the basic
words of the language spoken in whichever country they are visiting (or at is advised
to do s0). It also becomes more difficult to implement solutions which require the
integration of two or more services. This is because these services will ultimately
have their own specific interfaces, possibly with their own typing conventions. In
such a scenario, software bridges would have to be put in place to enable the
combination of such services.

WSOP seeks to solve the problems of usability and flexibility by first identifying and
catal oguing the processes which providers and users are likely to be involved in and
extracting the information needs of such processes, and finally defining the interfaces
required for them based on the data requirements, and the data flow between the
parties involved in the process. For example, take a very simple process such as
invoking a solver over the Internet. Regardless of the software on either side of the
dividei.e. client or server, arepresentation of the model and its relevant data have to
be supplied to the server, and a representation of the results have to be returned by the
solver. Given this requirement for three data items, and the flow of theseitems, itis
plain to see that an interface which accepts amodel and its data as input, and returns a
solution structure isrequired. Thisisavery simple example but servesto illustrate the
point. First the processisidentified i.e. obtaining amodel solution. Then the
information required for the processi.e. model, model data, and a solution are
extracted from the process. These data and their associated flows are mapped to an
interface which accepts amodel and model data as input and returns a solution object.

Imperial College London 2003 55

The means of doing thisis borrowed from software engineering and as such should be
fairly intuitive to software engineers.

As aready mentioned, it is quite feasible for individual firmsto use similar
approaches to define their own interfaces; however the end result of thisisthat the
interface set will once more end up fragmented. WSOP attempts to avoid this
situation by defining a set of core but ultimately extensible interfaces. By making the
interfaces extensible, vendors can add extensions that tie in more closely with their
application model.

5.3.2.2 Data Definition

Within a given application context, an interface is unique due to itsidentifier or name,
the input(s) it receives and the output(s) it returns. The combination of these three
itemsis often referred to as an interface ‘ signature’ . Therefore the first step in
actually homogenising interfaces to operations research software is to determine a
representational format for the datai.e. atyping mechanism. Even if there was no
need to achieve flexibility or homogeneity, there would still be a need for vendors to
utilise typing mechanisms for transmitting information over the Internet. The
temptation is for every vendor to define its own types and data structures and of
course its own interfaces. There might even be atemptation among older and more
established vendors to ‘ shoe horn’ their existing data structuresinto aform that is
more suitable to Internet messaging. Either of these solutionsis bound to lead to more
confusion than exists at the moment. Application devel opers and users would once
more be forced into using vendor specific schemes, with all the attendant drawbacks
of such arrangements. In addition to defining aformat for representing the data, there
also needs to be some definition or description of what the data meansi.e. thereal
world concept that it embodies or encapsulates.

WSOP provides a solution to the problem of data representation by building on the
flexible, extensible, and portable type syntax provided by ORML and AML. WSOP in
itself also provides type definitions for control data, i.e. data which is not directly
related to the concepts of modelling embodied by AML and ORML but which are
required for the successful processing of transactions and the management of services.

5.3.2.3 Security

Security is a problem which has haunted the Internet community almost aslong as
Internet based communication has existed. In fact the security of electronic
communication pre-dates the Internet eraand is likely to remain an issue for the
considerable future. As such it isarecurring theme in material covering distributed
systems, especialy those which make significant use of the Internet or Internet-based
protocols. It is amulti-faceted topic of which some aspects are not directly applicable
to web based decision support services. This paper will only cover authentication
which in the view of the authors forms one of the fundamental security requirements
of an Internet based model for distributing software.

Authentication involves verifying the authenticity of user identification. It also
involves access control which in turn is concerned with maintaining and enforcing
user privileges and rights. There are a variety of authentication schemes, each with
different architectural, infrastructure and implementation requirements. The goal of
WSOP is to specify the most efficient and cost effective authentication mechanism

Imperial College London 2003 56

which is applicable to the OR software delivery model. In order to achieverthis, itis
important to identify the areas where authentication is required and what sort of
authentication is required.

5.3.2.4 Advertising

Service providers ultimately need a means of advertising their software or services to
potential customers. Operations research is a specialist market and as such some
services do not have enough massto justify the high cost of traditional advertising
media, or are simply unsuitable for such media. WSOP provides a new means of
advertising software by recommending a structure for UDDI registries of optimization
software. This not only enables service providers to advertise at a much reduced cost,
and at atargeted audience, but also symmetrically allows users to easily search for
services. The structure of the registry also facilitates a situation where searches can be
automated by software, thereby enabling the automatic discovery of services.
Generalizing the service interfaces ensures that services are described using the same
syntax thereby making it easier for providersto write to the registry, and also enables
the automatic integration of services at runtime.

