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Abstract

The paper proposes a genetic algorithm based method for finding a good first integer solu-
tion to mixed integer programming problems (MILP). The objective value corresponding
to this solution can be used to efficiently prune the search tree in branch and bound type
algorithms for MILP. Some preliminary computational results are also presented which
support the view that this approach deserves some attention.
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1 Introduction

A key to the success of Branch and Bound (B&B) algorithms for integer programming
is the early identification of a first integer solution [4]. While there are several methods
to achieve this goal, in this paper we elaborate on the idea proposed by Nieminen [5]
and present a customized genetic algorithm (GA) [3] for this purpose. The origins of this
work were presented by the authors at the 20th IFIP Conference on System Modelling
and Optimization [2].

2 About genetic algorithms

A genetic algorithm is a heuristic search algorithm for the solution of optimization prob-
lems in which, starting from a random initial guess solution, better descendants are tried
in an attempt to find one that is the best under some criteria and conditions. It is based
on the idea of evolution theory that individuals having a high value of quality will survive
to the next generation with greater probability.

In our interpretation of GA genes are sets of real numbers or bits. Individuals or
genomes are vectors of genes. A set of genomes is a population. The value of a genome is
a real valued function defined over the population. The following operations are defined
for a population:

• selection operation selects the best genomes from the modified population for the
next generation.

• crossover operation exchanges a number of genes of two genomes of a population.

• mutation operation changes two randomly selected genes of a genome.

Let K = number of generations and Pk = {xi : xi ∈ R
n, i = 1, . . . , Ik} the set of genomes

in the k-th generation, where Ik denotes the size for k = 1, . . . , K. A pseudo code for the
GA can now be written as follows:

Algorithm ‘Genetic Optimizer’

Create an initial population P1 = {xi ∈ R
n, i = 1, . . . , I1}.

For k = 1, 2, . . . , K
If a good enough solution x ∈ Pk is found then

x∗ = x, exit
else

Perform crossover operation for a number of genomes of population Pk. This leads
to an enlargement of Pk.

Perform mutation operation on the genomes that were created during crossover.
Select a set of best genomes from population Pk to population Pk+1 for the next

generation.
end If

end For.
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Determining the population sizes I1, . . . , Ik is left open in this general description.

3 Application to Branch and Bound algorithm

In this section we propose a method to use GA for finding a good first feasible integer
solution to a MILP (Mixed Integer Linear Program).

min cTx, (1)

subject to Ax = b, (2)

l ≤ x ≤ u, (3)

xj integer, j = 1, . . . , p ≤ n, (4)

where A ∈ R
m×n and all vectors are of appropriate dimension.

In our case a gene is a feasible integer value of an integer variable satisfying (3), a
genome (individual) is a feasible vector that satisfies (3) and (4). Note, such a vector has
n − p > 0 non-integer components if p < n.

The idea is to design and use a genetic algorithm that finds a (hopefully) good integer
feasible solution to the problem. The solution does not have to be basic as only the value
of the objective function will be used.

If the GA terminates with an integer feasible solution the corresponding objective
value is taken as the incumbent solution at the beginning of the Branch and Bound
(B&B) procedure. If it is good enough large branches of the tree can be eliminated from
the search, thus contributing to the overall efficiency of the B&B. We propose the following
algorithm, which is also shown in Figure 1, to achieve this goal. The different procedures
in the steps are described in subsequent sections.

