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Abstract

The learning system Progol5 and the underlying inference method of Bot-
tom Generalisation are firmly established within Inductive Logic Program-
ming (ILP). But despite their success, it is known that Bottom General-
isation, and therefore Progol5, are restricted to finding hypotheses that
lie within the semantics of Plotkin’s relative subsumption. This report
provides a rational reconstruction, critical analysis, and extension of Pro-
gol5 and Bottom Generalisation. In particular, a previously unsuspected
incompleteness of Progol5 with respect to Bottom Generalisation is ex-
posed, and a new approach is proposed, called Hybrid Abductive Inductive
Learning (HAIL), that integrates the ILP principles of Progol5 with Ab-
ductive Logic Programming (ALP). A proof procedure is described, also
called HAIL, that not only overcomes this newly discovered incompleteness
of Progol5, but further generalises Progolb by computing multiple clauses
outside Plotkin’s relative subsumption. A semantics is presented, called
Kernel Generalisation, which extends that of Bottom Generalisation and

includes the hypotheses constructed by HAIL.
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Chapter 1

Introduction

This report is concerned with two areas of Artificial Intelligence: Inductive and Abductive
Logic Programming. In particular, this report considers two prominent systems — Muggleton’s
inductive system Progol, and the abductive-SLD procedure of Kakas and Mancarella — and
proposes a novel approach, called Hybrid Abductive Inductive Learning, for their generalisa-
tion and integration. This chapter begins in Section 1.1 by introducing the key background
concepts and describing the principal motivations of this work. Section 1.2 then outlines
the main objectives of this research and provides a hypothesis statement. This is followed
in Section 1.3 with a summary of the contributions of so far achieved. Finally, Section 1.4
outlines the structure of this report.

1.1 Motivation

Machine Learning is the branch of Artificial Intelligence that seeks to better understand
and deploy learning systems through the analysis and synthesis of analogous processes in
machines. The specific task of generalising from positive and negative examples relative to
given background knowledge has been much studied in Machine Learning, and when com-
bined with a first-order clausal representation is known as Inductive Logic Programming (ILP)
[Mug91, MR94]. Given background knowledge B, positive examples ET, and negative ex-
amples E~, the task of ILP is to find a hypothesis H that — when added to B — entails E*
and is consistent with £~. In practice, this hypothesis H is constructed from among several
possible hypotheses by some particular method of inductive inference, using some form of
user-specified language and search bias.

The Progol system of Muggleton [Mug95] is a widely-applied ILP system that has been
successfully applied in numerous real world applications; most notably in the field of bioin-
formatics (see for example [SMSK96, FMPS98, TMS01]). The Progol language bias is de-
termined by a set of user supplied mode declarations that define a hypothesis space within
which hypothesised clauses must fall. The Progol search bias is determined by an in-built
preference metric, called compression, that prefers shorter hypotheses over longer hypotheses.
Underlying Progol is the inference method of Bottom Generalisation [Mug95, Yam99], which
given background knowledge B and a single positive seed example e, constructs and gener-
alises a clause, denoted Bot(B,e) and called the Bottom Set [Mug95] of B and e, to return a
hypothesis h that when added to B entails e.

Despite the success of Progol, it is shown in [Yam97, Yam99] that Bottom Generalisation,



and therefore Progol, are limited to deriving clauses h that subsume e relative to B (in the
sense of [Plo71]). In addition to this semantic restriction, Progol is also subject to several
sources of procedural incompleteness. It is true that some of this incompleteness has been
deliberately introduced into Progol in order to improve efficiency. The restriction to Horn
clause logic, for example, allows for the use of efficient logic programming technologies, while
retaining sufficient expressivity for many applications. But much of the incompleteness of
Progol is less intentional. For example, until recently, Progol suffered from a common limita-
tion called Observation Predicate Learning (OPL) [MBO00], whereby h is restricted to defining
the same predicate as e, and which was found to hinder the use of Progol in real applications.

Progol5 [MBO00] is the most recent system in the Progol family. Like its predecessors
Progol5 is based on an approach called Mode Directed Inverse Entailment (MDIE) [Mug95],
which refers to the extensive use made of mode-declarations in both the construction and
generalisation of the Bottom Set. But in addition Progol5 incorporates a significant extension
of MDIE, called Theory Completion with Inverse Entailment (TCIE) [MBO00], that partially
overcomes the limitation of OPL. This enhancement is due to the introduction of a routine,
called STARTSET, for computing non-trivial atoms in the head of the Bottom Set. But
although it improves substantially upon Progol4, there remain several significant limitations
from which Progol5 still suffers — some of which are addressed in this report. Interestingly,
it will be revealed that one particularly unfortunate such limitation is due to the inherent
incompleteness of the STARTSET algorithm itself.

It turns out that the computation of atoms in the head of the Bottom Set and the op-
eration of the STARTSET routine are intimately connected to Abductive Logic Programming
(ALP) [KKT92], which is a close relative of ILP. The field of ALP is a branch of Artificial
Intelligence that is concerned with reasoning under incomplete information in a logic pro-
gramming context. ALP automates the task of explaining a goal relative to given theory and
integrity constraints. Thus given theory 7', goal g, and integrity constraints IC, the task
of ALP is to find a hypothesis A that together with T entails g and is consistent with IC.
But whereas ILP seeks new clauses H to generalise given clauses E* and E—, ALP is less
ambitious, seeking instead new facts A to explain given facts g. In addition, the hypothesis
A is further restricted to a set of so-called abducibles, which are a set of predefined ground
atoms that define the allowable assumptions. Prominent within ALP is the Abductive-SLD
(ASLD) proof procedure of Kakas and Mancarella [KM90], which augments conventional SLD
resolution with the facility for abductive reasoning.

The connection between STARTSET, Bottom Generalisation, and ALP is established in
[MBO00], where it is suggested that STARTSET can be viewed as a form of abduction, and in
[Yam00], where it is shown that atoms in the head of the Bottom Set can be computed by
an abductive proof procedure. However, so far, neither the relationship between STARTSET
and Bottom Generalisation, nor the relationship between Bottom Generalisation and ALP,
have been sufficiently well analysed. The latter has been formally studied only in the context
of definite clause logic, and the former has not been formally studied at all. The need for
such a study is increased by the discovery, made in this report, of a previously unsuspected
incompleteness of the STARTSET routine with respect to its intended semantics.

This newly discovered incompleteness of STARTSET, and consequently of Progol5 as a
whole, is illustrated in Example (Ex.1) below. In this example, p, ¢, r and s are propositions
and the background knowledge, denoted Bj, is the clausal theory consisting of the three



clauses (in standard Prolog notation) p:-¢q,s and ¢:-r and s:-r. The seed example e; is the
ground atomic clause p. It is shown in this report that while the hypothesis h; consisting
of the atomic clause r is derivable by Bottom Generalisation, it cannot be computed by
Progol5. This surprising result indicates that a deeper analysis is required of Progol5, and
in particular of the soundness and incompleteness of the STARTSET algorithm. It also raises
several questions concerning the origin, nature, and extent of this incompleteness, as well as
motivating the investigation of techniques capable of surmounting it.

By ={p-q,s}U{q:-r} U{s:-r} er=p hi=r (Ex.1)

(Ex.1) is not just a trivial example that a reasonable ILP system might be expected to
solve; it is also an exemplar of general pattern of reasoning likely to prove useful in practice.
This pattern can be described as follows: some desired effect (the atom p, here) is explained
by a number of preconditions (¢ and s) that share a common cause (r), and the hypothesis
is found by identifying this common cause (r). A related pattern of reasoning, which is
exemplified in (Ex.2) below, can be described as follows: some desired effect (p) is the result
of a certain property (the unary predicate ¢t) holding of some class of individuals (a and b),
and the hypothesis is found by extending this property to a wider class of individuals (all X).

By = {p:-t(a),t(b)} €2 =p he = t(X) (Ex.2)

The relationship between (Ex.1) and (Ex.2) can be seen by informally identifying proposi-
tion g with the atom ¢(a), proposition s with the atom #(b), and proposition 7 with the formula
VX (t(X)). The first clause of B; becomes identical to By, and the remaining two clauses of
By are tautologies. It is interesting to note that these two patterns are typical examples of
what are sometimes referred to in the literature as ‘explanatory’ and ‘predictive’ induction,
or ‘abductive’ and ‘inductive’ reasoning [FK00]. Note also that many much more interesting
examples are easily obtained as relatively straightforward generalisations and combinations
of these basic patterns’.

Yet despite its apparent simplicity, neither can (Ex.2) be solved by Progol5. For it is
shown in this report that ho is not derivable by Bottom Generalisation from By and es,
and therefore it cannot be computed by Progol5. But, so far, this and many other inherent
limitations of Bottom Generalisation have not been satisfactorily addressed. Although the
discovery in [Yam97] of the semantic incompleteness of Bottom Generalisation did prompt the
development of a number of complete hypothesis finding schemes for full clausal logic, such as
[YF00, Ino01a], where such systems have been implemented, they are highly computationally
expensive and only semi-automatic. Consequently, these methods have not yet approached
the same degree of practical success as Progol.

!For example, the background theory B = {phd(X):- pass(supervisor, X), pass(examiner, X)} - stating
that a student earns a PhD if his supervisor awards him a pass, and so does his examiner - is a generalisation
of (Ex.2): obtained by identifying i) p and t with phd and pass (adding an additional argument), and ii) a
and b with supervisor and examiner. Given the example e = phd(albert) the hypothesis h = pass(X, albert)
is obtained directly from the pattern above. Clearly one can generalise further; for example by making
supervisor and examiner more realistically into unary functions. Alternatively, the background theory
B = {phd(X) :- pass(supervisor, X), pass(examiner, X )} U {pass(examiner, X ) :- pass(supervisor, X )} - stat-
ing in addition that if the supervisor awards a pass then the examiner will follow suit - is a special case
of (Ex.1): obtained by identifying i) p with phd(X), ii) ¢ with pass(supervisor,X), and iii) r and s with
pass(examiner, X); and by dropping the resulting tautology. Given the example e = phd(albert) the hypoth-
esis h = pass(supervisor,albert) is obtained from the pattern above.



Another fundamental limitation of Bottom Generalisation is that it can hypothesise only
one single clause in response to each seed example. This restriction can often result in
Progolb failing to find the best hypothesis, and sometimes in failing to find any hypothesis at
all. For instance, given B3 and e3 as in Example (Ex.3) below, the only hypothesis that can
be derived by Bottom Generalisation is ez itself. The more likely hypothesis H3, consisting
of the two ground atomic clauses ¢ and 7, cannot be derived by Bottom Generalisation. An
attempt to overcome this limitation is described in [Yam00], where a method based on Bottom
Generalisation is proposed that is able to hypothesise a set of unit clauses in response to a
single seed example. But while that method would be able to solve Example (Ex.3), it cannot
be applied to Horn clauses, and it cannot hypothesise multiple non-unit clauses.

Bs ={p:=-q,r} e3=p Hs = {q} U{r} (Ex.3)

In conclusion, it is believed this discussion supports the belief that it would comprise
a significant and useful achievement if a natural and efficient generalisation of Progol5 and
Bottom Generalisation were to be obtained that supports, in Horn clause logic, the three
reasoning patterns exemplified in (Ex.1), (Ex.2) and (Ex.3) above. One promising means to
this end, which is identified and pursued in this report, is inspired by a closer examination of
the relationship between Bottom Generalisation and ALP, and by combining abductive and
inductive learning within a cycle that generalise Progol5. For, until now, the integration of
Bottom Generalisation and ALP has not been studied in sufficient generality, and existing
work has used abduction to compute just one atom at a time, for use in the head of a
single induced clause. A natural extension is to employ ALP in its usual setting of computing
multiple atoms and to use those atoms in the heads of several simultaneously induced clauses.

1.2 Objective

The goal of this research is to develop a new ILP approach that builds on the practical
success of Progol and Bottom Generalisation by exploiting their many proven strengths while
overcoming some of their limitations. What is envisioned is a successor to Progol5 that
operates on precisely the same inputs, in much the same way as Progol5, but overcomes
some of the procedural and semantic incompletnesses outlined above. The hypothesis is
that this vision can be realised by integrating the full ASLD procedure within an inductive
cycle of learning that generalises Progol5. In particular, by carefully exploiting multiple
atom abductive hypotheses it is believed that practical procedures can be developed that will
be able to infer multiple clauses in response to a single seed example, and to derive useful
hypotheses outside the semantics of Bottom Generalisation.

There are two key objectives. The first objective is to provide a fuller analysis of the
relationship between Progolb, Bottom Generalisation, and ALP. This requires a formal in-
vestigation of the soundness and completeness of the Progols STARTSET with respect to
Bottom Generalisation, a mathematical characterisation of any incompleteness thereby un-
covered, and a formal investigation of the relationship between Bottom Generalisation and
ALP within Horn Clause logic.

The second objective is to generalise the Progol approach. A proof procedure is required
that behaves much like Progol5, but is able to infer multiple clauses from a single seed example,
and supports the three reasoning patterns exemplified in the previous section. A semantics



is required that generalises Bottom Generalisation, and with respect to which the soundness
and completeness of the new procedure can be established. Finally, in order to validate the
approach, a prototype should be implemented and applied to a small case study.

1.3 Contribution

This report provides a rational reconstruction, critical analysis, and extension of Progol5
and Bottom Generalisation. The relationship between Bottom Generalisation and relative
subsumption is investigated, and the clear and intuitive role played by the Bottom Set in
the theory of relative subsumption is established. Bottom Generalisation is motivated simply
and naturally within the context of the well-known ILP cover-set approach. The Progol5
algorithm and in particular the STARTSET routine is analysed, confirming its suspected
soundness, but exposing a previously unsuspected incompleteness with respect to Bottom
Generalisation. Two classes of literals are identified that STARTSET fails to compute. The
notion of vacuous literal is introduced and used to characterise the first incompleteness class.
It is argued, however, that such literals are of little practical value, and that their non-
computation by STARTSET is in fact beneficial to Progol5. The notion of c¢*-refutation is
introduced in order to characterise the second incompleteness class. This time the failure of
STARTSET is serious, resulting in the inability of Progol5 to construct many hypotheses that
would be expected in practice. The connection between ALP and Bottom Generalisation is
investigated in the context of Horn clause logic, and a reformulation of the Bottom Set is
obtained that reveals two distinct abductive and deductive components. A novel approach
is proposed, called Hybrid Abductive Inductive Learning (HAIL), that integrates abductive,
deductive, and inductive reasoning within a cycle of learning that generalises Progol5. Unlike
previous approaches for integrating abduction and Bottom Generalisation, this new approach
exploits the ability of ALP to compute multiple atom hypotheses in order to induce multiple
clauses. A proof procedure is proposed, also called HAIL, that not only overcomes this
newly discovered incompleteness of Progol5, but further generalises Progol5 by computing
multiple clauses in respounse to a single seed example and deriving hypotheses outside Plotkin’s
relative subsumption. A semantics is presented, called Kernel Generalisation, which extends
that of Bottom Generalisation and includes the hypotheses constructed by the HAIL proof
procedure. A refinement of this semantics is described, called Kernel Set Subsumption, that
is more amenable to logic programming methods. The key concept, called a kernel, is a logical
formula that is a generalisation of the Bottom Set. The notion of K-refutation is introduced
as a first attempt to characterise the class of hypotheses derivable by HAIL.

1.4 Structure

This report is structured as follows. Chapter 2 reviews the basic notation and terminology
used in this report. Chapter 3 provides an introduction to ILP followed by a rational recon-
struction and critical analysis of Progol5. Chapter 4 provides a brief introduction to ALP and
overview of the ASLD proof procedure. Chapter 5 introduces Hybrid Abductive Inductive
Learning. This chapter introduces the semantics of Kernel Generalisation, the refinement of
Kernel Set Subsumption, and the HAIL proof procedure. Chapter 6 compares this approach
with related work. Finally, the report concludes with a summary and a discussion of future
work.
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Chapter 2

Preliminaries

This report assumes a familiarity with classical first order logic, clausal form logic, and logic
programming. The purpose of this chapter is to briefly review the relevant background con-
cepts and to summarise the basic notation and terminology used throughout this report. First,
Section 2.1 recalls some standard definitions and results from logic and logic programming.
Then, Sections 2.2 and 2.3 define and discuss the key notions of Skolemisation, incapitation,
relative subsumption and c-derivations. Finally, Section 2.4 specifies the knowledge base of a
simple running example that will be used throughout this report.

2.1 Notation and Terminology

This section recalls some standard definitions and results from the fields of classical logic and
logic programming. The following paragraphs provide a brief summary whose main purpose
is that of introducing the basic notation and terminology used in this report. For further
details the reader is referred to the references provided.

First Order Logic. The following treatment closely follows [End72]. A term is defined
recursively as a constant symbol ¢, a variable symbol X or a function symbol f (of arity
m > 1) applied to an m-tuple of terms. An atom is a proposition symbol g, or a predicate
symbol p (of arity » > 1) applied to an n-tuple of terms. The notation z/k denotes that z
has arity k, where = represents a function or predicate symbol and k is a positive integer.
If A =p(t1,...,ty) is an atom and p* is a predicate of arity n, then the notation A* will
denote the atom p*(t1,...,t,). A literal L is an atom A or the negation of an atom —A.
The functions pred(L) and var(L) return respectively the predicate symbol, and the set of
all variables appearing in L. The notation L denotes the complement of L and is obtained
by negating L if is un-negated, and un-negating L if L is negated. Formulae of classical
logic will be written with the standard connectives A,V,—, —, <>, the quantifiers V,3, and
the logical constants T, L. The relations =, = and = will denote classical logical entailment,
logical equivalence, and syntactic identity. The relation = will also be referred to as logical
implication. Let F', G and H denote arbitrary logical formulae. If G |= H, then G is said to
entail or to logically imply H. Given H, the task of finding some G such that G = H is called
the task of straight inverse implication or just inverse implication. If F NG |= H, then G is
said to logically imply H relative to F. Following [NCAW97], this will sometimes be written
G =r H. Given F and H, the task of finding some G such that FAG |= H is called the task of
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relative inverse implication. The metalogical equivalences FAG = H iff F|=G — H and
FAGEL iff F |= -G will be referred to as the entailment theorem, and the equivalence
FAGEH iff FA-H | -G will be referred to as the principle of Inverse Entailment (IE).
The conjunction and disjunction operators are generalised to operate over sets of formulae,
so that if F = {F},...,F,} is a set of formulae then A F is the formula F; A ... A F,, and
\/ F is the formula F; V...V F,. By convention A® = T and \/0 = L. A logical theory
is an implicitly conjoined set of formulae. Let T and L be logical theories. A conservative
extension of T with respect to L is any theory S such that S |= ¢ iff T' = ¢ for all formulae
¢ € L. When used in this way, L will be referred to as the ‘language’ of T. A substitution
0 ={Vi/t1,...Vy/ts} is a set of bindings V;/t;, where each V; is a distinct variable and each
t; is a term. Note that it is not assumed that V; does not occur in ¢; for all 4,5 — thus
idempotency of substitutions is not enforced. The application of a substitution 8 to a term
t is denoted t0 and defined as the term resulting from the replacement of each occurrence
of the variable V; in ¢ by the term ¢;. The application of a substitution 8 to a formula F' is
denoted F'@ and defined as the formula resulting from the replacement of each free occurrence
of the variable V; in F' by the term ¢;. Note that it is assumed, if necessary by a suitable
renaming of bound variables in F', that for all ¢ there is no variable U; # V; occurring in t;
such that V; occurs free in F' within the scope of a quantifier that binds U; — thus wvariable
capture is not permitted. Given a formula F', then a substitution ¢ = {Vi/c1,...Vy/cn} is
a Skolemising substitution for F iff is o is a substitution that binds distinct variables V; to
distinct constants ¢; not appearing in F. If ¢ is a Skolemising substitution then o~! will
denote the anti-Skolemisation of o. When o~ ! is applied to a term or a formula, it behaves
as a substitution, but replaces each Skolem constant ¢; by the corresponding variable V;. The
sets GA and GL will denote respectively the sets of ground atoms and literals of an assumed
first order language £ with signature 3.

Clausal Form Logic. The following treatment closely follows [Rob65] and [Llo87]. A
clause C = {A4,...,Ap,~B1,...,—By} is a set of literals, the A; and B; being atoms. Any
clause C appearing in a logical formula is understood to denote the disjunction of its liter-
als, and unless indicated otherwise, all variables in C' are assumed to be universally quan-
tified at the front of the clause. A clause C will often be written in the implicative form
Ai,...,Ap-By,...,By. The sets C* = |J; A; and C~ = Uj Bj are called respectively the
head and body of C. If C' is a clause and o is a substitution, then the application of o to C,
denoted Cj, is the clause {4io0,...,An0,~B1o0,...,7Byo}. For convenience, C, will some-
times be written Co; it being understood that the explicit substitution is to be performed
prior to the implicit quantification. As is the case with formulae, so a substitution ¢ is called
a Skolemising substitution for a clause C iff o binds each distinct variable in C' to a fresh
Skolem constant. A Horn clause is a clause having at most one atom in the head. A non-
empty Horn clause is either: a fact A, a rule A:-B1,..., By, or a denial :- B1,...,B,. The
empty-clause is represented [0 and denotes the logical constant 1. A clause with exactly
one head atom is called definite, and a clause with none (i.e. a denial) is called negative.
A clausal theory or theory T is a set of clauses {Ci,...,Cy}. Any theory T appearing in a
logical formula is understood to denote the conjunction of its clauses. A theory composed
entirely of Horn/definite/negative clauses is called a Horn/Definite/Integrity Theory. The
theory C denotes that obtained from C by standardising apart all of the clauses (so that no
two mention the same variable). The empty-theory is represented with the symbol B and
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denotes the logical constant T. For any clause C = A;,..., Ay, -B1,..., By, the clausal
complement of C is the clausal theory, denoted C, consisting of the clauses - Ajo and ...
and :-A,,0 and Bio and ... and B,o, where o is a Skolemising substitution for C. The
extended notation C, will be used whenever it is necessary to refer to the particular Skolemis-
ing substitution. Given three clauses C1, Cy and Cj3, the notation C; € R(C2,C3) denotes
that C] is a resolvent of Co and C3. The terminology input clause is used to denote a leaf in
a resolution tree. Note the following relationships, which follow from the above definitions.
First, C =V(A1V...VA,V-B1V...V-B,)=V(A1 V...V A, < Bi A...\B,). Second,
C=VY(ANC~ — \/C"). Third, :-By,...,B, =-3(B1A...ABy). Fourth, T=Cy A... AC,,.
Fifth, C, = {{-~A410},...,{Bno}} =—~A410 A... A Byo = =C,.

Definite Logic Programming. A definite theory P is also called a Definite Logic Program.
A query Q = {Q1,...,Qn} is a finite set of atoms (referred to as calls). For convenience
a query @ will be written in the interrogative form 7Qq,...,Q,. A query @ is said to
succeed from a program P with answer substitution ¢ iff there is a SLD derivation of [J from
PU{:-Q1,...,Qn}, and ¢ is the composition of the unifiers, restricted to the variables in Q.
This eventuality will be written ¢ € SLD(P, @), or more compactly P F Q¢. The application
of ¢ to @ will be denoted Q¢ and called an answer. Wherever an answer (Q¢ appears in a
logical formula, it is understood to denote the universal closure of the conjunction of the calls
of @, to which the substitution ¢ has first been applied. Note that Q¢ =V(Q1dA ... A Qnd).
The simplified notations SLD(P, Q) and P @ will be used when it is not necessary to refer
to a particular answer substitution. The following soundness and completeness results are
well known: If P+ Q¢ then P = Q¢. If P = Q¢ then there exist substitutions ¢’ and ¢”
such that P+ Q¢' and ¢ = ¢'¢"”. More generally, if H is a Horn clause theory then H F Q¢
implies H = Q¢, and H = Q¢ implies that either H |= O or there exist substitutions ¢’ and
¢" such that H - Q¢' and ¢ = ¢'¢". The completeness results just stated are instances of
the subsumption theorem [NCAW97], and will be referred to as such.

Theta-Subsumption. A clause C is said to 6-subsume a clause D, written C' % D, iff
C60 C D for some substitution 6. A clause is reduced iff it does not §-subsume some proper
subset of itself. The relation % induces a lattice ordering on the set of reduced clauses (up
to renaming of variables). The bottom element in this ordering is the empty-clause O and
represents a logical contradiction, and the top element is the clause in which all atoms of
the Herbrand base appear in both head body and represents a logical tautology. By a slight
abuse of notation, this top element will be denoted B and called the null-clause. By a further
abuse of notation, both the empty-clause and the null-clause will sometimes be written (.
The #-subsumption sub-lattice bounded from below by a clause C and from above by a clause
D will be denoted [C, D], and the entire #-subsumption lattice is therefore denoted [[J, H]. It
is true that if C' %= D then C = D, but the converse does not hold in general: for example, let
C =n(s(X)):-n(X) and D = n(s(s(X))):-n(X). The notion of §-subsumption is generalised
to operate between clausal theories as follows: A clausal theory S 6-subsumes a theory T,
written S O T, iff every clause in T is #-subsumed by at least one clause in S.