5.3.2.5 Service Management

The WSOP recommendation includes information on the organisation of services so
as to enable easy management. Management can mean a situation where services are
grouped together and managed in tandem by a management server; it could also mean
the maintenance of WSOP style registries of services. It could also include tasks
which a client has to perform to enable the easy use of an unmanaged service. The
WSOP recommendation attempts to ensure that the same interfaces can be used to
accomplish these tasks, thereby providing flexibility on the choice of deployment
topology and method of access. For example aregistry will need to keep its
information up to date, therefore it has to occasionally check the status of services and
perform cleanup operations when it is satisfied that a service or agroup of servicesis
no longer active. In the same guise, a client program which is communicating directly
with an unmanaged node may want to verify the status of the node prior to sending a
request to it. In the case of a service deployed within an enterprise environment, a
special management service could be used to perform checks on the status of nodes.

5.4 OSCP (Optimization Service Connectivity
Protocol)

The OSCP recommendation is aimed initially at providing a Java abstraction of
optimization software interfaces. There is a variety of software utilised in a decision
support process and each of these dictates its own specific interfacing strategy.
Majority of the interfacing requirements are vendor, or even sometimes product
specific. This complicates the task of utilising products from more than one vendor or
utilising more than one product. Integration of different products, possibly from
different vendorsis often a costly and tedious exercise.

OSCP provides a standard means of invoking optimization software independent of
the specific interfacing requirements of such software. Thisis achieved by providing a
high-level abstraction of the software interface and delegating the implementation of
low level details to another piece of software called a“driver’. Asopposed to the

Imperial College London 2003 57

current scenario where application developers have to implement software bridges for
each system that makes use of optimization technology, these drivers can be
implemented once and re-used in multiple scenarios. To fully understand the impact
of this, consider a case where a decision support system or even amodelling system
has to interface with N different products. This requires the implementation of N
specific interface bridges. If M of such systemsisimplemented, then M x N interface
bridges are required. The OSCP recommendation aimsto bridge the interfaces of
client applications with that of operations research software. Thisis achieved by
limiting the view of software to the OSCP implementation. In essence client
applications no longer interact with operations research software directly but with the
OSCP implementation. Thisis then responsible for invoking the driver for the target
software, where the driver isresponsible for low level interfacing. Therefore there
need only be one generic driver for each software product, and this can be re-used in a
multiplicity of scenarios. As opposed to the current scheme where M x N interface
implementations are required (excluding platform dependencies), the OSCP
recommendation reduces this number to N. In essence N driversfor N product
interfaces. The implementation of the driver can be undertaken by the product
provider, another party, or possibly even an open source initiative.

OSCP in essence abstracts away from product interfaces, and recommend a vendor
neutral approach to integrating software. It achieves this by relying on the typing
mechanisms provided by XML, AML and ORML. These make it possible to abstract
away from vendor specific data representation schemes.

OSCP isimplemented in Java to guarantee portability across different computing
platforms. Although it is possible to implement the recommendation in other
languages, Java was selected as the best option asit fits into the vendor independent
approach espoused by the Open Optimization Framework.

5.4.1 Background

Real world applications of operations research theory usually require the combination
of different pieces of technology, possibly from different vendors. A decision support
system for example is likely to have one or more embedded solvers, one or more pre-
solve routines, and possibly one or more analysis tools. Each of these has different
interfacing requirementsi.e. each specifiesits own interface, which are often vendor
specific. ‘Interfaces’ in this sense also refers to the data structures used by the
software to represent information.

Interfacing to a piece of software involves implementing the calls to the software, and
converting internal data representation structures into those expected by the software.
Thisis bearable where the number of such software is kept to a minimum, preferably
one. However, when this has to be repeated for a variety of software, or where the
software in question is likely to change, then the problem becomes unbearably
expensive and time consuming to solve. In the case of decision support systems or
systems that are dependent on operations research software, the problem is further
complicated by avariety of factors. The software used is often dictated by the
problem being solved. The software and the problem both dictate the internal data
structures utilised by the system. To illustrate with an example, consider a portfolio
optimization system which has as its backend an optimization solver. The system

Imperial College London 2003 58

makes use of alinear model, which dictates that alinear solver must be used. The
linear solver specifies a representation format for model instances, and as such the
system uses this representational format. In the case where the system’ sinternal

model changes to a non-linear one, the solver will have to be changed. The new solver
will dictate a new representational format, which the system has to be ported to.

