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Abstract

Cardelli and Gordon’s calculus of Mobile Ambients has attracted widespread inter-
est as a model of mobile computation. The standard calculus is quite rich, with a va-
riety of operators, together with capabilities for entering, leaving and dissolving am-
bients. The question arises of what is a minimal Turing-complete set of constructs.
Previous work has established that Turing completeness can be achieved without
using communication or restriction. We show that it can be achieved merely using
movement capabilities (and not dissolution). We also show that certain smaller sets
of constructs are either terminating or have decidable termination.

1 Introduction

Since its introduction in 1998, Cardelli and Gordon’s calculus of Mobile Am-
bients (MA) [5,6] has attracted widespread interest as a model of mobile com-
putation. An ambient is a vessel containing running processes. Ambients can
move, carrying their contents with them. The standard calculus is quite rich,
with a variety of operators, together with capabilities for entering, leaving
and dissolving ambients. Subsequent researchers have increased this variety
by proposing alternative movement capabilities. We may mention Mobile
Safe Ambients (SA) [13,14], Robust Ambients (ROAM) [10], Safe Ambients
with Passwords (SAP) [16], the Push and Pull Ambient Calculus (PAC) [20],
Controlled Ambients (CA) [23], and the version of Boxed Ambients [2] with
passwords (NBA) [3]. We shall use the term Ambient Calculus (AC) to refer
to all of these variants.

1 A shortened version of this report appears in EXPRESS 2003 [15].
2 We wish to thank Cristiano Calcagno, Philippa Gardner, Maria Grazia Vigliotti and
Nobuko Yoshida for helpful discussions and encouragement.
3 Email: {maffeis,iccp}@doc.imperial.ac.uk
4 Maffeis was supported by a grant from Microsoft Research, Cambridge.
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The question arises of what is a minimal set of constructs which gives the
computational power of Turing machines, i.e. is Turing complete. One way to
tackle this is to encode into the Ambient Calculus some other process calculus
which is known to be Turing complete. Cardelli and Gordon showed how to
encode the asynchronous pi-calculus into Mobile Ambients [6]. The encoding
makes use of the communication primitives in the Ambient Calculus. However
Cardelli and Gordon also encoded Turing machines directly into the pure AC,
where there is no communication. (Incidentally, Zimmer [24] subsequently
encoded the synchronous pi-calculus into pure Mobile Safe Ambients [13,14].)

Busi and Zavattaro [4] showed how to encode counter machines into pure
Mobile Ambients without restriction. Independently, Hirschkoff, Lozes and
Sangiorgi [11] encoded Turing machines into the same subcalculus. In this
paper we follow up this work and investigate whether even smaller fragments
of AC can be Turing complete. We concentrate entirely on pure AC. Our work
is very much inspired by that of Busi and Zavattaro; we follow them in using
counter machines rather than Turing machines.

The major question left open by previous work is whether pure AC with-
out the open capability which dissolves ambients can be Turing complete.
This question is of particular interest in view of the decision which Bugliesi,
Castagna and Crafa took to dispense with ambient opening when proposing
their calculus of Boxed Ambients [2,17,3,7]. They advocate communication
between ambients where one is contained in the other, rather than the same-
ambient communication of Mobile Ambients. A similar model of communica-
tion is employed in [19].

We give an encoding of counter machines into pure MA without restriction,
and without the open capability (Theorem 3.6), showing that this fragment
is Turing complete. The encoding also demonstrates that both termination
and the observation of weak barbs are undecidable problems. As far as we
are aware, Turing completeness has not previously been shown for any pure
ambient calculus without the capability to dissolve ambients (although we note
that an encoding of pi-calculus into Boxed Ambients with communication is
given in [2]).

Two different kinds of ambient movement were identified by Cardelli and
Gordon [6]: subjective and objective. Subjective movement is where an ambi-
ent moves itself; objective movement is where it is moved by another ambient.
For instance, if m[P ] (an ambient named m containing process P ) is to enter
another ambient n[Q ], then control can reside in P or in Q. The standard
calculus MA opts for subjective movement, while objective movement (so-
called “push and pull”) has been studied in [20]. We shall show that counter
machines can be encoded into the pure push and pull calculus (PAC) without
the open capability.

A number of calculi are hybrids between subjective and objective move-
ment; when handling the entry of m[P ] into n[Q ], they require P and Q to
synchronise. In Mobile Safe Ambients (SA) [13,14], an ambient must explicitly
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allow itself to be entered by means of a co-capability. It is straightforward to
encode standard MA into SA by equipping each ambient with the necessary
co-capabilities. Therefore Turing completeness results for MA, such as that
mentioned above, will extend to SA, but not the other way round.

Robust Ambients (ROAM) [10] is another calculus where ambients must
synchronise to perform an entry. For m[P ] to enter n[Q ], P must name n and
Q must name m, which is a symmetrical blending of subjective and objective
movement. Turing completeness results for either MA or PAC will extend to
ROAM (since our encodings use only a finite set of names).

As remarked above, MA and PAC are less synchronised between ambients
than SA or ROAM. Movement can be made less synchronous within ambients
if we require that movement capabilities have no continuations, so that ifm[P ]
enters n[Q ] then neither P nor Q can rely on when this has happened in the
rest of their code. This may be called asynchronous movement. We show
that both subjective and objective calculi with asynchronous movement (and
without restriction) are Turing complete—there is enough power in processes
being able to synchronise on dissolving ambients.

We are interested in finding minimal Turing complete fragments of AC.
This entails showing that smaller fragments are too weak to be Turing com-
plete. Busi and Zavattaro have shown that in the fragment of MA with the
open capability, but without movement capabilities or restriction, it is decid-
able whether a given process has a non-terminating computation [4]. We show
the same decidability property for fragments with capabilities allowing move-
ment in one direction only (either entering or exiting). We also show that in
certain smaller fragments (where replication is only allowed on capabilities)
every computation terminates.

The paper is organised as follows. In Section 2 we recall various operators
and capabilities of the Ambient Calculus, together with their associated no-
tions of reduction. In Section 3 we discuss various Turing complete languages,
with and without the open capability. In Section 4 we show that certain frag-
ments of AC with replication are in fact terminating. In Section 5 we show
that certain other fragments of AC have decidable termination. Finally we
draw some conclusions.

1.1 Related Work

Since carrying out this work, we have very recently become aware of an in-
dependent paper by Boneva and Talbot [1]. They present an encoding of
two-counter machines (a Turing-complete formalism) into pure Mobile Am-
bients without restriction and without the open capability. The fragment of
AC we consider in Theorem 3.6 is similar to theirs, but they allow replication
on arbitrary processes, while we only allow replication on capabilities. They
show that reachability and name convergence (the observation of weak barbs)
are both undecidable problems. As their encoding can take “wrong turnings”

3



Maffeis and Phillips

and is divergent, they have left the Turing completeness of their fragment of
MA as an open question.

The focus of our work is different from that of Boneva and Talbot, in that
we concentrate on Turing completeness and termination, while they concen-
trate on reachability and model-checking in the ambient logic.

2 Operators and Capabilities

We will investigate a variety of operators and capabilities of pure Mobile Ambi-
ents [6] and variants thereof. We let P,Q, . . . range over processes and M, . . .
over capabilities which can be exercised by ambients. We assume a set N
of names, ranged over by m,n, . . ., and a set of process variables (used for
recursion), ranged over by X, . . ..

First we state a “portmanteau” process language which contains all the
operators which we shall consider.

P ::= 0 | n[P ] | P | Q | M.P | νn P | !P | X | rec X.P

Here as usual 0 denotes the inactive process. We shall feel free to omit trailing
0s and write empty ambients as n[ ] rather than n[ 0 ]. The process n[P ] is
an ambient named n containing process P . The process P | Q is the parallel
composition of P and Q. The process M.P performs capability M and then
continues with P . The process νn P is process P with name n restricted.
As usual, restriction is a variable-binding operator. We denote the set of free
names of a process P by fn(P ). The process !P is a replicated process which
can spin off copies of P as required. The process rec X.P is a recursion in
which X is a bound process variable. We shall only consider processes where
all process variables are bound. Recursion is unboxed [21,4] if in rec X.P any
occurrence of X within P is not inside an ambient. We shall only require
unboxed recursion. If recursion is available then !P can be simulated by
rec X.(X | P ), and so we shall never require both replication and recursion.

Here is the set of all capabilities we shall consider:

M ::= open n | in n | out n | in n | out n | push n | pull n

The first capability open n is used to dissolve an ambient named n. The
remaining capabilities all relate to movement. We can distinguish between
subjective and objective moves: The capabilities in n and out n enable an
ambient to enter or leave an ambient named n. This is subjective movement.
Sometimes we consider the “safe” versions [13] of the capabilities where the
ambient being entered or left performs “co-capabilities” in n or out n. By
contrast, objective movement is where ambients are moved by fellow ambients.
We consider the so-called “push” and “pull” capabilities of [20]. An ambient
containing another ambient named n can use the capability pushn to push the
other ambient out. Similarly pulln can be used to pull in an ambient named n.

