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Abstract 
Bayesian networks are constructed under a con-
ditional independency assumption. This assump-
tion however does not necessarily hold in prac-
tice and may lead to loss of accuracy. We previ-
ously proposed a hidden node methodology 
whereby Bayesian networks are adapted by the 
addition of hidden nodes to model the data de-
pendencies more accurately. Empirical results in 
a computer vision application to classify and 
count the neural cell automatically showed that a 
modified network with two hidden nodes 
achieved significantly better performance with 
an average prediction accuracy of 83.9% com-
pared to 59.31% achieved by the original net-
work. In this paper we justify the improvement 
of performance by examining the changes in 
network accuracy using four network accuracy 
measurements; the Euclidean accuracy, the Co-
sine accuracy, the Jensen-Shannon accuracy and 
the MDL score. Our results consistently show 
that the network accuracy improves by introduc-
ing hidden nodes. Consequently, we were able to 
verify that the hidden node methodology helps to 
improve network accuracy and contribute to the 
improvement of prediction accuracy.  

1 Introduction 
Bayesian Networks employ both probabilistic reasoning 
and graphical modelling to represent the relationships of 
variables in a given domain based on the assumption of 
conditional independence [Pearl, 1988]. However, in 
practice the variables may contain a certain degree of 
dependence and as a result the validity of a network can 
be questioned.  
 
Pearl proposed a star-structure methodology to overcome 
the dependency problem by introducing a hidden node 
when any two nodes have strong conditional dependency 
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given a common parent [Pearl, 1986][Verma and Pearl, 
1991]. Pearl’s idea was to simulate the common cause 
between two nodes by introducing a hidden node, though 
he did not provide a mechanism for determining the pa-
rameters of a discrete node.  In some cases hidden node 
can be introduced subjectively through expert knowl-
edge. However, it is not usual to have information about 
common causes that result in variables being partially 
correlated. It is therefore necessary, in many cases to use 
an objective method to introduce a hidden node into a 
network and estimate the number of states and the link 
matrices statistically. In neural networks, hidden layers 
have been widely used to discover symmetries or repli-
cated structures. In particular, Boltzmann machine learn-
ing and backward propagation training have been pro-
posed to determine hidden nodes [Ackley and Hinton, 
1985]. 
 
Friedman proposed a technique called the Model Selec-
tion Expectation-Maximization (MS-EM) to update a 
network by discovering a hidden node. This approach, 
however, required defining the size of the hidden node 
prior to certain processes being carried out [Friedman, 
1998]. 
 
Bang and Gillies extended Kwoh and Gillies’ idea [Kwoh 
and Gillies, 1996] by proposing a diagonal propagation 
method to form a symmetric propagation scheme (Sym-
metric Hidden Node Method: SHNM) that compensated 
for the weakness of forward propagation in the gradient 
descent process [Bang and Gillies, 2002a]. This method 
utilized gradient descent to update the conditional prob-
abilities of the matrices linking a hidden node to its par-
ent’s and children. Experiments in neural cell morphol-
ogy showed significant improvement in performance 
[Bang and Gillies, 2002b]. The results showed that a 
modified network with two hidden nodes achieved 41.4% 
improvement in performance. 
 
In this paper, we examine the hidden node methodology 
in terms of the network accuracy, in order to justify the 
performance improvement; in particular, we show that 
the introduction of a hidden node results in the improve-

 



ment of network accuracy and thus the improvement of 
prediction accuracy. 

2 Hidden Node Methodology 

2.1 General Concepts 
Hidden nodes are introduced to a network (BNH) by first 
identifying a triple (A, B, C in Figure 2.1) where the 
child nodes have high conditional dependency given 
some states of the parent node in the original network 
(BNO). Once the hidden node is introduced into the net-
work, its states and conditional probabilities are set to 
make B and C conditionally independent given A (BNH). 
This requires the use of a representative data set with 
values for A, B and C. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Having inserted the hidden node H, three conditional 
probability matrices (CPTs) linked to the hidden node are 
also created. Empirical results showed that the optimal 
number of states of a hidden node lies between the larg-
est numbers of states among the other nodes (A, B and C) 
and two times the largest states [Bang and Gillies, 
2002a]. 
 
To obtain the CPTs, we compute the derivative of the 
error cost function E with respect to each component of 
the vector p

r
 containing all the conditional probabilities. 