The example above is arelatively simple and straightforward one, consider the case
where the model in question is loaded and executed at runtime. Thisimpliesthat a
stable of solvers have to be maintained to cater for all model possibilities. Each of
these specifies a different interface and different data representation structures.
Consider the case where an analysistool is thrown into the mix. Thismay haveits
own solvers, or may even be dependent on a modelling system. It is more than likely
to specify its own interface and its own data structures. Integrating all these systems
together posses a very difficult challenge. Each hasits own interface requirements and
data representation format.

The solution is to abstract away from the interfaces and data representation formats
used by all these systems. In essence provide application clients with a uniform view
of operations research software, irrespective of the specific interface or data
representation requirements of such software. A not too dissimilar problem was faced
by early application developers who had to interface to relational database systems.
Each database provided its own set of interface libraries, thereby complicating the
task of using multiple databases or ensuring the portability of the code from one
database system to another. The problem was even more profound in the early days of
database programming before the emergence of SQL, where each database provided
its own syntax as well. This problem led to the birth of interfacing technol ogies such
as ODBC and JDBC. These provided application devel opers with asingle unified
view of database systems, irrespective of the specific interfaces supported by such
systems. The only requirement being that the target databases support SQL. The
details of low level interfacing are delegated to another library called a‘driver’ which
today is normally supplied by the database vendor. The driver however can be
implemented by any other party, and indeed there are a number of drivers which have
been produced by open source initiatives. The use of ODBC and JDBC in essence
provided developers the ability to integrate different databases at runtime without the
need to make any code changes. Drivers and connection details could be specified at
runtime, and these would be used by either ODBC or JDBC to connect to the target
database. This not only simplified integration, but also guaranteed the portability of
the application from one database system to another.

Applying asimilar concept to operations research, it is possible to envisage a scenario
where interface abstractions for software such as solvers and analysistools are used as
aproxy to such software. The mgjor obstacle to thisis the fact that the various
software make use of different data representational formats. In the case where these
representational formats can be abstracted, then the problem becomes relatively
straightforward to solve. AML and ORML both provide abstractions for
representation formats, thereby making the task of interface abstraction easier. OSCP
exploits the representation mechanism provided by ORML and AML, to create an
abstraction of operations research software interfaces. It isimplemented in the Java
language and as such can be used in avariety of platforms/environments,

Imperial College London 2003 59

The OSCP recommendation makes use of the delineation of roles and responsibilities
approach dictated by the framework. As such, the organisation of software interfaces
isidentical to that used by WSOP. In essence an interface is alogical concept which
maps onto the role performed by a piece of software. So if for example the softwareis
responsible for obtaining a solution then it will have a solver interface. If on the other
hand it is responsible for pre-solve analysis, then it will map onto a pre-solve analysis
interface. Thereisno limit on the number of roles performed by a piece of software;
however drivers have to be provided for the various interfaces which these roles map
onto.

The task of low-level communication with the target software is in essence delegated
to the driver. The client application communicates strictly with the OSCP
implementation, although facilities are provided to use vendor extensionsiif
application devel opers wish to do so. This means that new software can be integrated
by simply specifying a new driver; thereby eliminating the need for code changes.
Figure 5.17 provides an illustration of the OSCP architecture. In summary a
‘DriverManager’ isresponsible for maintaining alist of drivers, and this alows the
dynamic registration and retrieval of drivers. A driver abstraction is provided for the
various interface types such as solvers and validators. The diagram shows that there
can be a number of driver types each mapping onto arole as defined by the
framework. For example there can be a‘ SolverDriver’ and a‘ ValidatorDriver’, where
the latter is responsible for interfacing to a component which performs model
validation. A driver returns a‘ ServiceConnection’ to the target software. In the case
of asolver, a‘ SolverConnection’ isreturned, and in the case of avalidator,
‘ValidatorConnection’ is returned. The connection represents an abstraction of the
target software, and all communication with the software is performed using the
connection object. The connection and driver interfaces in essence represent abstract
concepts that expose methods based on AML, and ORML. Driver implementations
provide concrete representations of these interfaces which are specific to the target
system.

DriverManager
FregisterDriver()
FgetSolverDriver()
SgetValidatorDriver()

ServiceConnection Driver
/’/\\ /
T T
L n)) Ly n)
O ~ % U
) Validator Connection Solver Driver ValidatorDriver
Solver Connection
ShvalidateModelSyntax() ScreateSolverConnection() ScreateValidatorConnection()
FsolveModel()

Figure 5.17: Illustration of the OSCP architecture.