Algorithm ‘GA for MILP’

1. Solve the relaxed LP problem. Set k = 1, S = ∅. Form an initial population P1.
2. Select a remaining genome from population Pk. Fix genes and calculate the value

of the selected genome.
3. If the solution is feasible satisfying (2) and (3) goto 4 else goto 5.
4. Save the solution in S if it is good enough.
5. If there are genomes left in the population goto 2 else goto 6.
6. If k = K exit to B&B else goto 7.
7. Add the set of saved feasible solutions S to population Pk; Pk := Pk ∪ S.
8. k := k + 1. Determine the next generation Pk using crossover, mutation and

selection operations, goto 2.
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Figure 1: Block diagram for finding a good feasible integer solution by GA.
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3.1 Generating the initial population

Choosing random integer vectors from the feasible interval l ≤ x ≤ u generates the initial
population. If the feasible interval is unbounded for a variable it is replaced by a bounded
interval which includes the relaxed LP solution value of that variable. An example is given
in Figure 2. There are many other, and certainly more sophisticated, ways to generate
the initial population.
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Figure 2: Generating the initial population; an example with 0 ≤ xj ≤ 10, j = 1, . . . , 4.

3.2 Calculating the value of a genome

Throughout the paper by relaxed problem we mean the continuous LP where non-fixed
integer variables are treated as continuous. Fixing is explained below. The relaxed con-
tinuous problem with (2) and (3) is solved by the simplex method.

Given a genome, its integer variables are not enforced straight away but fixed incre-
mentally one after the other at the values determined by the GA. The order of fixings is
determined randomly. If, as the result of more genes being fixed, the solution becomes in-
feasible then an attempt is made to regain feasibility which may or may not be successful.
The steps of the algorithm are given below and also shown in Figure 3.
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Algorithm ‘Value of a Genome’

Assumption: The LP relaxation of the original problem is solved and the solution is
saved.

1. Select randomly the fixing order of genes of the i-th genome.
Set r := 1.

2. Fix the r-th gene. Leave the unfixed genes relaxed. Solve this relaxed problem by
the dual simplex method.

3. If the solution is feasible satisfying (2) and (3) goto 4 else goto 5.
4. If r < p (there are still unfixed genes in the genome) then r := r + 1, goto 2 else

goto 7.
5. Take the last fixed gene (that caused infeasibility) and assign to it the value

(rounded to the nearest integer) it had in the previous (still feasible) solution.
Leave the remaining variables unfixed. Solve the problem by the dual simplex. If
the solution is feasible satisfying (2) and (3) goto 4 else goto 6.

6. Fix all the remaining genes at their nearest integer value obtained from the last
solution. Solve the problem with the dual simplex algorithm.

7. Calculating the value of the i-th genome is carried out in the following way: If
the solution is infeasible the value of the genome is defined as the sum of the
infeasibilities. If the solution is feasible (the sum of the infeasibilities is equal to
zero) the value of the genome is defined to be the optimal value of the objective
function. Therefore, the value of a genome is represented by a pair (q, v), where
q is a 0/1 indicator variable (0 = feasible, 1 = infeasible) and v is the value of the
objective function (if q = 0) or the sum of infeasibilities (if q = 1).

Remark: If p = n (all variable are integer) Step 6 is just a substitution of the solution
into Ax.

To illustrate the operation of algorithm ‘Value of a Genome’ let us consider the follow-
ing example. Suppose there are four integer variables as in Figure 2 and we are calculating
the value of the first genome (8, 7, 2, 5). Assume in the solution of the LP relaxation of
the original problem the corresponding variables take the following values: (3.5, 2.2, 5.3,
1.9). Let the fixing order be 1 2 3 4.

Fix the first (r = 1) gene to 8. Assume the solution of the relaxed problem, in which
the first integer variable is fixed to 8 and the remaining integer variables are still relaxed,
is feasible: (8, 3.2, 2.3, 3.9). Next, fix the second (r = 2) gene to 7. Let the feasible

solution of the relaxed problem, in which the second integer variable is fixed to 7 and the
remaining integer variables are still relaxed, be (8, 7, 4.8, 2.9). Then fix the third gene
to 2. Now suppose that the corresponding solution is infeasible. According to Step 5 of
the algorithm the third integer variable will be fixed to value 5 (4.8 rounded to 5) instead
of 2 (which would be the preassigned value from the genome). The problem in which the
first three genes are fixed at (8, 7, 5) and the fourth is relaxed is solved.

