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Abstract. This report describes the development of a deformable model for 
the automatic delineation of coronary artery cross-sectional areas with magnetic 
resonance imaging. The method is validated with coronary artery phantoms of 
varying diameters and images with different levels of signal-to-noise ratios.  
The reproducibility of the technique was examined with simulated geometrical 
shifts and motions during data acquisition. The experimental results indicate a 
very high reproducibility and low inter-observers variability of the technique, 
suggesting its suitability for non-invasive assessment of serial changes of vessel 
dilatation following pharmacological intervention. 

1 INTRODUCTION 

Change in vessel diameter induced by pharmacological intervention is a potential 
indicator for endothelial vasodilate dysfunction [1], which is an early marker of 
atherosclerosis. The prognostic significance of endothelial dysfunction has recently 
been shown in patients both with [2, 3] and without [3] coronary artery disease. A 
number of trials have indicated functional improvements in response to lipid-lowering 
therapies and lifestyle modification [1].  
 
Invasive techniques, such as quantitative coronary angiography (QCA) or 
intravascular ultrasound (IVUS), are typically used in assessing vessel diameter 
during catheterization. These techniques commonly suffer from risks associated with 
clinical complications which have a small but significant mortality rate. As an 
alternative, Magnetic Resonance Coronary Angiography (MRCA) is emerging as an 
attractive technique for serial examination of coronary artery dimensions. Although 
compared to QCA the spatial resolution of MRCA may be limited, and imaging is 
complicated by both respiratory and cardiac motion, the lack of X-ray is highly 
beneficial as repeat investigations would not be limited by ionizing radiation 
regulations. Thus far, there are no reports on inter- and intra- study variabilities of the 
technique and the reproducibility is unknown. 



Preliminary investigation indicated that manual determination of vessel cross-
sectional areas introduces considerable variability and the use of MRCA for assessing 
diameter changes would be greatly advanced by the implementation of a suitable 
automatic segmentation technique. The pursuit in this direction is currently hampered 
by the poor spatial resolution achievable, partial volume effect and image degradation 
resulting from residual cardiac and respiratory motion. By using a set of specially 
created phantoms, the purpose of this study is to determine the reproducibility of 
MRCA and the accuracy of an automatic technique for quantifying coronary 
diameter.  
 
 
2 MATERIAL AND METHODS 
 
2.1 Image Acquisition 
 
All images for this study were acquired on a Siemens Sonata scanner with maximum 
gradient strength of 40 mT/m and maximum slew rate of 200 mT/m/ms on each axis 
independently. The phantoms consisted of 3 straight tubes filled with diluted copper 
sulphate solution. The diameters of the tubes were 3.11mm, 3.67mm and 4.55mm, 
respectively, representing typical small, medium and large proximal coronary arteries. 
Cross-sectional segmented FLASH images of the tubes were acquired with an in-
plane resolution of 0.49mm x 0.49mm and a slice thickness of 5mm. By varying the 
acquisition duration, phantom images were acquired at three different levels of signal-
to-noise ratio (SNR) – ‘low’ = 3.4, ‘medium’ = 6.7 and ‘high’ = 10.0 – which were 
representative of the range of SNR levels observed in in vivo images of the same 
resolution. The acquired images were categorised into two simulation groups: (i) to 
investigate partial volume effects and (ii) to investigate the effects of motion during 
the data acquisition period. In the first group, for each level of SNR, the tubes were 
imaged as the field of view (FOV) was shifted by 0.2 mm increments. In particular, 
the increments for high and low SNR images were 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 mm 
in the x direction and 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 mm in the y direction, which 
resulted in a total of 11 images. For medium SNR images, the increments were 
permuted for each of the x and y shifts, thus resulting in a total of 36 images. The 
second group contains images corresponding to the first group but with different 
levels of random motion of the imaging FOV applied in the frequency encoding 
direction during the acquisition period, In this group, a total of 6 acquisitions were 
performed at each level of SNR with the degree of motion increasing from 0mm to +/-
2.5mm in increments of 0.5mm.  