The vector derivative, )( pE
r

∇ , is called the gradient of E 
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The objective of gradient descent is to determine itera-
tively the minimum error: 
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In our case, using backward propagation the error func-
tion can be written as 
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where |A| is the number of values of A, ax is the xth value, 
and the vector p

r  contains, as its elements, all the un-
known conditional probabilities in the link matrices. 

)( xaP′  is the posterior probability of the parent node A 
and is calculated by instantiating the children and propa-
gating these values through the hidden node.  is 
the desired value of the parent node originally from the 
data.  

)( xaD

 
An exact gradient solution is only available in the linear 
cases. We, therefore, need to expand the equations to 
derive discrete operating equations. 

A 
A 

2.2 Operating Equations for Gradient De-
scent in Bayesian Networks  

H 

B C 
The operating equations for gradient descent are derived 
using the chain rule to differentiate the error function. 
The equations for diagonal propagation are summarized. 

B C 

BNO BNH In right-to-left propagation we instantiate root node A 
and child node C simultaneously. The information from 
the instantiated nodes propagates through hidden node H 
until it reaches node B. We need to determine the deriva-
tive of the error cost function E(p) with respect to the 
three link matrix elements. For example consider 

)|()( tj hbPpE ∂∂ . The derivative is expanded using a 
chain rule as 

Figure 2.1 Introducing a hidden node in a Bayesian network
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The first term on the right side of the above equation is 
the derivative of the sum of square error cost function 
E(p) with respect to P′(by). Differentiating E(p) with re-
spected to P′(by) yields 
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The second term of the equation is the derivative of the 
posterior probabilities of a target node P′(by) with respect 
to π(bj). Initially the posterior probabilities are denoted 
as the product of the evidence of the hidden node H and 
the prior probability distribution of target node B, respec-
tively. 
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has unit values. In the denominator of β the sum is taken 



over the states of target node B. The derivation of the 
second term yields 
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The last term is the derivative of π(bj) with respect to 
P(bj | ht). Initially we have 
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After combing the three terms, we have 
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Other elements are derived similarly as follows 
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where ε is a posterior probability of hidden node H. 
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The operating equations for right-to-left propagation are 
found simply by swapping b and c in the above equations. 
Further details on the formalism and the updating process 
can be found in Bang and Gillies [Bang, 2002]. 
 

3 Network Accuracy in Hidden Node 
Methodology 

3.1 Network Accuracy 
In essence, a Bayesian network is a construct that repre-
sents a joint probability distribution, and can be used to 
model the distribution specified by a given data set. In 
such a case, an important characteristic of a Bayesian 
network is the degree to which the network models the 
distribution specified by the given data set accurately; the 
accuracy of a Bayesian network with respect to a data set. 
Apparently, the prediction accuracy of a Bayesian net-
work is influenced by the network accuracy. 
 
The accuracy of a Bayesian network can be determined 
precisely by evaluating the degree to which the distribu-
tion represented by the Bayesian network matches the 
distribution specified by the data set. 
 
Recent work [Pappas, 2003] employs the Euclidean dis-
tance, the Cosine distance and the Jensen-Shannon diver-
gence as measures of distributional similarity to derive 
different models for the accuracy of a Bayesian network. 
 
The Euclidean inaccuracy is the geometrical distance 
between the points in multi-dimensional space corre-
sponding to the distribution represented by the Bayesian 
network and the distribution specified by the data set. 
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The Cosine inaccuracy is the angular separation of the 
vectors in multi-dimensional space corresponding to the 
distribution represented by the Bayesian network and the 
distribution specified by the data set. 
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The Jensen-Shannon inaccuracy of a Bayesian network is 
the divergence of the average of the information of the 
distribution represented by the Bayesian network and the 
information of the distribution specified by the data set 
over the information of their average distribution. 
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The accuracy of a Bayesian network can also be deter-
mined indirectly by examining alternative characteristics 
of the network that reflect the accuracy. 
Such a model is the Minimum Description Length for-
malism, which models the accuracy of a Bayesian net-
work as the likelihood of the data set given the Bayesian 
network, and provides the MDL score – ignoring the 
complexity term – as a precise measure of accuracy [Ris-
sanen, 1978][Grunwald 1998]. 
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3.2 Network Accuracy with a Hidden 
Node 

The introduction of a hidden node attempts to amend the 
structure of the Bayesian network, so that the network no 
longer makes unrealistic assumptions, and thus models 
the dependencies accurately. 
 