Now, there are two possibilities.
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1. If the solution is infeasible then, by Step 6, fix also the remaining integer variables
(in this case there is only one variable unfixed, namely variable 4) to their rounded
integer values (here the fourth variable = 3) and solve the problem in order to be
able to calculate the value of the genome (sum of infeasibilities). Note, this genome
is now (8, 7, 5, 3) which is different from the original (8, 7, 2, 5) but it most likely
has a better infeasibility measure.

2. If the solution is feasible being, e.g., (8, 7, 5, 2.2) then continue as before, i.e., follow
Steps 4 and 2: fix the fourth gene to 5 and solve the relaxed problem (in this case all
the integer variables are fixed). Now suppose that this solution is infeasible. Again,
according to Step 6 of the algorithm the fourth integer variable is fixed to value 2
(2.2 rounded to 2) instead of 5. If the solution of the relaxed problem (again all the
integer variables are fixed) is infeasible then calculate the value of the genome (sum
of infeasibilities). If the (8, 7, 5, 2) solution is feasible then calculate the value of
the genome (the value of the objective function).

The calculation of the value of a genome may require the solution of several LP prob-
lems. However, these problems are very much related and the optimal basis of the previous
problem is usually an excellent starting basis to the new one. As a result, only very few
iterations are needed for reoptimization. On the other hand, the quality of the genome
for the new generation is very likely much better. The usefulness of the above algorithm
can be assessed by computational testing which we present in section 4.
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Figure 3: Fix and calculate the value of the selected genome.
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3.3 Generating the new population

Select two genomes from the population of the current generation one which is the best
genome (parent 1) and the other a randomly selected genome (parent 2). Make a crossover
operation between the two genomes producing two new genomes (child 1 and child 2).
Make a mutation operation to both of the children (Figure 4). Perform selection to obtain
the new generation.

CrossoverMutation

Population

Parent 1

Parent 2

Child 1

Child 2

Figure 4: Generating the new population by crossover and mutation operations.

Crossover operation. Crossover operation generates two children from two parents.
The children inherit genes randomly from the parents. Whether the crossover is made
at all is determined by the parameter pc (usually in the interval [0.5, 1.0]). If pc = 1.0
crossover is always made. If pc < 1.0 crossover is made with probability pc. If the crossover
operation is not made to the parents the genes are copied to the children unchanged. If
crossover is made to the parents then in this algorithm the ‘method of two points’ is used
in which two randomly selected genes the starting point (6 in Figure 4) and the ending
point (8 in Figure 4) are determined for parent 2. After this the genes between these
points are exchanged between the parents.

In Figure 5 we present a more detailed example of crossover. In this example only one
gene is changed between the parents (the starting and ending points are the same = 2,
the corresponding values of the changing genes are 7 and 4).
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Crossover
8 7 2 5

3 4 4 2

8 4 2 5

3 7 4 2

Figure 5: Crossover operation.

Mutation operation. When the children genomes have been created both of them
undergo mutation operations. The number of the operations nop is determined by the
parameter pm (usually in the interval [0.01, 0.2]) and is calculated as follows:

nop = p × pm

where
dnope = number of mutations,
p = size of the genome,
pm = user parameter, defined above.

The mutation operations are performed by selecting nop random genes of the genome
and replacing the value of the selected gene by a random i integer from the feasible interval
of the corresponding integer variable (Figure 6).

Mutation
8 4 2 5

8 4 6 5

Child 1

Mutated
Child 1

Figure 6: Mutation operation.

Selection operation Select a set of best (least infeasible) genomes from population Pk

to form population Pk+1 of next generation.
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4 Experimental results

In this section we give a brief account of our first computational tests. We have compared
the GA approach with the depth-first (DF) strategy to obtain a first integer solution to
MILP problems. In the next subsection we briefly outline the DF we used.