Structural congruence ≡ equates processes which are the same up to struc-
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tural rearrangement. It is defined by the following rules:

0 | P ≡ P νn 0 ≡ 0

P | Q ≡ Q | P νm νn P ≡ νn νm P

(P | Q) | R ≡ P | (Q | R) !P ≡ P | !P

νn (P | Q) ≡ (νn P ) | Q if n /∈ fn(Q) rec X.P ≡ P{rec X.P/X}

νn m[P ] ≡ m[ νn P ] if m 6= n

The reduction relation → between processes describes how one process
can evolve to another in a single step. We start by defining the reductions
associated with the capabilities.

(Open) open n.P | n[Q ] → P | Q

(In) n[ in m.P | Q ] | m[R ] → m[n[P | Q ] | R ]

(Out) m[n[ out m.P | Q ] | R ] → n[P | Q ] | m[R ]

(SafeIn) n[ in m.P | Q ] | m[ in m.R | S ] → m[n[P | Q ] | R | S ]

(SafeOut) m[n[ out m.P | Q ] | out m.R | S ] → n[P | Q ] | m[R | S ]

(Pull) n[ pull m.P | Q ] | m[R ] → n[P | Q | m[R ] ]

(Push) n[m[P ] | push m.Q | R ] → n[Q | R ] | m[P ]

We shall be considering languages which only possess a subset of the full
set of capabilities. When we consider languages with capability in, we shall
always have capability in as well, and we shall adopt rule (SafeIn) and not
rule (In). Clearly, if a language has capabilities in, in and replication on these
capabilities, then the effect of rule (In) can be simulated; every ambient can
be made perfectly receptive to entering processes by converting n[P ] into
n[ ! in n | P ]. Similar considerations apply to capabilities out and out.

The remaining rules for reduction are

P → P ′

n[P ]→ n[P ′ ]

P → P ′

P | Q→ P ′ | Q
P → P ′

νn P → νn P ′
P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

We write ⇒ for the reflexive and transitive closure of →.

A language is a pair (L,→) consisting of a set of processes L together with
a reduction relation →. We shall write (L,→) as L for short. We let L, . . .
range over languages. We shall define a language by giving the set of processes.
The reduction relation (and structural congruence) for the language will be
tacitly assumed to be given by the set of all the rules in this section which
are applicable to the available operators and capabilities, except as noted
above for the “safe” and standard versions of the in and out capabilities. A
computation is a maximal sequence of reductions P0 → P1 → · · ·.
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The most basic observation that can be made of a process is the presence
of top-level ambients (i.e. ambients which are not guarded by capabilities or
contained in other ambients) [6]. We say that n is a strong barb of P (P ↓ n)
iff P ≡ νm1, . . .mk (n[Q ] | R) (where n 6= m1, . . .mk), and n is a weak barb
of P (P ⇓ n) iff P ⇒ P ′ ↓ n.

3 Turing-complete Fragments of AC

A basic measure of the computational strength of a process language is whether
Turing machines, or some other Turing-complete formalism, can be encoded in
the language. Cardelli and Gordon [6] established that pure Mobile Ambients
can encode Turing machines. Busi and Zavattaro [4] improved this result by
showing that counter machines (CMs) can be encoded in pure MA without
restriction. They also showed that the fragment of pure MA with no movement
capabilities (but with restriction) can encode CMs.

We shall show that CMs can be encoded in pure MA without restriction
and without open. We shall also encode CMs in a version of MA with asyn-
chronous movement (i.e. no continuations after capabilities), but with the open
capability.

A Counter Machine (CM) is a finite set of registers R0, . . . , Rb (b ∈ N).
Each Rj contains a natural number. We write Rj(k) for Rj together with its
contents k. Initially the registers hold the input values. The CM executes a
numbered list of instructions I0, . . . , Ia (a ∈ N), where Ii is of two forms:

• i : Inc(j) adds one to the contents of Rj, after which control moves to Ii+1.

• i : DecJump(j, i′) subtracts one from the contents of Rj, after which control
moves to Ii+1, unless the contents are zero, in which case Rj is unchanged
and the CM jumps to instruction i′.

The CM starts with instruction I0, and executes instructions in sequence in-
definitely, until control moves to an invalid instruction number (which we can
take to be a + 1), at which point the CM terminates, and the output is held
in the first register.

CMs as defined above are basically the Unlimited Register Machines of
[22]. They use a set of instructions which is minimal while retaining Turing
completeness [18]. (In fact CMs with just two registers are already Turing
complete.)

3.1 Criteria for Turing Completeness

It is best to make clear what criterion for Turing completeness we shall use
in this paper. Let CM be a CM (program plus registers with their contents).
Let [[CM ]] be the encoding of CM in a target fragment of AC. We shall require
the following:
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Criterion 3.1 • If CM terminates then every computation of [[CM ]] com-
pletes successfully, meaning that it signals completion in some manner, ob-
tains the correct result and makes the result of the computation (i.e. the
contents of the first register) available in usable form to potential subse-
quent computations to be performed by other processes.

• If CM does not terminate, then no computation of [[CM ]] signals comple-
tion.

In our encodings, completion will be signalled by the appearance of a
particular ambient at the top level. So we can deduce from the undecidability
of the halting problem for CMs that for the target fragment it is undecidable
in general for a process P and name n whether P ⇓ n.

Furthermore, our encodings will actually satisfy both Criterion 3.1 and the
following additional property:

Criterion 3.2 • If CM terminates then every computation of [[CM ]] termi-
nates.

• If CM does not terminate, then no computation of [[CM ]] terminates.

We can therefore deduce that it is undecidable whether a process has an
infinite computation. (In fact, this can still be deduced if the second item is
weakened to: if CM does not terminate, then [[CM ]] has an infinite computa-
tion.)

However, since Criterion 3.2 is not required for Turing completeness, we
cannot deduce that a language fails to be Turing complete simply because ter-
mination is decidable. There could still be an encoding of CMs into the target
language where all computations of encoded CMs are infinite. When the CM
terminates, the encoded CM reports a result in a finite time before diverging.
Nevertheless, one can achieve separation results by showing Criterion 3.2 for
one fragment and decidability of termination for another fragment.

Many encodings satisfy the following one-step preservation property: if
CM moves in one step to CM ′ then [[CM ]]⇒ [[CM ′]]. While one-step preser-
vation is useful, we contend that it is needlessly strong for Turing complete-
ness. Consider for instance a Turing machine (TM) which is non-erasing in
the following sense: at each step it copies the tape contents to the next un-
used part of the tape and then makes the change required by the instruction.
Such a machine is clearly as powerful as a normal TM. However we cannot
encode TMs into non-erasing TMs and satisfy the one-step preservation prop-
erty, since the non-erasing TM has extra information. (Note that reachability
of configurations is decidable for non-erasing TMs, since the tape contents
keep on increasing in size, so that Turing completeness does not imply that
reachability is undecidable.)

This is relevant to our concerns, since in our encodings we accumulate
inert garbage. Just as with non-erasing TMs, this is no barrier to Turing
completeness.
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Remark 3.3 Hirschkoff, Lozes and Sangiorgi [11] give an encoding of TMs
into a fragment of AC which satisfies one-step preservation, but where the en-
coding may take a “wrong turning”. Such wrong turnings are strictly limited,
in that the process will halt immediately in a state which cannot be mis-
taken for successful termination. This is sufficient for them to claim Turing
completeness, but we shall require that computations cannot take unintended
paths.

3.2 Existing Work

Busi and Zavattaro gave encodings of CMs into two fragments of the pure AC.
The first fragment, which we shall call Lop

ν , is defined by

P ::= 0 | n[ ] | P | Q | open n.P | νn P | X | rec X.P

It is striking that empty ambients with no movement capabilities are enough.
There is an essential use of restriction to obtain the effect of mutual recursion.
Nevertheless, this result shows the strength of the open capability. We wish
to investigate whether we can achieve Turing completeness without open.

Busi and Zavattaro’s second encoding of CMs is into the following lan-
guage, which we shall call Lop

io :

P ::= 0 | n[P ] | P | Q | open n.P | in n.P | out n.P | !P

Notice that Lop
io does not require restriction, and uses replication rather than

recursion. Independently, Hirschkoff, Lozes and Sangiorgi [11] have encoded
Turing machines into Lop

io , with the additional syntactic constraint that the
continuation of a capability must be finite, that is, must not involve replication.

3.3 “Asynchronous” Languages with open

In this subsection we show that there are Turing-complete AC languages even
when we don’t allow continuations after movement capabilities. We show
this both for objective movement (Theorem 3.4) and for subjective movement
(Theorem 3.5).

Let Lop
ppa be the following language (a fragment of the Push and Pull Am-

bient Calculus [20]):

P ::= 0 | n[P ] | P | Q | open n.P | push n.0 | pull n.0 | ! open n.P

Note that push and pull have no continuation. We might refer to this as
asynchronous movement. Also, replication is only used with open.

Theorem 3.4 Lop
ppa is Turing complete.

Proof. (Sketch) We describe an encoding of CMs into Lop
ppa. A CM will be

encoded as a system consisting of processes encoding the registers in parallel
with processes for each instruction.