In essence, the introduction of a hidden node in the struc-
ture of a Bayesian network aims to increase the network 
accuracy by withdrawing the implied conditional inde-
pendencies that violate the independence assumption. 
In reality, the introduction of a hidden node does indeed 
remove inaccurate conditional independencies, but also 
asserts superfluous conditional independencies in con-
nection with the introduced hidden node. 
 
Let us consider Figure 2.1. The original structure (BNO) 
implies the conditional independence of the children 
nodes B and C given the parent node A, indicated as 
BC|A. Thus, the network accuracy depends on the accu-
racy of that conditional independence; whether the chil-
dren nodes are indeed independent given the parent node, 
according to the data set. 
 
The introduction of a hidden node remove the implied 
conditional independence BC|A, and results in a modified 
structure (BNH) that no longer implies that the children 
nodes B and C are independent given the parent node A. 
 
However, the modified structure asserts a set of condi-
tional independencies in connection with the introduced 
hidden node; in particular, the modified structure implies 
the conditional independencies AB|H, AC|H and BC|H. 
 
The introduction of a hidden node does not necessarily 
result in a Bayesian network that is more accurate; the 
training of the hidden node and the assignment of values 
for the conditional probability matrices H|A, B|H and 
C|H should be done in such a way as to minimize the 
inaccuracy of the new conditional independencies im-
plied by the modified network structure. 
 
The accuracy for both the original Bayesian network 
(BNO) and the modified Bayesian network (BNH) can be 

determined precisely, by employing one of the models of 
accuracy mentioned in the previous section. 
 
Since the accuracy is determined with respect to the dis-
tribution of the data set, which includes only the vari-
ables A, B, and C, the hidden node is not considered in 
the calculation of the network accuracy. 
 
Therefore, the accuracy of the original Bayesian network 
(BNO) is determined using the distribution of the data set 
(PD) and the distribution of the original network (PBN0), 
while the accuracy of the modified Bayesian network 
(BNH) is determined using the distribution of the data set 
(PD) and the distribution of the modified network over 
the non-hidden variables A, B and C (P′BNH). 
 
The distribution specified by the data set is: 
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The distribution represented by the original Bayesian 
network is: 
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The distribution represented by the modified Bayesian 
network is: 
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The distribution – over variables A, B and C – repre-
sented by the modified Bayesian network is: 
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4 Case Study: Neural Cell Morphology 
Developmental biologists are frequently interested in classi-
fying the development of cells in culture. In this way they 
can determine the effects of pollutants (or other reagents) on 
growth. Oligodendrocytes are a class of cell that is fre-
quently studied. They provide the myelin sheath needed for 
nervous impulse conduction. Failure of these cells to de-
velop leads to the disease multiple sclerosis. In studies, bi-
ologists view culture dishes under a microscope and attempt 
to count the cells using a small number of classes, for ex-
ample, progenitors, immature type 1, immature type 2 and 
differentiated. This is a difficult, inaccurate and subjective 
method that could be greatly improved by using computer 
vision. 
 
Our data was taken from studies in which the cultures were 
photographed using a Photonic Science microscope camera. 
Biologists classified the cells in the pictures into four devel-
opmental classes. One data set had 12 progenitor cells, 24 
immature type 1, 15 immature type 2 and 9 fully differenti-
ated cells. The images were then processed to extract sev-
eral features, of which five proved to have good discrimi-
nant properties [Kim and Gillies, 1998]. These were called 



the Scholl coefficient [Sholl, 1953], the fractal dimension 
[Flook, 1978], the 2nd moment [Wechsler, 1990], the total 
length and the profile count.  
 
We conducted a series of tests using the cell class (index no 
6: neuron type) as a hypothesis node, and the five measured 
features (index no 1: Sholl coefficient, index no 2: Fractal 
dimension, index no 3: profile count, index no 4: Total 
length and index no 5: 2nd Moment) as variables. Our re-
sults with two hidden nodes (case 156 and 236) showed 
significantly better performance with an average prediction 
accuracy of 83.9% compared to 59.31% achieved by the 
original network. 
 