4.1 Node selection with depth-first strategy

Suppose the optimum linear program at a node is defined as follows:

min z = c̄0 +
∑

j∈R

c̄jxj

subject to
xi = x∗

i −
∑

j∈R

αijxj, i ∈ B

xi ≥ 0, i ∈ B
xj ≥ 0, j ∈ R

where B and R denote the index set of basic and nonbasic variables, resp., c̄j = cj − zj

is the reduced cost of nonbasic variable xj, j ∈ R with zj = cT
BB−1aj, B is the current

basis, aj is the j-th column of matrix A and αij is a matrix element in current simplex
tableau. The current optimum solution is thus given by

z = c̄0

xi = x∗
i , i ∈ B

xj = 0, j ∈ R

Suppose xk, k ∈ B, is an integer variable whose value x∗
k is fractional. Hence

x∗
k = [x∗

k] + fk, 0 < fk < 1

The branching rule imposes the following restrictions:

xk ≤ [x∗
k] (5)

or
xk ≥ [x∗

k] + 1 (6)

In the depth-first (DF) strategy we solve the problems in three different ways. In
the first case, we always select the lower child node determined by (5). In the second,
always the upper child node defined by (6) is chosen. In the third case a node is selected
according to the smallest penalty (see below) described in [6]. Let Pu and Pd be the up
and down penalties that are used to estimate the upper bound when xk is “upped” to at
least [x∗

k] + 1 or “downed” to at least [x∗
k]. The penalties are calculated as follows:

Pu = min
j∈J+

{c̄jfk/αkj}

Pd = min
j∈J−

{c̄j(fk − 1)/αkj}
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N u m b e r o f
Problem Rows Cols Int vars 0/1 vars Cont vars Best Solution

bbb150 600 899 300 300 599 LP:-32277.70
bell3a 123 133 71 39 62 878430.32
bell5 91 104 58 30 46 8966406.49
dcmulti 290 548 75 75 473 188182
fiber 363 1298 1254 1254 44 405935.18
flugp 18 18 11 0 7 1201500
gt2 29 188 188 24 0 21166
gen 780 870 150 144 720 112313
l152lav 97 1989 1989 1989 0 4722
markshare1 69 62 50 50 12 0.0
misc06 820 1808 112 112 1696 12850.86
p0282 241 282 282 282 0 258411
pk1 45 86 55 55 31 11
rout 291 556 315 300 241 1077.56
set1ch 492 712 240 240 472 54537.75
vpm1 234 378 168 168 210 20

Table 1: Problem characteristics of the first test set. In all cases, the objective is mini-
mized. ‘Best Solution’ is the known best integer solution.

where J +(J −) = {j ∈ R | αkj > 0(< 0)}. In the forthcoming tables we included the
best result obtained by the three choices for each problem.

In the experiments we have used two sets of problems outlined below.
The first set of test problems was chosen from the standard MIPLIB3 library. The

statistics of the selected problems are given in Table 1. Most of these models are binary or
almost binary mixed integer problems. Table 2 shows the times in seconds (on a Pentium
400MHz PC) of finding integer solutions using DF and GA strategies.
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First Second Third GA
Problem int sol int time int sol int time int sol int time int sol int time
bbb150 -32214.95 13.00 -32216.34 22.60 -32217.50 464.00 -32218.23 13.60
bell3a infinite >35 min 948806 18.38
bell5 9107149 0.36 > 180.00 9073983 1.60
dcmulti 194878.81 0.23 189994.42 0.27 188361.80 54.80 188794.20 39.90
fiber 2817425.55 0.38 1988836.00 58.20 1749936.30 143.00 778389.00 3.80
flugp 1201500 0.98 1201500 1.13
gt2 154664 0.03 140642 0.08 73847 220.00 69183 48.55
gen 112412 2.70 114219 14.37
l152lav 4746.00 0.74 4737.00 1.44 4735.00 3.42 4848.50 6.41
markshare1 355.00 0.02 142.00 0.09 30.00 24.90 29.00 13.60
misc06 12864.51 0.36 12850.86 23.90 12870.32 1.64
p02822 392115.00 0.02 385491.00 1.50 > 300.00 335587.30 10.70
pk1 53 0.08 48 0.13 42 0.24 38 0.17
rout 2194.43 4.53 2105.26 93.65 1862.00 360.00 1559.00 20.50
set1ch 88622.75 0.95 87030.25 1.70 86489.50 256.00 79761.25 6.60
vpm1 24 0.03 23 0.36 22 1.20 24 0.23