Normal Logic Programming. A NAF-literal is an atom A or the negation-as-failure of
an atom «~A. A Normal Clause is written A:-By,...,B,,, ~C4,..., »C, where the A and
B; and C are atoms. In other words, a normal clause consists of a single atom in the head,
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and a set of NAF literals in the body. A set of normal clauses is called a Normal Logic
Program. A query Q =7Q1,...,Q, succeeds from a normal logic program N with answer
substitution ¢ iff there is a SLDNF derivation of O from N U {:-Q1,...,Q,} and ¢ is the
composition of the unifiers, restricted to the variables in (). This eventuality will be written
¢ € SLDNF(N, Q) or N|~ Q¢. The following soundness result is well known: If N|j~ Q¢
then Comp(N) = Q¢ where Comp(N) denotes the Clark completion [Cla78] of N. There
is no universally accepted logical semantics for normal logic programs; instead there are a
number of alternative canonical model or preferred model constructions, which include the
stable, perfect and well-founded models [GL88, Prz89, GRS91]. If M is a canonical model
construction and N is a normal logic program, then My will denote canonical model of N
(under M). Any logical formula f satisfied by the canonical model My will be called a
consequence of N (under M), and this will be written N |=,, f. Note that if N is a definite
logic program then all of the semantics mentioned above coincide with the Least Herbrand
Model (LHM) of N.

Logic Programming Restrictions. A normal clause A:- Ly, ..., Ly is constrained iff var(A) 2
var(L;) for all 1 < 4 < k. A normal logic program N is constrained iff all of its clauses
are constrained. A denial :-Lq,..., L is constrained with respect to atom A iff the clause

A:-Ly,..., Ly is constrained. A normal logic program N is stratified [ABW8T] iff there exists a

mapping | | from pred(N) to the natural numbers N, such that if A:- By, ..., By, ~C1,..., ~Cyp
is any clause in N then: i) |pred(A)| > |pred(B;)| for all 1 < ¢ < m, and ii) |pred(4)| >

|pred(Cj)| for all1 < j < n. A normal logic program N is locally stratified iff there ex-

ists a mapping | | from the Herbrand base B(N) to the natural numbers A, such that if

a:-b,...,bym, ~c1,. .., v~y is any ground instance of a clause in N then: i) |a| > |b;| for all 1 <

i < m, and ii) |a| > |¢;| for all 1 < j < n. The definitions of hierarchical and acyclic pro-

grams, are obtained by replacing the relation > by the relation > in conditions i) above for

stratified and locally stratified programs respectively.

2.2 Skolemisation and Incapitation

Having informally reviewed in the previous section the basic notation and terminology used
in this report, this section considers more formally two further concepts, called Skolemisation
and incapitation, that will be used in the sequel as a basis for reasoning about two impor-
tant standardising ILP transformations. First, recall from classical logic the definition of
Skolemisation, shown in Definition 1 below.

Definition 1 (Skolemisation). The Skolemisation of a formula F is a formula, denoted
S(F), obtained by converting F into a prenex normal form F’, and then removing from F’
each existential quantifier 3X and replacing every occurrence of X previously bound to that
quantifier by a term fx(Y1,...,Y,), where fx is a fresh Skolem symbol, and the Yi,...,Y,
with n > 0, are all those variables within the scope of a universal quantifier at the point in
F' where the existential quantifier previously occurred. ¢

The extended notation Si(F) will be used whenever it is necessary to refer to the set
k={fk,---, %} of Skolem symbols newly introduced in S(F), and the even stronger form
Ss(F) will be used when each variable symbol in F' is bound by at most one existential
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quantifier, and it is necessary to refer to the substitution o = {X1 /1, ..., X, /t,} that replaces
each existentially quantified variable X; by a unique Skolem term £;.

Note that for any formula F' it holds that: i) S(F) = F, and ii) S(F) = Liff F = L. If
C is a clause then S(C) = C. If —C is the negation of a clause then S,(—~C) = —(C,) which
by definition of clausal complements can be written C, since o is a Skolemising substitution
for C. If T is a clausal theory then S(T) = T. And if T is a theory and C is a clause, then
S,(T A =C) = T U C,. Note also that Six(F) is a conservative extension of F' with respect
to any formulae not containing any Skolem symbol in k. Thus, given a clausal theory T, a
clause C, and a formula G it follows that T A C = G iff T A =C | G, providing that G and
T contain no Skolem constant introduced in C.

The properties of Skolemisation described above will be used in the next chapter to reason
about a standardisation procedure that involves the replacement of variables by previously
unused constants. Another process used in this standardisation procedure is the insertion of
a previously unused proposition into the heads of negative clauses. This latter process will
henceforth be referred to as incapitation (meaning literally ‘insertion into the head of’) and
the special symbol ff will from now on be used to denote this proposition symbol, as shown
in Definition 2 below.

Definition 2 (Incapitation). If C is a Horn clause, and if ff is a proposition not appearing
in C, then the incapitation of C (with respect to ff) is the definite clause denoted C obtained
by adding ff into the head of C, if C' is a negative clause, and leaving C' unchanged otherwise.
If T is a Horn clause theory, then Tj is the theory obtained by incapitating each individual
Horn clause in T'. ¢

Note that if D is a definite theory then Dz = D. If, in addition, T" is a Horn theory, then
(DUT)s = DUTg, which is a definite theory. Note also that the Horn theory T U { :-ff} is
a conservative extension of T with respect to any formulae not containing the proposition ff.
Thus, given a clausal theory T, a clause C, and a formula G it follows that T U {:-ff} = G
iff T = G, providing that G does not contain the proposition ff. Moreover, by letting G = L
and noting that this atom does not contain the proposition ff, then by the entailment theorem
Ty = ff iff T |= 0, where the proposition ff is assumed not to occur in 7.

2.3 Relative Subsumption and C-Derivations

It was mentioned in the previous chapter that the notions of relative subsumption and c-
derivations characterise the hypotheses derivable by the ILP inference method Bottom Gen-
eralisation, which plays a central role in this report. This section recalls the definitions of
these two concepts and considers the relationship that exists between them. The reader is
advised that while the definitions are based on [Plo71], they are subject to notational revisions
introduced by [Yam97] and [NCAW97].

Definition 3 (C-Derivation). A c-derivation of a clause D from a clausal theory T' with
respect to a clause C, is a resolution derivation of the clause D from the clauses T'U {C}, in
which C is used at most once as an input clause (i.e. a leaf). A c-derivation of the empty-
clause is called a c-refutation The existence of a c-derivation will be denoted (7,C) k. D.

¢
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Definition 4 (Relative Subsumption). A clause C subsumes a clause D relative to a
theory T, written C' =7 D, iff the following three equivalent conditions are satisfied:

i. there exists a substitution ¢ such that 7' = V(C¢ — D)
ii. there exists a clause F' such that T =V(D <> F) and C > F

iii. there exists a clause E such that D =T or (T,C) bk E and E > D ¢

The close relationship between relative subsumption and c-derivations is evidenced in
condition iii) above. Following [Yam99], this relationship can be more conveniently expressed
in terms of c-refutations as C %=1 D iff T | D or (T UD,C) k. 0. Moreover, it is now
shown in Proposition 2.3.2 below, that this relationship can be expressed even more simply by
dropping the unnecessary disjunct 7' = D. But first Lemma 2.3.1 formalises the relationship
between c-refutations and the simpler notion of #-subsumption.

Lemma 2.3.1 (Deciding #-Subsumption via C-Refutation'). Given any clauses C and
D. As usual, let D d_enote the clausal complement of D, where none of the Skolem constants
newly introduced in D occur in C' or D. Then

(D,C)O iff C=DorD=T

Proof. [If-Part]. Case 1: If C' > D then C6 C D by definition of #-subsumption. Writing
D explicitly as the set of literals {dy,...,d,}, observe that D is the set of ground unit clauses
{{d10},...,{d,o}}, where o is a Skolemising substitution. Then Cfo C Do (c.f. Lemma
A.7.2.1). Now construct a linear resolution derivation Cfo,...,0 by successively resolving
away literals from the descendents of Cfo with the complementary clause in D (which clearly
exists). By the lifting lemma, there is a corresponding derivation C,...,, and since C is
only used once as an input clause it follows that (D,C) k. O by Definition 3. Case 2: If
D = T then D must contain some ground atom A and its complement —A. Hence O is
trivially derivable from D without using C at all. Therefore (D, C) k. O by Definition 3.
[Only-If-Part]. If (D, C) k. O then either C was used once in the derivation or it was not
used at all. Writing D = {di,...,d,}, observe that D = {{di0},...,{d,0}}. Case 1: If C
was not used then D must contain two complementary unit clauses, so that D must contain
two complementary literals, and hence D = T. Case 2: If C' was used then it must occur
exactly once as the top leaf in a linear resolution derivation in which literals are successively
resolved away from the descendents of C using the complementary clause in D. And if @
denotes the composition of the unifiers used in the derivation, then it follows that for every
literal in the clause C@ (which is ground) there is a complementary unit clause in D. And
therefore C@ C Do. And since C6 is ground, and o is a Skolemising substitution, it follows
(c.f. Lemma A.7.2.3) that C¢o C Do where ¢ = {X/t' | X/t € 0 and t' = to~'}. Therefore
C¢ C D (c.f. Lemma A.7.2.2), and finally C > D by definition of §-subsumption. |

Lemma 2.3.1 can be seen as expressing the “subsumption algorithm” presented in [CL73] p.95 in terms
of crefutations. In addition, Lemma 2.3.1 can be seen as a special case of [Yam99] Thm4.1, in which the
background theory is empty.

16



Proposition 2.3.2 (Equivalence of Relative Subsumption and C-Refutation - [Yam99]?).
Given a clausal theory T and two clauses C and D, then

CesrD iff (TUD,C)kO
Proof. Using condition iii) of Definition 4, it is sufficient to show that
[D=T]or [(T,C) k. D' and D' = D] iff (TUD,C)r O

[Only-If-Part]. Case 1: If D = T then D must contain some ground atom A and its
complement —A. Hence [ is trivially derivable from D without using C' or any clause in
T at all. Therefore (T U D,C) . O by Definition 3. Case 2: (T,C) k. D' and D' 3= D.
From (T,C) k. D' it follows by Definition 3 that there is a resolution derivation Ry of D’
from T'U {C} that uses C' at most once. And from D’ > D it follows by Lemma 2.3.1 that
(D, D") iz O, and so by Definition 3 that there is a resolution derivation Ry of O from DU D’
that uses D' at most once. Combining R and R gives a resolution derivation R of (] from
T U{C}UD that uses C at most once. Hence (T'U D, C) k. O by Definition 3.

[If-Part]. If (T U D,C) k. O by Definition 3 there exists a resolution derivation R of [
from T U {C} U D that uses C at most once. Case 1: If C was not used in R then it follows
from the soundness of resolution that 77U D = 0. Hence T A -D = 1 by Definition 1 and
T = D by the entailment theorem. Therefore, it follows from the subsumption theorem that
either D is a tautology, or else there exists a resolution derivation R’ of a clause D’ from the
clauses in T', such that D' %= D. And since C is not used at all in R’ it follows from Definition
3 that (7,C) k. D'. Case 2: If C was used in R then it was used exactly once. Writing D
explicitly as the set of literals {di,...,d,}, observe that D is the set of ground unit clauses
{{d10},...,{d,o}}. Now let R’ be a derivation obtained from R by repeatedly performing
the following operation. First, select any leaf clause L that is a variant of a clause {d;o} in D.
Call the child of this leaf clause @ and call the other parent of this child P (so that P and L are
the parents of ). Then, add the literal d;o to each successive descendent of @) that does not
already contain d;o - stopping as soon as a descendent is reached that already contains d;o,
or upon reaching the root. Finally, replace the sub-tree rooted in @ by the sub-tree rooted
in P (thus eliminating the resolution step involving L). Repeat until no leaf occurrences of
D remain. Note that for each L treated in this way, either the root remains unchanged (if
some descendent of @ already contained d;o), or else the literal d;o is inserted into the root
(if @ was not itself the root) or else a literal d; subsuming d;o (with some substitution ) is
inserted into the root (if @@ was itself the root). Note also that no other literals are added to
the root, and all other leaves are unchanged. The result is therefore a resolution derivation
from the clauses TU{C} and using C' at most once, of a clause D’ sucht that D'0 C D. Hence
(T,C) k. D' by Definition 3 and D’ > D by definition of #-subsumption. |

*Proposition 2.3.2 generalisation [Yam99] Thm 4.1 by disposing of the unnecessary assumption T = D.
Note that if T |= D then on the one hand: i) T = V(C¢ — D) is trivially satisfied for any clause C and any
substitution ¢, and ii) T = V(D « F) and C = F for any clause C by taking F' as the null-clause. Thus
C subsumes D relative to 7. And on the other hand: if T |= D then T and D are inconsistent, so that the
empty-clause is derivable from them without even using C. Hence there is a c-refutation (T UD,C)k O .
Consequently, Yamamoto’s result can be generalised, as shown above, to include the case T' |= D.
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Knowledge Base
; bi d d
o= { ety src, oty [T L
rurger() - fricsty), offerty) bistro(rz) burger(rz)

key: md=mcDonalds, bk=burgerKing, rz=theRitz

Figure 2.1: Fast Food Example - the Knowledge Base Kp

2.4 Running Example

A running example will be used in subsequent chapters as a simple illustration of various
concepts and algorithms. The knowledge base for this example, which will henceforth be
denoted Kp, is shown in Figure 2.1 below. This example concerns a highly simplified domain
of Fast-Food outlets, called bistros for short. For convenience the knowledge base Kp has
been partitioned into three components.

The first component contains two rules representing domain knowledge. These rules
state respectively that that: i) to have a meal in a particular bistro it is sufficient to have a
burger and portion of fries; and ii) if the bistro is participating in a certain special offer
then a free burger comes with every portion of fries.

The second component contains three facts representing type information, and states
that there are three bistros called mcDonalds, burger King and theRitz, which for brevity,
here and throughout, are abbreviated to md, bk and rz.

The third component contains three facts representing scenario knowledge, stating that
md and bk are participating in the special offer described above, and a burger has been had
at rz.
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Chapter 3

Inductive Logic Programming and
Progol

The advancement of the theory and practice of ILP is the ultimate goal of this research. In
this chapter the ILP task is formalised, and the prominent Progol approach is analysed. To
begin, Section 3.1 motivates and defines the ILP task. Section 3.2 then explains from first
principles the theoretical concepts that underlie the Progol approach. Following that, Section
3.3 describes the influential Progol4 system and examines the recent Progolb extension. This
analysis uncovers a new source of incompleteness of the Progol5 proof procedure with respect
to its intended semantics. This incompleteness will subsequently motivate a review of Ab-
ductive Logic Programming in Chapter 4, and will inspire the Hybrid Abductive Inductive
Learning approach proposed in Chapter 5.

The reader is advised that the algorithms in this chapter do not follow previous accounts
word for word. This is because a number of errors and omissions have been corrected, and
where appropriate the algorithms have been elaborated or restructured for ease of under-
standing and presentation. Such points of departure, however, are clearly indicated. Instead,
it is the purpose of this chapter to provide a rational reconstruction and critical analysis of the
Progol approach. In particular, this chapter takes issue with the standard formulation of the
ILP task, studies the relationship between Bottom Generalisation and relative subsumption,
and establishes the soundness and incompleteness of the Progol5 STARTSET routine.

3.1 The Task of Inductive Logic Programming

In the field of machine learning, induction refers to the generalisation of examples with re-
spect to prior background knowledge. It is customary to consider both positive and negative
examples (i.e. examples and counter-examples). Informally, an inductive generalisation is a
hypothesis that when added to the background knowledge explains or ‘covers’ the positive
examples and is ‘consistent’ with the negative examples. ILP is concerned with the formali-
sation and automation of inductive generalisation within a logic programming context. Thus,
within ILP, knowledge, examples and hypotheses are represented as formulae of first order
logic, and often, for reasons of computational efficiency, clausal form logic or some more
convenient subset thereof. In practice, automated approaches to ILP rely heavily upon user
supplied language and search bias. In this context, language bias, which refers to syntactic
constraints imposed on hypothesised clauses, is typically expressed as a hypothesis space —
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i.e. a set of clauses from which hypotheses may be constructed. And search bias, which refers
to procedural constraints imposed on the mechanisms used to construct those hypotheses, is
usually represented by a preference criterion — i.e. an ordering used to discriminate between
competing hypotheses.

In summary, the inputs to the ILP task consist of background knowledge, positive and
negative examples, hypothesis space, and preference criterion. The output is a preferred
hypothesis ‘compatible’ with the hypothesis space, that ‘covers’ the positive examples and is
‘consistent’ with the negative examples. It is usual to separate the (logical) notion of inductive
generalisation from the (extra-logical) notion of preference, and to view ILP as the task of
finding preferred inductive generalisations. Consequently, in order to formalise the ILP task,
two things are necessary: first one must define what it means to be an inductive generalisation,
and then one must define what it means for such a generalisation to be preferred. The
remainder of this section does just this. First, the notion of an inductive generalisation is
defined in Section 3.1.1. This definition is then compared in Section 3.1.2 with a number
of variations commonly encountered in the literature, and the reasons for rejecting these
alternatives are given. Sections 3.1.3 and 3.1.4 then consider in more detail the notions of
language and search bias, formalising the concepts of mode-declarations and compression,
as used by Progol. Finally, Section 3.1.5 examines the widely used cover-set strategy and
formalises the specific ILP problem addressed in this research.

3.1.1 Inductive Generalisation

The notion of inductive generalisation defines logically what it means for an inductive hypoth-
esis to generalise positive and negative examples with respect to prior background knowledge.
This notion is logical in the sense that the inputs are all logical theories, and the output is a
logical theory satisfying certain syntactic and semantic constraints with respect to the inputs.
Here, a syntactic constraint is a restriction, possibly dependent upon the inputs, constraining
those formulae that may appear in the output; and a semantic constraint is a restriction
involving only the inputs, the output, and the relation of logical (i.e. semantic) entailment.

Before one can talk of an inductive generalisation, four inputs must be specified: back-
ground knowledge, positive and negative examples, and hypothesis space. It is convenient to
group these inputs into a single mathematical entity, called an inductive context in Definition
5 below. The intention is that the background knowledge is represented by the clausal theory
B, each positive example is represented by a single clause in ET, each negative example is
represented by a single clause in £~, and the hypothesis space is represented by a set of
clauses H — each subset of which denotes a possible hypotheses.

Definition 5 (Inductive Context). An inductive context is a 4-tuple (B, E™, E~,H) where
B, ET, E= and H are clausal theories. ¢

In general, an inductive context allows arbitrary clausal theories to appear in place of B,
E*, E~ and H. It is often necessary, however, to restrict each of these components to clausal
theories of a certain type. This happens, for example, in connection with many early ILP
systems, which typically require B to consist of definite clauses and ET and E~ to consist of
ground atomic clauses. More recent ILP systems tend to be much less restrictive and often
allow B, E*, E~ and H to contain Horn clauses, as in the case of [Mug95], and sometimes
arbitrary clausal theories, as in the case of [Ino01b, YF00].
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The syntactic restrictions imposed upon an inductive context are represented by a so-called
language structure. As formalised in Definition 6 below, a language structure consists of four
languages: a language Lp for background knowledge, a language Lg for positive examples,
a language L for negative examples, and a language Ly for the hypothesis space. Here,
a language is simply a set of clausal theories: so, for example, the language of Horn clauses,
denoted Ly, is the set of all Horn clause theories. As shown below, an inductive context
is compatible with a language structure if and only if each individual component lies within
the corresponding language.

Definition 6 (Language Structure - [Yam99]'). A language structure is a 4-tuple

(L, Lp+,Lp—,Ly) where L, Lpy,Lp_ and Ly are sets of clausal theories. An induc-
tive context (B, Et,E~,H) is compatible with a language structure (Lp, Lp+,Lr—,Ly) iff
<B,E+,E_,H) EEBX£E+ XLp_ XLy ¢

The concepts of inductive context and language structure relate only to the inputs of
an inductive generalisation. The notion of inductive generalisation (with respect to a given
inductive context) is now itself formalised in Definition 7 below. Note that this definition
makes precise those notions previously introduced only informally. The ‘coverage’ of positive
examples is defined in terms of logical entailment, ‘consistency’ with the negative examples
is specified in terms of logical consistency, and ‘compatibility’ with the hypothesis space is
represented by means of the subset relation. A simple illustration of this definition is given
in Example 3.1.1 below.

Definition 7 (Inductive Generalisation - [MR94]%). Given a context (B, E*, E~,H),
then an inductive generalisation H C H is a clausal theory such that the following two
conditions hold:

i. BUH E Et - coverage

ii. BUHUE™ =0 - consistency ¢

Example 3.1.1. First, define the inductive context as follows. Let B be the knowledge base
Kp shown in Figure 2.1. Let ET consist of the two positive unit clauses meal(md) and
meal(bk). Let E~ consist of the single negative unit clause :-meal(rz). Let H contain the
clauses fries(Z) and fries(Z):-offer(Z). Now, verify that the hypothesis H consisting of
the single clause fries(Z):-offer(Z) is a valid inductive generalisation. As required, H is a
subset of H. The coverage condition is satisfied as B and H together entail both meal(md) and
meal(bk). The consistency condition is satisfied as B and H are consistent with :-meal(rz)
— or equivalently — because B and H do not entail meal(rz).

!Definition 6 is based on [Yam99] §3.1.

2 Definition 7 is based on [MR94] Defn 3.1, where the authors specify two posterior and two prior conditions
on the ILP task. The posterior conditions, which are identical to the coverage and completeness criteria
above, specify the correctness of an inductive solution. The prior conditions identify two conditions under
which no inductive solution can possibly exist or where none is required. But although they are semantically
inconsequential, these prior conditions will later reappear in an algorithmic context: see for instance Example
3.1.7 and Footnote 5.
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3.1.2 On Alternative Formulations

Before moving on to consider the notion of preferred inductive generalisations and hence of
ILP itself, it is necessary to remark that several variations of Definition 7 are commonly
encountered in the literature. In the following paragraphs, the most common of these alter-
natives are compared to Definition 7 above, and the reasons for rejecting these alternatives
are given.

Hypothesis Space. Compared to Definition 7 above, a more expressive notion of language
bias is sometimes encountered in which the hypothesis space is viewed not as a set of clauses,
but as a set of clausal theories. Instead of being chosen from among the subsets of #, hy-
potheses H are chosen from among the members of H. This alternative formulation allows
restrictions not only on which clauses may appear in H, but also on which combinations
of clauses may appear in H. In practice this view is extremely uncommon due to the in-
creased difficulty of specifying and enforcing this more expressive account of language bias,
and therefore it will be pursued no further in this report.

Coverage. The condition called ‘coverage’ in Definition 7 above, is often referred to else-
where as a ‘completeness’ condition. But while the terms ‘coverage’ and ‘completeness’ are
both widely used in ILP, the latter has in addition a distinct and well defined logical meaning
that will also play a prominent role this report. Therefore, in order to avoid unnecessarily
overloading terms, ‘coverage’ is used Definition 7, and ‘completeness’ is reserved for its logi-
cal meaning. Note, however, that while the term ‘consistency’ also has a well defined logical
sense, it is precisely in this sense that it is used in Definition 7 above.

Consistency. Two variations of the ‘consistency’ condition pervade the literature: ii.a)
BUH £ E~ and iib) BUH [ eforalle € E7. It is worth noting that although ii.a is
satisfied whenever ii.b is, as shown below, the converse is not generally true (so they are not
equivalent). Now, taking these alternatives one at a time, first observe that condition ii.a
differs logically from condition ii. of Definition 7 only in the fact that £~ is not negated.
This subtle difference has important consequences, however, with respect to the reading of
the negative examples. Whereas Definition 7 requires the consistency of £~ with B and
H, condition ii.a requires instead that £~ not be entailed by B and H. In practice, this
means that the negative examples used in the former view, correspond to the negations of
the negative examples used in the latter. Thus in order to correctly represent Example 3.1.1
within this new setting, the earlier negative example :-meal(rz), must be replaced by the new
negative example meal(rz). Although the transformation itself is unproblematic, in general
condition ii.a leads to a significant difficulty, which is illustrated below.

Assume that a particular person called arney is known to neither drink nor drive. In
the context of condition ii.a this would be represented by assigning to £~ the two clauses
drink(arney) and drive(arney). Assume for the sake of simplicity that the background knowl-
edge B and positive examples ET are both empty. Now consider the hypothesis H consisting
of the single clause drink(arney). The point of this example is that although intuitively
this hypothesis is in blatant violation of the first negative example, it is nevertheless a valid
hypothesis according to condition ii.a. This is because if B, H and E~ are interpreted as a
clausal theories then condition ii.a amounts to drink(arney) ¥ drink(arney) Adrive(arney),

22



which is certainly true. In general, the charge is that condition ii.a fails to rule out incorrect
hypotheses that violate some but not all of negative examples.