We consider a particular CM called CM , with instructions I0, . . . , Ia and
registers R0, . . . , Rb. Let CM(i : k0, . . . , kb) represent CM when it is about
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to execute instruction i and storing kj in register j (j ≤ b). Let the (unique)
finite or infinite computation of CM = CM0 be CM0, CM1, . . . , CMl, . . .,
where CMl = CM(il : k0l, . . . , kbl).

First we describe the registers. Rj(k) is encoded as rj[ k ], where the nu-
meral process k is defined by

0
df
= z[ ] k + 1

df
= s[ k ]

Thus registers are distinguished by their outermost ambient.

In describing the encoding of the instructions, we must take into account
the fact that the decrement/jump instructions will accumulate garbage each
time they are used, as the code for either decrement or jump is left unused.
We therefore parametrise our encoding by the index l of the stage we have
reached in the computation. Let dec(i, l) (resp. jump(i, l)) be the number of
decrements (resp. jumps) performed by instruction i during the computation
of CM up to, but not including, stage l.

We denote the encoding of instruction Ii by [[Ii]]l, defined as follows:

[[i : Inc(j)]]l
df
= ! open sti.rj[ pull rj |

s[ pull rj | open rj.sti+1[ ] | push sti+1 ] | push sti+1 ]

[[i : DecJump(j, i′)]]l
df
= ! open sti.ci[ pull rj | open rj.(Sij | Ziji′) ] |

! open di | ! open d′i | (ci[Ziji′ ])dec(i,l) | (ci[Sij ])jump(i,l)

Sij
df
= di[ pull s | rj[ pull s | open s.(ei[ ] | push ei) ] | push ei | sti+1[ ] ] |

open ei.push di

Ziji′
df
= open z.(d′i[ rj[ 0 ] | sti′ [ ] ] | push d′i)

We use P k to abbreviate k copies of P in parallel. Notice that the continua-
tions of all occurrences of open are finite (the same condition as used in [11]
and mentioned in the previous subsection).

We define:

[[CM(i : k0, . . . , kb)]]l
df
= sti[ ] | [[I0]]l | · · · | [[Ia]]l | r0[ k0 ] | · · · | rb[ kb ]

The encoding of CM is [[CM ]]
df
= [[CM0]]0. The instructions start without any

garbage. The encoded CM will go through successive stages [[CMl]]l. We show
that for each non-terminal stage l, [[CMl]]l ⇒ [[CMl+1]]l+1, and that [[CMl]]l is
guaranteed to reach [[CMl+1]]l+1.

An instruction process [[Ii]]l is triggered by the presence of sti at the top
level; the instruction starts by consuming sti. The execution of [[Ii]]l finishes by
unleashing the sti ambient corresponding to the next instruction. Throughout
the computation, at most one sti ambient is present. The encoded machine
terminates if and when the ambient sta+1 appears at the top level. There are
various cases depending on the nature of the instruction Ii.
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An instruction process of the form [[i : Inc(j)]]l creates a new register
rj[ s[ ] ], which already contains the successor ambient needed to perform the
increment. The new register pulls the existing rj into its core, and strips off
the outer casing. The instruction then signals completion by pushing out the
trigger for the next instruction. Computation is entirely deterministic. We
have:

. . . sti[ ] | [[i : Inc(j)]]l | rj[ k ] . . .⇒ . . . sti+1[ ] | [[i : Inc(j)]]l+1 | rj[ k + 1 ] . . .

An instruction process of the form [[i : DecJump(j, i′)]]l creates a new am-
bient ci, pulls in register rj and strips off its outer layer, leaving the numeral.
This numeral has outermost ambient either s or z depending on whether the
numeral is zero or a successor.

• If the numeral is a successor it is pulled inside ambient di and then inside a
new register ambient rj where it is decremented. The ambient di, containing
the new incremented register along with the trigger sti+1, is then pushed
out of ci, and opened to unleash the trigger. We have:

. . . sti[ ] | [[i : DecJump(j, i′)]]l | rj[ k + 1 ] . . .

⇒ . . . sti+1[ ] | [[i : DecJump(j, i′)]]l | ci[Ziji′ ] | rj[ k ] . . .

≡ . . . sti+1[ ] | [[i : DecJump(j, i′)]]l+1 | rj[ k ] . . .

The execution of the decrement leaves ci[Ziji′ ] behind as garbage, which
does not take any further part in the computation. Again, computation is
entirely deterministic.

• If the numeral is zero, this is detected by open z, and a new ambient di,
containing rj[ 0 ] along with the trigger sti′ , is then pushed out of ci, and
opened to unleash the trigger. We have:

. . . sti[ ] | [[i : DecJump(j, i′)]]l | rj[ 0 ] . . .

⇒ . . . sti′ [ ] | [[i : DecJump(j, i′)]]l | ci[Sij ] | rj[ 0 ] . . .

≡ . . . sti′ [ ] | [[i : DecJump(j, i′)]]l+1 | rj[ 0 ] . . .

Again, computation is entirely deterministic.

Finally, we see that if CML is terminal (so iL = a + 1) then [[CML]]L has no
reductions. [[CML]]L displays barb sta+1 to indicate termination. The result of
the computation, stored in register 0, is usable by subsequent computations.
On the other hand, if CM does not terminate, then neither does [[CM ]], and
the barb sta+1 will never appear. There are no “bad” computations, i.e. ones
which halt in a non-final state, diverge, or produce unintended behaviour. We
have a encoding which shows Turing completeness, and also undecidability of
termination and of weak barbs. 2

We can achieve exactly the same asynchrony for subjective movement,
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though the encoding is more elaborate. Let Lop
ioa be the following language:

P ::= 0 | n[P ] | P | Q | open n.P | in n.0 | out n.0 | ! open n.P

Theorem 3.5 Lop
ioa is Turing complete. (Proof: see Appendix A.)

3.4 Languages without open

So far, all the languages considered have possessed the open capability. We
shall show that this is not essential for Turing completeness, by encoding CMs
into a language with just the standard movement capabilities, namely in and
out.

Let Lio be the following language:

P ::= 0 | n[P ] | P | Q | in n.P | out n.P | ! in n.P | ! out n.P

Clearly Lio is a sublanguage of Lop
io as defined earlier. The major difference is

that Lio does not have the open capability. Also, replication is only applied
to the capabilities. We shall see in Sections 4 and 5 that the computational
strength of a language can depend on whether replication is applied to capa-
bilities or to ambients.

Theorem 3.6 Lio is Turing complete.

Proof. (Sketch) One problem we encountered was in dealing with instruc-
tions. Since each instruction Ii has to be used indefinitely many times, one
might encode it as ! pi[Pi ], where each time the instruction is needed a new
copy of pi[Pi ] is spun off. But then the previously used copies may interfere
with the current copy, so that for instance acknowledgements may get mis-
directed to old pi’s still present. This issue does not arise if we can destroy
unwanted ambients using the open capability.

Registers consist of a series of double skins s[ t[ . . . ] ] with z[ ] at the core.
We use a double skin rather than the more obvious s[ s[ z[ ] ] ] style. This is to
help with decrementing, which is done by stripping off the outermost s and
then in a separate operation stripping off the t now exposed.

We follow Busi and Zavattaro in carrying out the increment of a register
by adding a new s[ t[ ] ] immediately surrounding the central core z[ ]. This
seems preferable to adding a new double skin on the outside, since it keeps
the increment code and decrement code from interfering with each other.

The basic idea is that each instruction Ii is triggered by entering a sti
ambient. All the other instructions and all the registers enter as well—a
monitor process checks that this has happened before Ii is allowed to execute.
So the computation goes down a level every time an instruction is executed.
When an instruction finishes, it unleashes the sti ambient to trigger the next
instruction. If and when the computation finishes, the first register is sent up
to the top level, where it can serve as input for possible further computations.

Therefore we have Turing completeness. Our encoding furthermore estab-
lishes that the weak barb relation is undecidable, and that having a nonter-
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minating computation is undecidable.

As the computation proceeds, inert garbage accumulates in both the in-
structions and the registers. We handle this much as in the proof of Theo-
rem 3.4, letting the encodings of the instructions and the registers be para-
metrised with the current step in the computation.

The computation is largely deterministic; the exceptions are that between
executions of instructions, the instructions and registers make their way down
a level in an indeterminate order, and there is also some limited concurrency
in the increment.

See Appendix B for the details. 2

Remark 3.7 In independent work, Boneva and Talbot [1] have encoded two-
counter machines into the following language:

P ::= 0 | n[P ] | P | Q | in n.P | out n.P | !P

(Notice that this language differs slightly from Lio, in that it allows repli-
cation of arbitrary processes, including ambients.) However, their encoding
can diverge and take wrong turnings into error states, which means that they
do not claim Turing completeness. Nevertheless because they establish one-
step preservation, they can show that it is undecidable whether one process
is reachable from another, and also whether P ⇓ n for an arbitrary process P
and name n.

It is an open question whether reachability for arbitrary processes in Lio is
decidable. Even if reachability were decidable for Lio, this would not contradict
Turing completeness (see Section 3.1).