Table 2: Times in seconds. Columns ‘First’, ‘Second’ and ‘Third’ refer to the B&B runs with depth-first strategy, ‘GA’
columns contain results obtained by the genetic algorithm.The use of > character means that a better integer solutions
than the previous one has not been found within the time given after the character.
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N u m b e r o f
Problem Rows Cols Int vars 0/1 vars Cont vars Best Solution

Afiroi 27 32 13 0 19 -417.64
AGGi 488 163 81 0 82 -35991578.65
Boeing1i 351 384 180 0 204 LP: -335.21
FIT1Pi 627 1667 45 0 1622 9155.74
Gangesi 1309 1681 64 0 1617 -109573.72
GFRD-PNCi 616 1092 66 0 1026 6902242.27
Grow22i 946 440 41 0 399 LP: -160834336.00

Table 3: Problem characteristics of the second test set. In all cases, the objective is
minimized. ‘Best solution’ is the MILP optimal solution unless the value is preceded by
LP, in which case it is the LP relaxation.

In one case (bell3a), B&B with DF was unable to find an integer solution in the given
amount of time. This fact is noted by the infinite value of the integer solution. GA was
able to find a solution that satisfied the integrality constraints to the time limits.

For problem fiber the first integer solution with DF strategy was 2817425.55 obtained
in 0.38 seconds. The second integer solution was 1988836.00 within 58.20 seconds. With
the GA strategy we found the first integer solution of 778389 in 3.8 seconds. For problem
gen DF algorithm is better than GA. In most of the cases, however, GA seems to give
better solutions in shorter time especially for harder problems. Our implementation is
rather experimental, we have used an unsophisticated B&B-algorithm. As a consequence,
it is rather slow and we could not solve all the problems in MIPLIB3.

Models of the second set of test problems are from netlib/lp/data [1]. To make
them MILP problems a subset of the variables have been changed to integer variables in
each selected problem. The problems statistics are shown in Table 3.

Looking at the results in Table 4 we can say that GA is roughly more than twice as
fast as DF for most of the models.

5 Conclusion, further research

The results of the first experiments show that an average of 50% reduction in solution time
can be achieved with the proposed method compared to using the depth-first strategy for
finding the first integer feasible solution. As the results are encouraging enough, we find
it justified to further analyze and refine this approach.

First, the idea of an adaptive choice of the the initial population needs to be addressed.
Obviously, it has a huge impact on the quality of the solution and also on the speed of the
operation of GA. Making it problem dependent rather than completely random promises
substantial benefits.

Next, we plan to work around the selection, crossover and mutation rules to make
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Depth-first Genetic
Problem first int sol time first int sol time
Afiroi -417.64 0.03 -264.95 0.30
AGGi infinite >600 -35678910.00 6.00
Boeing1i -288.00 2.20 -290.00 2.32
FIT1Pi 9305.00 75.50 9174.21 30.12
Gangesi -109566.41 10.61 -109578.96 5.66
GFRD-PNCi 6902246.20 20.10 6902244.40 0.70
Grow22i -160822696.40 136.00 -160834185.37 13.53

Table 4: Times in seconds to obtain the first integer solution.

them more tuned to the problems.
As the GA approach is a sort of heuristics no guarantees can be provided for its

performance. However, we believe any new lead in the very important issue of finding a
good first feasible integer solution is worth investigating.
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