In fact, condition ii.a is very often used as if it were syntactic sugar for the stronger but
more cumbersome condition ii.b. But even then, matters are only partially improved. While
this latter condition correctly rules out the false hypothesis described above, it is still suscep-
tible to another problem; which is now illustrated. Assume once again that B and E* are
empty, and that £~ consists of the two clauses drink(arney) and drive(arney). But this time
consider the hypothesis H consisting of the single clause drink(arney) V drive(arney). As
before, the hypothesis intuitively violates the negative examples, and yet it conforms to con-
dition ii.b. This is because drink(arney)V drive(arney) (= drink(arney) and drink(arney) VvV
drive(arney) [~ drive(arney), as required. This time, the charge is that condition ii.b fails
to rule out incorrect hypotheses that violate all of the negative examples collectively.

Notice that what is being argued here, is that like condition ii.a, condition ii.b fails to
formalise the intuitive notion of consistency that people have in relation to inductive reasoning.
Intuitively, positive and negative examples represent facts known respectively to be true and
false in some particular setting — usually as a result of direct observation. The inductive
task is to find a hypothesis that best accounts for these observations relative to any prior
background knowledge concerning that setting. It is implicit therefore that the hypothesis
has at least one model — i.e. the observed scenario — in which all of the positive examples are
true and none of the negative examples are true. Clearly this possibility is precluded in the
example just given, in which every model violates at least one negative example. It is now
argued, however, that condition ii. of Definition 7 does give the correct behaviour.

Observe that when B and E™ are empty and E~ contains the clauses :-drink(arney) and
:-drive(arney), then the two false hypotheses drink(arney) and drink(arney)V drive(arney)
are correctly ruled out by condition ii. In the first case drink(arney) A (ndrink(arney) A
—drive(arney)) = L is false; and in the second (drink(arney)Vdrive(arny))A(—drink(arney)A
—drive(arney)) [~ L is false. What is more, condition ii. gives the correct behaviour for
general integrity constraints expressed in the form of denials. For example, if £~ con-
tains the example :- female(arny) stating that arney is not female, and the constraint
:-male(X), female(X) stating that nobody is both male and female, then, as intended,
condition ii. requires the consistency of B, H and - female(arney) A VX (—-male(X) V
~female(X)), or equivalently that B U H [~ female(arny) V 3X (male(X) A female(X)).
Finally, note that if £~ is empty then, as intended, condition ii. requires the consistency of
B and H.

In conclusion, it is believed the above discussion lends support to the claim that the for-
mulation of consistency adopted in Definition 7 has important advantages over those more
common variations that pervade the literature. Not only does Definition 7 represent the sim-
plest formalisation of the intended behaviour3, in which B, H, Et and E~ are all interpreted
as clausal theories according to the standard conventions, but it is also the case that both
negative examples and integrity constraints are handled uniformly within the formalisation;
the former being as a special case of the latter. It is at least hoped that this discussion
has called into question some established but outdated preconceptions concerning the very
formulation of the ILP task, and which have been a cause of concern, if not confusion, for
more than one student of the subject.

3 A somewhat more extreme position that arguably presents a more faithful semantics will not be propounded
here. It is sufficient that Definition 7 is suitable for the purposes of this report.
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Noiseless Data Assumption. Many ILP systems do not strictly enforce the coverage or
consistency conditions, but instead they attempt to mazimise the number covered of positive
examples and to minimise the number of violated negative examples. The motivation behind
this approach is that it provides a convenient mechanism for the handling of noisy data. The
purpose of Definition 7, however, is to provide a logical account of inductive generalisation,
and not, at this stage, to burden this account with additional considerations of a practical
nature. Moreover, this same principle will apply generally throughout the report, whose main
purpose is to provide a theoretical treatment of a novel approach to machine learning. While
the techniques developed in this report can be adapted with mechanisms more suited to noisy
data, this report must understandably focus on those techniques themselves.

It might also be remarked that a cautionary note is evident in the above discussion con-
cerning the notion of consistency. An example is described above of a hypothesis that is
inconsistent with all of the negative examples collectively, but consistent with each of the
negative example individually. How many negative examples are violated in this case? What
does it mean, therefore, to minimise the number of violated negative examples in cases like
these? In order to avoid such problems, and to concentrate on the task of motivating, for-
malising and analysing the HAIL approach, it will be assumed throughout this report that
all inputs are free of noise; and, as formalised in Definition 7, a valid hypothesis is required
to cover all positive examples and to be consistent with all negative examples.

3.1.3 Language Bias and Mode-Declarations

Having decided upon the definition of inductive generalisation, the discussion returns now
to the notion of language bias. As stated earlier, language bias refers to constraints on the
syntactic form of hypothesised clauses, and is represented above as a hypothesis space. But,
in practice, the hypothesis space is just a convenient idealisation, for it is usually difficult, or
impossible, to explicitly enumerate the clauses contained therein.

Instead, a number of much more convenient representations of language bias have been
developed and are currently in use. The mechanism described below, which is used both by
Progol and also in many other areas of logic programming, is that of mode-declarations or
more simply mode-decs. The relevant notation and terminology is now formalised in Definition
8 and illustrated in Examples 3.1.2 and 3.1.3 below.

Definition 8 (Mode-Declaration - [Mug95]*). A placemarker k is either: an in-type
+t, an out-type —t, or a con-type ft, where t is type predicate. A scheme s is any ground
atom p(...) with the difference that placemarkers may optionally appear instead of constant
symbols. A mode-declaration or mode-dec m is either a head-dec modeh[r,s| or a body-dec
modeb[r, s], where r > 1 is a natural number called the recall and s is a scheme.

If M is a set of mode-decs, then M+ and M~ denote the set of head and body-decs in
M. If m is a mode-dec, recall(m) is the recall of m, pred(m) is predicate symbol in the
scheme of m, schema(m) is the scheme of m with every placemarker occurance k; replaced
by a fresh variable X;, and type(m) is the set of corresponding atoms ¢;(X;), where ¢; is the
type predicate in k; and X; is the variable that replaced k;. If k; is an in-type placemarker
then X; is called an in-type variable or simply a +type, and similarly for out- and con-types

“Definition 8 is based on [Mug95] Def20. The terminiolgy schema is used in place of atom and the
terminology ‘compatible with’ is used instead of ‘in the language of’.
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Background | Positive Examples | Negative Examples

Hypothesis

B=Kp Et :{ ZZZ%ZIZC)Z) } E~ = {:-meal(rz)}

Mode Declarations H = {fries(Z):-offer(Z)}

M= modeh[fries(+bistro)]
| modeb[offer(+bistro)] }

Figure 3.1: Fast-Food Example: an ILP Problem

A clause C is compatible with M iff there is a mapping from the head/body atoms in C to
the head/body-decs in M such that each atom is subsumed by the schema of corresponding
mode-dec and the following conditions are satisfied: i) every —type is bound to a variable,
ii) every +type is bound to a variable that in some head atom is bound by an +type, or in
some preceding body atom is bound by a —type, and iii) every #type is bound to a constant of
the correct type. Finally, the hypothesis space Hys determined by M is the set of non-empty
reduced clauses compatible with M. ¢

Example 3.1.2. Let M consist of the head-decs modeh|fries(+bistro)] and the body-dec
modeb|offer(+bistro)]. Then the hypothesis space Hjs consists of the clauses fries(Z) and
fries(Z):-offer(Z) where Z is a variable.

Example 3.1.3. Let M’ consist of the head-dec modeh[p(a, f(fany), +any)] and the body-
dec modeb[g(+any, g(—any))]. If the constants a and b have type any then clause H' =
pla, f(b), X):-q(X,9(Y)), q(Y,g(X)) is compatible with M’. But if the order of the two body
atoms were to be reversed then the resulting clause would no longer be compatible.

In view of their convenience as a representation of language bias, it is desirable to incorpo-
rate the notion of mode-declaration directly within the formalism of an inductive context. A
mode context is defined, therefore, as an inductive context except that the hypothesis space H
is not enumerated explicitly, but is represented by a set of mode-declarations M. In this case,
the hypothesis space H is understood as being the hypothesis space Hys determined by M.
Finally, mode contexts in which consist entirely of Horn clauses will be called Horn contexts,
and will be used frequently in the sequel. To illustrate these concepts, Figure 3.1 represents
the same inductive task as used previously in Example 3.1.1. Note that for convenience here
and throughout this report, recalls are omitted and are assumed to be arbitrarily large.

3.1.4 Search Bias and Compression

As described previously, search bias refers to procedural constraints on the mechanisms used
to construct inductive generalisations, and is often represented as a preferential ordering
among possible hypotheses. In practice, preferential selection is usually achieved through
the use of preference heuristics during the construction of hypotheses. The heuristic that
used by Progol is popularly called compression and takes into account the number of covered
positive examples, the number of negative examples violated, and a syntactic measure of the
complexity of the hypothesis.
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In connection with Definition 7 above, it is appropriate to assign a compression of —oo
to any hypothesis H that together with background knowledge B is inconsistent with the
positive and negative examples ET and E~. For if this were not the case, then H could not
be a valid inductive generalisation — violating one or both of the required conditions. In all
other cases, compression is defined as the ‘coverage’ of ET less the ‘complexity’ of H, where
coverage is the number of positive examples entailed by B and H, and complexity is the
number of literals in H. These notions are formalised in Definitions 9, 10 11 and 12 below.

Definition 9 (Compression).
Compression(H,B,E*,E~) =

—00 if BUHUETUE™ 0O
Coverage(BU H,E") — Complerity(H) ifBUHUETUE KO

¢
Definition 10 (Coverage).
Coverage(B, E) = |Cover(B, E)|
¢
Definition 11 (Cover).
Cover(B,E)={e€ E | Bl=e} .
Definition 12 (Complexity).
Complezity(H) = |H1| + --- + |Hy| where H = {Hy,...,H,}
¢

Formally, the compression metric is closely related to principle called Minimum Descrip-
tion Length, which in turn is related to the notions of maximum-likelihood, coding length
and entropy. In this report it will be sufficient to observe that compression prefers consistent
hypotheses with few literals covering many positive examples. By Definitions 7 and 9, the
compression of a valid inductive generalisation must equal the number of positive examples
less the number of literals in the hypothesis. Consequently, preferred hypotheses are those
with the fewest number of literals. These concepts are now illustrated in Example 3.1.4 below.

Example 3.1.4. Referring to Figure 3.1 above, it is easily seen that the hypothesis H =
{fries(Z):-offer(Z)} has a coverage of 2, a complexity of 2, and therefore a compression
0. This hypothesis is favoured by the compression metric as no other valid hypothesis has
fewer literals. Note that the hypothesis H' = {fries(Z)} is not valid because it violates the
consistency requirement of Definition 7, and it has a compression of —oo.

3.1.5 The Cover-Set Principle

The necessary machinery is now in place so that ILP may be defined as the task of finding
maximally preferred inductive generalisations. The only reason why a slightly less direct
approach must instead be taken, is that in practice it is a highly intractable task to search
for such global maxima. The recourse most often adopted in practice is that of greedily
constructing hypotheses in a piecemeal fashion using a technique known as the cover-set
principle (see for example [Mic84]). The motivation is that it is generally easier to construct
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several smaller sub-hypotheses each covering a few examples at a time, than it is to construct
one larger hypothesis covering all of the examples in one go.

The idea is to construct a hypothesis H by adding together a succession of smaller sub-
hypotheses H; each of which extends the coverage of ET and maintains consistency with
E~. A so-called cover-set-loop constructs one sub-hypothesis H; on every iteration, until all
positive examples have been covered. Since each H; must cover at least one as yet uncovered
positive example, it is common at the beginning of each iteration to arbitrarily select one
example e;, called a seed example, and to search for the most compressive H; covering this
example at the very least. After its construction H; is usually asserted into the background
knowledge B and any newly covered positive examples (including e;) are removed from ET,
ready for the next iteration.

These notions are now formalised in Definitions 13, 14 and 15 below. A selection function
formalises the process of selecting a seed example from a set of positive examples. An inference
method formalises the method used to derive the sub-hypotheses H;. Finally, the ILP task
is formulated according to the cover-set approach described above. Conditions i. and ii.
require that each H; entails the seed example e; relative to the current background B;, and
is consistent with all negative and positive examples ET and E~. Condition iii. requires
that no other such hypothesis which can be derived by Z has greater compression. Lastly,
condition iv. requires that upon termination no positive examples remain.

Definition 13 (Selection Function). Given a set of clauses E*, a selection function
maps each non-empty subset of ET to one member, called a seed example, of that subset. ¢

Definition 14 (Inference Method). Given a clausal theory B and a clause e, an inference
method Z defines a set of clausal theories, denoted Z(B, e) and called the hypotheses derivable
by Z from B and e, where each such hypothesis H entails e relative to B (i.e. BUH [= e).
Given a set M of mode-decs, the notation Zys (B, e) will denote the set of hypotheses derivable
by Z from B and e that are compatible with M (i.e. Zp(B,e) = {H € Z(B,e) | H C Hp})-

¢

Definition 15 (ILP). Given as input an inductive context (B,Et,E~, M), a selection
function 7, and an inference method Z, the task of ILP is to return as output a clausal theory
B UH where H=H;U---U H, is such that for all 1 <7 < n:

i. H; € Tni(Bi, &)
il. compression(Hi,Bi,Ei‘",E*) > —00
iii. compression(H;, B;, E;",E~) > compression(H}, B;, E;f,E~) for all H] € Ty (B;, e;)
iv. E:+1 =0
where, by definition:
a. Bi=BUHU---UH; 1 for 1 <i<mn+1 (n.b. B is identical to B)
b. E}f = ET — Cover(B;,Et) for 1 <i <n+1 (n.b. Ef are those ET not covered by B)

c. g =7(E}) for 1 <i<mn (nb. for e; to be defined, these E;' are non-empty) .
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Informally, condition i. requires that the sub-hypothesis H; output on the ith iteration is
derivable by the chosen inference method Z, and therefore covers at least the seed example e;
relative to the current background B;. Condition ii. essentially requires that H; be consistent
with the background knowledge and the examples (failing which is the only way the compres-
sion could be —oc). Condition iii. requires that no more compressive such hypothesis can be
derived. Finally, condition iv. requires that eventually all positive examples are covered.

A simple illustration of the definitions above is provided in Example 3.1.5 below. The
hypothesis H consists of two sub-hypotheses H; and Ho, which in practice would be produced
on two successive iterations of a cover-set-loop. It is easily verified that H satisfies the
requirements i-iv. above. Initially, background B; = B, positive examples E;” = Et, and
seed example e; = p is selected by w. The hypothesis H; = {a} is the most compressive clause
covering e; that can be derived by Bottom Generalisation. The clause a is therefore inserted
into Bz and the covered example p is removed from Ey. Next, e; = ¢ is chosen and Hy = {b}
is constructed. The clause b is therefore added to B3, both covered examples are removed
from E:,'f , which is now empty.

Example 3.1.5. Let 7 select examples in ascending alphabetic order, let Z be the inference
method of Bottom Generalisation, and let the background, examples and mode-decs be defined
as follows:

Bt _ 5 =0 M= { modeh[a] }

p-a
B= gf:z ; ! modeh][b]

Then, with the aid of the following diagram, verify that the hypothesis H containing the
two unit clauses a and b is a valid ILP hypothesis.

p-a p

iteration 1 || By =4 g¢:b Ef=¢ ¢ er=p | Hy={a}
r--a,b T
p:-a

iteration 2 By =< q:=-b u{a} Ef { ;{ } es=q | Hy={b}
ri-a,b
p:-a

final B; =14 q:b U{Z} Ef= H:{Z}
r=-a,b

The usefulness of the cover-set approach is that it enables the construction of inductive
generalisations covering many positive examples, while using inference methods that take
advantage of a single seed example to achieve a more focussed search. While this approach
is liable to miss some more compressive hypotheses, the gain in tractability is a significant
practical advantage. Proposition 3.1.6 below now proves the simple but important result that
any hypothesis constructed by the ILP cover-set approach is a valid inductive generalisation.

Proposition 3.1.6. Given an inductive context (B, ET, E~, M), a selection function m, and
an inductive inference method T, any theory H satisfying the ILP conditions of Definition 15,
is a valid inductive generalisation by Definition 7.
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Begin Algorithm 3.1.7 (MSH-COVERSET).
Input given an inductive context (B, ET, E~, M)
if BUETUE" | 0O then abort
let E* = ET — Cover(B, E™)
Cover-Set-Loop ~ while ET # ()

select seed choose seed example e € E

construct MSH find most specific hypothesis MSH (B, e) such that
-BUMSH(B,e) =e

generalise MSH find most compressive generalisation H; C Hjs such that

- HZ ‘: MSH(B,G)
-BUH;,UETUE™ 0O
if Compression(H;, B, E*,E~) = —oco then abort

add hypothesis let B= B U H;
remove cover let Et = Et* — Cover(B, ET)
Output return B

End Algorithm (MSH-COVERSET)

Proof. 1t is sufficient to show that the three requirements of Definition 7 are satisfied whenever
the five conditions of Definition 15 are. [language] From i. above H; € Zy/(B;,e;) for all
1 < i < mn, and so H; C Hys by Definition 14, and because H = Hy U --- U H,, it follows
that H C Hu. [coverage] From iv. above E,  , = 0, and so ET — Cover(Bn41,ET) = 0
by Definition b. above, and therefore B,; = E+ by Definition 11, but B,.; = BU H by
Definition a. above, and hence BU H |= E*. [consistency] From ii. above it follows taking
1 = n that compression(Hi,Bi,E;',E_) > —o0. Therefore B, U H, U EfUE~ }£ O by
Definition 9. But B,, U H,, = B U H by Definition a. above, and so BUH U E}Y UE~ £ 0O,
and so BUHUE™ j= 0. |

The key step in the Cover-Set-Loop is clearly the construction of the sub-hypothesis H;.
In principal this step can be achieved in a variety of different ways, but in practice one of two
main and approaches is usually adopted: top-down and bottom up. Intuitively, the top-down
approach involves progressively specialising a very general hypothesis, while the bottom-up
approach involves progressively generalising a very specific hypothesis. It turns out that
the latter provides an ideal setting for the inference method of Bottom Generalisation, and
therefore only the bottom-up approach will be investigated further in this report.

From this point on, the bottom-up approach will be referred to as the approach of Most
Specific Hypothesis Generalisation in order to emphasise the two steps involved. Given back-
ground knowledge B; and seed example ¢;, the first step involves the construction of the Most
Specific Hypothesis (MSH), denoted MSH (B;,e;), which is a maximally specific hypothesis
— according to some given generality ordering — that logically entails e; relative to B;. The
second step involves constructing the most compressive hypothesis H; — according to some
given measure of compression — that logically entails the MSH.

A generic framework for MSH-based Cover-Set Generalisation is shown in Algorithm 3.1.7.
Given an inductive context (B, ET,E , M), each iteration of the cover-set-loop adds one
additional sub-hypothesis H; to B and removes one or more covered examples from Et. But
instead of returning the overall hypothesis H found by taking the union Hy U --- U H, of
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the sub-hypotheses H;, this routine follows standard convention by returning the augmented
background theory B U H. The motivation is that having assimilated the information from
the examples, this new theory will be used in future learning or reasoning problems.

The symbols B, E* and e are not subscripted in order to make for easier going later on.
The sub-hypothesis H; is subscripted in order to avoid confusion with the overall hypothesis
H mentioned in the text above. But because the symbol appears nowhere in the actual
algorithm, in future algorithms this subscript will be safely omitted for simplicity.

Prior to entering the cover-set-loop, the inputs are first checked for consistency and then
any covered examples are removed from ET. These precautions® avoid performing unnec-
essary work when no hypothesis can possibly exist, and by removing positive examples for
which no hypothesis is required. Because E is finite, the cover-set-loop will terminate; either
with a valid inductive generalisation, or by failing to find a suitable hypothesis.

5These actions correspond to the prior conditions stated in [MR94] and referred to earlier in Footnote 2.
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3.2 A Rational Reconstruction of the Principles of Progol

Progol is a well-known and highly successful ILP system. The purpose of this section is to
present from first principles the key theoretical techniques that underlie the Progol approach,
and thereby clarify the relationship between the ILP semantics formalised in the previous
section and the Progol proof procedure to be described in the next. First, Section 3.2.1 recalls
the inference methods of Inverse Entailment and Bottom Generalisation. This is followed
in Section 3.2.2 by a discussion relating Bottom Generalisation relative subsumption. The
concept of a vacuous literal is introduced in Section 3.2.3, and a standardisation technique
for Horn clauses is analysed in Section 3.2.4. A refinement of Bottom Generalisation is then
introduced in Section 3.2.5, and is combined with the cover-set principle in Section 3.2.6.

3.2.1 Inverse Entailment and Bottom Generalisation

The ILP approach of Inverse Entailment was first introduced in [Mug95] as the basis of the
Progol proof procedure. The motivation behind this approach derives from the principle of IE,
which in the context of ILP can be written BAH (=€ iff BA-e|=—-H for any formulae B,
H and e. Informally, this equivalence states that the negations of inductive hypotheses may
be deduced from the background knowledge together with the negation of a seed example.
By exposing the close connection between induction and deduction, this equivalence suggests
that deductive techniques can be brought to bear on the tasks of inductive reasoning; and
one successful means of doing just this is the inference method of Inverse Entailment.

The inference method of Inverse Entailment (which this report is careful to distinguish
from the Principle of IE) is based on an important theoretical construction called the Bottom
Set or Bottom Clause. As formalised in Definition 16 below, given background knowledge B
and a seed example e, the Bottom Set of B and e, which is denoted Bot(B,e), is defined
as the clause containing all those ground literals whose negations may be deduced from B
together with the clausal complement of e. In addition, as formalised in Definition 17 below,
a clause h is said to be derived from B and e by Inverse Entailment if and only if h logically
entails Bot(B,e) and does not contain any Skolem constants introduced therein.

Definition 16 (Bottom Set - [Mug95]%). Given a clausal theory B and a clause e. Recall
that GL denotes the set of ground literals. Assuming that no Skolem constant introduced in
e is contained in B, the BottomSet of B and e is the clause denoted Bot(B,e) and defined

Bot(B,e) ={L € GL| BUe |=—-L} ¢

Definition 17 (Inverse Entailment - [Mug95]”). Given a clausal theory B and a clause
e, a clause h is said to be derivable from B and e by Inverse Entailment iff A contains no
Skolem constant introduced in Bot(B,e) and h |= Bot(B,e). ¢

6The Bottom Set concept originally appeared in [Mug95] with the name ‘Most Specific Clause’ and the
notation ‘L’. The more explicit notation ‘L (B, E)’ was used in [MB00]. Finally, the terminology ‘Bottom Set’
and the notation ‘Bot(B, E)’ was introduced in [Yam96] and is now standard. Other variations encountered
in the literature include the notation L (E, B), Bot(E, B) and the terminology ‘Most Specific Hypothesis’.

" The inference method of ‘Inverse Entailment’ was introduced in [Mug95], where it was believed to con-
stitute a complete procedure for inverting entailment between clauses relative to a clausal theory. That this
belief was mistaken was first revealed in [Yam96] and is shown below to result from the so-called ‘law of con-
traposition’ BAH = E iff BAE = H. The invalidity of this statement is easily seen by taking B = 0,
H =p(X) and E = p(a), where a is a constant. Taking complements E = -p(a) and H = —p(k), where k is a
fresh Skolem constant. Clearly BA H |= E but BAE £ H.
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The key result exploited by inductive learners, is that any clause h derived from B and e by
Inverse Entailment implies e relative to B, as shown in Proposition 3.2.1 below. This sound-
ness result is computationally significant because the task of finding h that entail Bot(B,e) is
far more tractable than the task of finding h that entail e relative to B. First, the problem of
constructing Bot(B, e) involves computing only ground unit consequences of a clausal theory.
Second, the problem of finding h is one of straight rather than relative inverse implication.

Proposition 3.2.1 (Soundness of Inverse Entailment - [Mug95, Yam99]%). Given a
clausal theory B and a clause e. If h is any clause containing no Skolem constants introduced
in Bot(B,e), then

h |= Bot(B,e) implies BAh |=e

Proof. If h |= Bot(B,e) then h = \/{L € GL | BAe |= —L} by Definition 16. By the principle
of IE it follows A{M € GL | BAe = M} |= =h (where each M is the complement of some
corresponding L). And since BAe = A{M € GL | BAe = M} by transitivity B Ae |= —h.
Since h contains no Skolem symbol in e, by Definition 1 it follows B A —e = —h. Therefore
B A h |= e by another application of the principle of IE. |

Unfortunately, what might be gained in terms of tractability is ultimately paid for by a
loss of completeness (with respect to inverse relative implication). More precisely, although
every hypothesis h derived by Inverse Entailment from B and e correctly entails e relative
to B, not all such hypotheses can be constructed in this way, as shown in Proposition 3.2.2
below. It turns out the hypotheses which can be derived by generalising the Bottom Set
are related to Plotkin’s notion of relative subsumption, as will be investigated later in this
section.

Proposition 3.2.2 (Incompleteness Inverse Entailment - [Yam96]°). There erist a

clausal theory B, a clause e, and a clause h containing no Skolem constant from Bot(B,e),
such that B A h |= e, but h = Bot(B,e).