Imperial College London 2003 60

OSCP is not a standard, but rather a recommendation on how to ensure the
interoperability of operations research software. The motivations behind the
recommendation are summarised in the following section.

5.4.2 OSCP Motivation

The OSCP recommendation is still at an early stageinitslifecycle. It is quite likely
that the requirements addressed by the recommendation will alter from time to time
before the final draft due to contributions from external parties, and due to issues
raised during the implementation process. However the key requirements or drivers
behind the recommendation will remain the same. These are summarised below.

5.4.2.1 Ease of integration

The major motivation behind the OSCP recommendation is to ease the integration of
operations research software. It isvery likely that a variety of software will be
combined to solve real world problems of any significance. It isalso likely that
software will have to be integrated into the existing I T infrastructure of the
organisation wishing to implement a solution. This more often than not is an
expensive and time consuming exercise. The OSCP recommendation provides an easy
and well structured method of integrating software by abstracting away from the
interfacing requirements of each individual product.

5.4.2.2 Interoperability

Different software specify different interfaces and data structures, thereby
complicating the task of utilising multiple software in tandem. The requirement for
combining software is one that often arisesin real world applications of operations
research theory. The problems associated with meeting this requirement become
clearer if we consider a situation where the output from one software is required as
input to another. If both use different data structures or data representation
technology, combining both would require a programming exercise to convert the
data structures utilised by oneinto that expected by the other. Thisis simple enough
for two static pieces of software, however consider the case where the combination of
software is dynamic or hasto be performed at runtime, perhaps directed by user input.
Consider for example a supply management system, which can integrate into one or
more graphical tools used for presentation. The choice of the presentation format is
dictated by the user based on individual cognitive preferences therefore the output
from the internal solverswould have to be converted into aformat expected by the
chosen graphical tool. The solution to this problem would involve building several
components, each responsible for generating the data input expected by each possible
presentation tool. This example gets more complicated when there is more than one
solver involved, each with a different output format.

The OSCP recommendation provides an easy means of providing interoperable
solutions. A single and straightforward typing mechanism is provided by using AML
and ORML; consequently client applications can rely on a single data representation
format. Furthermore, the interface to each target software is abstracted, and the client

Imperial College London 2003 61

applications have asingle unified view of all software irrespective of the specific
interface requirements of each.

5.4.2.3 Portability

In order to achieve its aims the OSCP recommendation must not have any vendor
dependencies. This not only goes against the principles of interoperability and ease of
integration, but inadvertently introduces clashes of interest. Instead the
recommendation should be free of vendor specific constructs, schemes or concepts,
and should aim for a scenario where the success of the framework is not dependent on
vendor support.

Also the recommendation should not be dependent on any particular platform or
operating system. For thisreason it is implemented in the Java programming language
which should enable portability across avariety of platforms. The typing mechanisms
employed by it are XML based, and as such should guarantee the portability of data.

6 Future Direction

The output of research projects most likely have to make a transition to the non-
academic world at one stage or another if they are to be employed in solving real
world problems. It is quite likely that the output of a project may have to be revised or
tailored in order to meet more closely the requirements of the commercia world. In
some cases the revision process is an ongoing exercise, in which caseameansis
required to dictate the interval at which such revisions are made.

The framework in its current state includes two recommendations which are yet to be
finalised. In order to finalise these, the participation of other members of the academic
arenais required, and also those of the commercial world. The process of modifying
the recommendations or indeed the entire framework hasto be performed in a
controlled manner, and as such there needs to be a management process for
controlling contributions and implementing suggestions. Therefore the two major
tasks that have to be undertaken in the near future is to set up a development forum
and establish the guidelines for participating in this group, and secondly set up a
management process to control the evolution of the framework.

It isdifficult to overstate the case for participation given the nature of the problems
being tackled. Input is required from awide variety of professionalsincluding
members of the academic and commercia world. Thisis particularly because the
framework should be organised in such away that it is easy to usein practical
scenarios, and is robust enough to meet the requirements of today’ s computing
environment. Ideally participation should not be limited to either representatives of
the commercia world or members of the academic community. Thisisto ensure that
the best and brightest individuals are free to contribute to the further development of
the framework irrespective of affiliation.