We have just encoded CMs into language Lio with the standard subjective
movement capabilities (and without open). We can also encode CMs in the
following language Lpp with objective moves:

P ::= 0 | n[P ] | P | Q | push n.P | pull n.P | !P

Theorem 3.8 Lpp is Turing complete. (Proof: see Appendix C.)

4 Terminating Fragments of AC

We would like to know whether the language Lio of Subsection 3.4 is a minimal
Turing-complete language. As a partial answer to this question, we shall show
in this section that if we remove one of the movement capabilities (either in or
out) then the resulting language is in fact terminating, i.e. every computation
terminates.

Definition 4.1 A language (L,→) is terminating if every computation is fi-
nite.

Let Līi be the following language:

P ::= 0 | n[P ] | P | Q | in n.P | in n.P | ! in n.P | ! in n.P | νn P
12



Maffeis and Phillips

Notice that Līi is got from Lio by removing the out capability and (in order to
sharpen the next theorem) adding the co-capability in [13] and restriction.

Theorem 4.2 Līi is terminating.

Proof. (Sketch) First observe that if a process P of Līi has an infinite com-
putation, then if we identify all the names of P and remove all restrictions,
we still have an infinite computation, as all existing reductions can still occur
(as well as potentially some new ones). Similarly, we can replace all capabil-
ities by replicated capabilities. Thus it suffices to show the theorem for the
sublanguage

P ::= 0 | m[P ] | P | Q | ! in m.P | ! in m.P

where m is a single fixed name.

We first define the replication nesting depth (rnd) of a process:

rnd(0)
df
= 0 rnd(P | Q)

df
= max(rnd(P ), rnd(Q))

rnd(m[P ])
df
= rnd(P ) rnd( ! in m.P )

df
= rnd(P ) + 1

rnd( ! in m.P )
df
= rnd(P ) + 1

We next define the replication degree (abbreviated to rd, or simply degree) of
an ambient m[P ]. This is the rnd of the capability component of P , defined
as follows. Any process P is structurally congruent to∏

1≤i≤I

! in m.Pi |
∏

1≤j≤J

! in m.Pj |
∏

1≤k≤K

m[Pk ]

where I, J,K ≥ 0, and I = 0 indicates that the parallel composition is empty
(similarly for J,K). The capability component of P is

P cap df
=
∏

1≤i≤I

! in m.Pi |
∏

1≤j≤J

! in m.Pj

and we let rd(m[P ])
df
= rnd(P cap). This is well-defined with respect to struc-

tural congruence. Notice that the degree of an ambient is unchanged through-
out a computation. It is unaffected by other ambients entering of whatever
degree. Also, no capability can ever disappear.

During a computation an ambient can produce “children”. For instance
m[ ! in m.m[ ] ] can produce a series of new m[ ] ambients as it enters other
ambients. These children will have strictly lower replication degrees. For a
given ambient m[P ] there is a fixed finite bound on the number of children
which can be produced by a single reaction.

We can assume that all ambients are equipped with both ! in and ! in
capabilities. Thus all ambients have degree ≥ 1.

We sketch two proofs of termination; the first relies on assuming a minimal
infinite computation and then showing that there must be a smaller one, while
in the second proof we restrict attention to a “top-level” reduction strategy,
assign multisets to the processes in a computation and show that they are

13
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decreasing in a particular well-founded ordering.

Method 1. Suppose that P0 → · · · is an infinite computation. Let D0 be
the maximum of the degrees of the (unguarded) ambients in P0. During the
computation new ambients are created as children of existing ambients. They
will all have degree less than their parents, and < D0. Since the computation
is infinite, infinitely many children must be created. Let D < D0 be the
maximum degree at which infinitely many children are created. In the whole
computation there are only finitely many ambients with degree > D. At least
one of these must be infinitely productive, that is, produce infinitely many
children. Now let c > 0 be the number of infinitely productive ambients of
degree > D.

We have shown how to assign a pair (D, c) (D ≥ 1, c ≥ 1) to each infinite
computation. Now let P0 → · · · → Pi → . . . be an infinite computation with
a minimal value of (D, c) in the lexicographic ordering

(D, c) < (D′, c′) iff D < D′ or (D = D′ and c < c′) .

We shall obtain a contradiction by showing that there is another infinite com-
putation with a smaller value of (D, c).

Choose any infinitely productive ambient of degree > D. We can assume
that it is available at the start of the computation, by removing a finite initial
segment of the computation if necessary (this does not change the values of
D and c). Each process Pi of the computation is of the form Ci{m[Qi ]},
where we display the outer context and inner contents of our chosen ambient.
Reductions either involve the context alone, the contents alone, or else they
involve the chosen ambient as a principal—either entering or being entered.
Since the ambient is infinitely productive, there must be infinitely many of
this third type of reduction.

Now let us alter the computation by making the chosen ambient totally
unproductive—simply remove the continuations of the capabilities exercised
by the ambient. We still have an infinite computation, which is less productive
than before. If the value of D is not reduced, then the value of c must have
been reduced by at least one. Hence our new computation is lower in the
lexicographic ordering, which is a contradiction.

Method 2. Let →′ be the modification of standard → reduction (Sec-
tion 2) where reduction is forbidden inside an ambient. Let⇒′ be the reflexive
and transitive closure of →′.

Suppose there is an infinite computation starting from

P ≡ P cap |
∏

1≤k≤K

m[Pk ]

Then we must have K ≥ 1 for P to have a reduction. If K = 1 we write
P ↘ P1. Clearly P1 has an infinite computation. If K > 1, one can show that
there is an infinite computation of P which begins with one particular top-
level ambient being entered by all the other top-level ambients. Thus P ⇒′ P ′
where P ′ has a ↘ reduction. Putting all this together, we see that if P has

14
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an infinite → computation then P has an infinite ⇒′↘ computation.

To show that infinite ⇒′↘ computations are impossible, we assign mul-
tisets to processes and define an ordering on these multisets which is well-
founded and strictly decreasing with respect to ⇒′↘.

Let P0, . . . , Pi, . . . be an infinite ⇒′↘ computation. We assign to each
Pi a multiset Si. Its elements will be ordered pairs consisting of a natural
number and a multiset of natural numbers. These numbers are all degrees of
(unguarded) ambients in Pi.

We create S0 as follows: For each unguarded ambient m[P ′ ] of degree d
contained in P0, we add the ordered pair (d, ∅) to S0.

In the computation there are two kinds of reductions: →′ and↘. Suppose
that Pi →′ Pi+1. A →′ reduction consists of an ambient m[Q ] of degree d
entering an ambient m[Q′ ] of degree d′. To these ambients there correspond
elements (d, T ) and (d′, T ′) in Si. (Since we are doing a top-level reduction the
two ambients are represented in the first elements of the pairs of Si.) The →′
reduction will produce children of m[Q ] of degree < d; we add their degrees
to T . The reduction will also produce children of m[Q′ ] of degree < d′; we
add their degrees to T ′. In this way we create Si+1.

Now suppose that Pi ↘ Pi+1. A ↘ reduction essentially discards a top-
level ambient, while keeping its contents. Suppose this ambient is of degree
d and corresponds to the element (d, T ) of Si. We remove the (d, T ) from Si
and for each d′ ∈ T we add (d′, ∅) to Si. Note that each d′ < d. In this way
we create Si+1.

One can define an ordering on multisets over a well-founded ordering, by
which S � S ′ if S ′ is got from S by replacing any element of S by a finite set of
smaller elements. This ordering is well-founded [8]. Now if we consider just the
first members of the pairs in the multisets Si we see that a→′ reduction leaves
the set unchanged, while a ↘ reduction removes one element and replaces
it with a finite set of smaller elements. So each ⇒′↘ reduction takes us
down in the � ordering. By well-foundedness of � there is no infinite ⇒′↘
computation, and thus no infinite → computation. 2

It is also the case that a language with out as its only capability is termi-
nating. Let Lo be the following language:

P ::= 0 | n[P ] | P | Q | out n.P | ! out n.P | νn P
Notice that Lo is got from Lio by removing the in capability and (in order to
sharpen the next theorem) adding restriction.

Theorem 4.3 Lo is terminating. (Proof: see Appendix D.)

Notice that this is not the case in the language where we add co-capability
out to Lo, in view of the counterexample n[n[ out n ] | ! out n.n[ out n ] ]. This
is equally the case when the co-capability is located at the upper level [16]:
n[n[ out n ] ] | ! out n.n[n[ out n ] ]. With “push” as the only capability we can
have infinite computations, e.g. n[n[ ] | ! push n.n[ ] ].
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Remark 4.4 If we combine replication with the open capability we can create
non-terminating processes such as n[ ] | ! open n.n[ ]. Busi and Zavattaro [4]
showed that termination is decidable for processes built with replication and
open (see Theorem 5.2 in Section 5).

5 Fragments of AC with Decidable Termination

Definition 5.1 We shall say that termination is decidable in a language
(L,→) if, given any process P of L, it is decidable whether P has an infi-
nite computation.