Proof. First, let

_ | even(0) e = odd(s(s(s = odd(s - even
B = e odax) } €= OHGO)) = 0dd(s(X) cven(X)
Then, verify

Bot(B,e) = odd(s(s(s(0)))) :- even(0)

Finally, observe
B A h|=ebut h = Bot(B,e) [ |

Because it is generally highly intractable to compute all h that entail a given Bot(B,e),
in practice the entailment relation is usually weakened to that of 8-subsumption, to result in
the semantics of Bottom Generalisation [Mug95, Yam99], formalised in Definition 18 below.
Because the hypotheses derivable by Bottom Generalisation are a strict subset of those deriv-
able by Inverse Entailment, the soundness and incompleteness of Bottom Generalisation are
immediate from Propositions 3.2.1 and 3.2.2 above.

8The proof of Proposition 3.2.1 was first attempted in [Mug95], but for the reason stated in Footnote 7
above, the argument therein is invalid (as are its elaborations in [MF01] and elsewhere). A correct proof of
Proposition 3.2.1 is given in [Yam99], but is considerably more involved than the one given above.

®The counter-example in Proposition 3.2.2 is due to [Yam96] §4.
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Definition 18 (Bottom Generalisation - [Mug95, Yam99]'?). Given a clausal theory
B and a clause e, a clause h is derivable by Bottom Generalisation iff h contains no Skolem
constant introduced in Bot(B,e) and

h = Bot(B,e) ¢

As shown in Example 3.2.3 below, the inductive problem depicted earlier in Figure 3.1
is solved by Bottom Generalisation. In this example, the first positive example has been
arbitrarily chosen as the seed example, although in this case the other example would have
served equally well. This simple example only hints at the potential usefulness of Bottom
Generalisation in the context of ILP. Indeed, by combining this approach with the cover set
principle, a far more powerful method of ILP will be developed later in this section.

Example 3.2.3. Referring to Figure 3.1, let B be the knowledge base Kp defined in Figure

2.1, and let e be the clause meal(md). Observe that Bot(B, e) = meal(md), fries(md):-burger(rz),
offer(md), offer(bk), bistro(md), bistro(bk), bistro(rz) and verify that the hypothesis h =
fries(Z):-offer(Z) is derived by Bottom Generalisation from B and e. This is because

h = Bot(B,e), confirming that B A h |= e.

Notice that when f-subsumption is used as the generalisation relation, then hypotheses
may be efficiently computed by searching of the @-subsumption sub-lattice [[J, Bot(B,e)],
which is both smaller and better structured than the original search space. Notice also that
if the #-subsumption lattice is viewed as a generality ordering on clauses, with more general
clauses at the bottom and more specific clauses at the top, then Bot(B,e) denotes the most
specific clause that entails e relative to B — hence the name “Bottom Set”.

3.2.2 On Bottom Generalisation and Relative Subsumption

The present discussion concerning the soundness and completeness of Bottom Generalisation
is concluded below with a technical analysis of the equivalence of Bottom Generalisation and
Plotkin’s relative subsumption. This important result was first shown in [Yam99], though in
a form slightly less general and less intuitive than is presented below. Compared to [Yam99],
additional generality is achieved below by disposing of an unnecessary assumption, and the
intuition is strengthened by emphasising the clear and direct role played by the Bottom set
in each of the three equivalent characterisations of relative subsumption in Definition 4. For
this reason, three independent proofs are presented below.

i) First Form of Relative Subsumption: B | V(h¢ — e)

The formulation B = V(h¢ — e) was introduced in [Plo71] as a convenient characterisation
of relative subsumption. Using this formulation the task of deciding relative subsumption
amounts to finding a suitable substitution ¢ satisfying this condition. What is apparent from
Proposition 3.2.4 below (see only-if-part), is that if 4 is known to #-subsume Bot(B,e), with
substitution @, then a suitable ¢ is determined by applying to 8 the inverse of the Skolemising
substitution o that was used in the construction of Bot(B,e). Informally, ¢ = 6o 1.

0The proof procedure now called ‘Bottom Generalisation’ was introduced in [Mug95]. It was referred to as
the inference method of ‘Inverse Entailment’ in [Yam97], and then as ‘Bottom Generalisation’ in [Yam99].
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Proposition 3.2.4 (Correspondence of Bottom Generalisation and Relative Sub-
sumption - i). Given a clausal theory B, a clause e, and a clause h containing no Skolem
constants introduced in Bot(B,e), then

h = Bot(B,e) iff B=VY(h¢ — e)

Proof. [Only-If-Part]. If h > Bot(B,e) then by definition of #-subsumption it follows
h@ C Bot(B,e), noting that 6 is a grounding substitution for h because Bot(B,e) is a
ground clause. Writing h explicitly as the set of literals {Hy,..., H,}, it follows that H; €
Bot(B,e) forall1 < i <n and so B A i—'Hﬂ by Definition 16. If o denotes the Skolemis-
ing substitution used in the complement, this can be equivalently written B A —eo = —H;#0,
and so B A H;0 |= eo by the principle of IE. Therefore B A hf = eo (c.f. disjunction-
elimination). Therefore B = hf — ec by the entailment theorem. Now, since hf is ground,
and o is a Skolemising substitution, it follows (c.f. Lemma A.7.2.3) that h@ = h¢o where
¢p={X/t'| X/t €@andt' =to~'}. And so B |= (h¢)o — ec and B |= (h¢ — e)o using ele-
mentary properties of substitutions. And since neither A nor e contain any Skolem constants
mentioned in o (the former by assumption, the latter by definition), it follows B = V(h¢ — €)
(c.f. universal-introduction). [If-Part]. If h =g e then B = V(h¢ — e) by Definition 4. If o is
a Skolemising substitution mapping each variable in h¢ and e to a fresh Skolem constant then
B = (h¢ — e)o (c.f. universal-instantiation). Writing 0 for ¢o gives B = h@ — ec where hf
and eo are both ground. And so B |= —ec — —h# by taking the contrapositive. By the entail-
ment theorem BA-eo |= —h@ which by Definition 1 can be written BUe, = —hf using the fact
that o is a Skolemising substitution for e. Writing h = {H, ..., H,} where the H; are literals,
BUée, = A{—-H:0,...,~H,0}. And since B Ue, entails the RHS conjunction it must there-
fore entail each conjunct individually, and so {—~H10,...,~H,0} C{M € GL| BUe = M}.
Negating all elements gives {H10,...,H,0} C{L € GL | BUe = L} and so hf = Bot(B,e)
by definition of #-subsumption. And finally, since hf is a ground instance of A it follows by
transitivity of subsumption that h > Bot(B,e). |

ii) Second Form of Relative Subsumption: B =V(e< f) and h > f

The formulation B |= V(e <+ f) and h = f is the original characterisation of relative subsump-
tion introduced in [Plo71]. Using this formulation the task of deciding relative subsumption
amounts to finding a suitable clause f satisfying this condition. What is apparent from Propo-
sition 3.2.7 below (see only-if-part), is that such an f is found by applying to Bot(B,e) the
inverse of the Skolemising substitution o employed in Bot(B,e) — giving what is called the
Generalised Bottom Set in Definition 19 and Lemmas 3.2.5 and 3.2.6 below.

Definition 19 (Generalised Bottom-Set). Given a clausal theory B and a clause e, let
Bot(B,e) denote the Bottom Set of B and e, and let o be the Skolemising substitution
used in Bot(B,e). The Generalised Bottom Set of B and e, denoted Bot'(B,e), is defined
as the clause uniquely obtained from Bot(B,e) by replacing each Skolem constant k by the
corresponding variable V' for each V/k € 0. Thus

Bot'(B,e) = Bot(B,e)o™ " ¢

The clear and intuitive relationship between the Generalised Bottom Set and the formula
f in the above definition of relative subsumption is now clarified in Lemmas 3.2.5 and 3.2.6
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below. But first of all, note that because Bot(B, e) is ground and ¢ binds distinct variables to
distinct Skolem constants, it follows Bot'(B,e)o = Bot(B,e). And it therefore follows that
Bot'(B,e)o = Bot(B,e) and Bot'(B,e)o |= Bot(B,e) by definition of §-subsumption.

Lemma 3.2.5. Given a clausal theory B and a clause e, let Bot'(B,e) denote Generalised
Bottom Set of b and e, then
B = V(e +> Bot'(B,e))

Proof. [+Direction]. Recall from Definition 16 that Bot(B,e) = \J/{L € GL | BUe [
-L} by, and so —Bot(B,e) = A{M € GL | BUe = M} upon negation. Since BAe |
MM € GL | BUe |= M} it follows by transitivity B A e = —Bot(B,e). Equivalently B A
—eo = —Bot(B,e) by definition of clausal complements. Therefore B = —ec — —Bot(B,e)
by the entailment theorem, and B |= Bot(B,e) — eo taking the contrapositive. And so
B | Bot'(B,e)o0 — eo from the argument above. Hence B |= (Bot'(B,e) — e)o. Now,
since o binds all of the variables in Bot'(B,e) and e to Skolem constants not appearing in
Bot'(B,e) or B or e, it follows (c.f. universal-introduction) that B = V(Bot'(B,e) — e).
[—»Direction|. Writing e = {Ey,..., E,} it follows ¢, = —Ej0 A ... A ~Epo by definition
of clausal complements. Hence e, = - Ej0 A ... A =E,o trivially, and BUe¢, = —Ej0 A
.. A= E,0 by monotonicity. Now, since the LHS entails the RHS conjunction, it must entail
each conjunct individually and so {Eyo,...,E, 0} C {L € GL | BUe | ~L}. And so by
Definition 16 it follows ec C Bot(B,e). Hence ec C Bot'(B,e)o by the argument given
above. Therefore eo > Bot'(B,e)o and ec |= Bot'(B,e)o by definition of #-subsumption.
Consequently B A ec |= Bot'(B,e)o by monotonicity and B = ec — Bot'(B,e)o by the
entailment theorem. And since o binds all of the variables in Bot'(B,e) and e to Skolem
constants not appearing in Bot'(B,e) or B or e, it follows (c.f. universal-introduction) that
B =V(e — Bot'(B,e€)). |

Lemma 3.2.6. Given a clausal theory B and a clause e, let Bot'(B,e) denote Generalised
Bottom Set of B and e, then

h = Bot(B,e) iff h = Bot'(B,e)

Proof. [Only-If-Part]. If h 3= Bot'(B,e) then h = Bot(B, €) by transitivity, using Bot'(B, e)o =
Bot(B,e) from the argument above. [If-Part]. If h > Bot(B,e) then hf C Bot(B,e) by def-
inition of #-subsumption. Now, since hf is ground, and o is a Skolemising substitution, it
follows (c.f. Lemma A.7.2.3) that hf = h¢o where ¢ = {X/t' | X/t € f and t' = to~'}.
Hence h¢o C Bot'(B,e)o. And since o binds all of the variables in Bot'(B,e) and h¢ to
Skolem distinct constants not appearing in Bot'(B,e) or hé, it follows (c.f. Lemma A.7.2.2)
that h¢ C Bot'(B,e). Consequently h 3= Bot'(B,e). |

Proposition 3.2.7 (Correspondence of Bottom Generalisation and Relative Sub-
sumption - ii). Given a clausal theory B, a clause e, and a clause h, let o denote the
Skolemising substitution used in Bot(B,e) and let Bot'(B,e) denote Generalised Bottom Set
of B and e. Then

h = Bot(B,e) iff BlE=VY(e<> f) and h = f for some clause f

Proof. [Only-If-Part]. If h > Bot(B,e) then h > Bot'(B,e) by Lemma 3.2.6, and B =
V(e <> Bot'(B,e)) by Lemma 3.2.5. [If-Part]. Given B |= V(e <> f) and h > f. Using
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B = V(e « f) it follows that B | V(f < Bot'(B,e)) by Lemma 3.2.5. Next, let v be any
grounding substitution for the formula fo. Therefore B |= foy <> Bot(B, e) using elementary
properties of substitutions. Now, either Bot(B,e) is a tautology, or it is not. Case 1: If
Bot(B,e) is a tautology, then it must contain some ground atom A and its negation —A.
Hence by Definition 16 it follows B U e entails both A and —A. Consequently B U e is
inconsistent and entails all atoms and their negations. Therefore Bot(B, e) = B by Definition
16, and is subsumed by all hypotheses h, by Definition of #-subsumption. Case 2: If Bot(B,e)
is not a tautology, then using B |= foy <> Bot(B,e) it follows B = Bot(B,e) — fovy
(c.f. implication-introduction) and B |= Bot(B,e) — fory by taking the contrapositive.
Therefore B U Bot(B,e) = foy. Now, because the RHS is a conjunction of ground atoms,
and because every ground atom entailed by B U Bot(B,e) is already entailed by Bot(B,e)
(observe that Bot(B,e) is the set of ground atoms entailed B and e, so adding B does not
result in any new ground atoms being entailed), it follows Bot(B,e) = foy. And because,
by the case assumption, Bot(B,e) is not a tautology, Bot(B,e) must be consistent, and
so foy C Bot(B,e) (as this is the only way one consistent conjunction of ground atoms
may entail another). Consequently foy C Bot(B,e) by negating elements, and therefore
f = Bot(B,e) by definition of #-subsumption. And finally h > Bot(B,e) by the transitivity
of subsumption. |

As a final comment, note that the Generalised Bottom Set is not the only clause that will
do. For example, the shorter clause h¢ U e (obtained by collecting all of the literals in the
clauses h¢ and e) is also a suitable candidate for the clause f.

iii) Third Form of Relative Subsumption: (BU&e,h) - O

The c-refutation formulation (BUE€, h) . [0 was shown in Proposition 2.3.2 to be equivalent to
relative subsumption. Because of proximity of c-refutations to resolution-based procedures,
they are perhaps the most suitable formulation in the context of automated induction. The
equivalence of Bottom Generalisation to the c-refutation was established by Yamamoto, albeit
under the additional assumption B [~ e, which is dispensed with in Proposition 3.2.8 below.

Proposition 3.2.8 (Equivalence of Bottom Generalisation and Relative Subsump-
tion - iii - [Yam99]'!'). Given a clausal theory B, a clause e, and a clause h containing no
Skolem constants introduced in Bot(B,e). Then

h Bot(B,e) iff (BU#®h) O

Proof. From [Yam99] Thm4.1, Thm4.3 and Thm4.4, it can be deduced that under the as-
sumption B [~ e, it follows h = Bot(B,e) iff (BUe,h) . 0. Now consider the case B |= e.
Then on the one hand: B Ue is inconsistent and all literals are contained in Bot(B, e) which
is therefore subsumed by every possible hypothesis . And on the other hand: B U e is
inconsistent and so there is a trivial c-derivation of (0 that does not use h at all. Therefore
the equivalence also holds when B |= e (in which case both sides are true). [ |

"Proposition 3.2.8 is a generalisation of the result stated in [Yam97] Lem1, and demonstrated in [Yam99].
[Yam97] stated the two assumptions e Z T and B [~ e, of the former is clearly a special case of the latter and
may be dropped (i.e. insisting B [~ e already guarantees that e # T). [Yam99] stated the single assumption
B £ e, which as shown in Proposition 3.2.8 above can also be dropped.
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3.2.3 Vacuous Hypotheses and Literals

Having identified the hypotheses derivable by Bottom Generalisation, it is now argued that
not all such hypotheses are practically useful or even intuitively satisfactory. The purpose
of the following discussion is to motivate and formalise one particular class of undesirable
hypotheses, which will be called the class of vacuous hypotheses on account of their being
devoid of any useful content. The notion of a vacuous hypothesis will then be used to define
the notion of a vacuous literal — that is to say a literal which is contained in the Bottom Set
but would only lead to the formation of vacuous hypotheses were that literal to participate
in the process of Bottom Generalisation. This notion will subsequently lead to a refinement
of Bottom Generalisation that benefits from the non-computation of vacuous literals, and yet
includes all of the hypotheses computed by Progol5.

Intuitively, there are two ways in which a hypothesis can be vacuous. First, a hypothesis is
vacuous if it is not required to cover the seed example. Suppose, for example, that a learner
is asked to explain why “everyone with blue eyes has blue eyes”. The response “because
pigs fly” is vacuous. This situation arises when B = e, as in the previous example, where
B = ) and e = blueEyes(X):-blueEyes(X) and h = pigsFly. Because there is nothing
to explain, all hypotheses are superfluous. Second, a hypothesis is vacuous if it contradicts
the premiss of the example. Suppose, for example, that a learner is asked to explain why
“everyone with blue eyes has blonde hair”. The response “because no one has blue eyes” is
vacuous. This situation arises when B U {h} U e~ |= O (recalling that e~ denotes the body
atoms of e), as in the previous example, where B = () and e = blueHair(X):-blueEyes(X)
and h = :-blueEyes(X).

But note there is one circumstance when it 4s necessary for A to contradict the body of e:
when e is a negative clause and we are learning integrity constraints. Note also that hypotheses
which entail the head of e without using the body have not been defined as vacuous. The
justification is related to the consistency discussion of Section 3.1.2, but now considering
positive rather then negative examples. It was suggested earlier that examples are usually
obtained on the basis of observations. If the clause a(X):-b(X) is set as a positive example,
it must be because all individuals known to have property b were observed to have property
a. Hence it is reasonable to assume that at least one individual is known to have property
b. For if not, then a general law would have been asserted as fact without the support of a
single example! But it is conceivable that only those individuals with property b were tested
for a, and so to extend property a to other individuals is not unreasonable.

The notion of a vacuous hypothesis is now formalised in Definition 20 below. Note that
this definition could have be generalised to apply to inference methods other than Bottom
Generalisation, by simply replacing the hypothesis clause h by a clausal theory H. The
notion of vacuity is then extended to literals of the Bottom Set in Definition 21. Informally,
a literal is vacuous if it can only participate in the construction of vacuous hypotheses. The
motivation here is that if one does not wish to compute vacuous hypotheses, then a great deal
of unnecessary work can by avoided by simply not computing vacuous literals. The remainder
of this section will then show this how goal can be (partially) achieved with relative ease in a
Horn clause setting, and the next section will reveal that this fact is exploited by the Progol
proof procedure. But first, Example 3.2.9 provides a more concrete illustration of the concept
a vacuous literal.
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Definition 20 (Vacuous Hypothesis). Given a clausal theory B and a clause e, then a
clause h derived by Bottom Generalisation from B and e is vacuous iff either of the following
two conditions hold:

i. BEe
ii. BU{h}Ue EDOandet #0 ¢

Definition 21 (Vacuous Literal). Given a clausal theory B and a clause e. Let L €
Bot(B,e) be a ground literal. Then L is vacuous iff every clause h is vacuous for which there
exists a substitution € such that h@ C Bot(B,e) and L € hf. ¢

Example 3.2.9. Let B contain the negative clause :-b,c, and let e be the definite clause
a:-c, where a, b and c are propositions. Observe that Bot(B,e) = a,b:-c and that in total
there are five hypotheses which can be derived from B and e by Bottom Generalisation: i) a,
ii) a:-c, iii) b, iv) b:-c, and v) :-c. Verify that hypotheses iii, iv and v. are vacuous, but that
i. and ii. are not. Note, therefore, that the literal b is vacuous, but that a and ¢ are not.

3.2.4 Standardisation Procedure for Horn Clauses

In order to automate the processes of inductive learning, effective procedures are required
for deciding entailment between theories and clauses. Such procedures are required, for
example, in the computation of literals in the Bottom Set, and in the testing of coverage and
consistency. Deciding entailment is highly intractable in full clausal logic, but is considerably
easier for definite clause logic — where efficient logic programming tools have been developed.
In practice, definite clause logic is not sufficiently expressive for many applications, and
so Horn clause logic is considered to be more suitable. In order to efficiently support Horn
clause logic, many systems, including Progol, make use of a simple transformation that allows
Horn entailment to be decided using conventional logic programming methods. One such
transformation, called Standardise is formalised in Definition 22 and analysed below.

Definition 22 (Standardise). Given a Horn theory B and a Horn clause e, let ff be a
proposition symbol occurring in neither B nor e, and let o be a Skolemising substitution for
both B and e, then the Standardisation of B and e, denoted Standardise(B,e), is the pair
(B, €) defined as follows:

Standardise(B,e) = (B,¢) where B=BzUe, and ¢= (ez)} ¢

Informally, Standardise rearranges the given background B and the given example e to
output a standardised background B and a standardised example €, that are more amenable
to logic programming techniques. To understand this transformation, recall from Definition
2 that the incapitation T inserts the proposition ff into the head of every negative clause
in theory T. Recall from Section 2.1 that the Skolemising substitution C, replaces every
variable in clause C' by a fresh Skolem constant, and that C™ and C~ denote the head and
body atoms of C. The transformation can now be understood thus. First, Standardise
incapitates the (Horn) theory B and clause e to give the (definite) theory By and clause
e Then, the Skolemising substitution o is applied to the latter, giving the (ground) clause
(es)o. Finally, the head (atom) (eg)t of this clause becomes the standardised example €, and
the body atoms (eg), or simply e, are added to B to give the standardised background B.
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Example 3.2.10. If the given background knowledge and given example are

(0=
R e R

then the standardised background knowledge and standardised example are

r(X) = q(X)
B=< ff-p(X) e = p(k)
q(k)

where k is a fresh Skolem constant.

Observe, that the Standardise transformation always returns a definite theory B and a
ground atom e. The importance of this transformation is now established in Proposition
3.2.11 below, where it is shown how Standardise enables entailment between Horn clauses
to be decided by SLD procedures. If B and e represent the standardised counterparts of B
and e then there are two possibilities: either B F7ff, corresponding to the case e is trivially
implied because its body is inconsistent with B; or else B F7¢, or in other words, when the
query 7e succeeds from the program B by SLD-resolution.

Proposition 3.2.11 (Deciding Entailment via Standardisation). Given a Horn theory
B and a Horn clause e, let B and € denote the standardisation of B and e. Then

Ble iff BF?e or BE?#f

Proof. [Only-If-Part]. If B |= e then by the entailment theorem B A —e = L and since
1 does not contain any Skolem symbols B Ae, = L from Definition 1. Case 1: e is
a definite clause. Writing the LHS explicitly B A =Egoc A E1yo A ... A E,0 = L so by the
entailment theorem BAEj0A...AE,0 |= Eyo. Now by definition of clauses and substitutions
{Ei0,...,E,0} = e, and because e is a definite clause Eyo = €. Therefore BUe, = ¢. Now,
either i) BUe, |= L so that Bz Ue, |= ff by Definition 2 so that By Ue, F?ff by the
completeness of SLD for definite theories, and B F?ff by Definition 22. Or else, ii) BUe_ F?€
by the completeness of SLD resolution for Horn theories. And since only definite clauses in
B may participate in the derivation of the query e it follows Bz Ue, 7¢ and therefore B F7e.
Case 2: ¢ is a negative clause. Writing the LHS explicitly BA E10 A... A E 0 = L and so
BUe, =1 and B F7ff as in case 1.

(If-Part]. Case 1: B F7ff. Then By U e, F7ff by Definition 22 and Bz Ue, |= ff by

a
the soundness of SLD. Therefore BUe, = L by Definition 2 and writing the LHS explicitly
BANEjoA...\NEyo = L. Now, either e is negative, in which case BA e, = L, or else e is
definite, in which case BA—FEgoAE10A...ANEy,o = L by monotonicity and again BAe, = L.
Either way BA—e |= L by Definition 2 and therefore B |= e by the entailment theorem. Case
2: B 7e. If e is negative then B F7ff by Definition 22 and B = e as in case 1. If e is definite
then Bz Ue, F?Eyo by Definition 22 and Bz Ue, = Eyo by the soundness of SLD. Writing
the LHS explicitly BA Eyo A ... A E,o = Ego. Hence BA—-Eyo AE1jocA...\NE,0 = L by

the entailment theorem, and so B |= e as in case 1. |

The Standardise transformation therefore provides a general method for deciding entail-
ment between a Horn theory and a Horn clauses using SLD. As a special case, by setting
e = [, this same procedure allows the consistency of a Horn theory B to be decided. As a
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simple extension, the coverage of a set of examples F may be decided by testing each indi-
vidual example in turn. Together, these observations motivate Definitions 23 and 24 below,
which can in turn be used as the basis of revised definitions of coverage, consistency and
compression.

Definition 23 (Covers).
Covers(B,e) = BF?e or B F7f where (B, €) = Standardise(B,e) ¢
Definition 24 (Consistent).

Consistent(B) = —Covers(B,0) ¢

3.2.5 Refined Bottom Generalisation

The standardisation procedure described above is now used to obtain a refinement of the
Bottom Set that excludes a certain class of vacuous literals. This refinement is defined for
Horn clause logic, but uses the Standardise transform to exploit standard logic programming
techniques. In order to show how the notion of Refined Bottom Generalisation is derived, it
is convenient to analyse separately the body and head atoms of the Bottom Set, as done in
Lemmas 3.2.13 and 3.2.14 below. In both cases a disjunctive characterisation is obtained in
terms of the standardisation B and € of the inputs B and e. It is then shown in Lemmas
3.2.15 and 3.2.16 that the effect of dropping the second of the two disjuncts results only in the
exclusion of vacuous literals. This fact is used in Definitions 25 and 26 to define the concepts
of Refined Bottom Set and Refined Bottom Generalisation.