2.2 Building Statistical Shape Models 

For the automatic quantification of vessel size, a statistical deformable shape model 
was used for this study. Unlike the traditional low-level image processing techniques, 
image segmentation based on deformable models [4, 5] is capable of extracting 
shapes by exploiting a priori knowledge about the size and shape of anatomical 
structures. It can account for significant variability of biological structures over time 



and across different individuals. The Active Shape Model (ASM) [5, 6], for instance, 
represents a parametric deformable structure based on statistical modelling of global 
shape variations derived from a training set. During segmentation, the model 
iteratively deforms to fit to unseen objects but with deformation constrained by 
principal modes of variation as dictated by the training set. A variation of the ASM 
was implemented for this study for assessing both the inter- and intra- study 
variabilities of MRCA by using the aforementioned phantom image data sets. 

 
An experienced observer was asked to delineate the cross-section of the vessels on 65 
high-resolution in vivo segmented FLASH images. Each cross-section was then 
modelled as a parametric contour, uniformly sampled with 45 control points. To 
ensure that the principal modes of variation recovered by ASM reflects the intrinsic 
shape variation of the training data, the initial pose of the training contours needs to 

registered. The problem can be formulated as giving m set of vector samples{ }m

ii 1=x  

to determine rotation θθθθi, scaling si, and translation (tx, ty)i such that the following LMS 
error is minimised:  
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In Equation (1),  parameters M and t are given by, 
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where K = 45 is the dimension of a given sample indexed by k. This leads to a set of 
four linear equations  
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The pose parameters θθθθi, si and ti, can therefore be solved by using standard matrix 
manipulation. In this study, an iterative scheme was used.  



In order to capture the principal modes of variation of the aligned shapes, Principal 
Component Analysis (PCA) was applied to the covariance matrix of the training set 
so that a statistical Point Distribution Model (PDM) [5] can be derived. The PDM 
forms a linear space where any given sample can then be approximated up to a given 
accuracy by using a linear combination of orthogonal basis, i.e., 
 

ssbPxx +=     (4) 

 
where x  is the mean shape, Ps is a set of orthogonal modes of variation and bs is a set 
of shape parameters. The derived PDM represents a robust parametric deformable 
structure, which captures the plausible variations of the training set. 

2.3 Image Analysis 

To improve the quality of the image data, structural adaptive anisotropic filtering [7] 
was applied to each image prior to segmentation. Unlike a conventional isotropic 
filter, such as the Gaussian kernel, this filter provides satisfactory results even for low 
SNR cases while still preserving detailed structural features. After the filtering, each 
image was zoomed (×6) and histogram equalised, that is, 
 

( ) ( )
( )

( ) ( )

( ) ( )
( )

�=

	


� ≤=′

x

x

xx

x

x
x

I

I duupII

II

I

I
I

0

max
ˆ

otherwise

5.1ˆ

,5.1

,ˆ

   (5) 

where I (x) is the image intensity value at location x and p is the probably density 
function on the intensity histogram. The constraint factor 1.5 in (5) controls the upper-
limit of histogram stretching. Cross-sectional area of each tube was then determined 
by using the statistical shape model [5]. The user was first required to mark the 
approximate centre of the vessel, local deformation was then applied by iteratively 
varying the first 7 modes of variation based on the ASM approach until convergence. 
The closed form solution to this minimization problem is given by the projection of 
the residual vectors onto the eigenspace, that is, 
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where bi is the shape parameter at the ith iteration, P is a matrix containing the 
eigenvectors which describe the principal modes of variation and dxi is the residual 
vector. The back projection is to ensure that the new generated realisation is not only 
fitted with the image data but also satisfied by the variations found in the training.  
The remaining shape variation of the contour was then captured by using a local 
search algorithm based on a medialness function [8] defined by the following integral: 
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where, at a given scale �, B is defined as  
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In (7), L (p, �) is the filtered version of the image intensity distribution after 
convolution with a Guassian kernel with standard deviation �. The constant n 
specifies the amount of directional weighting of the boundary operator. The values of 
n = 2 and � = 1 were used for this study.  