Busi and Zavattaro showed that termination is decidable in a language
without restriction, and with open but no movement capabilities. They are
able to allow unboxed recursion rather than merely replication. Their proof
relies on the facts that any process has only finitely many names (since re-
striction is absent), and that there is a finite bound on the nesting depth of
ambients. These properties remain true if we add the out and push capabilities,
since these cannot increase nesting depth of ambients.

Let Lop
o be the following language:

P ::= 0 | n[P ] | P | Q | open n.P | out n.P | out n.P | push n.P |

X | rec X.P

Recursion is unboxed in Lop
o .

Theorem 5.2 Termination is decidable for Lop
o .

Proof. (Sketch) Straightforward adaptation of the proof of Corollary 4.10 of
[4]. Busi and Zavattaro’s method is to show that a multiset-style ordering on
processes, under which, for instance, P is below P | Q, is a well-quasi-ordering.
They then use the theory of well-structured transition systems [9] to deduce
that termination is decidable. We make appropriate changes to their ordering
on processes to incorporate the added capabilities. 2

Remark 5.3 We know that termination is undecidable for Lio (see proof of
Theorem 3.6). It follows from Theorem 5.2 that there can be no embedding
[[−]] from Lio into Lop

o which respects termination, in the sense that for any
process P of Lio, P has a nonterminating computation iff [[P ]] has a nontermi-
nating computation.

Matters are different when it comes to the in capability and full replication
(rather than replication on capabilities, as considered in Section 4). Even such
a simple process as !n[ inn ] can have a computation with unbounded ambient
nesting depth. The proof method of Theorem 5.2 is therefore not available.

Let Lin be the following language:

P ::= 0 | n[P ] | P | Q | in n.P | !P
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Theorem 5.4 Termination is decidable for Lin.

Proof. (Sketch) We first convert a process P of Lin into a process PN by
removing any occurrence of replication except on ambients and capabilities
using the following equations (sometimes included in ≡):

! 0 = 0 ! (P | Q) = !P | !Q ! !P = !P

One can show that P has an infinite computation iff PN has an infinite com-
putation. So we may now assume that Lin only allows replication on ambients
and capabilities.

To decide whether a process P of Lin has a non-terminating computation,
we shall translate P into a non-standard process language LDin which has a
reduction relation →D which traps non-termination finitely, so that every
computation terminates.

Let LDin be the following language:

P ::= 0 | DIV | n[P ] | P | Q | in n.P | ![P ] | ! in n.P

Here DIV represents divergence. We translate a process P of Lin into a process
PD of LDin using a function which is homomorphic apart from the case of a
replicated ambient:

( !n[P ])D
df
= n[P ′D ] | ![P ](1)

Here P ′ is got from P by removing the capability component of P , i.e. any in
or replicated in capabilities which n[P ] can exercise. We replace all replicated
ambients after unfolding them exactly once. The replacement ![P ] is not an
ambient and has nonstandard reduction rules to be given shortly. The spun-off
ambient n[P ′D ] is immobile, but available to be entered by other ambients.

Structural congruence on LDin is defined as in Section 2. The reduction
relation →D on LDin is defined as follows: We let →D have all applicable rules
defining standard reduction→ in Section 2. To these rules we add the follow-
ing two rules which trap divergence caused by replicated ambients:

(InDiv) ![ in m.P | Q ] | m[R ]→D DIV

(AmbDiv)
P →D P ′

![P ]→D DIV

Notice that ![P ] can engage in at most one reduction, and that DIV has no
reductions. Therefore we can adapt Theorem 4.2 to show that every compu-
tation in LDin terminates. Furthermore, every process has a finite computation
tree which can be constructed effectively. Then a process P of Lin has a non-
terminating computation iff there is any occurrence of DIV in the computation
tree of PD.

It is clear that any occurrence of DIV reflects an infinite computation of P .
Thus if the rule (InDiv) is used in the tree of PD, then P must be reducible
to a process with a subterm having a divergent computation of the form

!n[ in m.P ′ | Q ] | m[R ]→ !n[ in m.P ′ | Q ] | m[n[P ′ | Q ] | R ]→ · · · .
17
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Also, if the rule (AmbDiv) is used in the tree of PD then P must be re-
ducible to a process with a subterm having a divergent computation of the
form !n[P ′ ]→ n[P ′′ ] | !n[P ′ ]→ · · · where P ′ → P ′′.

In the other direction, we must show that we have not limited too much
the scope of PD to diverge. Equation (1) limits replicated ambients in two
ways:

Firstly, the spun-off ambient is immobilised. This is justified because if
the spun-off ambient were ever in a position to enter another ambient, then
rule (InDiv) would also apply.

Secondly, only one ambient is spun off to create PD, while in Lin we allow
indefinitely many. But if an unbounded number of spun-off ambients each do
at least one reduction, rule (AmbDiv) would apply. If an unbounded number
of spun-off ambients get entered, then each of these entries can be simulated
using the single spun-off ambient of PD. (Of course this cannot in fact happen
since LDin is terminating.) Finally we might have a divergent computation
emerge in one particular spun-off copy after various ambients have entered.
But if all ambients enter the same spun-off ambient, this divergence can also
emerge. We conclude that PD does indeed trap every possible divergence of
P , as required. 2

6 Conclusions and Future Work

The main contribution of this paper is to show that the open capability is not
needed to obtain Turing completeness for pure Ambient Calculi. This implies
that pure Boxed Ambients is Turing complete.

We have sought to establish the minimality of the language Lio by show-
ing that removing either in or out capabilities leads to a failure of Turing
completeness in a rather dramatic fashion: every computation terminates.

We briefly mention some open questions/future work:

• As far as the study of the computational strength of fragments of pure
Ambient Calculi is concerned, the major open question is the strength of
the fragment with in and open capabilities (but not out).

• The present work leads us to ask what might be a set of minimal constructs
of AC capable of encoding regular expressions or context-free grammars.

• We have found interesting links between our Method 2 in the proof of The-
orem 4.2 and the proof of Theorem 2 of [12]: exploring this relation might
lead to the discovery of interesting links with proof theory and independence
results for Peano Arithmetic.
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Appendix

A Encoding of CMs into Lop
ioa

We present an encoding of CMs into the language Lop
ioa defined in Subsec-

tion 3.3:

P ::= 0 | n[P ] | P | Q | open n.P | in n.0 | out n.0 | ! open n.P

Theorem 3.5. Lop
ioa is Turing complete.

Proof. (Sketch) The proof of Turing equivalence follows the structure of the
one of Theorem 3.4.

Numerals contain movement capabilities to interact with the instruction for
decrement and jump, and each register contains a capability that will allow it
to interact with both instructions:

0
df
= z[ in jz ]

k + 1
df
= s[ k | in ds ]

[[rj(k)]]l
df
= rj[ in rj | k ]

The encoding is completely deterministic, since at each step only one reduction
is possible. The initial state is defined as

Πi [[Ii]]0 |Πj [[rj]]0 | st0[ ]

To increment a register rj, we first make it enter in a dummy copy of itself
which, once acknowledges the presence of the register, moves in a skeleton
containing the additional successor ambient to add. Once this dummy rj
is inside s, it is opened, the numeral is released inside the new s, and an
acknowledgement ambient b is recognised both by the enclosing rj, which
creates its new capability inrj, and successively (ambient c) by the environment
which releases the incremented register in the top level, along with the token
for the continuation sti+1.

[[i : Inc(j)]]l
df
=

!open sti.(rj[ open rj.(in u | in rj | in s) ]

| u[ rj[ open b.in rj | s[ in ds | open rj.b[ out s | c[ out rj | out u ] ] ] ] ]

| open c.open u.sti+1[ ])

The instruction for decrement and jump is complicated by the need to
dispose of the jump branch if a decrement is executed, or the decrement branch
if the register contains 0.

[[i : DecJump(j, i′)]]l
df
= !open sti.rj[ open rj.(DS(i) | JZ(i) |F (i) | in rj) ]

|CLR(i, ds) |CLR(i, jz)

|GRB(i, ds, jump(i, l)) |GRB(i, jz, dec(i, l))
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The strategy consists in opening the instruction trigger, inviting the reg-
ister inside a dummy copy where it is opened and then having the numeral
itself selecting either the DS(i) or the JZ(i) term according to its value. The
selected term must make sure that the other one is disposed and processes
CLR(i, ds), CLR(i, jz) make sure (interacting with F (i)) that all the garbage
is collected, and trigger the appropriate continuation.

Below, x and y are complementary syntactic macros, such that if x = jz
in a term, then y = ds (and vice versa).