First, Lemma 3.2.12 below, establishes the fact that the atom ff appears in the head and
body of Bottom Set if and only if B entails e, or equivalently, if the Bottom Set is the null-
clause l. Recall from Section 2.1 that the null-clause is the clause that contains all ground
literals and is #-subsumed by all other clauses.

Lemma 3.2.12 (Degeneracy of Bottom Set). Given a Horn theory B and a Horn clause
e, then

Bl=e iff Bot(B,e) =MW iff ffc Bot"(B,e) iff ff€ Bot™(B,e)

Proof. If B |= e then BA—e |= L by the entailment theorem. Hence BAe |= L by Definition
1. And so for any atom A it follows B U e entails both A and its negation =A. Hence
Bot(B, e) = B by Definition 16. In particular Bot(B,e) contains the atom ff and its negation
—ff, hence ff € Bot™ (B, e) and ff € Bot™ (B, e) by definition of the head of a clause. If on
the other hand ff € Bot™ (B, e) or ff € Bot™ (B, e) by Definition 16 it follows B U e entails ff
or its negation —ff. And since, by assumption, the proposition ff is not mentioned at all in
B Ue, it must be that BAe |= L and so B A —e = L by Definition 1. Therefore B = e by
the entailment theorem. |

Lemmas 3.2.13 and 3.2.14 now characterise the body and head literals of the Bottom Set
in terms of the standardised background knowledge and example.

Lemma 3.2.13 (Body of Bottom Set). Given a Horn theory B, a Horn clause e, and a
ground atom § # ff, let (B,e) = Standardise(B,e). Then

d € Bot™ (B,e) iff BF? or Ble
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Proof. [Only-If-Part]. If § € Bot™(B,e) then BUe, = d by Definition 16. Now, either i)
BUe, = 1, so that B |= e as in Lemma 3.2.12. Or else ii) B U¥€, 7§ by the completeness of
SLD for Horn clauses. Now, writing the LHS explicitly BU{-Fyo, E10,...,E,o} 7§, where
—Fyo may or may not exist (depending on whether e is definite or negative). But whether
it exists or not, it follows that Bgz U {FE10,..., Eyo} 76 by Definition 2 (n.b.b. use fact no
negative clauses on the LHS many participate in derivation of §). But this can be written
Bz Ue, 74, and therefore B =74 by definition 22.

(If-Part]. Case 1: If B 76 then B = J by the soundness of SLD. And so Bg U
{E10,...,Eyo} |= 6 by Definition 22, and hence Bz U {—ff} U{E10,...,E,0} = d by mono-
tonicity. Therefore BU{FEo,...,E,0} = § by Definition 2, and so BU{—Eyo, E10,...,E, 0} =
0 by monotonicity. Therefore BUe |= § and § € Bot (B, e) by Definition 16. Case 2: If
B = e then Bot(B,e) = B by Lemma 3.2.12, and so § € Bot™(B,e) by Definition of the
null-clause. |

Lemma 3.2.14 (Head of Bottom Set). Given a Horn theory B and a Horn clause e, and
a ground atom « # ff. Let (B,e) = Standardise(B,e). Then

a € Bot™(B,e) iff BU{a}F? or BU{a} F?ff

Proof. [Only-If-Part]. If a € Bot™(B,e) then by Definition 16 it follows B A€, | -a,
and so BA aAe, = L by the entailment theorem. Case 1: e is a definite clause. Writing
the LHS explicitly BA a A =Eyoc A Eyo A ... AN Ep,o = L. Therefore BAaAEjoA...A
E,o = Eyo by the entailment theorem. Now, either i) BAa A Ejo A... N\ E,o |= L and
Bz ANa A EioA...A\Eyo = ff by Definition 2, which is equivalent to BU o F7ff. Or else ii)
BAaNEioA...NE,0 F7Eyo by the completeness of SLD for Horn clauses. Therefore it follows
that Ba Aa A Ejo A... A Eyo F7Ego (n.b.b. either use fact no negative clauses on the LHS
many participate in derivation of FEyo; alternatively use fact incapitation leaves unchanged
the consequences of a consistent theory. n.b the latter requires o # ff so incapitation is
defined on the LHS; the former does not). And this can be written BU {a} 7¢. Case 2: e is
a negative clause. Writing the LHS explicitly BAaAEicA...ANEpo = L and BU{a} F7ff
as in Case 1 part ii. This time ¢ = ff and so in addition B U {a} F?e. [If-Part]. Case 1:
BU{a} F?ff. Then BU{a} |= ff by the soundness of SLD and BzU{Eo,...,E,oc}U{a} = ff
by Definition 16. Therefore B U {FE;o0,...,E,0} U {a} |= L by Definition 2. Consequently
BU{-Eyo,E0,...,E,c}U{a} = L by monotonicity and BU {-Eyo, E10,...,E,c} E —~«a
by the entailment theorem. Therefore B Ue |= —a by Definition 1 and so « € Bot™ (B, e) by
Definition 16. Case 2: BU{a} F?¢. Now, either e is negative and so € = ffand o € Bot™ (B, e)
as in case 1. Or else, e is definite and so € = Epo. In which case BU {a} = Eyo by the
soundness of SLD and Bz U {Ejo0,...,E,0} U{a} = Eyo by Definition 16. Consequently
Bz U{-ff} U{E10,...,Eyo} U{a} = Eyo by monotonicity and BU{Eo0,...,E,o}U{a} =
Eyo by Definition 2. Therefore BU{-FEyo, E10,...,E,0}U{a} = —a by the principle of IE.
Hence B Ue | —a by Definition 1 and so o € Bot™ (B, e) by Definition 16. |

Note that the requirement § = ff can be dropped from Lemma 3.2.13, as the LHS is
equivalent to B = e using Lemma 3.2.12 (first and last formulae), and RHS is equivalent
to B |= e using Proposition 3.2.11. Note that the requirement o = ff cannot be dropped
from Lemma 3.2.14, as the LHS is equivalent to B |= e using Lemma 3.2.12, but the RHS
is equivalent to T (by second disjunct). Note, however, rather than choosing to exclude the
atom ff from Bot(B,e), it will be included whenever e is a negative clause. If selected to
appear in the head of a hypothesis, it will later be removed to yield an integrity constraint.
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Lemmas 3.2.15 and 3.2.16 below now consider the effect of dropping the second of the two
disjuncts on the RHS of Lemmas 3.2.13 and 3.2.14 above. Clearly, dropping one of the criteria
by which literals may gain entry to the Bottom Set, will result in the loss of those literals
which satisfy that criterion, but not the other. In both cases, this is shown that the only
literals thus excluded, are all vacuous.

Proposition 3.2.15 (Elimination of Vacuous Body Atoms). Given a Horn theory B,
a Horn clause e, and a ground atom 6 € Bot™ (B, e), let (B,¢) = Standardise(B,e). Then

B =€ and B ¥76 implies § is vacuous

Proof. If B |= e then all hypotheses derivable by Bottom Generalisation from B and e are
vacuous by Definition 20. Therefore all of those hypotheses that ‘use’ § are vacuous (as are
all those that do not). And so the literal ¢ is vacuous by Definition 21. [ |

Proposition 3.2.16 (Elimination of Vacuous Head Atoms). Given a Horn theory B,
a Horn clause e, and a ground atom « € Bot™(B,e), let (B, ¢) = Standardise(B,e). Then

B U {a} F?ff and B U {a} ¥?e implies « is vacuous

Proof. Tf BU{a} Fff then Bz Ue, U{a} F7ff by Definition 22 and so Bz Ue, U{a} = ff by
the soundness of SLD resolution. Then, either i) & = ff in which case B |= e by Lemma 3.2.12,
and « is vacuous by Definition 20. Or else ii) a # ff and so BU e, U{a} = L by Definition
2. In this case B Ue; = —a by the entailment theorem. Now, let h = A:-Dy,..., D,
be any Horn clause such that for some substitution @ it is the case hf = a:-6y,...,0, and
0; € Bot™ (B, e) for all 1 < j < n. (In other words, h is any hypothesis derivable by Bottom
Generalisation that ‘uses’ the literal «). Then by Lemma 3.2.13 it follows that either a)
B = e, in which case « is vacuous by Definition 20. Or else b) B = §;. But then, if
0; = ff for some 1 < j < n then again B = e by Lemma 3.2.12 and « is vacuous by Definition
20. And similarly, if §; # ff for all 1 < j < n, then from B = §; it follows Bz Ue, |= 6; by
Definition 22, and using ¢; # ff it then follows B U e, |= §; by Definition 2 (n.b.b. use
subsumption theorem and fact that no incapitated clauses may participate in derivation).
Hence BUe; = ~aAdi A...Ady (cf. and-introduction using facts that each §; is entailed
individually, and so is -« as « is in the head of the Bottom Set), which is equivalent to
BUe; = —hf. Because h = hf and h |= hé, both by Definition of #-subsumption, it follows
o —hf = —h by the principle if IE. Therefore B U e, = —h by transitivity of entailment, and
hence BU{h}Ue, |= L by the entailment theorem. And since BU{a} F?ff and BU {a} ¥7e
imply that € # ff and hence et # (), it follows that h is vacuous by Definition 20. And since h
was chosen arbitrarily it follows that all such hypotheses, for which there exists a substitution
0 with the above properties, are vacuous (c.f. universal introduction). Hence the literal « is
vacuous by Definition 21. |

The preceding results motivate the formulation of Refined Bottom Generalisation shown
in Definition 25 below. The Refined Bottom Set differs from the standard Bottom Set in only
two respects: i) it excludes a (sub)set of head and body atoms shown above to be vacuous,
and ii) it includes the atom ff whenever e is a negative clause. Note that the notation
{oq,...,ap}:-{01,...,0,} is intended to represent the clause aq,...,ap:-d1,...,0,.
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Definition 25 (Refined Bottom Set). Given a Horn theory B and a Horn clause e such
that B [~ e. Let (B,€) = Standardise(B,e). Then

Bot*(B,e) ={a € GA | BAa?e}:-{0 € GA | BF?6} ¢

Definition 26 (Refined Bottom Generalisation). Given a Horn theory B and a Horn
clause e such that B [~ e, let (B,€) = Standardise(B,e), and let h be any clause containing
no Skolem constant nor the proposition symbol ff. Then h is derivable by Refined Bottom
Generalisation from B and e iff

hg = Bot*(B,e) ¢

What is important about the definitions above, whether one agrees fully with the philos-
ophy that led to their formalisation, is the Progol5 proof procedure will be seen in the next
section to compute only a subset of the Refined Bottom Set. For the benefit of the curious
reader, it is simply stated here that: i) the body atoms excluded from the Refined Bottom
Set are not computed by the Progols BOTTOMSET routine on account of the cover-removal
step in the Progol5 COVERSET loop, ii) the excluded head atoms are not computed because
the Progol5 STARTSET routine only adds the contrapositive ff* in the case that e is a nega-
tive clause. Note also that if any hypotheses were to be considered that contained a Skolem
constant, it would be eliminated by the Progol5 SEARCH routine. For further details see Sec-
tion 3.3. But first, this section concludes by introducing a refinement of the MSH cover-set
approach, motivated by the above definitions.

3.2.6 Bottom-Based Cover-Set Generalisation

The motivation for combining the cover-set-approach and the inference method of Bottom
Generalisation can be understood in two ways. First, the cover-set-approach can be seen
as a mechanism by which Bottom Generalisation, which treats single seed examples, can be
applied to the task of ILP, which involves multiple positive and negative examples. Second,
Bottom Generalisation can be seen as a concrete inference method which can be used to
implement the cover-set approach. Since these are two sides of the same coin, so to speak,
only one need be developed, and the latter is chosen below.

If automated ILP procedures are to be developed based on the approach of MSH General-
isation, then concrete methods are required for the construction and generalisation of MSH.
In general both tasks are intractable, but under certain restrictions efficient procedures can
be obtained. The Bottom Set construct arises naturally in this context when the generality
ordering is taken as f-subsumption and the MSH is restricted to a single ground clause. For
under these conditions the Most Specific Hypothesis coincides with the Bottom Set. Moreover,
the approach of Bottom Generalisation arises when the Most Compressive Generalisation is
also restricted to a single clause. Furthermore, if the representation is restricted to Horn
clauses, then the inference method Refined Bottom Generalisation can be used instead, and
the Standardise transformation used to implement the testing of coverage and consistency.
However, before this method can be automated, one significant obstacle remains: in general
Bot*(B, e) is infinite and cannot be computed in its entirety. Fortunately, it is easily shown
that considering only finite subsets of Bot*(B, e) results in a sound inference procedure.

Corollary 3.2.17 below is a straightforward consequence of the preceding results, and
states the obvious but crucial fact that Bottom Generalisation can be realised by computing
only a finite subset of the Bottom Set. The remainder of this Section is concerned with the
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Begin Algorithm 3.2.18 (Bottom-COVERSET).
Input given a Horn context (B, E*, E—, M)
assert Consistent(BUET UE™)
let Bt = ET — Cover(B,Et)
Cover-Set-Loop ~ while ET # ()

select seed choose seed example e € ET
standardise let (B, €) = Standardise(B,e)
construct MSH find A = {a1,...,a,} such that BU{a;} F?eforalll <i<mn
head for each o; € A
body find B; = a;:-01,...,0n such that BF?0; forall1 < j <m
generalise MSH find most compressive h; € Has such that h; = 5;
best hypothesis let h be the h; with greatest Compression
if Compression(h, B, ET, E~) = —oo then abort
add hypothesis let B=BU{h}
remove cover let EY = ET — Cover(B, E™)
Output return B

End Algorithm (Bottom-COVERSET)

strategy used by Progol to turn this result effective procedure for efficiently realising Bottom
Generalisation within Horn clause logic.

Corollary 3.2.17. Let B and € be the result of standardising a Horn theory B and a Horn
clausee. If B = a:-01,...,0n is any (finite) definite clause such that: i) 8 contains no Skolem
constant nor the proposition symbol ff, and i) o is a ground atom such that BU{a} 7€, and
i1) for all 1 < j < m it is the case that &; is a ground atom such that B F76;. Then hgz =
implies that h is derivable by Refined Bottom Generalisation from B and e

Proof. If hg = (3, then since h = hg by definition 2, and since 8 %= Bot(B, e) using the fact
B C Bot*(B,e) by Definition 25, then h = Bot*(B,e) by transitivity of #-subsumption, and
so h is derivable by Refined Bottom Generalisation from B and e by Definition 25. |

Corollary 3.2.17 motivates a Bottom-based cover-set methodology, which, as shown in
Algorithm 3.2.18, refines Algorithm 3.1.7 in the following ways: First, the inputs and outputs
are restricted to Horn clauses. Second, the new function Consistent has been introduced.
Third, the Bottom Set replaces the MSH, and #-subsumption replaces entailment as the
generalisation relation. Fourth, the Standardise transform is applied immediately after seed
selection to facilitate the construction of the Bottom Set. Fifth, the MCG output on each
iteration of the Cover-Set Loop is restricted to a single Horn clause.

But note that instead of constructing a single Bottom Set on each iteration, several can-
didate MSH are instead constructed and generalised individually (a strategy used by Progol)
- the most compressive such generalisation being returned as the MCG. Bottom Set construc-
tion is performed in two steps. The head atom is first chosen and then the body atoms are
added. In practice the computation of body atoms is likely to depend on the head atom, in
a fashion that will be guided by the language bias. Finally note that concrete procedures for
selecting the literals alpha and d; and for performing the generalisation will be specified in
the next section, which introduces the Progol proof procedure.
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3.3 A Ciritical Analysis of the Progol Proof Procedure

This section provides a detailed analysis of the Progol5 proof procedure, which is a concrete
refinement of the Bottom-based MSH procedure developed in the previous section. First
the Progold technique of Mode Directed Inverse Entailment (MDIE) [Mug95] is described
in Subsection 3.3.1. Then the Progol5 extension of Theory Completion with Inverse Entail-
ment (TCIE) [MBOO] is detailed in Subsection 3.3.2. Then, a mathematical treatment of
the STARTSET Algorithm in Subsections 3.3.3 and 3.3.4, confirms its suspected soundness,
but reveals a previously unsuspected source of incompleteness with respect to the semantics
of Bottom Generalisation. Finally, the computation of vacuous literals is reconsidered in
Subsection 3.3.5.

3.3.1 Mode Directed Inverse Entailment and Progol4

MDIE is a concrete instance of the Bottom-based Cover-Set Generalisation methodology
described in Algorithm 3.2.18. The term ‘Mode Directed’ refers to the extensive use made of
user-supplied mode-decs in both the construction and generalisation of MSH. The techniques
of MDIE were first implemented in the ILP system Progol4, whose operation is described in
Algorithm 3.3.1.

Progol4 takes as input the Horn clause theories B, ET, E~ and a set of mode-decs M. The
output is a Horn theory B U H where H = {hy,...,h,} is a valid inductive generalisation,
and each h; is added to B on successive iterations of the Cover-Set Loop. The tasks of MSH
construction and generalisation are performed by two sub-routines called BOTTOMSET and
SEARCH.

On each iteration of the Cover-Set Loop, a seed example e is first chosen from among the
remaining positive examples ET. Then standardised counterparts B and € are obtained for the
current background knowledge B and the current seed example e . Next, guided by the user-
supplied mode-decs, one or more candidate MSH g; are constructed by BOTTOMSET and
individually generalised by SEARCH to give one or more candidate sub-hypotheses h;. Finally
the most compressive of these hypotheses is then asserted and any covered examples are
removed. Each MSH §; is a maximally specific Horn clause that #-subsumes Bot(B, e) and is
constructible within the available language and search bias. Each §; is built by BOTTOMSET
one body atom at a time. Each hypothesis h; is a maximally compressive Horn clause that
f-subsumes its corresponding (; and is computed by STARTSET by means of a general-to-
specific A* search through the @-subsumption sub-lattice [0, 5;]. The SEARCH algorithm
employed by Progol is described in detail in [Mug95] and will not be discussed further.

BOTTOMSET is the routine responsible for the computation of body atoms. As shown in
Algorithm 3.3.3, the inputs are a definite theory B, a ground atom ¢, a head-dec m whose
schema f-subsumes ¢, and a set of body-decs M~. The output is a clause S such that
B = Bot(B,e) and 8 € Hpr-ymy- The routine also assumes a function hash that maps
distinct constant symbols to distinct variables, and a parameter N, called the depth.
BOTTOMSET begins by asserting that the schema a of the head-dec m does actually
f-subsume the atom e, and, in so doing, it determines which terms in e correspond to +types,
—types and ftypes. To ensure compatibility with m, substitutions of the form {V/hash(t)}
ensure that each +type and —type variable in a is replaced by a suitable variable hash(t),
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Begin Algorithm 3.3.1 (Progol4 - [Mug95, MF01]!2).

Input given B, ET, E=, M

check consist. assert Consistent(BUET UE™)

remove cover let EY = ET — Cover(B,E™")

Cover-Set Loop  while ET # ()

select seed choose seed example e € E

standardise let (B, €) = Standardise(B,e)

select head-dec for each head-dec m; € MT such that m; = €
bottom set let 5; = BOTTOMSET(B, ¢, m;, M ™)
search let h; = SEARCH(B;, B,ET,E~, M)
assert best hyp. add to B the h; with greatest Compression
remove cover let Et = Et — Cover(B,E™)

Output return B

End Algorithm (Progol4)

and each ftype is replaced by the corresponding term f. Any terms bound by a +type are
added to the set InTerms and the head atom a is added to 8. Note that different head-decs
will in general lead to different patterns of term propagation and hence to different ;.

Next begins the task of computing body atoms of beginning at a depth of 1 and successively
increasing up to a maximum depth of Np. The set InTerms contains all terms corresponding
to +types in the head atom, and —types in preceding body atoms of a strictly lesser depth.
The set NextTerms contains all terms corresponding to —types in preceding body at the
current depth. New body atoms are decided by the successful instances under SLD of all
possible queries obtained by substituting terms from InTerms into the +types of the schemas
all body-decs in M ~. Once again, constants are variablised where necessary in order to ensure
compatibility with M ~. Type calls are added to ensure that at the ground level all constants
are of the correct type.

Example 3.3.2. Referring to Figure 3.1, let B = Kp as shown in Figure 2.1, let ¢ =
fries(md), let m = modeh[fries(+bistro)], let M~ = {modeb|offer(+bistro)]}, and assume
that hash(md) = Z. Since fries(V) = fries(md) with the +type V binding to the constant
md, the literal fries(Z) is added to 8 and the constant md is added to InTerms (both initially
empty). After replacing the only +type W in offer(W) by the only term md in InTerms,
the query Toffer(md) is evaluated, and succeeds with an empty answer substitution. Conse-
quently the literal —offer(Z) is added to 8 at depth 1. Since no NewTerms are generated,
and there are no other body-decs, the algorithm terminates with 8 = fries(Z):-offer(Z).
(But note that Progol4d cannot compute this hypothesis because the only head atom consid-
ered by Progol4 is € = meal(md), which is compatible with no head-dec).

12 Algorithm 3.3.1 is based on Muggleton [Mug95] Alg44 and [MF01] §4.8. For ease of presentation and
comparison with future Algorithms, the standardisation of B and e has been lifted to the Cover-Set-Loop. In
order to give an enhanced behaviour (closer to the actual Progol4 implementation), selection of the head-dec
used to construct the MSH f; has also been lifted to the Cover-Set Loop. Instead of selecting just one head-dec,
as in earlier accounts, all possibilities are tried in turn and the best is chosen.

13 Algorithm 3.3.3 is based on [Mug95] Alg40 and [MF01] §4.5. To give an enhanced behaviour (closer to the
real Progol4), the standardisation of B and e and the head-dec selection has been lifted to the Cover-Set loop.
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Begin Algorithm 3.3.3 (BOTTOMSET - [Mug95, MF01]'3).
Input given B, e, m, M~
let InTerms =0, 8 = (), and a = schema(m)
assert af = e for some substitution 6
Head for each binding V/t € 6
if V' is #type then
let a = a{V/t}
else
let a = a{V/hash(t)}
if V' is +type then
let InTerms = InTerms U {t}
let 5 =pU{a}
Body repeat Np times
let NextTerms =
for each body-dec m' € M~
let d = schema(m'), {p1,...,pn} = type(m'), and r = recall(m’)
for each substitution 6’ = {Vi/t1,...,V,/tn}
where {Vi,...,V,} is the set of +variables in d
and t; € InTerms foralll1 <i<n
repeat r times
for each ground substitution 8" € SLD(B, ?(d, p1,- - . ,pn)8)
for each binding V/t € 69"
if V' is #type then
let d = d{V/t}
else
let d = d{V/hash(t)}
if V is -type then
let NextTerms = NextTerms U {t}
let p =4 U{~d}
let InTerms = InTermsU NextTerms
Output return
End Algorithm (BOTTOMSET)
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MDIE has been successfully applied to a number of real-world applications, but the strat-
egy of considering only the trivial MSH head atom ¢, means that the head of every hypothe-
sised clause will contain the same predicate as the corresponding seed example. This restric-
tion is called Observation Predicate Learning (OPL), and has been found to limit the
applicability of ILP systems to real problems. TCIE is an extension of MDIE that addresses
this limitation.

3.3.2 Theory Completion with Inverse Entailment and Progol5

TCIE is an extension of MDIE that supports the computation of MSH head atoms other
than the standardised seed example €. The techniques of TCIE were recently implemented in
the ILP system Progolb, whose operation is shown in Algorithm 3.3.4. An additional routine
called STARTSET is now added alongside BOTTOMSET to assist in the construction of the
MSH. The STARTSET and BOTTOMSET routines compute respectively the head and body
atoms of each MSH. As shown in Algorithm 3.3.4 below, the Cover-Set Loop is identical to
that of Progol4, except that the head atom passed to BOTTOMSET is not €, but an atom «;
determined by STARTSET.

It remains only to describe how the candidate head atoms are computed by the STARTSET
routine. First recall from Definition 16 that the atoms in the head Bot™* (B, e) of the Bottom
Set are the negations of the negative ground literals deducible from B and e, or equivalently
from B and —e The approach used by STARTSET to compute these atoms is based on the
Prolog Technology Theorem Prover (PTTP) [Sti88] method of contrapositives; which is
essentially a technique for propagating negative information backwards through the program
clauses. The concept is best illustrated by example.

Take the clause a:-b. Although this clause is conventionally used to conclude a on the
strength of b, by analogy with the classical equivalence a < b iff —b < —a, it can equally
be used to conclude —b on the strength of —a. In the PTTP context this inference is achieved
by augmenting the original program with clauses containing new predicates (p*/n) to repre-
sent the negations of existing predicates p/n. For instance, the clause a:-b would yield the
contrapositive b* :- a*.

Generalising, every n atom definite clause yields n — 1 contrapositive variants, each of
which is obtained by exchanging a different body atom with the head. For example, by
analogy with the classical equivalences a <~ bA ¢ = —b < —a A c = —c < —a A b, the clause
a:-b, c yields the contrapositives b*:-a*,c and c¢*:-a*,b.

Example 3.3.5. The query ? fries*(rz) succeeds from the clause meal(X):- fries(X), burger(X)
together with its contrapositive fries*(X):-meal*(X), burger(X) and the facts burger(rz)
and meal*(rz), simulating the inference that if one had a burger at theRitz but not a meal,
then one could not have had fries.