Obviously any gathering or organisation which does not possess any sign of
leadership is very prone to dysfunction. Therefore there is a clear and visible need to
establish some sort of authority to govern the participation process. This authority will
most likely be in the form of aworking group or council. Its responsibilities will

Imperial College London 2003 62

include: defining a process by which individuals can contribute to the project;
managing the implementation or inclusion of ideas, changes to the framework; and
more importantly managing the process by which new versions of the framework are
published to the external world i.e. the versioning or release process. It is envisaged
that once the working group is established the framework will become more or less an
independent entity with awell managed evolution process.

7 Conclusion

The major motivation behind the numerous efforts to establish a new representation
format for optimization models and model instances is the limitations associated with
current formats. In addition to solving these problems, it is expected that any new
representation format will exploit advances in modern computing technology,
particularly in the areas of Internet and distributed computing. This paper has
identified the problems associated with model representation schemes, and outlined
the major opportunities which the Internet provides to operations research. It has also
examined current initiatives aimed at establishing new representation formats for
optimization model instances, and outlined the weaknesses of these initiatives.
Whereas they are suitable for representing instances of specific classes of
optimization model, they do not posses the features for a general representation
format capable of covering the known classes of optimization and constraint
programming models, and their associated instances. They are also not suitable for
decision support environments, nor do they fit closely with Internet based
optimization. Thisis particularly due to the fact that they are tied to specific
paradigms such as linear or mixed-integer programs, and they do not provide for the
easy re-use of models. In summary these initiatives are aimed and are highly suitable
for representing instances of specific types of optimization models.

The framework described in this paper not only possesses features to enable the
successful representation of the majority of known optimization and constraint
programming model classes, but also the data required to instantiate such models. It
abstracts away from specific representation formats and as such offers a portable
means or representing models, model instances and solution or result information. In
addition to providing portable representation formats, this framework also includes a
number of recommendations based on standards and technol ogies such asWSDL,
SOAP, UDDI and Java which aim to simplify: distributed optimization in general and
in particular Internet based delivery of functionality; and the task of utilising
optimization software in real world applications.

The framework therefore provides an integrated solution to the problems of model
and instance representation, Internet based optimization, and the use of optimization
software, thus clearly meeting the requirements of a new representational format for
optimization and indeed constraint programming models.

Imperial College London 2003 63

8

1

2.

10.
11.
12.
13.
14.
15.

16.

17.

18.

19.

20.

21.

22.

Bibliography

F. Berman, “ Grid Computing - Making the Global Infrastructure a Reality” , John
Wiley and Sons Ltd, 2003

George Coulouris, Jean Dollimore, Tim Kindberg, “ Distributed Systems -
Concepts and Design, 3rd Edition” , Addison Wes ey, 2000

Hemant K. Bhargava, “ Decision Support Systems and the World Wide Web” ,

H. K. Bhargava, A.S. King, and D.S. McQuay, “DecisionNet: Modeling and
Decision Support Over the World Wide Web”, Proceedings of the Third ISDSS
Conference, pp. 499-506, Hong Kong, June 22-23, 1995.

H. K. Bhargava and R. Krishnan, “ The World Wide Web: Opportunities for
Operations Research and Management Science” , INFORMS Journal on
Computing, 10:4, pp. 359-383, 1998

John W. Chinneck, “ Analyzing Mathematical Programs using MProbe” , Annals
of Operations Research, vol. 104, pp. 33-48, 2001

JW. Chinneck. “MINOS11S): Infeasibility Analysis Using MINOS’ , Computers
& Operations Research, 21(1):1-9, 1994

CORBA, http://www.omg.org/corbal

C.J. Date. “ An Introduction to Database Systems” , Addison Wesley, 1999

Obi C. Ezechukwu and Istvan Maros. “AML.: Algebraic Markup Language’ ,
(forthcoming)

Obi C. Ezechukwu and Istvan Maros. “ORML.: Optimization Reporting Markup
Language’ , (forthcoming)

Obi C. Ezechukwu and Istvan Maros. “OSCP: Optimization Service Connectivity
Protocol” , (forthcoming)

Obi C. Ezechukwu and Istvan Maros. “WSOP: Web Services Optimization
Protocol”, (forthcoming)

Robert Fourer, David M. Gay, and Brian W. Kernighan. “AMPL: A Modeling
Language for Mathematical Programming”, Duxbury Press/Brooks/Cole
Publishing Company, 1993

Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. “Design
Patterns. Elements of Reusable Object-Oriented Software” , Addison Wesley,
1995

A.M. Geoffrion. “An introduction to structured modelling” , Management Science,
33:547-588, 1987