DS(i)
df
= ds[ open s.DISP1(i, jz) | in ddsi | in b ]

JZ(i)
df
= jz[ open z.(DISP1(i, ds) | z[ in jz ]) | in djzi | in b ]

F (i)
df
= open a.open end.open djzi.open ddsi.open b

CLR(i, x)
df
= !open dxi.a[ in rj |DISP2(i, y) ]

GRB(i, ds, n)
df
= (b[ open s.DISP1(i, jz) ])n

GRB(i, jz, n)
df
= (b[ open z.(DISP1(i, ds) | z[ in jz ]) ])n

DISP1(i, x)
df
= dxi[ out y | b[ open x.c[ out b ] ] | open c.out rj ]

DISP2(i, x)
df
= dxi[ b[ open x.end[ out b | out dxi | dyi[ ] ] |ST (x) ] ]

ST (ds)
df
= sti+1[ out rj ]

ST (jz)
df
= sti′ [ out rj ]

We follow step by step an example where decrement takes place. The case
for jump is almost symmetric. The initial state is

... | [[rj(n+ 1)]]l | sti[ ] | [[i : DecJump(j, i′))]]l | ...
after the first three steps we reach

... | rj[ s[n | in ds ] |DS(i) | JZ(i) |F (i) | in rj ] | ...
Now s enters ds, it is opened, and djzi exits ds

... | rj[ ds[n | in ddsi | in b ] | djzi[ b[ open jz.c[ out b ] ] | open c.out rj ] | ... ] | ...
Ambient jz enters djzi and b, gets opened, c leaves b, gets opened, and djzi
leaves rj.

... | rj[ ds[ ... ] |F (i) | in rj ] | djzi[ b[ open z.(...) ] ] |CLR(i, jz) | ...
Now djzi is opened by CLR(i, jz), a enters rj and gets opened by F (i) re-
leasing DISP2(i, ds) in rj.

... | rj[ ds[ ... ] | open end.[...].open b | in rj |DISP2(i, ds) ] |GRB(i, jz, 1) | ...
Ambient ds now enters ddsi and b, gets opened, and ambient end exits to the
top level in rj.

... | rj[ ddsi[ b[n |ST (ds) ] ] | open end.[...].open b | in rj | end[ djzi[ ] ] ] | ...
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Now end is opened, followed by djzi, then ddsi, and finally b is opened, re-
leasing the continuation, which exits rj. Assuming that dec(i, l) = m, we
have

... | rj[n | in rj ] | sti+i[ ] |GRB(i, jz, 1) |GRB(i, jz,m) | ...
By definition, we have thatGRB(i, jz, 1) |GRB(i, jz,m) = GRB(i, jz,m+ 1),
and since a decrement has been executed dec(i, l+1) = m+1, and we conclude
with

... | [[rj(n)]]l+1 | sti+i[ ] | [[i : DecJump(j, k)]]l+1 | ...
2

B Encoding of CMs into Lio

We present an encoding of CMs into the language Lio defined in Subsection 3.4:

P ::= 0 | n[P ] | P | Q | in n.P | out n.P | ! in n.P | ! out n.P

Theorem 3.6. Lio is Turing complete.

Proof. (Sketch) One problem we encountered was in dealing with instruc-
tions. Since each instruction Ii has to be used indefinitely many times, one
might encode it as ! pi[Pi ], where each time the instruction is needed a new
copy of pi[Pi ] is spun off. But then the previously used copies may interfere
with the current copy, so that for instance acknowledgements may get mis-
directed to old pi’s still present. This issue does not arise if we can destroy
unwanted ambients using the open capability.

Registers consist of a series of double skins s[ t[ . . . ] ] with z[ ] at the core.
We use a double skin rather than the more obvious s[ s[ z[ ] ] ] style. This is to
help with decrementing, which is done by stripping off the outermost s and
then in a separate operation stripping off the t now exposed.

We follow Busi and Zavattaro in carrying out the increment of a register
by adding a new s[ t[ ] ] immediately surrounding the central core z[ ]. This
seems preferable to adding a new double skin on the outside, since it keeps
the increment code and decrement code from interfering with each other.

The basic idea is that each instruction Ii is triggered by entering a sti
ambient. All the other instructions and all the registers enter as well. So the
computation goes down a level every time an instruction is executed. When an
instruction finishes, it unleashes the sti ambient to trigger the next instruction.
If and when the computation finishes, the first register is sent up to the top
level to report the result.

We consider a particular CM called CM , with instructions I0, . . . , Ia and
registers R0, . . . , Rb. Let CM(i : k0, . . . , kb) represent CM when it is about
to execute instruction i and storing kj in register j (j ≤ b). Let the (unique)
finite or infinite computation of CM = CM0 be CM0, CM1, . . . , CMl, . . .,
where CMl = CM(il : k0l, . . . , kbl).
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Each register Rj (j ≤ b) is encoded as an rj ambient enclosing a numeral
process k encoding the stored natural number k. Let the instructions Ii be
numbered from 0 to a. The outer rj ambient has the task of entering any sti
ambient (i ≤ a). The first register R0 is additionally allowed to enter sta+1.
This will allow R0 to be conveyed back up to the top level to give the result
of the computation.

In describing the encoding of the register and instructions, we must take
into account the fact that the both the increment and the decrement/jump
instructions will accumulate garbage each time they are used. We therefore
parametrise our encoding by the index l of the stage we have reached in the
computation. Let

• inc(i, l) be the number of increments

• dec(i, l) be the number of decrements

• decs(i, l) be the number of decrements leaving the register contents non-zero

• decz(i, l) be the number of decrements leaving the register contents zero

• jump(i, l) be the number of jumps

performed by instruction i during the computation of CM up to, but not
including, stage l. Clearly, dec(i, l) = decs(i, l) + decz(i, l).

[[R0(k)]]l
df
= r0[ k l |

∏
i≤a+2 ! in sti ]

[[Rj(k)]]l
df
= rj[ k l |

∏
i≤a ! in sti ] (1 ≤ j ≤ b)

Register 0 has special treatment to deal with finishing off the computation
and making the contents available to any further computation. The numeral
processes are defined as follows:

0 l
df
= z[ IZ | Dt | (increq[ ! in s.in t ])inc(i,l) ]

IZ
df
= ! in s.in t

Dt
df
= ! in dect′.out dect′.out t.out dect

Here IZ helps with increment, and Dt helps with decrement. The increq
ambients build up as garbage inside 0 l with each increment.

k + 1 l
df
= s[DS | Dt | t[DT | Ds | k l ] ]

DS
df
= in decs

DT
df
= in dect

Ds
df
= in decs′.out decs′.out s.out decs

The processes inside s and t help with decrement.

It is convenient to have a monitor process Mon which checks that all the
registers and instructions have entered the sti ambient to reach the current
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level.

Mon
df
= m[

∏
i≤a ! in sti.Mi ]

Mi
df
= in p0.out p0. · · · in pa.out pa.in r0.out r0. · · · .in rb.out rb.mi[ out m ]

Once the monitor has finished checking, it unleashes ambient mi and instruc-
tion i is free to go ahead. Once sti appears, the instructions and registers
reach the next level in an indeterminate order. However, once the monitor
has finished its check, the computation proceeds deterministically until exe-
cution of Ii is complete (except for a limited concurrency in the increment,
noted below).

We now describe the encoding of the CM instructions. The process corre-
sponding to instruction Ii (i ≤ a) is of the form

[[Ii]]l
df
= pi[ (

∏
i′≤a

! in sti′) | ! in mi.out mi.Pi | Gil ]

where Pi carries out the instruction, which is either increment or test and
decrement or jump, and Gil is the garbage which accumulates during the
computation up to stage l. The process Pi will first exit pi and then enter the
appropriate register rj.

Once the computation is complete, the sta+1 ambient conveys R0 back up
to the top level using the following process:

Fa+1
df
= check[ in r0.out r0.out sta+1 ] | in check.out check.(

∏
i≤a

! out sti)

Thus sta+1[Fa+1 ] first checks whether R0 has entered, and then moves up to
the top level. The check ambient is left behind as garbage. For i ≤ a, the sti
ambient does nothing further once it has appeared at the current level; it is

convenient to define Fi
df
= 0 (i ≤ a).

Before giving the instruction and garbage processes Pi, Gil in detail, we
complete the encoding of the CM. We capture the way that the computation
moves down successive levels by the following contexts:

C0{•}
df
= •

Cl+1{•}
df
= Cl{stil [mil [ ] | • ]}

where il is the instruction performed at the lth stage. The overall encoding of
the CM is:

[[CM(i : k0, . . . , kb)]]l
df
=

Cl{sti[ ! out t.out s | Fi ] |Mon | (
∏

i≤a[[Ii]]l) | (
∏

j≤b[[Rj(kj)]]l)}

The encoding of CM is [[CM ]]
df
= [[CM0]]0. The encoded CM will go through

successive stages [[CMl]]l. We show that for each non-terminal stage l, [[CMl]]l ⇒
[[CMl+1]]l+1, and that [[CMl]]l is guaranteed to reach [[CMl+1]]l+1. There are
various cases according to whether we are dealing with increment, decrement
or jump.
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The increment instruction i : Inc(j) is carried out by an ambient increq
which leaves pi and then penetrates to the core of the register rj (inside z).
Then sti+1 is unleashed, and leaves increq and z. The new s[ t[ ] ] then leaves
sti+1. Now z can enter s followed by t. We need to check that z has reached the
core. So sti+1 enters s, t and finally z. Note that there is limited concurrency
at this point between z entering s, t and sti+1 entering s, t. This does not
cause a problem, as there is synchronisation when sti+1 enters z. Now the
increment is complete, and sti+1 makes its way back out of rj. At this point
the next instruction is triggered.