In order to compute the negative unit consequences of B and —e, one approach is to form
contrapositives for every rule in the definite theory B and for the negative ground fact —e.
As shown in Definition 27 below, this augmented theory will be called the contrapositive

14 Algorithm 3.3.4 is based on Muggleton [MBO00] §2.3. For ease of presentation and comparison with future
Algorithms, the standardisation of B and e has been lifted to the Cover-Set Loop, thereby avoiding the need to
perform Skolemisation twice and dispensing with the unnecessary bridging clause. The selection of head-decs
has been similarly lifted in order to avoid an unnecessary restriction in the original description and to give an
enhanced beaviour closer to the actual Progol5 implementation.
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Begin Algorithm 3.3.4 (Progol5 - [MBO00]'4).

Input given B, ET, E=, M

check consist. assert Consistent(BU ET UE ")

remove cover let Et = ET — Cover(B, E™)

Cover-Set Loop  while ET #£

select seed choose seed example e € E

standardise let (B,e) = Standardise(B,e)

select head-dec for each head-dec m; € M* such that m; = €
contrapos. let A; = STARTSET(B, €, m;)

select ead atom for each atom «a; € A;

bottom set let B;; = BOTTOMSET(B, aj, mj, M ™)
search let h;; = SEARCH(S;;, B,Et,E~, M)

assert best hyp. add to B the h;; with greatest Compression

remove cover let EY = Et — Cover(B, EY)

Output return B

End Algorithm (Progol5)

ezpansion of B and —e, and denoted B}. The negative unit consequences are determined by
running atomic starred queries of the form p*(...) against the theory B}. Each successful
answer substitution 6 identifies the atom —p(...)0 as a consequence of B U e, and finally,
taking the negation gives p(...)0 € Bot'(B,e). (n.b. see Proposition 3.3.13 below).

Definition 27 (Contrapositive Expansion). Let B and e be the result of standardising a
Horn theory B and a Horn clause e. Then the contrapositive expansion of B and e, denoted
B?, is the definite theory

B: :BU{E*}U{b;f:—bs,...,bj_l,bj+1,...,bm | bo:—bl,...,bj,...,bm € B} ¢

Example 3.3.6. Referring to the Fast Food example shown in Figure 3.1, if B is the knowl-
edge base K of Figure 2.1, and if e is the atom meal(md), then Standardise(B,e) = (B,€) =
(B, e), and the contrapositive expansion of B and e is

meal* (md)
burger*(X):-meal*(X), fries(X)
B = KgU< fries*(X):-meal*(X), burger(X)
fries*(X) - burger*(X), offer(X)
offer*(X):-burger*(X), fries(X)

In practice, two restrictions are imposed on computed atoms: they must be ground and
they must conform to the specified language bias. For each head-dec m, the query formed by
STARTSET consists of the starred form of the schema of m, to which are appended additional
type calls for each variable in the schema. These precautions ensure that each successful
substitution is ground and is compatible with m. An unnecessary proliferation of contrapos-
itives is avoided by observing that contrapositives need only be formed for rules whose head
predicate occurs on a path in the call-graph of B that starts on the predicate of € and ends
on the predicate in the schema of m.

X):
X):
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Begin Algorithm 3.3.7 (STARTSET - [MBO00]?).

Input given B, €, m
let A=10
Contrapos. let Bf = BU{e*} U {b;‘ =08, bj—1,b541, .., by | boi-b1,.. ., b4, by € B}

where n,j > 0 and pred(by) occurs on some path in the call-graph of B,

starting from pred(e) and ending on pred(m)
let a = schema(m) and {t1,...,t,} = type(m)

Query for each grounding substitution § € SLD(B}, 7a*,t1,...,1p)
let A =AU {ab}
Output return A

End Algorithm (STARTSET)

Thus given a definite theory B, a ground atom ¢, and a head-dec m, the operation of the
STARTSET routine is described in Algorithm 3.3.7 below. The set A denotes the initially
empty set of candidate head atoms that will be returned by the routine. First the required
contrapositives are constructed from B and e, and then the necessary query is formed from
the schema, and type information in m. The atoms in A are determined by removing the star
from each successful instance of the query.

Example 3.3.8 (Failure of STARTSET). The STARTSET computation resulting from
Fast-Food example of Figure 3.1 with the seed example meal(md), is shown below. This
query is constructed from the only available head-dec modeh[fries(+bistro)].

? fries*(Z), bistro(Z)

?meal*(Z), burger(Z), bistro(Z) Tburger*(Z),offer(Z), bistro(Z)

? burger(md), bistro(md) ?meal*(Z), fries(Z),offer(Z), bistro(Z)
? fries(md), offer(md), bistro(md) ? fries(md), offer(md), bistro(md)

70 g |

Because both branches of the computation fail, no candidate head atoms are returned by
STARTSET, and no hypothesis is computed by Progol5.

Example 3.3.9 (Success of STARTSET). If the additional fact burger(md) had been
added to the knowledge base Kpg, then the computation depicted in Example 3.3.8 above,
would have produced the additional branch shown below, leading to the successful answer
substitution {Z/md}

? fries*(Z), bistro(Z)
?meal*(Z),burger(Z), bistro(Z)
? burger(md), bistro(md)

? bistro(md)

70

Because this branch of the computation succeeds, the candidate head atom fries(md) is
returned by STARTSET, and the hypothesis H = {fries(X):-offer(X)} is computed by
Progol5.

15 Algorithm 3.3.7 is based on Muggleton [MBO00] §2.1. In this paper the notation p*(...) is used instead of
nonp(...).
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3.3.3 Incompleteness of StartSet

A surprising fact revealed by Example 3.3.8 is that the STARTSET routine is fundamentally
incomplete with respect to its intended purpose of computing atoms in the head of the Bottom
Set, as formalised in Proposition 3.3.10 below. Moreover, because the the atom « is not
vacuous, it is also contained in the refined Bottom Set, and therefore STARTSET is also
incomplete with respect to refined Bottom Generalisation.

Proposition 3.3.10 (Incompleteness of StartSet w.r.t. Bottom Generalisation). For
some Horn theory B and some Horn clause e there exists an atom o € Bott (B, e) that cannot
be computed by STARTSET.

Proof. Let B = Kp, let e = meal(md), and let @ = fries(md). Proof is immediate from
Example 3.2.3, which shows that a € Bot*(B,e), and from Example 3.3.8, which shows that
the STARTSET algorithm terminates without computing a — even though « lies within the
available language and search bias. |

The incompleteness identified above is related to the notion of c-derivation, which was
seen earlier to characterise the hypotheses derivable by Bottom Generalisation. Referring to
Figure 3.1, taking B = Kp and e = meal(md) and h = fries(X):-offer(X), it was shown
in Example 3.2.3 that h is derivable by Bottom Generalisation from B and e. By the results
given previously, this is sufficient to ensure the existence of a c-refutation (B Ue,h) k. O.

It is instructive to construct a c-refutation for the example in Proposition 3.3.10, and one
such refutation is shown in Figure 3.2 below. In this diagram input clauses 1 and 2 resolve to
give resolvent clause 3. Resolvent clause 3 then resolves with input clause 4 to give resolvent
clause 5, and so on until the empty clause is derived.

1. -meal(md)

|
| 2. meal(X):- fries(X), burger(X)
|

3. - fries(md), burger(md)
|
| 4. burger(Y):- fries(Y),offer(Y)
|

5. - fries(md), offer(md)
I_ _ _ 6. fries(X)=offer(X)
7. |:- offer(md)
I_ _ s offer(md)
s

Figure 3.2: C-Derivation
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It is important to note, however, that the definition of a clause used by Plotkin is that
of a set of literals; and therefore the merging of identical literals must be enforced in each
resolution step. It is interesting that in this example every refutation in which the hypothesis
h is used only once, requires at least one merge. In the c-derivation shown in Figure 3.2 above,
a merge of two fries(md) atoms occurs in the resolvent clause 3, and so the hypothesis is
only needed once: i.e. clause 6.

If a c-refutation in which there is no merging of literals is called a c*-refutation, then it
remains to show that an atom a is computed by STARTSET only if there exists a c*-refutation
of B Ue with respect to a (denoted (B Ue,a) k. O0), and, moreover, that a hypothesis h is
computed by Progol5 only if (B Ue,h) I O. But note, however, that the converse of this
conjecture is false because many of the vacuous head atoms not computed by STARTSET
have c*-derivations. For example, given B = {:-b,c} and e = a:-b, then the hypothesis h = ¢
is derivable by Bottom Generalisation but is not computed by Progolb even though there is
a c*-refutation (b from e resolves with :-b,c from B to give :-c, which resolves with ¢ from
h to give 0OJ).

3.3.4 Soundness of StartSet

Proposition 3.3.13 below demonstrates the soundness of the STARTSET procedure with re-
spect to Refined Bottom Generalisation, using Lemmas 3.3.11 and 3.3.12, both of which are
shown by induction of the length of successful computations.

Lemma 3.3.11 (Queries with no starred calls). Let B and € be the result of standardising
a Horn theory B and a Horn clause e, and let B} denote the contrapositive ezpansion. Let
Q =7ci1,...,c, be any query containing no starred calls. Then

B! F Qo implies B+ Qo with an identical refutation

Proof. By induction on the length of the refutation. Let the query ?c¢y,...,c, where n > 1
succeed from B} with a refutation R of length p and substitution . [Base Case]. If p =1
then n = 1 and the query 7c¢; succeeds from B} in one step by resolving with some fact
F under the unifier ¢. Since F must be non-starred in order to unify with c¢;, from the
definition of B} it must be that F is already contained in B (as the only fact added to B is
starred: i.e. €*). Thus the query succeeds identically from B. [Induction Step]. If p = k
then the first step of the refutation consists of the reduction of the first call ¢; of the query
?ci,...,cy, with some clause C' in B} of the form c:-di,...,dy, to yield the derived query
?dio’,. .., dyno’ co0’, ..., cyo’, where o is the unifier of ¢; and c¢. Since the head of C' must
be non-starred in order to unify with ¢, from the definition of B} it must be that C' is already
contained in B (as all of the clauses added to B have a starred atom in the head). Note also
from the definition of B} that every d; is non-starred (as starred predicates are fresh predicates
which by definition do not appear in B). The remaining steps in the refutation then consist of
the reduction of the derived query ?dio’,...,d,,0',co0’,...,c o', which is known to succeed
from B} in k — 1 steps with substitution o” such that o’c” = o. Since this query contains no
starred atoms, by the induction hypothesis it has an identical refutation from B. Thus the
original query succeeds with an identical refutation R from B. This completes the proof by
induction. [ |
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Lemma 3.3.12 (Queries with one starred call). Let B and € be the result of standardising
a Horn theory B and a Horn clause e, and let B} denote the contrapositive ezpansion. Let
Q =7%,c1,...,c, be any query containing exactly one starred call b*. Then

B! F Qo implies BU{bo} =€

Proof. By induction on the length of the refutation. Let the query 76*, c1,...,c, where n > 0
succeed from B} with a refutation R of length p and substitution 0. [Base Case]. If p =1
then n = 0 and the query 7b* succeeds in one step by resolving with the only starred fact €*
under the unifier . Since €* is ground b*c = €* so removing stars bo = € so by reflexivity
bo = € and by monotonicity B U {bo} = e. [Induction Step]. If p = k then either:
i) the first call b* succeeds, as in the base case, by resolving with ¢* under the unifier o’
and the derived query ?c10’,...,c,0’ succeeds in k — 1 steps with substitution ¢” such that
o'd" = 0. Since €* is ground ¢* = b*¢’ = b*c’'0” = b*o and thus BU {bo} = € as in the
base case. Or else ii) the call b* resolves with a clause C* in B of the form b*:-d*,e1,..., e
under the unifier ¢/, and the derived query ?d*o’,ei0’,...,en0’,c10',...,c,0’ succeeds in
k — 1 steps with substitution ¢” such that ¢'c” = 0. Now this case has three implications:
By the inductive hypothesis B U {(do’)o”"} = € or equivalently B U {do} = € so by the
entailment theorem B |= Vdo — € [1]. From the definition of B}, corresponding to C* there
is a clause C in B of the form d:-b,eq,...,em so that B |= V(e1 A... Aem Ab — d) and
by substitution B | V(ejo A ... Aeypo Abo — do) [2]. By lemma 3.3.11 the non-starred
calls ej0’,...,eno" succeed also from B with substitution ¢”, so by the soundness of SLD
resolution B = Ve;jo'c"” = Ve;jo and so B |=V(eio A ... Aeyo) [3]. Therefore B |=V(bo — do)
from [2] and [3] and consequently B |= Vbo — € from [1]. And thus BU {bo} = € by the
entailment theorem. This completes the proof by induction.

i

Proposition 3.3.13 (Soundness of StartSet w.r.t. Refined Bottom Generalisation).
Given a Horn theory B, a Horn clause e, and a head-dec m, let (B,e) = Standardise(B,e),
and let o be any atom other than ff, then

a € STARTSET(B,e,m) implies a € Bot*(B,e)

Proof. First let B} denote the contrapositive extension of B and ¢, let a = schema(m) denote
the schema of m, and let {t,...,%,} = type(m) denote the types of the variables in a, and
define the query Q =7%a*,t1,...,t,. Now, if a € STARTSET(B, ¢, m) then by Algorithm 3.3.7
it follows B} F Qo for some grounding substitution ¢ such that ac = «. Therefore BU{a} F7€
by Lemma 3.3.12. Consequently o € Bot*(B,e) by Definition 25. |

3.3.5 On the Computation of Vacuous Literals

Many vacuous literals are not computed by STARTSET. For example, if B = {:-c¢} and
e = a, then the literal c is in Bot™(B,e), but is not computed by STARTSET. In this case
B} consists of the three clauses ff:-c¢ and ¢* :-ff* and a*. Because the atom ff* is not present,
the query ?c¢* fails. In fact, the atom ff is only ever present when the example is a negative
clause; in which case € = ff by definition 22 and so €* = ff* is included in B} by Definition 27.
If it is really desired to compute vacuous literals, then one of two simple methods, described
below, may be used. Each involves replacing the contrapositive expansion with an alternative
construction called respectively the Strong and Weak Contrapositve Extension - which turn
out to be equivalent.
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a) Strong Contrapositve Extension

The strong contrapositve extension is obtained by adding the starred atom ff* to the contra-
positive expansion, as shown in Definition 28 below.

Definition 28 (Strong Contrapositive Extension). Given a Horn theory B and a Horn
Clause e, the (strong) contrapositive extension, denoted B[, is the Horn theory:

B::B:Uff* ‘

If B is used in STARTSET in place of B? then the contrapositives of integrity constraints
will be able to participate in any derivation. In this case STARTSET will be sound with
respect to the computation of atoms in the head of the Bottom Set, as shown by making the
following changes to the results above:

1. In Lemma 3.3.11 the bracket in the base case becomes: “(the only facts added to B are
starred: i.e. €* or ff*)”.

2. In Lemma 3.3.12 the result is changed to: B F Qo implies BU{bo} |= € or BU{bo} =
ff; and the base case includes the extra case: “...or by resolving with the starred fact
ff*, so that b = ff, hence b = ff and so BU {bo} |= ff using monotonicity and the fact b
is already ground”.

3. In Proposition 3.3.13 the result is changed to: « € STARTSET(B,¢e,m) implies o €
Bot(B,e); and the last line of the proof is changed to: “Therefore BU {a} 7¢ or BU
{a} F?ff by Lemma 3.3.12. Consequently a € Bot(B,e) by Lemma 3.2.14”.

b) Weak Contrapositve Extension

The weak contrapositve extension avoids the need for explicit standardisation. Formally, this
approach can be built upon on the notion of complementary extension, and by extending
the notion of contrapositive variants to Horn clauses and Horn theories. These notions are
formalised in Definitions 29, 30, 31, and 32 below.

Definition 29 (Weak Contrapositive Extension). Given a Horn theory B and a Horn
Clause e, the (weak) contrapositive extension, denoted B, , is the Horn theory:

B, = B. U Contra(B,) ¢

Definition 30 (Complementary Extension). Given a Horn theory B and a Horn Clause
e, the complementary extension B, is the Horn theory defined as follows:

Definition 31 (Contrapositive Variants of a Horn theory). Let T = {T1,...,T,,} be
a Horn theory. Then the contrapositive variants of T, written Contra(T), are defined as the
definite theory:

Contra(T) = Contra(Ty) U...U Contra(Ty) ¢
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Definition 32 (Contrapositive Variants of a Horn clause). Let C be a Horn clause
(containing no starred predicates). Then the contrapositive variants of C, written Contra(C),
are defined as the definite theory containing all clauses of the form:

C —{Cy,—~C;} U{C},~C5} for some 1< j<mn, fordefinite C = {Cy,~C1,...,~Cp}
or

C —{=C;} u{C}} for some 1< j<n, fornegative C ={-C,...,-Cp}

¢

It can be shown that the two approaches described above are equivalent in the sense that
they have (almost) identical success sets under SLD resolution. The idea is illustrated in
Example 3.3.14 below, in which the background knowledge B states that: i) every one who
is liked by boss receives a pay bonus, and ii) no one can be lazy and keen at the same time.
And the example e is challenging the learner to explain why every keen person receives a pay
bonus. Let k; denote the Skolem constant introduced for the variable X. Note that for ease
of comparison some clauses have been labelled with lower case letters.

Example 3.3.14 (Equivalence of Strong and Weak Approaches).

B { bonus(X):-likes(boss, X) } e = bonus(X) - keen(X)

-keen(X),lazy(X)

a. bonus(X):-likes(boss, X) d. likes*(boss, X):-bonus*(X)
B-— bi. -keen(X),lazy(X) Ul e keen*(X):-lazy(X)
€ by. :-bonus(ky) fo lazy*(X):-keen(X)
c. keen(ky) g. bonus*(ky)
bonus(X):-likes(boss, X)
B =< ff-keen(X),lazy(X) € = bonus(ky)
keen(ks)
a'. bonus(X):-likes(boss, X) d'. likes*(boss, X):-bonus*(X)
Bt — b'. ff:-keen(X),lazy(X) U €. keen(X)*:-ff*, lazy(X)
€ ) . keen(ky) 1o lazy(X)* - ff*, keen(X)
h. ff g'. bonus*(ky)

Clauses a,c,d, g are identical a’,c',d', g’ respectively. Clauses by, b, b’ are all redundant:
the former can never participate in an SLD derivation because they are negative, and the
latter can never participate because by definition the atom ff does not appear in the body
of any clause. After unfolding with the atom ff*, clauses ¢, f' are identical to e, f. The
only difference concerns the atom ff*, which always succeeds from B, (which always contains
the fact ff*) but never succeeds from B, (which never even mentions the symbol ff), but in
practice this is inconsequential.
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Chapter 4

Abductive Logic Programming and
ASLD

In this chapter task of ALP [KKT92] is defined and the Abductive SLD (ASLD) procedure
of Kakas and Mancarella [KM90] is described. The purpose of this chapter is to recall the
task of ALP and to provide a brief overview of the ASLD procedure. A detailed analysis
is not required for the purposes of this report, and the references cited above provide a
good introduction to the concepts required. The presentation of ALP below, is analogous to
the presentation of ILP in the previous section. The main difference is that ALP considers
normal rather than definite logic programs, and the semantics of ALP is therefore referred to
a canonical model construction. But for the applications considered in this report, the choice
of semantics will not play an important role.

Abduction is concerned with the explanation of goals with respect to a prior theory. The
inputs to the abductive task are a background theory T, a goal g to be proved, a set of
integrity constraints IC that must be satisfied, and a set of abducible predicates A from which
to construct hypotheses. These inputs will collectively be called an abductive context, as
formalised in definition 33 below. The output of the abductive task is a hypothesis A that
is a conjunction of ground abducible atoms which when added to T ‘explain’ g and ‘satisfy’
IC. The notion of abductive explanation is formalised in definition 34 below, with respect to
a chosen canonical model construction M.

Definition 33 (Abductive Context). An abductive context is a 4-tuple (T, g, IC, A) where
T is a normal logic program, g is a normal query, IC set of normal denials, and A is a set of
predicate symbols. ¢

Definition 34 (Abductive Explanation - [KD02]!). Given an abductive context (T, g, IC, A)
and a canonical model construction M. Let A denote the set of ground instances of predicates

in A. An abductive explanation is a conjunction A C A such that: for some substitution 0
the following three conditions hold:

L. TUA =, gf - explanation
i. TUA M IC - integrity
. “TUA £, O - satisfiability ¢

'Definition 34 is based on [KD02] Defn 3.1.
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Theory Goal Abducibles :
Explanation
T=Kp g = {meal(md)} A = {fries}
Integrity Constraints = A=
o1 - fries(V), «bistro(V) icl {fries(md)}
| =-meal(rz), fries(W) ic2

Figure 4.1: Fast-Food Example: an ALP Problem

Briefly A is an abductive explanation if under some substitution g is true in the cannonical
model (in some chosen semantics) of T and A, and the integrity constraints are also true in this
model (a view of integrity sometimes referred as “epsitemic” [KKT92]). The last condition is
not intended to be taken literally, but is there merely for emphasisis and should be read as
saying “the canonical model exists” (which is implicit from the first two conditions).

Should the inputs admit of more than one abductive explanation, additional preference
criteria are applied to eliminate the least favourable. Common desiderata dictate that the
explanation should be no larger than necessary (minimal) and as fundamental as possible
(basic) - as formalised in definitions 35 and 36 below.

Definition 35 (Minimal). An explanation A of (T,g,IC, A) is minimal iff for no expla-
nation A’ of (T, g,IC, A) is it the case that A’ C A. An explanation A of (T,g,IC,A) is
locally minimal iff it is a minimal explanation of (T", g, IC,.A) for some T' C T. ¢

Definition 36 (Basic). An explanation A of (T g, IC, A) is basic iff for every explanation
A" of (T, A, IC, A) it is the case that A C A'. ¢

Informally an explanation is minimal if it contains no redundant atoms, and locally min-
imal if it is minimal with respect to some subset of the theory (i.e. omitting redundancy
explicit in the theory itself). An explanation is basic if it can itself be otherwise explained
only by adding redundant atoms (i.e. in terms of non-minimal explanations) - see [CP86] for
a more general account.

Example 4.0.15. An illustrative example is given in figure 4.1 above, where T is the knowl-
edge base Kp from figure 2.1. Hypothesis A is a valid explanation by definition 34 because
it consists of ground instances of abducible predicates in A, and together with T' it satisfies
IC and entails g.

In addition, A = {fries(md)} is minimal and basic according to definitions 35 and 36.
Note that while A’ = { fries(md), fries(bk)} is an alternative explanation, A’ is not minimal
because A C A’. Note also A is basic even though it is (trivially) explained by A’

An important approach in the implementation of ALP is that of generalising traditional
SLD methods to support the construction of abductive hypotheses. A successful example of
this approach is the ASLD proof procedure of Kakas and Mancarella [KM90], which itera-
tively interleaves computations consisting of an abductive phase in which abducibles are
hypothesised, and a consistency phase in which hypotheses are incrementally tested against
integrity constraints.

ASLD takes as input an abductive context (T, g, IC, A) in which (without loss of generality)
no abducible predicate (in A) is defined (in 7'). If necessary this can be ensured by the
following transformation stated in [KKT92]: If any abducible predicate p/n € A is defined

58



{}? meal(md)

{}? fries(md), burger(md)

{fries(md), fries*(rz)}? burger(md)
{fries(md), fries*(rz)}? fries(md),offer(md)
{fries(md), fries*(rz)}? offer(md)
{fries(md)}? O

{fries(md)}? meal(rz)
{fries(md)}? fries(rz),burger(rz)

(md)
(md)
{fries(md), fries*(rz)}? &
(md),
(md),

{fries(md), fries*(rz)}? «bistro(rz)
{fries(md), fries*(rz)}? A

Figure 4.2: ASLD: Burger Example (Abductive and Consistency Phases)

in T, then p can be replaced everywhere except in A by the new predicate p’ /n and the new
clause p?(X1,..., Xp)=p(X1,...,X,) added to T. In addition, every integrity constraint is
assumed to mention at least one abducible predicate.

The main abductive computation is initiated by running query g on program 7', and
is identical to standard SLD resolution ezcept when an abducible a is selected. Whereas
conventional SLD would be forced to fail the current computation and backtrack, ASLD treats
this abducible as a candidate hypothesis, and invokes a consistency computation, aiming to
show that the addition of this abducible to the current hypothesis A, would not violate
integrity.

The consistency computation is designed so as to avoid the need to test all integrity
constraints against each abducible, and consists of a sequence of checks, one for each integrity
constraint that resolves with the abducible under investigation. Every such resolvent is run
as a query, each of which must finitely fail for the integrity check to succeed. If necessary
this failure can be expedited by a commitment not to abduce some other atom b, and this
eventuality is recorded by adding b* to A, indicating that all subsequent calls to b should
immediately fail.

If all consistency checks are passed (i.e. they all end in failure), then the abductive
computation continues with the abducible a added to A, indicating that all subsequent calls
to a should immediately succeed. If any consistency check is not passed (i.e. it ends in
success) then the current computation is failed and the backtracking mechanism is invoked.