In addition to the prediction accuracy, the Euclidean, the 
Cosine and the Jensen-Shannon inaccuracy, along with 
the MDL score are determined for each of the Bayesian 
networks employed in the experiments as shown in Fig-
ure 4.1. Figure 4.1 shows the improvement ratio of pre-
diction accuracy (far left of each case) and the improve-
ment ratio of four network accuracy measures for five 
single hidden node cases. For example, case 126 repre-
sents a hidden node is introduced between node index 1 
and 2 given root node 6. 
 
Subsequently, the improvement in the network accuracy 
achieved due to the introduction of a hidden node is also 
determined. The experimental results demonstrate that 
the introduction of a hidden node to a Bayesian network 
consistently improves the network accuracy. This is due 
to the proper training of the hidden node, which results in 
a modified Bayesian network that does not violate the 
independence assumptions to such an extreme degree as 
the original Bayesian network. 
 
The experimental demonstration of the improvement of 
network accuracy due to the introduction of a hidden 
node confirms the previous theoretical claims, and illus-
trates the potential benefits of the hidden node methodol-
ogy in terms of the network accuracy.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 Discussion and Conclusion 
In this paper, we have provided a theoretical rationale to 
the effects of the introduction of a hidden node within the 
structure of a Bayesian network. In particular, we have 
clarified the effects of such an action with regards to the 
network accuracy. 
 
The introduction of a hidden node amends the set of con-
ditional independencies implied by the structure of the 
Bayesian network. This is done an attempt to improve the 
network accuracy by withdrawing the implied conditional 
independencies that violate the independence assumption. 
 
In computational complexity aspect, for example of naïve 
Bayesian networks, there are 2

n  places that a single 
hidden node could be added. A second hidden node could 
be added at 2

n  different places. A tree structure has 
fewer possibilities than the naïve case for the same num-
ber of nodes. To avoid exhaustive tests of unnecessary 
cases we can use the conditional dependency measure, 
together with the results on adding single nodes, to de-
cide where to add further hidden nodes. 
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The experimental results demonstrate the improvement of 
network accuracy due to the introduction of a hidden 
node and its proper training. Furthermore, the experimen-
tal results demonstrate that the improvement of network 
accuracy results in the improvement of prediction accu-
racy. 
 
Therefore, we have provided a theoretical and experi-
mental justification to the empirically observed fact that 
the prediction accuracy improves when employing the 
hidden node methodology. 
 
In our previous work, we were able to verify correlation 
between the improvement ratio of prediction accuracy 
and the degree of conditional dependency [Bang and Gil-
lies, 2002b]. Our current results, however, show less 
correlation between the improvement ratio of prediction 
accuracy and the improvement ratio of network accuracy. 
This may due to the small number of tests or qualify of 
the network accuracy measures. We will extend our study 
further in investigating the relationships between predic-
tion accuracy and network accuracy with hidden node in 
the future. 
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Other immediate study plan for a real world domain is 
related to bioinformatics. Lately in bioinformatics, there 
have been several attempts to model metabolic pathway 
[Angelopoulos and Muggleton, 2002]. Metabolic path-
way represents the functionality of biochemical reactions 
within the organism and helps to understand others such 
as predictive toxicology. Examples of metabolic pathway 
can be found in KEGG (http://www.genome.ad.jp) for 
bioinformaticians to allow cross-reference knowledge 
such as the location and sequence of known genes, pro-
tein products and ligands with known reaction pathway in 

Figure 4.1 Comparison between improvement of predic-
tion accuracy and network accuracy measures in single 
hidden node cases. 



metabolism. One example is the aromatic amino acid 
pathway of yeast [Bryant et al., 2001]. However even one 
of the simplest pathways contains incomplete and incor-
rect information and as a result causes uncertainty. In 
addition metabolite(s) and enzyme(s) given a generated 
metabolite(s) tends to be strongly correlated and thus 
strongly conditionally dependent. Since each pathway is 
series of metabolite(s) and enzyme(s), the prediction ac-
curacy of a network can be questionable due to the viola-
tion of conditional independence assumption. 
 
Our hidden node methodology can be a suitable candi-
date to directly apply to deal with possible conditional 
dependency problems in metabolic networks. In addition, 
once a hidden node learned, it could be compared with 
non-counted variables to identify any unknown interme-
diate variable by mapping methods. Our future work will 
examine the possibility of the modeling of metabolic 
networks with introduction of hidden node methodology 
in Bayesian networks and identifying any unknown in-
termediate states. 
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