Pi
df
= increq[ out pi.in rj.( ! in s.in t | in z.IST ) ]

IST
df
= sti+1[ out increq.out z.(s[ out sti+1.(DS | Dt | t[DT | Ds ]) ] | IA) ]

IA
df
= in s.in t.in z.out z.( ! out t.out s | out rj.Fi+1)

Note that increq[ ! in s.in t ] is left as garbage at the core of the register inside

z. There is no garbage inside pi, and so we define Gil
df
= 0.

In order to implement the instruction i : DecJump(j, i′), we must test for
whether the register Rj is zero or nonzero. This is done by the following
process:

Pi
df
= test[ out pi.in rj.(Qz | Qs) ]

Qz
df
= in z.out z.out rj.in pi.sti′ [ out test.out pi.( ! out t.out s | Fi′) ]

Qs
df
= in s.out s.out rj.in pi.P

′
i

The test ambient enters rj. If it detects z it leaves the register, re-enters pi
and unleashes instruction i′. The process test[Qs ] remains as garbage inside
pi. Otherwise test detects s, leaves the register, re-enters pi and unleashes
process P ′i , which performs the decrement of the register before proceeding to
instruction i + 1. The process test[Qz ] remains as garbage inside pi. (The
! out t.out s inside Qz is not used, and is simply included for uniformity with
the increment case described above, where it is needed.)

Decrement is performed in two stages; first strip off the outermost s, and
then strip off t.

P ′i
df
= decs[ out test.out pi.in rj.(decs

′[ in s ] | in t.out t.out rj.in pi.P
′′
i ) ]

To start with, decs goes to the top level inside rj. Suppose the register contains
k + 1 l. The portion of interest of the CM process is:

. . . rj[ decs[ decs
′[ in s ] | in t.(. . .) ] | s[DS | Dt | t[DT | Ds | k l ] ] ] . . .

Then the whole contents of the register enter using DS. Then decs′ enters s,
which activates Ds, leading to t going to the top level inside rj.

. . . rj[ decs[ in t.(. . .) | s[ decs′[ ] | Dt ] ] | t[DT | k l ] ] . . .

This is detected by decs, which exits rj, enters pi and unleashes P ′′i . The
first stage is completed. The process decs[ s[Dt | decs′[ ] ] ] remains as garbage
inside pi.
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Now we must strip off the outermost t to complete the decrement. The
procedure is roughly the same, with s and t swapped.

P ′′i
df
= dect[ out decs.out pi.in rj.(dect

′[ in t ] | Q′s | Q′z) ]

Q′s
df
= in z.out z.P ′′′i

Q′z
df
= in s.out s.P ′′′i

P ′′′i
df
= out rj.in pi.sti+1[ out dect.out pi.( ! out t.out s | Fi+1) ]

The ambient dect enters the register:

. . . rj[ dect[ dect
′[ in t ] | Q′s | Q′z | t[DT | k l ] ] ] . . .

Now t enters dect, and dect′ enters t:

. . . rj[ dect[Q
′
s | Q′z | t[ dect′[ ] | k l ] ] ] . . .

The numeral k l uses Dt to exit t and dect:

. . . rj[ dect[Q
′
s | Q′z | t[ dect′[ ] ] ] | k l ] . . .

The end of the decrement is signalled by sti+1 appearing at the level of pi
and rj. Depending on whether the decremented register is zero or non-zero,
we have either dect[Q′s | t[ dect′[ ] ] ] or dect[Q′z | t[ dect′[ ] ] ] as extra garbage
inside pi. We therefore define Gil to be

(test[Qs ])jump(i,l) | (test[Qz ] | decs[ s[Dt | decs′[ ] ] ])dec(i,l) |

(dect[Q′z | t[ dect′[ ] ] ])decs(i,l) | (dect[Q′s | t[ dect′[ ] ] ])decz(i,l)

It can be verified that all garbage can take no further part in the computation.

At the end of the computation (if it terminates) a sta+1 ambient is un-
leashed (recall that the last valid instruction number is a). This ambient
then appears at the top level containing R0. Thus the CM terminates iff
[[CM ]] ⇓ sta+1. This establishes that the weak barb relation is undecidable,
and that having a nonterminating computation is undecidable.

To fulfil Criterion 3.1 we must ensure that R0 is able to be used as input
by further computations. The problem is that the encoding of the register
makes explicit use of the list of instructions in order to allow it to enter sti
(i ≤ a+ 1). We resolve this problem by starting any subsequent computation
by first transferring R0 into a new first register which is suited to the new
instruction list. This can be done by a couple of CM instructions, which it is
convenient to number a + 1, a + 2. Thus the next CM starts its instructions
proper at a + 3. We define its monitor process in such a way that the old
R0 is not expected to travel beyond instruction a + 2. Strictly speaking, we
should have taken all this into account in our definitions of the encoding, but
it seemed clearer not to do this.

One can adapt the above encoding to ensure that there are no continuations
after the “out” capabilities. An essential difference is that it is not clear how
to adapt the monitor process, which is therefore dispensed with. Thus there
will be concurrency, in that the registers and instructions will make their
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way downwards at different rates, but this does not lead to any erroneous
computations. Similar considerations apply to the increment; the process has
to be changed to a more nondeterministic one, though again without any
erroneous computations. 2

C Encoding of CMs into Lpp

We present an encoding of CMs into the language Lpp defined in Subsec-
tion 3.4:

P ::= 0 | n[P ] | P | Q | push n.P | pull n.P | !P

Theorem 3.8. Lpp is Turing complete.

Proof. (Sketch) We consider a particular CM called CM , with instructions
I0, . . . , Ia and registers R0, . . . , Rb. Let CM(i : k0, . . . , kb) represent CM when
it is about to execute instruction i and storing kj in register j (j ≤ b). Let the
(unique) finite or infinite computation of CM = CM0 be CM0, . . . , CMl, . . .,
where CMl = CM(il : k0l, . . . , kbl).

We shall describe how registers are encoded, followed by the same for in-
structions. Then we shall describe how the encoded CM operates in detail.
In describing the encoding of the register and instructions, we must take into
account the fact that the both the increment and the decrement/jump in-
structions will accumulate garbage each time they are used. We therefore
parametrise our encoding by the index l of the stage we have reached in the
computation. Let

• inc(i, l) be the number of increments

• decs(i, l) be the number of decrements leaving the register contents non-zero

• decz(i, l) be the number of decrements leaving the register contents zero

• jump(i, l) be the number of jumps

performed by instruction i during the computation of CM up to, but not
including, stage l.

Zero and successor registers with their contents are encoded as follows:

[[Rj(0)]]l
df
= zj[ (increqj[ ])inc(i,l) | ! pull increqj.

(push sj | sj[SZj | SDj | Ij | tj[TZj | TDj | Ij ] ]) ]

[[Rj(k + 1)]]l
df
= sj[SDj | Ij | tj[TDj | Ij | [[Rj(k)]] ] ]

Thus incrementing a register by 1 involves adding two new surrounding am-
bients sj, tj. These will actually be added to the core of the register process,
immediately round the central zj ambient, when a request is received (an
increqj ambient is detected). The auxiliary tj ambients are introduced to
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help in handling decrements.

SZj
df
= pull zj.push incackj

TZj
df
= pull zj.(push incackj | incackj[ ])

The Ij process pulls increqj[ ] inwards towards the core, and pushes the ac-
knowledgement incackj[ ] out towards the top level:

Ij
df
= ! pull increqj.push incackj

The SDj and TDj processes help in decrementing a nonzero register:

SDj
df
= pull uj.push tj

TDj
df
= pull decreqj.(TDSj | TDZj)

TDSj
df
= push sj.(push decackj | decackj[ ])

TDZj
df
= push zj.(push decackj | decackj[ ])

We now turn to the instructions. The ith instruction is activated when a sti[ ]
ambient appears at the top level.

(i) Increment. The encoded instruction [[i : Inc(j)]]l is:

! pi[ pull sti.(increqj[ ] | push increqj.pull incackj.(push sti+1 | sti+1[ ])) ]

| (GIij)inc(i,l)

where GIij
df
= pi[ sti[ ] | incackj[ ] ] is the garbage which accumulates with

each increment.