There is an obvious similarity between consistency mechanism described above, and the
familiar NAF mechanism as used by SLDNF. Indeed, in the general ASLD procedure, NAF is
simply treated as a special case of abduction?. The correct handling of negation in this way
requires that subordinate abductive computations be systematically invoked by consistency
computations, leading to arbitrary nestings.

Example 4.0.16. The ASLD computation resulting from figure 4.1 is shown in figure 4.2,
where each query is preceded by the set of currently abduced atoms. The abductive compu-
tation, shown in the single LHS box is initiated by the goal query @ =?meal(md), with an
empty set of abduced atoms. The subsequent computation is identical to that of a Prolog
interpreter until the abducible fries(md) is selected in the third line.

At this point the consistency computation shown in the double RHS box is invoked.
Each half begins with the query obtained from the resolvent of fries(md) with an integrity
constraint. The topmost check is run on 7' under the assumption fries(md) and fails with

%More specifically, for each predicate p/n a new predicate p*/n is added to A to represent the negation of
p, and the canonical integrity constraints :-p(Xi,...,X,),p"(X1,...,Xns) and (implicitly) p(X1,...,Xn) V
p*(X1,...,X,) are added to IC. Any NAF literals of the form < p(ti,...,t,) are then replaced by
p*(tl, e ,tn)
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a commitment not to abduce fries(rz), which is recorded by appending fries*(rz) to the
hypothesis before passing it on to the next check. The lower test fails under the standard
SLDNF mechanism.

Thus fries(md) passes the integrity check and so the abductive computation continues
with this fact having been added to the set of currently abduced atoms, along with the
additional commitment to fries*(rz). The next call succeeds by standard SLD and the
last by virtue of fries(md) having been previously abduced. Finally, the set of positive
abducibles is returned as computed abductive explanation A = {fries(md)}. In this case no
further solutions are found upon backtracking.

It can be shown that (under certain restrictions), atoms contained in a Bottom Set
Bot(B,e) can be computed by ASLD from a theory T consisting of the Standardised back-
ground knowledge B, with a goal consisting of the standardised example ¢. Note that in
Example 4.0.16 the ASLD procedure is shown to compute the very atom that STARTSET
failed to compute in Example 3.3.8. This observation will be elaborated and further devel-
oped in the next section. (i.e. rather than expound at this stage the necessary conditions
required for the method to be complete, this observation will instead be used to motivate a
semantic analysis and generalisation of the Bottom based approach that will subsequently be
refined in such a way as to exploit the observations of previous chapters).
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Chapter 5

Hybrid Abductive Inductive
Learning

This chapter introduces a novel learning approach, called Hybrid Abductive Inductive Learn-
ing (HAIL), which builds upon the previous two chapters. The purpose of this Section is to
motivate the abductive, deductive and inductive components of the HAIL learning cycle, and
to present an instance of this cycle that combines and generalises existing ASLD and Progol5
methods. Subsection 5.1 motivates and formalises the semantics of Kernel Set Subsumption,
showing it to be a sound method of inductive inference which extends that of Bottom Gener-
alisation. Subsection 5.2 introduces a generic proof procedure, a concrete refinement of which
is provided in Subsection 5.3. This procedure is illustrated in Subsection 5.3.3 by means of
two worked examples. Finally, Subsection 5.3.4 proposes a simple extension of the procedure.

5.1 The Semantics of Hail

The mathematical motivation underlying HAIL is illustrated by a transformation of the Bot-
tom Set that more clearly exposes the component tasks of deductive and abductive reasoning.
The Refined Bottom Set defined earlier certainly reveals the abductive and deductive com-
ponents, but because it deliberately excludes vacuous literals, the Refined Bottom Set is not
equivalent to the Bottom Set. For semantical purposes, it is desirable, at least initially, to
obtain a logically equivalent reformulation of the Bottom Set that reveals this same separation
into abductive and deductive components. It turns out that this can be achieved with relative
ease by replacing the Standardise procedure by a simpler procedure, called Normalise in
Definition 37 below, that simply leaves out the process of incapitation. Note that if e is a
negative clause, then € is read as the empty-clause.

Definition 37 (Normalise). Given a Horn theory B and a Horn clause e, let ¢ be a
Skolemising substitution for both B and e, then the Normalisation of B and e, denoted
Normalise(B,e), is the pair (B, €) defined as follows:

Normalise(B,e) = (B,e) where B=BUe, and € = e} ¢

Proposition 5.1.1 then provides a logically equivalent reformulation of the Bottom Set
that applies in the case B and e are Horn. This reformulation shows that the computation
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of negative literals (—d) and positive literals () of the Bottom Set can be viewed as distinct
tasks of deduction and abduction from the normalisation of B and e.

Proposition 5.1.1. Let B and € be the result of normalising a Horn theory B and a Horn
clause e where B = e. Let a,6 € GA denote ground atoms. As usual, let the operators ) and
\/ denote respectively the conjunction and disjunction of a set of formulae (sets of atoms in
this case). Then

Bot(B,e)= N\{6 € GA | Bl=6} = \[{a € GA | BAa =€}

Proof. By Definition 16, Bot(B,e) = {L | B e = —L}. Partitioning into positive literals o
and negative literals =4, this set can be rewritten as the union of the two sets: (i) {a | BAe |
—a} and (ii) {—0 | BAe = ¢}. The proof is then by cases, according to whether e is a definite
clause or a negative clause.

Case 1: Let e be the definite clause e = {Ey, ~FE1,...,~E,}. Then set (i) is equal to
{a | BA—=Eyo A Eic A ...\ Eyo |= —a}, which can be written {« | B A —¢ = —a}, and is
equal to {a | BA a |=€}. Set (ii) is equal to {=6 | BA —Eyo A Eio A ...\ Eyo = §}, which
can be written as {—d | BA —e |= ¢}, and this is now shown to be equal to {—d | B |= ¢} using
the following argument. If § is any atom such that B |= ¢ then B A —e |= § by monotonicity.
Therefore {—=d | BA—e |E 6} D {=d | Bl d}. If BA—e =6 then BA—eA—=d = L. Now,
by the completeness of Hyper-resolution [CL73], there is a Hyper-resolution refutation from
the clauses of BU {—e} U {—é}, in which the electrons are Eo,..., Ey0 and any facts in B.
And since the nuclei =€ and —d are negative unit clauses, they can be used only once (if at
all) to derive the empty-clause in the very last step of the refutation. But suppose —e is used,
then —§ cannot be used, and so there is a Hyper-resolution refutation from the clauses of
B U{—¢}, which means that BA —e = L by the soundness of Hyper-resolution, and so B |= €.
But this is equivalent to B |= e, which is a contradiction. Therefore —e is not used, and so
there is a Hyper-resolution refutation from the clauses of BU {—d}, which means that B = §
by the soundness of Hyper-resolution. Therefore {—=d | BA —e =6} C {=d | B | 6}. Hence
{=6 | BA-e =6} ={-d| B=d}.

Case 2: Let e be the negative clause e = {—FE;,...,mE,}. Then set (i) is equal to
{a | BAEic A...NEy0 = —a}, which is equal to {« | BAEicA...ANE,oANa = L}
and can be written {a | BA a |= €} as ¢ = O whenever e is negative. Set (ii) is equal to
{=6 | BAEjoA...N\E,oc [= ¢}, which can be written {-d | B = d}.

In both cases Bot(B,e) ={L | BAe =-L} ={-0 | BAe =dé}U{a| BAe = -a} =
{=6 | B} U{a | BA«a [ €}. Since the clause Bot(B,e) represents the disjunction of its
literals, it is therefore logically equivalent to the formula Bot(B,e) = A{6 € GA | B|= 6} —
V{ia € GA | BAa =€}

Proposition 5.1.1 shows that the atoms § € Bot™ (B, e) are those ground atoms that may
be deduced from the normalised background B, and that the atoms o € Bot™ (B, e) are those
ground atoms that may be abduced from B given as goal the normalised example e. This
has two important implications. First, the incompleteness of Progol5 identified in Section
3.3.3 can be avoided by replacing the STARTSET routine with an abductive procedure for
deriving single atom hypotheses a. Second, the semantics of Bottom Generalisation can be
extended, and the Progolb proof procedure can be further generalised, by exploiting abductive
hypotheses with multiple atoms, as shown in the next two subsections.
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5.1.1 Kernel Generalisation and Kernel Set Subsumption

Motivated by a clear analogy with ALP, the equivalent formulation of the Bottom Set obtained
in Proposition 5.1.1 is now generalised by replacing the single atoms « by conjunctions of
atoms A. As formalised in 38 below, the resulting formula will be called the Kernel of B and
e.

Definition 38 (Kernel). Let B and € be the result of normalising a Horn theory B and a
Horn clause e such that B |~ e. Then the Kernel of B and e, written Ker(B,e), is the formula
defined as follows:

Ker(B,e) = N\{6 €GA|Bl=3d} = \[{ACGA|BAA ¢} A

As formalised in Definition 39 and Proposition 5.1.2 below, any formula that logically
entails the Kernel is said to be derivable by Kernel Generalisation, and all such formulae
entail e relative to B. NOTE: from this point on it is assumed that all theories denoted by
the symbol H are free of Skolem constants.

Definition 39 (Kernel Generalisation). Let B be a Horn theory and e be a Horn clause
such that B [~ e. Then a Horn theory H is said to be derivable by Kernel Generalisation
from B and e iff

H |= Ker(B,e) ¢
Proposition 5.1.2 (Soundness of Kernel Generalisation). Let H and B be Horn theo-
ries and let e be a Horn clause such that B [~ e. Then

if H = Ker(B,e) then BANH |=e

Proof. Assume H |= Ker(B,e). For convenience, first let P and S abbreviate the following
formulae: let P = A{d € GA | B = 6} be the conjunction of all ground atoms entailed by
B, and let S = \/{A € AGA | BA A [= €} be the disjunction of the conjunctions of ground
atoms that together with B entail e. Then observe that (i) B = P as each conjunct § of P
is individually entailed by B, and (ii) BA S = € as together with B, each individual conjunct
A of S entails €, and (iii) H = P — S by Definition 38 and assumption above. Let M be
any model of BA H. Then because M is a model of B it is also a model of P, using (i). And
because H = Ker(B,e) and M is a model of H and P, it is also a model of S, using (iii).
And because M is a model of B and S, it is also a model of ¢, using (ii). Therefore BAH |= ¢,
which is equivalent to B A H |= e. |

For computational purposes it is convenient to introduce a refinement of the Kernel, called
a Kernel Set. Informally, a Kernel Set K is a Horn clause representation of some part of a
Kernel Ker(B,e). As shown in Definition 40 below, the head atoms o of K constitute one
conjunction A from the consequent of Ker(B,e), and the body atoms &/ of K represent
a selection of §’s from the antecedent of Ker(B,e). And, as shown in Definition 41 and
Proposition 5.1.3 below, a sound inductive inference procedure called Kernel Set Subsumption
is obtained by searching for theories H that clausally subsume a Kernel Set of B and FE.
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Definition 40 (Kernel Set). Let B and € be the result of normalising a Horn theory B and
a Horn clause e. Then a Horn theory K is said to be a Kernel Set of B and e iff

a6l ,6m)
IC: (67 '5115 'a(sga ’5:71(1)
an =61, omin)

where m(i) > 0 denotes the number of body atoms in the i clause, and «; € GA denotes
the head atom of the i*? clause, and 6! € GA denotes the 4" body atom of the i** clause,

andBU{al,...,an}|=eandB|=(5Zj for all 4, j such that 1 <4 <mn and 0 <j < m(q).

Definition 41 (Kernel Set Subsumption). Let £ be a Kernel Set of a Horn theory B
and a Horn clause e such that B [~ e. Then a Horn theory H is said to be derivable by Kernel
Set Subsumption from B and e iff H J K ¢

Proposition 5.1.3 (Soundness of Kernel Set Subsumption). Let K be a Kernel Set of
a Horn theory B and a Horn clause e such that B £ e. Then

if HJ K then H = Ker(B,e)

Proof. Assume H 1 K. For convenience, first let P, ), R and S abbreviate the following
formulae: let P = A{d € GA | B |= ¢} be the conjunction of all ground atoms entailed
by B, let Q = A{6},...,67,...,67™1 be the conjunction of all body atoms of K, let R =
A{a1,-..,a,} be the conjunction of all head atoms of K, and let S = \/{A € AGA | BUA |
€} be the disjunction of the conjunctions of ground atoms that together with B entail e. Then
observe that (i) P = @ as the conjuncts 8] of @ are included among the conjuncts § of P,
and (ii) R = S as the conjunction R is one of the disjuncts A in S, and (iii)) K E Q — R, as
any model of K that satisfies every body atom, must also satisfy every head atom, and (iv)
H |= K by definition of #-subsumption and the assumption above. Now assume M is a model
of H, and let M be any model of P. Then M is also a model of @, using (i). And because
M is a model of H, it is also a model of K, using (iv). And because M is a model of K and
@, it is also a model of R, using (iii). And because M is a model of R, it is also a model of
S, using (ii). Therefore H = P — S, or equivalently H = Ker(B,e) by Definition 38. |

Propositions 5.1.2 and 5.1.3 above, show that Kernel Set Subsumption is a sound method
of inductive generalisation. Proposition 5.1.4 below, shows that Kernel Set Subsumption is a
strict extension of Bottom Generalisation.

Proposition 5.1.4 (Kernel Set Subsumption extends Bottom Generalisation). Let
B be a Horn theory B and e a Horn clause such that B [~ e. Then the set of hypotheses KSS
derivable by Kernel Set Subsumption from B and e, strictly includes the set of hypotheses BG
derivable by Bottom Generalisation from B and e.

Proof. First show that KSS O BG. If the Horn clause h is derivable from B and e by Bottom
Generalisation, then h > Bot(B,e) by Definition 18, and therefore ho C Bot(B,e) for some
substitution 0. And by Proposition 5.1.1 ho = a:-41,...,0, where BAa |= € and B |= d; for
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all 0 < j < n. Therefore the Horn theory H = {h} is derivable by Kernel Set Subsumption,
using the Kernel Set X = {a:-61,...,0,}. Thus KSS D BG.

Now show KSS # BG. Let p/0 and ¢/1 be predicates and a and b be constants, and
define:

B = {p=-q(a),q(b)} e=p h = q(X)

Then the hypothesis h = ¢(X) is not derivable by Bottom Generalisation, as it does not
f-subsume the Bottom Set Bot(B,e) = {p}. But the hypothesis h = ¢(X) is derivable by
Kernel Set Subsumption as it does clausally subsume the Kernel Set K = {¢(a),q(b)}. Thus
KSS # BG, and hence KSS D BG. |

Note that a refined inference method is obtained from Kernel Set Subsumption by replacing
the Normalise transformation by the Standardise transformation in Definition 40 — giving
the notion of a Refined Kernel Set — and by replacing H by H prior to testing for subsumption
in Definition 41 — giving the notion of Refined Kernel Set Subsumption. This refined approach
has the advantage of computing fewer vacuous literals.

This section now concludes with the observation that Kernel Set Subsumption is related
to an extension of Plotkin’s c-derivation, which is formalised in Definition 42 below.

Definition 42 (K-derivation). Define a K-derivation of a clause e from a clausal theory B
with respect to a clausal theory H, as a resolution derivation of e from B U H, in which any
clause in H is used at most once. A K-derivation of the empty-clause is called a K-refutation.

¢

Thus, a K-derivation! is like a c-derivation, except that now there is a set of clauses,
each of which may be used at most once. The c-derivation is therefore a special case of the
K-derivation in which this set is a singleton. With this new definition in mind, it remains to
show that a theory K is a Kernel Set of B and e only if there exists a K-refutation from BUe
with respect to K.

5.2 A Generic Proof Procedure for Hail

This section introduces a generic proof procedure for Kernel Set Subsumption that integrates
abductive, deductive and inductive reasoning within a general framework. The purpose of
this section is to show how multiple-atom abductive hypotheses can be used productively
within a cycle of learning that generalises Progol5.

The intuition underlying the HAIL proof procedure is illustrated in Figures 5.1, which
provides a conceptual view of the HAIL learning cycle. In common with Progol5, this cycle
consists of an outer Cover-Set loop (Steps 1 and 5) and three sub-routines that constitute the
abductive (Step 2), deductive (Step 3) and inductive (Step 4) phases, respectively. Given as
input finite Horn theories B, ET and E—, and a set of mode-declarations M, the objective

! Note that an equivalent notion, called Input-Quota or IQ-Resolution, can be defined as follows: Given a
set of clauses T and a partial function @ from the clauses in 7' to the natural numbers A/, then an IQ-derivation
of a clause C from (T, Q) is a resolution derivation of C' from T, in which each clause ¢ is used as an input
clause at most Q(c) times, whenever Q(c) is defined, and any number of times Q(c) is not defined. Informally,
the function Q represents a ‘quota’ for the clauses in 7. Note that there is a straightforward correspondence
between IQ-derivations and K-derivations: namely an IQ-derivation in which clause ¢ has a quota of n, is
simulated by a K-derivation with respect to n variants of ¢, and vice-versa.
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Figure 5.1: A Conceptual View of the HAIL Learning Cycle

Begin HAIL
Input given B, ET, E-, M
assert Consistent(BUET UE™)

let E* = Et — Cover(B,ET)

Cover-Set-Loop
select seed
standardise
Abduction

Deduction

Induction

best hypothesis
assert hypothesis
remove cover
Output

End HAIL

while E* # ()
select seed example e € ET
let (B, e) = Standardise(B,e)
let A= ABDUCE(B,e, M™)
for each abduced hypothesis A; € A
for each abduced atom o € A;
let k;j = DEDUCE(B, o, M ™)
let KC; = U]{k”}
let H; = SEARCH(K;,B,E*,E~, M)
let H = H; with greatest Compression
let B=BUH
les EY =FEt —{e€ ET | BE¢€}
return B

Figure 5.2: An Overview of the HAIL Learning Cycle
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of HAIL is to return an augmented background knowledge B’ = B U Hy U ... U H, which
entails E, is consistent with £, and where each theory H is maximally compressive and
compatible with M. It is initially assumed that ET is non-empty and contains no clause that
is entailed by B. On every iteration of the cycle at least one clause is removed from E+ and
at least one clause is added to B.

The CoverSet loop begins (Step 1) by selecting from E' a seed example e, which is
standardised with B, giving theory B and atom e. An abductive procedure is then used
(Step 2) to find explanations A; = {ai,...,a,} of goal € from theory B. By definition,
each explanation is a set of implicitly conjoined ground atoms such that B A A; = €. Any
abductive procedure can be used, but for the purposes of illustration Figure 5.1 depicts a
tree-like computation representing the ASLD procedure of Kakas and Mancarella [KM90].
Abduced atoms «; are shown as tapered squares, the goal € is shown as an oval, and the
theory B is implicit.

Every n-atom hypothesis A; = {a1,...,a,} abduced in Step 2 is used in Step 3 to
form an n-clause Kernel Set K; = {k;1,...,kin}, with each atom «; becoming the head of
exactly one clause k;;. To every head atom «; is adjoined a set of body atoms (55 , shown as
squares in Figure 5.1, each of which is determined by a deductive procedure that computes
ground atomic consequences of 5. The resulting Kernel Set ; is then generalised (Step 4) by
constructing a Horn theory H; that includes at least one clause h;; from the §-subsumption
lattice of each Kernel clause k;;. Figure 5.1 shows the clauses h;; and h;, (rounded rectangles)
selected from the #-subsumption lattices (dotted arrows) of the Kernel clauses k;; and kg
(tapered rectangles). In general, the same clause may be selected from several lattices, as in
the example used in Proposition 5.1.4.

The hypotheses constructed by HAIL should be compatible with the given language bias,
and they should be maximally compressive in the sense of covering the greatest number of
remaining positive examples while containing the fewest number of literals. Therefore, the
abductive and search procedures are required return hypotheses that are minimal in the sense
that no subset is also a hypothesis, and, in practice, all three procedures will make use of
the mode-declarations M. In this way, the most compressive hypothesis H; is determined for
each Kernel Set K; resulting from some explanation A;. In step 5, the most compressive such
hypothesis, H, is then asserted into B, and any covered examples are removed from ET. The
cycle is repeated until ET is empty, whereupon the augmented background B’ is returned.

A more formal overview of the HAIL learning cycle is shown in Figure 5.2, which represents
the intuition presented above in terms of the generic procedures ABDUCE, DEDUCE and
SEARCH. aborts if the inputs are inconsistent, as in this case no solution can exist;

Given as input B, ET, E= and M, HAIL begins by verifying that the inputs are consis-
tent — as otherwise no solution exists; and then it removes from E+ any examples already
covered by B — as these require no hypothesis. The first seed example is then selected
and standardised, giving B and e. From the theory B and the goal ¢, ABDUCFE com-
putes a set A = {Aq,...,A,} of explanations, each of which is an implicitly conjoined set
A; ={aq,...,a,} of ground atoms compatible with the head-declarations M+ in M, and is
such that BA A; =e.

In the outer for-loop, each explanation A; € A is processed in turn. In the inner for-
loop, each atom «; € A; becomes the head of a clause k;; to which DEDUCE adjoins a
set body atoms, each of which is a ground atomic consequence of B compatible with the
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Begin Algorithm 5.3.1 (HAIL).

Input given B, ET, E—, M

check consist. assert Consistent(BUET UE™)

remove cover let EY = ET — Cover(B,E")
Cover-Set-Loop ~ while ET # ()

select seed choose seed example e € E
standardise let (B, €) = Standardise(B,e)
Abduction let A = ASLD(T*FORM(B,¢, E~, M ™))
Deduction for each abduced hypothesis A; € A

for each abduced atom o; € A;
for some head-dec d € M such that schema(d) > o
let k;; = BOTTOMSET(B, o, d, M_)
let ICz = U]{k’tj}

Induction let H; = M-SEARCH(K;,B,E*,E, M)
assert best hyp. add to B the H; with greatest Compression
remove cover let Et = ET — Cover(B, E™)

Output return B

End Algorithm (HAIL)

body-declarations M~ in M. The Kernel Set K; formed of the union of the clauses k;; is then
generalised by SEARCH, which determines the most compressive theory #; that clausally
subsumes K; and is compatible with M. The most compressive theory obtained in this way
is then added to B, and any newly covered examples are removed from E7.

5.3 A Concrete Proof Procedure for Hail

This section introduces a concrete proof procedure for refined Kernel Set Subsumption that
is based on the Bottom-based Cover-Set methodology described in Algorithm 3.2.18, but is
able to find hypotheses that lie outside the semantics of straightforward Bottom Generalisa-
tion. The procedure refines that described above by providing concrete algorithms for the
abductive, deductive and inductive phases.

Full ASLD is used in the abductive phase, but in order to guarantee the computed atoms
are compatible with the mode-declarations, the T-FORM algorithm pre-processes the inputs
to the ASLD procedure. The standard Progol5 BOTTOMSET routine is used unaltered in
the deductive phase. The M-SEARCH routine is used to generalise the computed Kernel Sets.
It remains only to describe the novel components TTFORM and M-SEARCH.

5.3.1 T-FORM

One practical problem associated with the integration of ALP and ILP technologies arises
from the diversity of mechanisms used for representation the of language bias. Whereas ASLD
employs abducible predicates, Progolb utilises mode-decs. Of these two approaches, mode-
decs are strictly more expressive in the sense that they not only determine which predicates
may be appear in the heads and bodies of hypothesised clauses, but also which term-structures
may appear as the arguments to those predicates.
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Begin Algorithm 5.3.2 (T-FORM).

Input given B, e, E=, M*

let T=B,g=¢, I[C=0and A=10
Auxiliary for each predicate p/n such that p = pred(m) for some m € M™*
predicates let p° /m and p” /n be fresh predicate symbols

if p is defined in T then
let A=AU{p°}

bridging clause let T=TU{p(X1,..., Xp)=-p°(X1,-.., Xp)}
let IC = ICU{:-p°(X1,...,X,), ~p"(X1,..., Xn)}
else
let A=AU{p}
let IC=ICU{:-p(X1,...,Xp), ~p"(X1,...,Xn)}
Type for each head-dec m € M+
constraints let T =T U {schema” (m):-type(m)}
Domain for each denial :-a1,...,a, € E-
constraints if pred(a;) ¢ A for all 1 < j < m then
let IC=1CU{:-a1,...,am,p(X1,...,X,) | p/n € A}
else
let IC=ICU{:-ai,...,an}
Output return (7', g, IC, A)

End Algorithm (T-FORM)

If abduced atoms are to participate in the heads in the heads of induced clauses, then
the abductive procedure must be constrained so as to return only atoms that conform to the
inductive language bias. More concretely, the ASLD procedure must be adapted to return
only those atoms that are compatible with a given set of head-decs. The T-FORM routine
shown in Algorithm 5.3.2 ensures precisely this, by encoding the inductive language bias as
abductive integrity constraints and additional program rules containing new predicates.