2.4 Assessment of Errors  

Bland Altman analysis was performed to assess both intra and inter observer 
variability. Intra-observer variability (reproducibility) was calculated as the standard 
deviation of the signed differences of vessel diameter measured on two occasions on 
low SNR images as the FOV was shifted by 0, 0.2, 0.4, 0.6, 0.8 and 1.0 in x and y 
directions.  The low SNR dataset was chosen as a ‘worst case’ dataset. Inter-observer 
variability was determined for both high and low SNR datasets as the standard 
deviation of the signed differences of the vessel diameter measured by two 
independent observers.  
 
To determine the effect of motion on the segmentation result, the standard deviations 
of tube diameters (as a percentage of the mean) were calculated with different levels 
of motion applied during image acquisition as described in 2.1.  

3 RESULTS AND DISCUSSION 

In Fig. 1, (a) represents a set of images with different levels of SNR,  (b) illustrates 
images acquired with high SNR and different amount of translation,  and (c) shows 
the same high SNR acquisition but with different levels of motion during acquisition. 
Based on the 65 training samples used in the experiment, Fig. 2 illustrates the 
statistical variation captured by the first three modes of PCA with the two extremes 
varied by ±3σ. It is evident that elliptical variation due to non-perpendicular cross-
section is well captured by the model. The actual program interface used for both in 
vitro and in vivo validation is illustrated in Fig. 3. For all results presented here, the 
zoom factor used was kept as ×6.   
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Figure 1. (a-1)-(a-3) Images acquired with low, medium, and high SNRs. (b-1)-(b-3) 
High SNR images with simulated FOV shift at 0.0, 0.4 and 1.0 mm along the ?? 
direction. (c-1)-(c3) The same high SNR acquisition but with 0.0, 1.0, and 2.0 mm 
motions. 
 
For detailed error analysis, a total 76 images were analysed. Fig. 4 plots the variation 
of the measured tube diameter from the high SNR images with FOV shifted from 0.0 
to 1.0 mm in both x and y directions with 0.2mm increments. The standard 
deviation/mean for large, medium and small size tubes was 1.1, 1.05 and 1.32%, 
respectively. Similarly, Figs. 5 and 6, plot the tube diameters for different FOV shifts 



for the medium and low SNR images. Unlike in high and low SNR cases, there were 
36 images altogether for medium SNR, corresponding to permuted x and y 
translations. In this case, the standard deviation/mean for large, medium and small 
size tubes was 1.32, 1.27 and 2.01%. The corresponding values for low SNR images 
were 1.65, 1.57 and 2.00%, respectively. It is evident that the standard deviation 
decreases as SNR and vessel size increase. 
 
The scatter plots in Fig 7 demonstrate the inter-observer variability of the measured 
vessel diameter by two independent observers on high (left) and low (right) SNR 
images, respectively. The regression in both cases indicates a good correlation 
between the two measurements, implying the robustness of the algorithm against 
noise. Further analysis showed the reproducible of the algorithm with the mean (+/-
SD) difference between repeat analyses of the high-resolution images being 0.0 mm, 
+/-0.0024, +/-0.0059 and +/- 0.0086 mm. These values were measured from low SNR 
images and quoted for large, medium, and small size vessels respectively. The results 
of Bland Altman analysis are shown in Fig. 8.   

 

Mode 1 
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Figure 2. The variation captured by the first three principal modes of variation of the statistical 
shape model where the shape parameters were varied by ±3σ. 

Fig. 9 illustrates the effect of motion on the measured vessel diameters. It can be seen 
from the graphs that the same degree of applied motion has a similar effect on all tube 
sizes. The standard deviation is high for the largest tube and decreased as the tube 
sizes, except in low SNR case where the inverse is true. It is interesting to note that 
for a given vessel size, the standard deviation with respect to simulated motions does 
not correlate well with the level of SNR, which seems to imply that the two effects are 
somewhat decoupled.  
 
In general, good quality data were obtained in all (100%) of the 76 images studied. As 
such, it should be feasible to use serial magnetic resonance imaging to determine 



vessel diameter response to vasodilators, as used in studies of endothelial function or 
to other pharmacological interventions. 
 