Harvey J. Greenberg. “ A Computer-Assisted Analysis System for Mathematical
Programming Models and Solutions: A User’s Guide for ANALYZE” , Kluwer
Academic Press, Boston, MA, 1993

Harvey J. Greenberg. “ The ANALYZE rulebase for supporting LP analysis’,
Annals of Operations Research, 65:91-126, 1996

Harvey J. Greenberg and Frederic H. Murphy, “Views of mathematical
programming models and their instances’ , Decision Support Systems, 13:3-34,
1995

Bjarni V. Halldorsson, Erlendur S. Thorsteinsson, Bjarni Kristjansson. A
“Modelling Interface to Non-Linear Programming Solvers. An Instance: XMPS,

2000

Imperial College London 2003 64

http://www.smeal.psu.edu/~bhargava/
http://www.omg.org/corba/
http://www.ini.cmu.edu/emarket/
http://www.ebxml.org
http://www.maximal-usa.com/papers/xmps/xmps.pdf

23. Bjarni Kristjansson. “ Optimization Modeling in Distributed Applications. How
New Technologies such as XML and SOAP allow OR to provide Web-based

24, HTML, http://www.w3.ora/MarkUp/

27. Leo Lopes and Bob Fourer, “An XML-based Format for Communicating
Optimization Problems’ ,

thttp://senna.iems.northwestern.edu/xml/presentations/L opesFourerMiamiBeach01
28. Irvin Lustig. “ Embedding CPLEX using the ILOG CPLEX Callable Library” ,

'http://www.il og.com/products/optimization/Call ableL ibrary.pdf

29. Mathematical Markup Language (MathML ™) 1.01 Specification,
hitp://www.w3.0rg/TR/IREC-MathML/

30. Istvan Maros and Mohammad Haroon Khalig. “Advances in Design and
I mplementation of Optimization Software” , European Journal of Operational
Research 140:322-337, 2002

31. Brett McLaughlin, “Java and XML" , O’ Reilly & Associates, Inc., 2000

32. MPL Modeling System. ;http://www.maximal -usa.com/mpl/mplbroc.html

33. MPSInput Format, http://www-
fp.mcs.anl.gov/otc/Guide/OptWeb/continuous/constrai ned/linearprog/mps.html

34. Eric Newcomer, “ Understanding Web Services: XML, WSDL, SOAP, and
UDDI”, Addison Wesley, 2002

35. NEOS Server, http://www-neos.mcs.anl.qov/neos/

36. OASS http://www.oasis-open.org/homelindexphyy

37. ODBC, http://msdn.microsoft.com/library/default.asp?url=/library/ens
us/odbc/htm/odpl.asp
38. Open Grid Services Architecture,

2.pdf
39. OR-Objects, http://opsresearch.com/cgi-bin/mainindex.cq

40. Optimisation Service Provision, http://www.osp-craft.com/
41. Oracle XML Developer’s Kit for Java,

thttp://technet.oracle.com/tech/xml/xdk java/content.html
42. The SF Reference Document,

Imperial College London 2003 65

http://www.maximal-usa.com/slides/Svna01Max/index.htm
http://www.w3.org/MarkUp/
http://www.research.ibm.com/osl/
http://java.sun.com/products/jdbc/
http://senna.iems.northwestern.edu/xml/presentations/LopesFourerMiamiBeach01
http://www.ilog.com/products/optimization/CallableLibrary.pdf
http://www.w3.org/TR/REC-MathML/
http://www.maximal-usa.com/mpl/mplbroc.html
http://www-neos.mcs.anl.gov/neos/
http://www.oasis-open.org/home/index.php
http://msdn.microsoft.com/library/default.asp?url=/library/en-
http://www.ggf.org/meetings/ggf7/drafts/draft-ggf-ogsa-platform-
http://opsresearch.com/cgi-bin/mainIndex.cgi
http://www.osp-craft.com/
http://technet.oracle.com/tech/xml/xdk_java/content.html
http://www.numerical.rl.ac.uk/lancelot/sif/sifhtml.html
http://www.w3.org/TR/SOAP/
http://www.w3.org/MarkUp/SGML/
http://www.gams.com/docs/intro.htm
http://www.w3.org/TR/wsdl
http://www.uddi.org/
http://xml.apache.org/
http://xml.apache.org/
http://www.w3.org/XML/
http://www.w3.org/XML/Schema
http://www.maximal-usa.com/papers/xmps/
http://www.w3.org/Style/XSL/

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