T-FORM combines the encoding of language bias together with the pre-processing neces-
sary to satisfy the restrictions imposed by ASLD; namely that all abducible predicates be
undefined in T and all integrity constraints mention one abducible. In addition T-FORM
encodes negative examples as integrity constraints (since all hypotheses must be consistent
with the negative examples). T-"FORM therefore maps an inductive context into an abductive
context for the purpose of abducing head atoms to be used in the construction of Kernel Sets.

The inputs to the TFORM algorithm are determined by the inductive problem and consist
of the standardised background knowledge B and seed example €, negative examples and
domain integrity constraints F~, and head-decs M*. The output is an abductive context
(T, g,IC, A) satisfying the restrictions of the ASLD procedure, and in which are encoded
the necessary language and domain constraints to ensure that all abduced hypotheses are
compatible with M+ and consistent with E~.

The T-FORM algorithm begins by initialising 7' = B, g = € and IC = (. Since ASLD is be-
ing used to abduce those atoms that will participate in the heads of induced clauses, each head-
dec d is examined in turn to determine which predicates p should be considered abducible.
But because ASLD requires that no abducible predicate be defined in the theory, auxiliary
predicates p® are instead added to A, and bridging clauses p(X1, ..., X,):-p®(X1,...,X,) are
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added to T. Conversely, in each hypotheses A formed by ASLD, every auxiliary predicate p°
is replaced by the corresponding base predicate p.

To facilitate the encoding of the inductive language constraints on the arguments of p,
another auxiliary predicate p” is introduced. Intuitively, the call p™(¢1,...,t,) succeeds iff
the atom p(t1,...,t,) conforms to the required language bias. If it does not, and an attempt
is made to abduce p°(t1,...,%,), the constraint -p®(Xy,...,X,), ~p"(X1,...,X,) will be
violated and the current hypothesis will be aborted. The language bias is extracted from the
mode-dec using the schema and type functions described in definition 8 and added to T'.

General domain integrity constraints and negative examples can be incorporated into the
abductive context almost directly. But because ASLD requires that all integrity constraints
mention at least one abducible predicate, a simple transformation must be applied. To force
ASLD to check each domain constraint whenever any atom is abduced, several integrity con-
straints are formed by appending to the original constraints the header of each abducible
predicate in turn. Every abducible is now guaranteed to resolve with exactly one of these,
leaving a resolvent to be checked that is identical to the original constraint. This process
is correct providing that the original constraint is not initially violated, and this will be
guaranteed by the cover-set-loop.

Example 5.3.3. The intuition that underlies the T-FORM algorithm is illustrated by the
contexts shown in Figures 3.1 and 4.1. Clearly T and g correspond to the background knowl-
edge B and the seed example e. The integrity constraints ¢cl and ic2 can now intuitively be
seen to encode the negative example and head-dec.

First consider the head-dec modeh[fries(+bistro)] which states that in the MSH all ar-
guments of the predicate fries/1 must be of type bistro. This is encoded in the integrity
constraint :- fries(V), «bistro(V') which states that it must not be the case that any argu-
ment to fries fails to be a known bistro.

Now consider the negative example :- meal(theRitz) which states that it must not be the
case that a meal was had in theRitz. It is appropriate to treat this restriction as an integrity
constraint, but because meal is not abducible the additional atom fries(W), corresponding
to the only abducible predicate, must be added.

Formally, the application of the T-FORM algorithm to the inductive context of figure 3.1
would result in the clauses fries(X):- fries’(X) and fries™(X):- bistro(X) being added to T,
and the integrity constraints :- fries®(X), « fries™(X) and :-meal(theRitz), fries®(X) be-
ing added to IC. The hypothesis constructed by ASLD before removal of auxiliary predicates
is fries®(mcDonalds).

5.3.2 M-SEARCH

M-SEARCH takes as input a finite list of clauses K (Kernel Set), and a Horn mode inductive
context consisting of the Horn clause theories B (background knowledge), Et (positive ex-
amples), and E~ (negative examples), and a set of mode-decs M (language bias). The task of
M-SEARCH is to compute the most compressive hypothesis H such that every clause k in K
is subsumed by at least one clause in H. And this it achieves by selecting one? representative
from each @-subsumption sub-lattice [(J, k].

2A less naive approach is considered in Subsection 5.3.4.i, but for the purposes of exposition is appropriate
to consider a more simplistic approach first.
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Begin Algorithm 5.3.4 (M-SEARCH).

Input given K, B, EY, E~ and M

Base if =] then

case (bestH, bestS) = (B, Compression(B,B, E* E~)) ¢
General else

case let (bestH,bestS) = (M, —oo)

let hs = [head(K)]
let visited = 0
while hs # [ ]
let (newH,newS) = (M, —oo)
let h = head(hs)
if h & visited then
if h  Hpr then ©

open sub-tree let hs = hs++v(h) ¢
else
recursion step let (newH, newS) = M-SEARCH(tail(K), BU{h}, ET,E~, M)
if newS > —oo then
open sub-tree let hs = hs++~y(h)

if newS — |h| > bestS then
let (bestH,bestS) = (newH U {h},newS — |h|)
let visited = visited U {h}
let hs = tail(hs)
Output return (bestH, bestS)
End Algorithm (M-SEARCH)

“n.b. Compression is definied in Definition 9.

n.b. For an alternative see Subsection 5.3.4.

‘n.b. H s is the hypothesis space determined by M.
n.b. v(h) are immediate generalisations of h under 3.

Note that it is not viable to generalise each MSH individually because the presence of
the others is needed in order to cover the seed example and to check consistency. Note also
that when searching for the most compressive hypothesis, the inter-dependency between the
sub-lattices potentially results in a large computational overhead that in practice must be
ameliorated with suitable control strategies.

Algorithm 5.3.4 performs a naive specific-to-general search through the sub-lattices deter-
mined by the Kernel Set. Each hypothesis considered by the algorithm, is obtained picking
one representative from each lattice, and assessing the compressivity of that hypothesis, with
respect to the examples and background knowledge. Computational effort is conserved by
pruning inconsistent hypotheses from the search space, and by ignoring hypotheses which do
not conform to the given language bias.

Given a non-empty list K of clauses (constituting a Kernel Set), Algorithm 5.3.4 picks the
first clause in the list and begins a breadth-first specific-to-general search of the §-subsumption
sub-lattice bounded by the chosen clause and the empty-clause. During the search a list hs
is maintained of the clauses still to be investigated, and a list visited is maintained of the
clauses that have already been investigated. Initially hs is set to the chosen kernel clause,
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and visited is empty.

The best hypothesis found so far is stored in a variable bestH, and its corresponding score
is stored in the variable bestS. The variable best H contains a clausal theory and is initially
empty. The variable bestS contains a score and is initially set to —oo, which is the lowest
possible score. On each iteration a clause h is chosen from the head of hs and investigated.
If h has already been visited then it is ignored. If h is not compatible with the hypothesis
space H s determined by the mode-decs M, then it is ignored, but only after its descendents
~v(h) are added to hs.

If the current clause h is being visited for the first time and it lies within the given language
bias, then it is temporarily asserted into the background knowledge, and the optimal choices in
the remaining sub-lattices are determined by recursing on the tail of K. If the new score newS
returned by the recursive call is greater than —oo then a hypothesis newH was constructed
that is consistent with the background knowledge B (which may contain hypothesis clauses
of any previous sub-lattices). Therefore, the best hypothesis which can be constructed using
h is newH U {h} with a corresponding compression of newS — |h| (remembering to subtract
the complexity of h).

If this newly determined score is the best so far, then the old pair (bestH,bestS) are
overwritten with the new pair (newH U {h}, newS — |h|). The current clause h is marked as
visited, and if a consistent hypothesis was constructed, then the immediate generalisations
v(h) of h are added to hs. Once all generalisations have been exhausted, the algorithm returns
the most compressive hypothesis that was constructed, together with the corresponding score.

In the base case one representative from each lattice has been added to B and the list K
is now empty. All that remains is to return the compression score with respect to the positive
and negative examples. The null-clause formally takes the place of the hypothesis argument,
which as just stated, is already contained in the background knowledge.

5.3.3 Worked Examples

The HAIL proof procedure is now illustrated by means of two simple worked examples. The
first example illustrates how HAIL is able to overcome the incompleteness due to the Progol5
STARTSET routine. The second example shows how HAIL is able to derive hypotheses outside
the semantics of Bottom Generalisation.

Example 5.3.5 (Fast Food). This example shows how HAIL is able to overcome the incom-
pleteness of Progol5 identified in Subsection 3.3.3. For convenience, the inductive context,
which appeared previously in Figure 3.1, is repeated in Figure 5.3, and the corresponding
HAIL learning cycle is illustrated in Figure 5.4.

Recall from Section 2.4 and Figure 2.1 that the background knowledge B describes a
domain of three bistros: md, bk and rz (abbreviating mcDonalds, burger King and theRitz).
To have a meal in a bistro, it is sufficient to have burger and fries; and a free burger comes
with every order of fries at bistros participating in a special offer. Observe that the positive
examples ET state that a meal has been eaten at both md and bk; and that the negative
examples E~ state that a meal has not been eaten at rz. The mode-declarations state that
the atom fries(X) may appear in the heads of hypothesised clauses; and the atom offer(X)
may appear in the bodies. Recall from Example 3.2.3 that hypothesis H is derivable by
Bottom Generalisation using either e = meal(md) or e = meal(bk) as the seed example.
Finally recall from Examples 3.3.6 and 3.3.8 that this hypothesis cannot be computed by
Progol5.
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As illustrated in Figure 5.4, HAIL solves Example 5.3.5 in the following way. In Step 1,
the seed e = meal(md) is selected and standardised, trivially giving B = B and € = e. In
Step 2, given theory B and goal e, ASLD abduces the hypothesis A = { fries(md)} containing
the atom a = fries(md). In Step 3, this atom « becomes the head of a clause k, to which
the body atom offer(md) is added by BOTTOMSET. For efficiency BOTTOMSET replaces
the constant md with the variable X, as required by the mode-declarations. In Step 4, the
f-subsumption lattice, bounded from above by the newly computed clause k, and from below
by the empty clause O, is searched. The most compressive hypothesis is k itself — as all
more general clauses are inconsistent with the negative example :-meal(rz). In Step 5, the
theory H = {fries(X):-offer(X)} is added to B, and because both positive examples are
now covered, they are removed from E'. The cycle terminates, returning the augmented
background B’ = BU H.

Example 5.3.6 (Academic). This example shows how HAIL is able to compute more than
one clause in response to a single seed example, and to derive hypotheses outside the semantics
of Bottom Generalisation. The inputs are shown in Figure 5.5 and the corresponding HAIL
learning cycle is illustrated in Figure 5.6. This example concerns students, lecturers and
academics.

The background knowledge B has been partitioned into domain knowledge and scenario
knowledge. The former states that being tired and poor is enough to make anybody sad,
and that students and lecturers are all academics. The latter states that there is one
student called oli and two lecturers called ale and kb. The examples and mode-declarations
are self-evident. It can be verified that the hypothesis H, which asserts that everybody is
tired but that all lecturers are poor, is the shortest hypothesis that is compatible with the
mode-declarations and explains the positive examples and is consistent with the negative
examples. It can also be verified that H cannot be derived by Bottom Generalisation using
either of the positive examples as a seed. This is because no literal with the predicates tired
or poor is entailed by the complementary extension B.., and so no such literal is contained
in the Bot(B,e), nor any clause derivable by Bottom Generalisation. In particular, observe,
therefore, that Progol5 cannot compute H.

As illustrated in Figure 5.6, HAIL solves Example 5.3.6 in the following way. In Step
1, the seed e = sad(ale) is selected and standardised, again giving B = B and € = e. In
Step 2, ASLD abduces the hypothesis A containing the two atoms «; = tired(ale) and
a9 = poor(ale). In Step 3, a; and ay become the heads of two clauses k; and ko, to which
the body atoms lecturer(ale) and academic(ale) are added by BOTTOMSET. Note that for
efficiency BOTTOMSET replaces the constant ale with the variable X, as required by the
mode-declarations. Note also that, in general, different body atoms will be added to different
clauses. Note finally that the two clauses k1 and k3 constitute a Kernel Set of B and e. In Step
4, one clause is chosen from each of the #-subsumption lattices resulting from this Kernel Set.
For ease of presentation the clauses in the #-subsumption lattices have been written without
brackets and only the first letter of each predicate symbol is shown. In Step 5, the most
compressive hypothesis H consisting of the two clauses tired(X) and poor(X):-lecturer(X)
is added to B, and because both positive examples are now covered, they are removed from
E™. The cycle then terminates returning the augmented background B’ = BU H.
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5.3.4 Redundancy Checking

This section concludes by describing a simple modification of the M-SEARCH routine that
enables more compressive generalisations to be computed.

Recall from above that at any given state in the search process, exactly one clause is
being considered from each sub-lattice. It may happen, however, that a particular sub-
lattice k contributes a clause C, which is already entailed by clauses contributed by the
other sub-lattices (relative to the background knowledge). Because the clause C is logically
redundant, it should removed, in order not to adversely influence the compression score of
the current hypothesis. One way of modelling this situation is by viewing the sub-lattice & as
contributing the null-clause: which in this context means no clause at all. The HAIL algorithm
is easily modified by replacing the assignment hs = [head(K)] with the new assignment
hs = [M, head(K)]. This means that the algorithm will always begin by checking whether the
null clause is an acceptable solution. Note that the null-clause is treated essentially as the
empty set, and is therefore defined as having a complexity of zero. This modification enables
HAIL to solve the context used previously in Proposition 5.1.4, where the Kernel Set contains
two clauses but the hypothesis contains only one.

Example 5.3.7. This example is a meta-level learning problem about object-level learning.

groundLiteral(“p”)

B = groundLiteral (“—p”)
tautology(bot(B, E)) :-in(bot(B, E), “p”),in(bot(B, E), “-p”)
Et = { tautology(bot(B, E)) - entails(B, E) }
E- = { -in(bot(B,E),“L") }
H = { in(bot(B,E),X):entails(B, E), groundLiteral(X) }

Let the meta-level atom groundLiteral(“p”) represent the fact that the proposition symbol
“p” is a ground literal of the object language. Note that by the definition of a literal, its
negation “—p” is also a ground literal of the object language, and so groundLiteral(“—p”).

Let the meta-level term bot(B, E) represents the Bottom Set of the object-level formulae
represented by B and E. Note that following standard Prolog convention, the functor bot
begins with a lower case letter and the variables B and E are upper case letters. Let the
meta-level atom in(bot(B, E), “p”) denote the fact that the object-level atom “p” is contained
in the Bottom Set of the object-level formulae represented by B and E. Let the meta-level
atom tautology(bot(B, E)) denote the fact that the Bottom Set represented by bot(B, E) is a
tautology. Note that by the definition of Bottom Set, whenever both in(bot(B, E), “p”) and
in(bot(B, E), “~p”) then it follows tautology(bot(B, E)). Represent this fact with the clause
tautology(bot(B, E)) :-in(bot(B, E), “p”),in(bot(B, E), “—p”).

Let the meta-level atom entails(B, F) denote the fact that the object-level formula B
entails the object-level formula F. Suppose one wished to explain why the Bottom Set of
B and FE is a tautology whenever B entails E. Represent this with the positive example
tautology(bot(B, E)) :- entails(B, E) Let “1L” denote the logical constant for falsity in the
object language. Note that “1” can appear in no Bottom Set. This is because an atom is
usually defined as a proposition or predicate symbol, from the signature of a language, applied
to an appropriate tuple of terms. But the logical constants are not usually included in the
signature of a language, as their interpretation is fixed. Therefore, although they are logical
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formulae, the logical constants are not, strictly speaking, logical atoms or literals. But the
Bottom Set is a set of literals. Therefore, “L” can appear in no Bottom Set. Represent this
with the integrity constraint :-in(bot(B, E), “L”)

Given this learning problem (which is summarised above) together with a set of suitable
mode declaration, the HAIL procedure can learn the hypothesis containing the single clause
in(bot(B, E), X) :- entails(B, E), groundLiteral(X) — but only if redundancy checking is en-
abled. This hypothesis happens to represent the true fact that if B entails F then all ground
literals are contained in the Bottom Set of B and e. Details are left to the reader.

7



78



Chapter 6

Related Work

The importance of abductive inference in the context of Bottom Generalisation was first re-
alised in [MB00] and [Yam00]. In [MBO00], Muggleton and Bryant suggest that Progol5 can
be seen as a procedure for efficiently generalising the atoms computed by the STARTSET
routine, which they view as implementing a form of abduction based on contrapositive rea-
soning. This report confirms the view of Muggleton and Bryant by showing that STARTSET
performs abduction from standardised inputs, but reveals that STARTSET is incomplete with
respect to Bottom Generalisation. In [YamO00] it is shown that given definite clauses B and
e, then Bot™ (B,e) is the set of atoms in the least Herbrand model of the definite theory
consisting of B and the Skolemised body of e, and Bot™(B,e) is the set of atoms abducible
by SOLDR-resolution from this program given as goal the Skolemised head of e. The Ker-
nel semantics presented in this report can be seen as a generalisation of these results that
exploits multiple atom abductive hypotheses. In [Yam00], Yamamoto describes a procedure
that incorporates explicit abduction within Bottom Generalisation. Atoms in the head and
body of the Bottom Set are computed by separate abductive and deductive procedures, and
hypotheses are formed by generalising the computed atoms. However, this procedure is non-
deterministic, and is restricted to definite clause logic. Yamamoto shows that his procedure is
able to induce a single clause or a set of facts for each seed example, but he conjectures that
it would be difficult to extend the procedure to induce conjunctions of definite clauses. The
proof procedure and semantics described in this report can be seen as generalising those in
[MBO00] and [YamO00] by constructing Horn theories not derivable by Bottom Generalisation.
But still, not all hypotheses can be found with this new approach, as can be seen using the
following example due to Yamamoto [Yam97]. If B = {even(0)}U{even(s(X)):-odd(X)} and
e = odd(s(s(s(0)))), then the hypothesis h = odd(s(X)):- even(X) is not derivable by Kernel
Set Subsumption, or by Kernel Generalisation, as Ker(B,e) = {odd(s(s(s(0)))):- even(0)}
and h [~ Ker(B,e). Note that in this example Ker(B,e) = Bot(B,e).

Complete methods of hypothesis finding for full clausal logic are proposed in [YF00]
and [InoOla]. In [YFO00], Yamamoto and Fronhéfer describe a technique based on Residue
Hypotheses. Very briefly, the Residue of a ground theory G, written Res(G), is the ground
theory consisting of all non-tautological clauses that contain the negation of one literal from
each clause in G. A Residue Hypothesis of two clausal theories B and F, is defined as the
Residue of a subset of the ground instances of clauses in B and clauses in the Residue of the
Skolemisation of . A hypothesis H is derived by the Residue Procedure from B and E iff
H generalises a Residue Hypothesis of B and FE. If the example consists of a single clause e,
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then a theory H is derived by the Residue Procedure from B and e iff H |= Res(Gnd(B.))
where Gnd(B,) denotes the ground instances of the complementary extension B, = B Ue.
Compare this with Kernel Set Subsumption, which derives a theory H iff H J K where K is
a kernel set of B and e. Both procedures derive hypotheses by generalising a ground theory
constructed from B and e. For example, if B = {p:-¢g(a),q(b)} and e = p then H = {¢(X)} is
derived by the Residue Procedure with Res(Gnd(B,)) = {q(a),p}U{q(b),p}, and is derivable
by Kernel Set Subsumption with X = {g(a)} U {q(b)}, but not by Bottom Generalisation,
as shown in Proposition 5.1.4. In [InoOla], Inoue describes a technique called Consequence
Finding Induction or CF-Induction, which is based on the concepts of Production Fields and
Characteristic Clauses. Very briefly, a Production Field defines a syntactic language bias
on the hypothesis space, and a Characteristic Clause of two clausal theories B and F, is a
non-tautological clause entailed B A E that is expressed in the language of some Production
Field P, and is not properly subsumed by any other such clause. A hypothesis H is derived
by CF-Induction iff H generalises the complement of a theory CC(B, E) containing a set
of Characteristic Clauses. For the example above, H = {q(X)} is derived by CF-Induction
with CC = {p:-q(a),q(b)} U{:-p} since CC is equivalent to the theory {q(a),p} U {q(b),p},
and ¢(X) = CC. But because the Residue Procedure and CF-Induction are more general
than HAIL, they must search a correspondingly larger hypothesis space, which makes them
in general highly nondeterministic and computationally expensive. It is believed, however,
that by building directly on the success of Progol, practical ILP systems can be developed
for HAIL, that search a progressively larger hypothesis space.
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Chapter 7

Conclusions and Future Work

This chapter concludes with a summary and discussion of future work. First, Section 7.1
summarises the research so far. Section 7.2 suggests some possible extensions of the research.

7.1 Summary

This report began with a comprehensive formalisation of the ILP task, and by defending
this formalisation against some commonly encountered alternatives. Particular concerns were
raised over the standard formulations of the consistency criterion, which were shown to give
counter-intuitive behaviour in full clausal logic. The report continued with an analysis of
the ILP system Progolb and the underlying inference method of Bottom Generalisation. The
relationship between Bottom Generalisation and relative subsumption was investigated re-
vealing a more intuitive and more general connection than was previously realised. The
Progol5 STARTSET and standardisation procedures were investigated and both were found
to be incomplete with respect to Bottom Generalisation. The notions of vacuous literals and
c*-derivations were introduced to better characterise these incompletenesses. It was argued
that while the former incompleteness may in fact be beneficial, the latter comprises a highly
undesirable limitation of the Progol5 proof procedure.

This report went on to propose the approach of Hybrid Abductive Inductive Learning in
order to overcome this newly discovered incompleteness of Progol5, in addition to some of
the inherent semantical limitations of Bottom Generalisation. In particular, the semantics
of Kernel Generalisation was developed and shown extend that of Bottom Generalisation. A
refinement of this semantics, called Kernel Set Subsumption, was specially adapted for Horn
clause logic. The HAIL proof procedure was introduced and shown to generalise Progol5 by
overcoming the newly identified incompleteness and by learning multiple clauses in response
to a single seed example. This procedure has been designed to operate on precisely the same
inputs as Progolb, and to exploit as much existing Progolb technology as possible, but to
overcome several procedural and semantic limitations believed to be of immediate practical
significance. These benefits were realised by combining deductive, abductive and inductive
reasoning within a learning cycle that exploits multiple-atom abductive hypotheses. Finally,
the notion of K-derivation was introduced to better characterise the hypotheses derivable by
HAIL.
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7.2 Continuation

Two things are necessary in order to complete this research. First, on the practical side, a
prototype implementation of the HAIL proof procedure should be produced and applied to a
small case study. One possibility would be to generalise the existing Progol5 implementation
of Muggleton [MBO00] and for the abductive phase to use an existing ASLD implementation,
such as the A-System of Van Nuffelen, Kakas and Denecker [KNDO01]. The case study could
consist of an existing bioinformatic data set previously used by Progol. This would be in the
correct format for HAIL, and would enable some form of comparison between the Progol and
HAIL approaches.

Second, on the theoretical side, precise soundness completeness results are still required
for some of the semantics and proof procedures presented in this report. All of the procedures
must be specified mathematically, and their correctness should be proved. This will require
accounting for basicality and local minimality of ASLD hypotheses, stable model semantics,
and hypothesis space constraints and compression. Completeness results should be obtained
for some suitable problem class. A likely candidate is constrained acyclic programs — as strong
completeness results can be obtained for the ASLD procedure under these conditions, and
yet this setting is sufficient to illustrate the advantages of HAIL over Progol5.

An obvious extension of the HAIL approach is to consider the possibility of enlarging the
class of derivable hypotheses by somehow interleaving the abductive, deductive and inductive
phases of the HAIL learning cycle. In addition, the use of negation as failure and of construc-
tive abduction could be investigated. Also interesting, would be to explore various control
strategies to restrict or prioritise the hypotheses returned by the abductive phase, and to
analyse different heuristics for increasing the efficiency of the search procedure.
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Appendix

Lemma 7.2.1 (Insertion of Substitutions). Given two clauses C and D, and any substi-
tution 0. Then
C C D implies CO C DO

Lemma 7.2.2 (Removal of Substitutions). Given two clauses C and D, and a substitution
o={Y1/c1,...,Ym/cm} binding variables to distinct constants not appearing in C or D. Then

Co C Do implies C C D

Lemma 7.2.3 (Factorisation of Substitutions). Given a formula F, and a substitu-
tion 0 = {X1/t1,...,X,/tn} binding variables to ground terms, and a substitution o =
{Yi/c1,...,Ym/cm} binding variables to distinct constants.

let ¢ = {X/t' | X/t €0 and t' =to '}
Then the following statement is true:
if FO is ground then FO = F¢o

Proof. The composition ¢o may in general be written {X/t'c | X/t' € ¢} U{Y/c | Y/c €
o and Y/t ¢ ¢ for any term t}. For F@ to be ground, every variable in F' must bound by
#, and must therefore also be bound by ¢, and consequently cannot occur in the second set,
which can have no effect on F. Since each ¢ is a ground term, and 0! replaces distinct terms
with distinct variables, it follows that #o = ¢. And therefore ¢o binds each variable in F' to
the same ground term as . Hence f0 = F¢o |
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