 

Figure 3. The software interface used for vessel delineation. 

 

 

Figure 4. Variations of the measured tube diameters (mm) for high SNR images as the FOV 
was shifted by 0.0, 0.2, 0.4, 0.8, and 1.0 mm in x and y directions.  

 



 

Figure 5. Variations of the measured vessel diameters (mm) for medium SNR images as the 
FOV was shifted by 0.0, 0.2, 0.4, 0.8, and 1.0 mm along the x and y directions.  

  
 

Figure 6. Variations of the measured vessel diameters (mm) for low SNR images as the FOV 
was shifted by 0.0, 0.2, 0.4, 0.8, and 1.0 mm along the x and y directions.  

4 CONCLUSIONS 

Extracting structures from medical images and reconstructing their geometric 
representations is a challenging task. The presence of noise and motion artefacts has 
significant influence on the accuracy of structural delineation. In this study, 
segmented FLASH was chosen as the imaging technique as it is robust and 0.49 mm 
in-plane resolution was relatively easy to achieve in practical applications. If 
comparisons are to be made with intravascular ultrasound and quantitative coronary 



angiography, it is important to be aware what is being imaged with each technique. 
Quantitative coronary angiography delineates the vessel lumen whereas intravascular 
ultrasound images the vessel wall, i.e., the inner boundary of which demarcates the 
lumen. Dark blood turbo spin-echo delineates the outermost extent of the vessel by 
imaging the high intensity epi-cardial fat surrounding it whereas segmented FLASH, 
images both blood (lumen) and vessel wall with the blood signal being increased due 
to through-plane flow enhancement. To standardise the assessment, we are currently 
implementing a coupled ASM algorithm that is able to segment both lumen and vessel 
wall simultaneously. 
 

 

Figure 7. Scatter plots showing the inter-observer variability of the measured vessel diameters 
on high (left) and low (right) SNR images when FOV is shifted. 

 
Compared to other techniques, MRCA has the major advantages of being non-
invasive and without ionising radiation. In this study, it has shown a similar 
variability to quantitative coronary angiography in serial acquisitions. Of note 
however, is that as the MRCA images are acquired over a period of approximately 2 
minutes, they may be degraded if the heart rate is variable during the scanning period 
or if the heart rate is substantially increased with pharmacological intervention. This 
factor, simulated as the motion in this experiment, indicates an ambiguity contributing 
to the measured results. As a result, further investigation on this issue is required. It is 
important to note that changes in coronary blood flow may also alter the degree of 
through-plane enhancement of the blood signal (whilst the vessel wall remains 
unchanged) and this may alter the appearance of the vessel and the area segmented. 
For this reason, histogram equalisation was first applied to the image to reduce the 
variations. It should also be taken into account that the images studied here were 
phantom, and although the range of vessel diameters was large (3.0 mm – 4.8 mm), 
the absence of disease may have resulted in better image quality than would have 
been obtained in a population with coronary artery disease. 
 



  
 

 
 
 

Figure 8. Bland Altman plots showing the reproducibility of the segmentation results as 
derived from low SNR images when FOV was shifted. 

 
 

  

 

Figure 9. The effect of motion on the measured vessel diameters for images acquired with high 
(solid line), medium (black-dotted line) and low (red-dotted line) SNRs, where in each graph 
the acquisition indices correspond to 0, 0.5, 1.0, 1.5, 2.0, and 2.5 mm motion induced during 
acquisition.  

In conclusion, we have developed an automated segmentation technique for the 
analysis of coronary artery cross-sectional areas, with detailed error analysis applied 
to coronary artery phantoms. It has been shown that the technique developed has good 



inter and intra observer variability under a range of SNR levels, similar to those found 
in in vivo images. It has also been shown that the method is relatively immune to 
motion during data acquisition, which may occur due to imperfect respiratory gating. 
The method developed has a high reproducibility which eliminates the need for 
manual delineation of the vessels and makes it an ideal candidate for serial assessment 
of coronary artery images.  
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