(ii) Test and decrement or jump. [[i : DecJump(j, i′)]]l is:

! pi[ pull sti.(test[Testzj | Testsj ] | Dotestiji′) ]

| (GJij)jump(i,l) | (GDSiji′)decs(i,l) | (GDZiji′)decz(i,l)

where

Testzj
df
= pull zj.push zj.(tested[ ] |

push tested.pull back.(push jump | jump[ ]))

Testsj
df
= pull sj.push sj.(tested[ ] |

push tested.pull back.(push decreqj | decreqj[DRj ]))

DRj
df
= uj[ ] | pull sj.push tj

Dotestiji′
df
= push test.pull tested.pull test.(back[ ] | FJi′ | FDij)

FJi′
df
= push jump.pull jump.(push sti′ | sti′ [ ])

FDij
df
= push decreqj.pull decackj.pull tj.(push sti+1 | sti+1[ ])

Garbage can accumulate in three different ways, depending on whether
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the register contents are zero (giving a jump), or nonzero (giving a decre-
ment where the new contents may be either zero or a successor):

GJij
df
= pi[ sti[ ] | tested[ ] | FDij | test[ back[ ] | Testsj ]

| jump[ ] ]

GDZiji′
df
= pi[ sti[ ] | tested[ ] | FJi′ | test[ back[ ] | Testzj ]

| decackj[ ] | tj[ decreqj[ sj[uj[ ] | Ij ] ] | TDSj | Ij ] ]

GDSiji′
df
= pi[ sti[ ] | tested[ ] | FJi′ | test[ back[ ] | Testzj ]

| decackj[ ] | tj[ decreqj[ sj[uj[ ] | Ij ] ] | TDZj | Ij ] ]

We define:

[[CM(i : k0, . . . , kb)]]l
df
= sti[ ] | (

∏
i≤a

[[Ii]]l) | (
∏
j≤b

[[Rj(kj)]]l)

The encoding of CM is [[CM ]]
df
= [[CM0]]0. The encoded CM will go through

successive stages [[CMl]]l. We show that for each non-terminal stage l, [[CMl]]l ⇒
[[CMl+1]]l+1, and that [[CMl]]l is guaranteed to reach [[CMl+1]]l+1. Computa-
tion is entirely deterministic. There are various cases, depending on the kind
of instruction.

First consider the execution of [[i : Inc(j))]]l. Starting from

sti[ ] | [[i : Inc(j)]]l | [[Rj(k)]]l

the instruction is activated (ambient pi), and the increqj[ ] ambient is pushed
to the top level:

[[i : Inc(j)]]l | pi[ sti[ ] | pull incackj.(. . .) ] | increqj[ ] | [[Rj(k)]]l

Then the increqj[ ] ambient is pulled into the core of the register process,
where it is added to the accumulated garbage. This leads to an sj ambient
being pushed out of zj.

. . . zj[ (increqj[ ])inc(i,l+1) | ! pull increqj.(. . .) ] | sj[SZj | . . . ] . . .
Then zj is pulled into sj followed by tj, so that the register is incremented.

. . . sj[ push incackj | SDj | Ij | tj[ push incackj | incackj[ ] | Ij | zj[ . . . ] ] ] . . .

The acknowledgement incackj[ ] is then pushed out to the top level, where it
is pulled in by pi, which then activates the next instruction by pushing out
sti+1[ ]. The used instruction pi[ sti[ ] | incackj[ ] ] (i.e. GIij) is now at the top
level, where it is added to the accumulated garbage. We now have

sti+1[ ] | [[i : Inc(j)]]l+1 | [[Rj(k + 1)]]l+1

We now consider the execution of [[i : DecJump(j, i′)]]l. Starting from

sti[ ] | [[i : DecJump(j, i′)]]l | [[Rj(k)]]l

the instruction is activated (ambient pi), and the test ambient is sent out to
test whether k is zero or non-zero.

. . . pi[ sti[ ] | pull tested.(. . .) ] | test[Testzj | Testsj ] | [[Rj(k)]]l
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Once it has done the test it signals this to pi with ambient tested. Both
ambients are then pulled back into pi. Ambient tested discovers that it is back
in pi by pulling in ambient back. There are now two possibilities, depending
on whether k is zero or nonzero.

1. k is zero.

pi[ sti[ ] | tested[ ] | FJi | FDij |

test[ back[ ] | push jump | jump[ ] | Testsj ] ] . . .

Then test pushes out jump, which is detected by pi, which pushes out ambient
sti′ to trigger the next instruction. (In the case that i′ = i there is a choice
of ambients to push out, but this does not affect the determinism of the
computation in any significant way.) The process

pi[ sti[ ] | tested[ ] | FDij | test[ back[ ] | Testsj ] | jump[ ] ]

(i.e. GJij) is added to the accumulated garbage. We are left with

[[i : DecJump(j, i′)]]l+1 | [[Rj(k)]]l+1 | sti′ [ ]

2. k is nonzero.

pi[ sti[ ] | tested[ ] | FJi′ | FDij |

test[ back[ ] | push decreqj | decreqj[DRj ] | Testzj ] ] . . .

Then test and pi push out ambient decreqj to carry out the decrement. Then
decreqj pulls in sj (the entire register).

pi[ sti[ ] | tested[ ] | FJi′ | pull decackj.(. . .) | test[ back[ ] | Testzj ] ] |

decreqj[uj[ ] | push tj | sj[SDj | Ij | tj[TDj | Ij | [[Rj(k − 1)]]l ] ] ]

Now sj can pull in uj and push out tj. Then decreqj pushes tj out to the top
level, which enables tj to detect it is at the top level by pulling in decreqj.

pi[ sti[ ] | tested[ ] | FJi′ | pull decackj.(. . .) | test[ back[ ] | Testzj ] ] |

tj[ decreqj[ sj[uj[ ] | Ij ] ] | TDSj | TDZj | Ij | [[Rj(k − 1)]]l ]

Now tj pushes out the decremented register—with outermost ambient either
sj or zj, depending on the the value of k—and then signals completion of the
decrement by pushing out decackj[ ]. We illustrate the case when k − 1 > 0:

pi[ sti[ ] | tested[ ] | FJi′ | pull decackj.(. . .) | test[ back[ ] | Testzj ] ] |

decackj[ ] | tj[ decreqj[ sj[uj[ ] | Ij ] ] | TDZj | Ij ] | [[Rj(k − 1)]]l

Then decackj is detected by pi, which pulls in the left-over tj, and activates the
next instruction i+ 1. The garbage accumulates as either GDSiji′ or GDZiji′ .
We are left with

[[i : DecJump(j, i′)]]l+1 | [[Rj(k − 1)]]l+1 | sti+1[ ]

Finally, we see that if CML is terminal (so iL = a+1) then [[CML]]L has no
reductions. [[CML]]L displays barb sta+1 to indicate termination. The result of
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the computation, stored in register 0, is usable by subsequent computations.
On the other hand, if CM does not terminate, then neither does [[CM ]], and
the barb sta+1 will never appear. There are no “bad” computations, i.e. ones
which halt in a non-final state, diverge, or produce unintended behaviour. We
have a encoding which shows Turing completeness, and also undecidability of
termination and of weak barbs. 2

Remark C.1 Instead of letting the garbage accumulate as the computation
proceeds, as above, the recent work of Boneva and Talbot [1] shows how one
could introduce replicated ambients as garbage collectors.

D Lo is terminating

Let Lo be the following language:

P ::= 0 | n[P ] | P | Q | out n.P | ! out n.P | νn P
Theorem 4.3. Lo is terminating.

Proof. (Sketch) As with Theorem 4.2, it suffices to show the theorem for the
sublanguage without restriction.

The idea of the proof is as follows: We associate a finite multiset of natural
numbers with each process and show that each reduction produces a smaller
multiset in the well-founded ordering � described above. Each element in the
multiset measures the number of ambients working from an occurrence of 0
outwards.

ms(0)
df
= {0} ms(P | Q)

df
= ms(P ) ∪ms(Q)

ms(n[P ])
df
= {k + 1 : k ∈ ms(P )} ms( ! out n.P )

df
= ms(P )

ms(out n.P )
df
= ms(P )

We note that if ms(P ) � ms(Q) then ms(C{P}) � ms(C{Q}).
We need to make some adjustments to structural congruence and reduc-

tion as defined in Section 2. Denote the new ad hoc reduction relation and
structural congruence by →′, ≡′ respectively. We allow parallel composition
to be commutative and associative for ≡′, but we disallow

! out n.P ≡′ out n.P | ! out n.P

so that replication only unfolds as part of a reaction (otherwise structurally
congruent terms could have different multisets). We also disallow P | 0 ≡′ P
for the same reason. To compensate, in addition to standard rule (Out), we
adopt rule (RepOut) which unfolds a replication precisely when needed for a
reduction:

(Out) m[n[ out m.P | Q ] | R ] →′ n[P | Q ] | m[R ]

(RepOut) m[n[ ! out m.P | Q ] | R ] →′ n[P | ! out m.P | Q ] | m[R ]
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None of these changes removes any computation, though the terms may change
in appearance. The relationship between standard → and the ad hoc →′ is as
follows: If P →′ P ′ then P → P ′. Conversely, if P → P ′ then there exists P ′′

such that P →′ P ′′ and P ′′ ≡ P ′. It is therefore sufficient to show that →′ is
terminating.

Suppose that P0 →′ P ′0. We must show that ms(P0) � ms(P ′0). We have
two reactions to consider: In the case of (Out), ms(P ′0) has the same size as
ms(P0), but some elements are reduced by one because the exiting ambient
has reduced its depth. Hence ms(P0) � ms(P ′0). In the case of (RepOut), we
replace the elements {k + 2 : k ∈ ms(P )} by {k + 1 : k ∈ ms(P ) ∪ ms(P )}.
Hence also ms(P0) � ms(P ′0). By the well-foundedness of �, we conclude that
every computation must terminate. 2
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